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Free energy difference calculations based on atomistic simulations generally improve in accuracy
when sampling from a sequence of intermediate equilibrium thermodynamic states that bridge the
configuration space between two states of interest. For reasons of efficiency, usually the same samples
are used to calculate the step-wise difference of such an intermediate to both adjacent intermediates.
However, this procedure violates the assumption of uncorrelated estimates that is necessary to derive
both the optimal sequence of intermediate states and the widely used Bennett acceptance ratio
(BAR) estimator. In this work, via a variational approach, we derive the sequence of intermediate
states and the corresponding estimator with minimal mean squared error that account for these
correlations and assess its accuracy.

INTRODUCTION

Free energy calculations are widely used to investigate
physical and chemical processes [1–4]. Their accuracy
is essential to biomedical applications such as computa-
tional drug development [5–8] or material design [9–11].
Amongst the most widely used methods based on simula-
tions with atomistic Hamiltonians are alchemical equilib-
rium techniques, including the Free Energy Perturbation
(FEP) [12] and Thermodynamic Integration (TI) [13]
methods. These techniques determine the free energy
difference between two states, representing, for example,
two different ligands bound to a target, by sampling from
intermediate states whose Hamiltonians are constructed
from those of the end states.

The choice of these intermediates critically affects the
accuracy of the free energy estimates [14–16] by deter-
mining which parts of the configuration space are sam-
pled to which extent [17], thereby performing a function
similar to importance sampling [18]. In addition, differ-
ent estimators that determine the free energy differences
between these intermediates and the end states have been
developed, most prominently the Zwanzig formula [12]
for FEP, the Bennett Acceptance Ratio method (BAR)
[19], and multistate BAR (MBAR) [20].

We have recently derived [21] the sequence of discrete
intermediate states that yields, for finite sampling, the
lowest mean squared error (MSE) of the free energy es-
timates with respect to the exact value. Notably, mini-
mizing the MSE accounts not only for the variance, but
also for possible bias. The result differs from the most
common scheme, which linearly interpolates between the
end states Hamiltonians H1(x) and HN (x), respectively,
along a path variable λ,

Hs(x) = (1− λ)H1(x, λ) + λHN (x, λ), λ ∈ [0, 1] (1)

where x ∈ IR3M denotes the coordinate vector of all M
particles in the system. Here, the additional λ argument
of the end states Hamiltonians indicates the commmon

use of soft-core potentials [22–24] to avoid divergences for
vanishing particle. Other approaches involve the interpo-
lation of exponentially weighted Hamiltonians of the end
states, such as Enveloping Distribution Sampling [25] or
the Minimum Variance path [26, 27] for TI.

In contrast, the variationally derived intermediates
(VI) turn out to be coupled and thus determined through
a system of equations [21]. For the setup shown in
Fig. 1(a), where all states are labeled by integers s with
1 ≤ s ≤ N , sampling is conducted in the intermediates
with even numbered s, governed by the optimal Hamil-
tonian

Hs(x)

= −1

2
ln[e−2Hs−1(x) · r−2s−1,s + e−2Hs+1(x) · r−2s+1,s] .

(2)

where rs,t = Zs/Zt denotes the ratio of the configura-
tional partition sums of states s and t. Virtual interme-
diates, i.e., the ones without sampling, are labeled with
odd s with 2 < s < N − 1 and indicated by the dashed
lines in Fig. 1(a). For these,

Hs(x) = ln[eHs−1(x) · rs−1,s + eHs+1(x) · rs+1,s] . (3)

Due to the dependence on the ratios of the partition
sums, i.e., the desired quantity, the set of equations has
to be solved iteratively. The variational MSE minimiza-
tion has been conducted based on the Zwanzig formula
[12]

∆Gs,s+1 = − ln〈e−[Hs+1(x)−Hs(x)]〉s (4)

being used to calculate the difference between two adja-
cent states, as indicated by the arrows in Fig. 1. Further-
more, using the virtual target states described by Eq. (2)
is equivalent to using BAR directly between two sam-
pling states [21, 28], and, therefore, Eq. 16 also describes
the optimal intermediates for BAR.

However, for BAR and VI to be optimal for multi-
ple states, the free energy estimates to the states above
and below an intermediate in the sequence have to be
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based on separate, uncorrelated sample points [21], as il-
lustrated by the separate yellow points in Fig. 1(a) that
we refer to as the regular FEP setup. Yet, it would be
twice as efficient to use the same sample points in both
directions, as illustrated by Fig. 1(b), and as generally
done in practice. However, this introduces correlations
between the estimates to both adjacent intermediates,
thereby violating the assumptions underlying the deriva-
tion of Eqs. (2) and (3). Therefore, in this case the above
variational intermediates are not optimal anymore. Due
to these correlations, we refer to the Fig. 1(b) as the cor-
related FEP (cFEP) setup.

Here, we derive the minimal MSE sequence of inter-
mediate states for and the corresponding estimators for
cFEP that take these correlations properly into account.
As will be shown below, what might seem as a minor tech-
nical twist, markedly changes the shape of the optimal
intermediates and considerably improves the accuracy of
the obtained free energy estimates.

THEORY

For the cFEP scheme shown in Fig. 1(b), using N
states, we aim to derive the sequence of intermediate
HamiltoniansH2(x) . . . HN−1(x) that optimizes the MSE

MSE
(

∆G(n)
)

= E
[(

∆G−∆G(n)
)2]

(5)

along similar lines as before [21]. Here, ∆G
(n)
1,N denotes

the free energy estimate based on a finite number of sam-
ple points n, and ∆G1,N the exact difference between the
end states 1 and N .

The cFEP variant in Fig. 1(b) only uses sampling in
the intermediate states. Setups that, in addition, involve
sampling in the end states, can also be treated with the
formalism below. However, firstly, as we have tested,
the accuracy for a given computational effort does not
increase in this case. Secondly, mixing two different types
of sample points (the ones used to evaluate ∆H to only
one adjacent state vs. to both adjacent states) further
complicates the analysis.

For cFEP, the estimated difference is

∆G(n) =

N−2∑
s=2

s even

(
∆G

(n)
s→s+1 −∆G

(n)
s→s−1

)
. (6)

As in Fig. 1(b), the arrows point from sampling to
target states, i.e., either the end states or the virtual
intermediates. Assuming for each sample state s a
set of n independent sample points {xi}, drawn from
ps(x) = e−Hs(x)/Zs, with partition function Zs, Eq. (6)

FIG. 1. Two schemes of free energy calculation. The ar-
rows indicate the Zwanzig formula is used to evaluate the free
energy difference to the adjacent state based on sample sets
represented through yellow dots. The dashed lines represent
virtual intermediate states that no sampling is conducted in.
(a) Separate and uncorrelated sample set are used to calcu-
late the free energy difference of the respective intermediate
to the state above and below (b) The same sample set is used
for this purpose.

reads

MSE
(

∆G
(n)
1,N

)
=

(∆G1,N )
2

+

N−2∑
s=2

s even

E
[(

∆G
(n)
s→s+1

)2
+
(

∆G
(n)
s→s−1

)2]

− 2∆G1,N

 N−2∑
s=2

s even

(
E
[
∆G

(n)
s→s+1

]
− E

[
∆G

(n)
s→s−1

])
−

N−2∑
s=2

s even

N−2∑
t=2

t even

E
[
2 ∆G

(n)
s→s+1 ∆G

(n)
t→t−1

]
.

(7)

The first two lines of Eq. (7) have already been processed
in Ref. 21, but the last term differs. Previously, as in the
regular FEP scheme in Fig. 1(a), these last expectation
values were originally derived from independent sample
sets and were, therefore, uncorrelated. In the present
context of cFEP, however, these estimates are correlated.
Therefore, the term needs to be split in two sums, distin-
guishing between the pairs with samples from the same
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state and the ones from different states,

N−2∑
s=2

s even

N−2∑
t=2

t even

E
[
2 ∆G

(n)
s→s+1 ∆G

(n)
t→t−1

]

= 2

N−2∑
s=2

s even

E
[
∆G

(n)
s→s+1 ∆G

(n)
s→s−1

]

+ 2

N−2∑
s=2

s even

N−2∑
t=2

t even
t6=s

E
[
∆G

(n)
s→s+1

]
E
[
∆G

(n)
t→t−1

]
,

(8)

where the expectation value of the product between the
two estimates based on different sample sets has been
separated, as these are uncorrelated.

As we are only interested in the intermediates that
optimize the MSE, and not in the absolute value of the
MSE, we focus on the terms that will not drop out in the
optimization below.

Continuing with the expression inside the sum of the
first term on the right hand side of Eq. 8,

E
[
∆G

(n)
s→s+1 ∆G

(n)
s→s−1

]
(9)

=−
∫
ps(x1)dx1...

∫
ps(xn)dxn

ln

[
1

n

n∑
i=1

e−(Hs+1(xi)−Hs(xi))

]

ln

[
1

n

n∑
i=1

e−(Hs−1(xi)−Hs(xi))

]
.

(10)

As in the derivation of Ref. 21, the Hamiltonians are now
shifted by a constant offset Cs, i.e., H ′s(x) = Hs(x)− Cs.
This offset will cancel out for a given shape of an in-
termediate when calculating the accumulated free en-
ergy difference in Eq. 6. However, as the intermedi-
ate states will turn out to be coupled, these offsets do
influence the shape of these intermediates. The off-
sets can now be chosen such that the terms inside the
logarithms of Eq. (10) are close to one. In this case,

E
[
∆G

(n)
s′→(s+1)′

]
= ∆Gs′,(s+1)′ [21], and, therefore, the

two linear terms arising from Eq. (10) can be expressed
in terms of the exact free energy differences.

Next, the product of the two sums in Eq. 10 is split
into terms based on the same and different sample points,

respectively,

E
[
∆G

(n)
s′→(s+1)′ ∆G

(n)
s′→(s−1)′

]
(11)

=− 1

n2

∫
ps(x1)dx1...

∫
ps(xn)dxn

(
n∑

i=1

e−(H
′
s+1(xi)−H′s(xi))

) n∑
j=1
j 6=i

e−(H
′
s−1(xj)−H′s(xj))


+

n∑
i=1

e−H
′
s+1(xi)−H′s−1(xi)+2H′s(xi)

]
+ fs′(∆Gs′→(s−1)′ ,∆Gs′→(s+1)′) ,

(12)

where the terms that can be expressed solely based on
(constant) free energy differences are summarized by the
term fs. Again, the first two terms of Eq. (12) can be
expressed in terms of the free energy differences between
s and s+ 1 as well as between s and s− 1, respectively.

Collecting all terms arising from Eq. (7)

MSE
(

∆G
(n)
1,N

)
=

N−2∑
s=2
s odd

1

n

(∫
ps(x) dx e−2(H

′
s+1(x)−H

′
s(x))

+

∫
ps+2(x) dx e−2(H

′
s+1(x)−H

′
s+2(x))

+

∫
ps+1(x) dx e−H

′
s+2(x)−H

′
s(x)+2Hs+1(x)

+ gs′(∆Gs′,(s+1)′ ,∆G(s+2)′,(s+1)′ ,∆G1′,N ′)
)
,

(13)

where the function g′s serves the same purpose as f ′s and
can be dropped in the optimization below.

The condition of small ∆G
(n)
s′→(s+1)′ is fulfilled by set-

ting Cs = − lnZs. By variation of the MSE from
Eq. (13),

∂

∂Hs(x)

(
MSE

(
∆G

(n)
1,N

)
+ ν

∫
(e−Hs(x) − Zs)dx

)
!
= 0 ,

(14)
where ν is a Lagrange multiplier, the optimal sequence
of Hamiltonians is obtained. For s even, we obtain

Hs(x) = −1

2
ln
(
e−2Hs−1(x)r−2s−1,s + e−2Hs+1(x)r−2s+1,s

−2e−Hs−1(x)−Hs+1(x)r−1s−1,sr
−1
s+1,s

)
(15)

For s odd and 2 < s < N − 1:

Hs(x) = ln
(
eHs−1(x)rs−1,s + eHs+1(x)rs−1,s

)
− ln

(
e−Hs−2(x)+Hs−1(x)rs−1,s−2

+ e−Hs+2(x)+Hs+1(x)rs+1,s+2

) (16)
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(a) N = 3 states (b) N = 7 states

FIG. 2. Configuration space densities of VI (left column), and cVI (right column). The individual rows in (a) and (b) show
different shifts in x-direction between the minima of the harmonic, H1(x), and the quartic, HN (x), potentials of the end states,
thereby showing setups with different configuration space density overlap K between the end states, indicated by the yellow
area. Sampling is conducted in the even numbered intermediates. The dashed lines in (b) indicate the (odd numbered) virtual
intermediate target states that no sampling is conducted in.

where, as in Eqs. (2) and (3), the ratios rs,t of the parti-
tion sums between states s and t have to be determined
iteratively. The above sequence, Eqs. (15) and (16), that
we refer to as the correlated Variational Intermediates
(cVI), yield the minimal MSE estimates for cFEP.

Figure 2 shows the resulting configuration space densi-
ties of the above intermediates for the example of a start
state with a harmonic Hamiltonian, H1(x) = 1

2x
2, and

an end state with a quartic one, HN (x) = (x − x0)4.
Panel (a) shows the VI that are optimal for the regu-
lar FEP scheme in Fig. 1(a). Panel (b) shows the cVI,
optimal for cFEP.

The yellow areas in Fig. 2, Eq. (17), provide a sim-
ple measure of the configuration space density overlap K
between the end states 1 and N ,

K =

∫ +∞

−∞
dx min(pA(x), pB(x)) , (17)

Here, K = 0 indicates two separate distributions with-
out any overlap, and K = 1 full overlap, i.e., identical
configuration space densities.

The two rows in Fig. 2(a) and (b) depict the result for
two different values of x0, and correspondingly, varying
K.

As can be inferred from Eq. (15), for N = 3, H2(x)

diverges at the points where p1(x) = p3(x), and there-
fore, p2(x) = 0 at these points, as can also be seen for
the intermediate sampling state shown in Fig. 2(a). More
generally, H2(x) of cVI “directs” sampling away from the
overlap regions and towards the ones that are only rele-
vant for one, but not both end states. For instance, the
tails of the start state in the upper row of (a) are sam-
pled more for cVI than for VI. For larger horizontal shifts
of x0, i.e., low values of K, the two variants become in-
creasingly similar, as the additional term in Eq. (15) with
respect to Eq. (2) becomes smaller compared to the first
term.

For N = 7 states, Fig. 2(b) shows the converged re-
sulting configuration space densities. The case of x0 = 0,
as shown in (a), was omitted in (b) as the visualization
is more difficult in this case due to the higher number of
states. In (b), the additional changes from VI to cVI be-
come more complex. As in (a), the sampling states have
smaller densities p(x) in the overlap regions of the end
states, but, in contrast to (a), still differ between VI and
cVI for smaller values of overlap K. The reason is that
while the overlap between the end states vanishes with
decreasing K, an overlap between adjacent intermediate
states remains that affects the shape of the intermediates.
Note that the divergences mentioned above introduce in-
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stabilities in solving the system of Eqs. (15) and (16).
Hence, for N > 3 the factor 2 of the additional term
in the logarithm Eq. (15) has been replaced by a factor
κ that was set to slightly below 2 (κ = 1.95) in case of
Fig. 2(b). See Appendix A for details.

cBAR Estimator

As mentioned above, using the Zwanzig formula [12] to
evaluate the free energy difference between two sampling
states with respect to the virtual intermediate, Eq. (3),
of VI is equivalent to BAR [21, 28]. Correspondingly, the
virtual intermediate defined by Eq. (16) of cVI also corre-
sponds to an estimator, that is optimal for the sampling
states of cFEP and that we will refer to as correlated
BAR (cBAR).

To derive cBAR, we use the relation between the two
approaches. Determining the free energy difference be-
tween two sampling states labeled s−1 and s+1 by using
the virtual intermediate s to evaluate the difference be-
tween the adjacent states yields

∆G
(n)
s−1,s+1 = − ln

〈e−(Hs(x)−Hs+1(x))〉s+1

〈e−(Hs(x)−Hs−1(x))〉s−1
. (18)

Using the approach of Bennett [19] instead,

∆G
(n)
s−1,s+1

= ln
〈w(Hs−1(x), Hs+1(x))e−Hs−1(x)〉s+1

〈w(Hs−1(x), Hs+1(x))e−Hs+1(x)〉s−1
. (19)

where w(Hs−1(x), Hs+1(x)) is a weighting function.
From Eqs. (21) and (19) follows that the two approaches
are equivalent if the weighting function relates to the
Hamiltonian of the virtual intermediate state through

w(Hs−1(x), Hs+1(x)) = e−Hs(x)+Hs−1(x)+Hs+1(x) . (20)

Therefore, any Hamiltonian of a virtual intermediate
state corresponds to a weighting function. Bennett opti-
mized the weighting function with respect to the variance
yielding the famous BAR result

∆G
(n)
s−1,s+1 − C = ln

〈f(Hs−1(x)−Hs+1(x)− C)〉s+1

〈f(Hs+1(x)−Hs−1(x) + C)〉s−1
,

(21)

where C ≈ ∆Gs−1,s+1 has to be determined iteratively
and f(x) is the Fermi function. This result is equivalent
to using the virtual intermediate of Eq. (3) with Eq. (18).
Note that the relation of a virtual intermediate to BAR
result had already been obtained by Lu et al. [28], albeit
through a different formalism, and that using the hyper-
bolic secant function (Eq. 10, p. 2980), in their Overlap
Sampling approach [28, 29] is equivalent to Eq. (20).

Next, for cFEP, using the Hamiltonian of the virtual
intermediate from Eq. (16) in Eq. (20) yields the weight-
ing function of cBAR,

w
(
Hs−2(x), Hs−1(x), Hs+1(x), Hs+2(x),

Cs−2,s−1, Cs−1,s+1, Cs+1,s+2

)
=
(
e−Hs−2(x)+Hs−1(x)+Cs−2,s−1

e−Hs+2(x)+Hs+1(x)+Cs+2,s+1

)/
(
eHs−1(x)−Hs+1(x)−Cs+1,s−1 + 1

)
,

(22)

where the MSE of the resulting estimates is minimal if
all Cs,t ≈ ∆Gs,t. A numerator of 1 in Eq. 22 would yield
the original BAR result.

Note that Hs−2(x), and Hs+2(x), are also virtual in-
termediates determined by Eq. 16. As such, the result is
a system of weighting functions, i.e., one for every pair
of adjacent sampling states. The optimal estimate can,
therefore, only be found by iteratively solving for the free
energy estimates between all sampling states at once. In
this regard, the procedure is similar to MBAR [20].

TEST SIMULATIONS

To assess to what extent our new variational scheme
improves accuracy, we consider the one-dimensional sys-
tem with a harmonic and a quartic end state shown in
Fig. 2. Rejection sampling is used to obtain uncorrelated
sample points. The free energy estimate, obtained from
these finite sample sets, is compared to the exact free en-
ergy difference. The MSE, Eq. (5), is then calculated by
averaging over one million of such realizations. With this
procedure, different combinations of overlap K, numbers
of states N and sample points n are considered.

We compare three variants. Firstly, using VI, Eqs. (2)
and (3), with FEP, i.e., the scheme in Fig. 1(a). Here,
the estimates to both adjacent states are based on sepa-
rate sample sets and, therefore, not correlated. Secondly,
also using VI, but now with cFEP, shown in Fig. 1(b).
In contrast to variant 1, these estimates are based on the
same sample sets and, therefore, correlated. In order to
keep the total computational effort constant, the number
of sample points per set (i.e., per yellow point in Fig. 1)
is two times larger for cFEP than for FEP. Thirdly, using
cVI, Eqs. (15) and (16), that accounts for these correla-
tions, also with cFEP.

RESULTS

For N = 3 states, Fig. 3(a) shows the MSEs of the
three variants for different numbers of sample points.
Here, for the quartic end state, x0 = 0, corresponding
to K = 0.85, was used. The corresponding configuration
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FIG. 3. Comparison of the accuracy of VI and cVI using the schemes of Fig. 1. The accuracies were obtained from test
simulations based on the setups shown in Fig. 2. (a) Using N = 3 states and comparing three variants of free energy
calculations: Using cVI with cFEP (blue), VI with cFEP (red) and VI with FEP (grey). The MSEs of free energy calculations
are shown for different number of sample points. (b) The ratio of the MSEs, and therefore, the improvement, of using cVI
compared to VI for cFEP. The dark green line (K = 0.85) corresponds to the ratio between the red and the blue line in (a). In
addition, the results for different configuration space density overlaps K between the end states are shown (green to orange).
(c) Using n = 200 sample points, the MSEs of the three variants from (a) are shown over the full range of K. (d) As in (c),
but with N = 7 states. The computational effort was kept constant by reducing the number of sample points per state.

space densities of VI and cVI are shown in the upper row
of Fig. 2(a).

As can be seen, cVI with cFEP, shown by the dark
blue line, yields the best MSE for all numbers of sample
points except very few ones. The other two variants, i.e.,
VI with FEP (grey line) and cFEP (red line) yield very
similar MSEs. As such, the gain in information from
evaluating the Hamiltonians to both adjacent states for
all sample points yields only a very small improvement
compared to using separate sample sets for this purpose.

In order to quantify the improvement of cVI compared
to VI for cFEP, Fig. 3(b) shows the ratio of the MSEs
of the two variants, again in relation to the number of
sample points per set. The dark green curve (K = 0.85),
corresponds to the MSEs shown in (a) (i.e., the values of
the red curve divided by the blue curve). The improve-
ment in the MSE plateaus slightly above two for more
than two hundred sample points per state. In addition,
the improvements for setups with different overlap K be-
tween the end states are shown (orange to light green).
This improvement becomes smaller for smaller values of
K, but the qualitative dependence on the number of sam-
ple points remains the same.

For a constant number of sample points n = 200 (and
n = 100 per set for VI with FEP, shown in grey), Fig. 3(c)
shows how the MSEs of the three variants improve with
increasing K. The MSEs converge at low K, which is in
agreement with the observation from Fig. 2(a) that the
phase space densities of the intermediate state become
more similar in this case.

Figure 3(d) shows the MSEs for N = 7 states. The
corresponding configuration space densities for two dif-
ferent values of K are shown in Fig. 2(b). Here, VI with
FEP and cFEP still yield similar MSEs, whereas cVI with
cFEP, in contrast to N = 3, now yields the best MSE for
all K. The improvement to VI ranges from around 20 %
for low K, to around 50 % for large K. This is in line
with the observation from Fig. 2(b) that the configura-
tion space densities between VI and cVI become more
similar but do not fully converge for a larger number of
states in the limit of small K.

Lastly, the cBAR estimator can be used with any
choice of intermediate states for cFEP. To assess how
much the cBAR estimator improves the accuracy of free
energy estimates compared to BAR for cFEP, we con-
ducted test simulations where the sampling states were
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chosen as in Eq. (1), i.e., by linear interpolation between
the Hamiltonians of the end states. Test simulations
were conducted at varying values of K and at N = 5 and
N = 7. Evaluating the MSE, we found a statistically
significant improvement, however, only in the range of
1− 2 % (data therefore not shown here). The improve-
ment was independent of K and similar for both numbers
of N .

Considering that the MSEs of cVI and VI can improve
up to an order of magnitude compared to the linear in-
termediates defined in Eq. (1) (for a detailed comparison
between VI and linear intermediates, see Ref. 21), the
large majority of improvements is not due to an improved
estimator, but due to the way samples are generated.

DISCUSSION AND CONCLUSION

In summary, we have derived a new variant of vari-
ational intermediates (cVI) that yield the optimal free
energy estimate with minimal MSE when using the same
sample points to evaluate the differences between the ad-
jacent states above and below in the sequence (cFEP).
This procedure is commonly used in free energy simula-
tions, as it is computationally much cheaper to evaluate
sample points at different Hamiltonians than to generate
these. However, the resulting correlations between these
estimates have not been considered yet.

Our test simulations for a one-dimensional Hamilto-
nian show that cVI with cFEP yields an improved MSE
compared to the optimal sequence (VI) with FEP, i.e., us-
ing different sample points for estimates to states above
and below in the sequence. For N = 3 states, the first
variant improved the MSE by more than a factor of two
for end states with high configuration space density over-
lap K, whereas at low K the MSEs were similar. For
N = 7 states, the MSE improved between 20 % (low K)
and 50 % (large K).

Interestingly, due to the correlations mentioned above,
using VI with FEP yields only slightly worse MSEs for all
K as using VI with cFEP, even though the latter involves
twice as many evaluations of Hamiltonians from adjacent
states. Only for cVI, thereby accounting for these corre-
lations, the additional gain in information translates into
a marked improvement of the MSE.

Similar to most other theoretical analyses and deriva-
tions of free energy calculation methods, we also needed
to assume that all sample points within each interme-
diate state are uncorrelated. If atomistic simulations
are used for sampling, the resulting time-correlations
reduce the number of essentially independent sample
points. Unfortunately, for our one-dimensional systems,
cVI increases barrier heights, thereby increasing correla-
tion times. We have so far not tested our method on any
complex biomolecular systems, so it is unclear if these
barriers can be circumvented or what the expected in-

crease in correlation times is. However, to avoid such
correlations between sample points in atomistic simula-
tions, usually only a small subset of all sample points is
used to calculate free energy differences. Based on our
findings and in contrast to common practice, we there-
fore recommend to use different subsets to evaluate the
free differences to different adjacent states.

The above derivation provides an example on how opti-
mal intermediates and estimators with minimal MSE can
be derived for different types of setups based on finite
sampling that may help to incorporate a variety of as-
sumptions and models into future theoretical approaches.

APPENDIX A: AVOIDING NUMERICAL
INSTABILITIES

The divergence in Eq. (15) at all x for which

e−2Hs−1(x)r−2s−1,s + e−2Hs+1(x)r−2s+1,s

= 2e−Hs−1(x)−Hs+1(x)r−1s−1,sr
−1
s+1,s

(23)

causes numerical instabilities in solving the system of
Eqs. (15) and (16). Replacing the factor 2 in Eq. (15)
in the logarithm with a factor κ, i.e., for s even,

Hs(x) = −1

2
ln
(
e−2Hs−1(x)r−2s−1,s + e−2Hs+1(x)r−2s+1,s

−κe−Hs−1(x)−Hs+1(x)r−1s−1,sr
−1
s+1,s

)
,

(24)

and setting, e.g., κ = 1.95, avoids these complications.
As can be easily validated, the inside of the logarithm in
Eq. 24 is larger than zero for 0 < κ < 2 for all Hs−1(x)
and Hs+1(x). As shown for cVI in Fig. 2(b), κ < 2
prevents ps(x) to go to zero at the crossing points of
ps−1(x) and ps+1(x) of the neighboring states, but is still
lowered at these points.
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