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Abstract 

 

The sawtooth activity is investigated for an EU DEMO reference plasma, including kinetic effects 

from both thermal particles and fusion-born alphas. Kinetic effects are studied in conjunction with 

modification of the magnetic shear near the q=1 surface (q is the safety factor) due to local current 

drive. Kinetic stabilization on the internal kink mode is found by both the non-perturbative MHD-

kinetic hybrid code MARS-K [Liu et al., Phys. Plasmas 15, 112503 (2008)] and the perturbative 

semi-analytic Porcelli model. The latter predicts full stabilization of the mode, when the local 

magnetic shear s1 at the q=1 surface is less than 1 (e.g. s1~0.6 as is the case for the target EU DEMO 

plasma without local current drive). By increasing the local magnetic shear with local current drive 

up to s1~2.8, one of the Porcelli sawtooth crash criteria can be satisfied, by accessing the ion-kinetic 

regime. Direct MARS-K non-perturbative eigenvalue computations, on the other hand, predict less 

kinetic stabilization of the internal kink and more robust triggering of the sawtooth crash in EU 

DEMO. The general trend of the predicted results remains similar though, between the MARS-K 

model and the Porcelli model.  
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1. Introduction 

 

It is well known that the sawtooth activity is characterized by periodic oscillations of the core plasma 
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parameters in tokamaks, such as the plasma temperature and density [1]. In a tokamak fusion reactor, 

small sawtooth oscillations can be beneficial, by helping prevent accumulation of helium ash and 

impurities with high charge number in the plasma core [2]. However, large sawtooth crashes, also 

often called monster sawteeth, which in turn are due to energetic particle stabilization [3, 4], can 

seed neoclassical tearing modes (NTMs) even at relatively low values of plasma pressure. Large 

NTMs can strongly degrade fusion energy confinement, and in worst case even causing plasma 

disruption [5, 6]. It is thus desirable to avoid monster sawteeth in reactor scale tokamak devices. 

An important contributor to monster sawteeth is thought to be the fusion born 3.52 MeV α-

particles, which have been shown to provide a strong stabilization on the internal kink mode in ITER 

[7-11]. The similar situation is likely to apply to the European demonstration fusion reactor (EU 

DEMO) [12-14]. Therefore, understanding sawtooth behavior and its control, in the presence of 

alphas, represent a critical issue for EU DEMO.  

The sawtooth crash is initiated by the onset of the m=n=1 internal kink instability, where m 

and n are the poloidal and toroidal mode numbers, respectively. Extensive research work has 

previously been devoted to study various physics aspects associated with the internal kink instability. 

For instance, it has been established that internal kink can be stabilized by reducing the plasma 

resistivity [15], by placing an ideal conducting wall close to the plasma [16], and by including 

various kinetic effects from bulk ions [7], electrons [17], fast ions [3, 18] and fusion-born α-particles 

[19]. In particular, since a large amount of high energy alphas in a fusion reactor are expected to 

provide deep stabilization to the internal kink, creating long period, large amplitude sawteeth, 

techniques are required to destabilize the mode. Fortunately, it has previously been observed that 

sawtooth control is achievable by locally perturbing the plasma current density profile near the q=1 

surface [20, 21]. Based on the Porcelli model model [7], simulation results for JET experiments 

showed that the sawtooth period is sensitive to the local change of the magnetic shear (s1) near the 

q=1 surface, and the internal kink mode is destabilized by increasing s1 [22-25].  

Although significant research results have so far demonstrated the capability of avoiding fast-

ion-stabilized large sawteeth by modifying the local magnetic shear, the robustness of this technique 

remains an open issue. This is due to the presence of a substantial population of fusion-born α-

particles, meaning a large fraction of kinetic contribution to the perturbed potential energy [8, 10], 

in EU DEMO-like reactor scale devices with burning plasma conditions. This motivates our specific 

investigation into this issue, based on a reference plasma designed for EU DEMO.   

In this work, full toroidal modeling of the internal kink instability is carried out for EU DEMO. 

Drift kinetic contributions from α-particles, as well as that from thermal particles, are computed by 

the MHD-kinetic hybrid code MARS-K in a non-perturbative manner [26]. For the purpose of 

investigating the effect of the local magnetic shear on the sawteeth triggering, the EU DEMO 

reference equilibrium is also slightly (and self-consistently) modified, by adding a locally driven 

current perturbation (e.g. by electron cyclotron current drive) to the toroidal current density. With 

varying s1, sawteeth crash conditions are assessed with the Porcelli model. We emphasize that one 

of the key parameters in the Porcelli model, i.e. the perturbed potential energy (with or without 

kinetic contributions), are evaluated by the toroidal code MARS-K, instead of adopting large aspect 
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ratio analytic approximation.  

An important reason for using the semi-analytic Porcelli model (but based on the MARS-K 

computed perturbed potential energies), for this EU DEMO study, is the inclusion of a reasonably 

complete set of physics in the Porcelli model, in particular the diamagnetic stabilization and the 

weakly unstable ion-kinetic regime, where the plasma resistive layer response plays an important 

role [7]. These physics are not included into the MARS-K model, which is based on the standard 

single fluid formulation. On the other hand, results from MARS-K direct eigenvalue computations 

are also reported in this work for comparative purpose. The MARS-K stability computations show 

generally the same trend in the kinetic stabilization of the internal kink mode, as that of the Porcelli 

model prediction. 

 This paper is organized as follows. Section 2 briefly describes the MARS-F/K computational 

models. Results for the EU DEMO study, including that from both MARS-K and the Porcelli model, 

are reported in section 3. Section 4 summarizes the work. 

 

 

2. Computational models 

 

The MARS-F/K codes [26, 27] are utilized to compute the growth rates and the perturbed potential 

energies of the internal kink mode for EU DEMO. The codes have been successfully benchmarked 

against other codes [28, 29], and have previously been applied to investigate kinetic effects on 

internal kink [15, 17] and external kink modes (the resistive wall modes) [30-34]. Below, we provide 

a brief description of the model including a self-consistent drift kinetic closure (MARS-K). The 

governing equations for the plasma are written for the perturbed quantities ξ, v, b, j, p, representing 

the plasma displacement, perturbed velocity, magnetic field, current density and pressure, 

respectively  
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where ρ, B and J are the equilibrium plasma density, magnetic field and current density, respectively.  

P is the total equilibrium pressure. The linear stability problem is formulated as an eigenvalue 
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problem with   being the eigenvalue, and its real and imaginary parts refer to the growth rate and 

the mode frequency, respectively. In the presence of the plasma equilibrium toroidal rotation, the 

eigenvalue is corrected by a Doppler shift frequency inΩ, with Ω bring the angular frequency of the 

flow along the geometric toroidal angle of the torus. Ẑ and R̂ are the unit vectors in the vertical 

and radial directions, respectively, in the poloidal plane, and R is the plasma major radius. The 

plasma resistivity is denoted by η. The Spitzer model is used for the plasma resistivity, which gives 

the on-axis Lundquist number of ~109 for this EU DEMO plasma.  

The drift kinetic effects self-consistently enter the MHD equations via the perturbed kinetic 

pressure tensor p in Eq. (2). As shown in Eq. (6), the perturbed pressure tensor p consists of a scalar 

component p, and anisotropic tensor components describing the perturbed drift kinetic pressure (the 

non-adiabatic contributions) parallel ( pP
) and perpendicular ( p ) to the equilibrium field line. The 

symbol I denotes the unit tensor here, and ˆ Bb = B . The kinetic pressure perturbations are 

calculated from Eq. (7), where Г signifies the velocity space of the particles, and j represents the 

particle species, including the thermal ions and electrons as well as the fusion born α-particles in 

this study. Mj is the corresponding particle mass. vP
 and v  denote the parallel and perpendicular 

velocities of the particle guiding center drift motion, respectively. We assume a Maxwellian 

equilibrium distribution function for thermal particles, and an isotropic slowing-down equilibrium 

distribution function for α-particles. 1

Lf  is the non-adiabatic perturbed distribution function, which 

contains a key factor, i.e., the mode-particle resonance operator 
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where *N  and 
*T  are the diamagnetic drift frequencies associated with the plasma density and 

temperature gradients, respectively. E  is the E B  drift frequency due to the equilibrium 

electrostatic potential. d is the bounce-orbit-averaged toroidal precession drift frequency of 

particles, including the E  drift. 
b  is the particle bounce/transit frequency. ˆ

k  is the particle 

kinetic energy normalized by the temperature. i % %is the mode frequency. l is the Fourier 

harmonic indices over the particle bounce orbit. 1   for passing particles, and 0   for 

trapped particles. νeff is the effective particle collision frequency. 

For the EU DEMO equilibrium, plasma flow is expected to be relatively slow. Therefore, 

kinetic contributions from passing particles are neglected in view of weak resonance between the 

internal kink mode and the fast transit motion of thermal ions. The transit motion of thermal 

electrons or α-particles is even faster, inducing even weaker effect and is thus also neglected. In 

addition, the kinetic contribution due to (fast) bounce motion of trapped thermal electrons is also 

ignored. 

 

 

3. Numerical results  

 

The EU DEMO equilibrium is briefly introduced in sub-section 3.1. Sub-section 3.2 studies the 
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effect of edge equilibrium current on the equilibrium profiles in particular that of the safety factor. 

In the following sub-sections 3.3 and 3.4, an equilibrium with vanishing edge current is adopted for 

the internal kink study, in order to avoid interference from the edge-current driven peeling 

component (with dominant harmonic m/n=5/1) which is not of interest in this work. The effect of 

conducting wall on the internal kink is weak. A close-fitting ideal wall is hence assumed in most of 

our investigations. Sub-section 3.3 investigates the effect of local magnetic shear on the fluid 

internal kink. Similar effect is studied in sub-section 3.4 with inclusion of drift kinetic effects. 

 

 

3.1 Plasma equilibrium for an EU DEMO scenario 

 

A reference plasma equilibrium from the EU DEMO design [35] is adopted for this study. The key 

equilibrium parameters are: the plasma major radius is R0=9 m and the aspect ratio A=R0/a=3.1 (a 

being the plasma minor radius), the on-axis vacuum toroidal field B0=5.85 T, the safety factor of the 

magnetic axis q0=0.46. Figure 1 shows radial profiles of equilibrium quantities. The pressure (Fig. 

1(a)) is normalized by 𝐵0
2 𝜇0⁄  , with 𝜇0  being the vacuum magnetic permeability. The plasma 

density (Fig. 1(a)) is normalized to unity at the magnetic axis. The fusion born alphaparticles (Fig. 

1(b)) are assumed to have isotropic equilibrium distribution in particle pitch angle and slowing-

down in particle energy [8, 31]. Note that the density and pressure profiles of alphas are normalized 

by the corresponding thermal electron density and total thermal pressure, respectively. For this 

DEMO design,  particles contribute about 45% fraction of the thermal pressure in the plasma core 

to the total equilibrium pressure, with only about 2.5% of density fraction. It is important to point 

that, in our following studies on the internal kink, the total equilibrium pressure is kept constant. In 

other words, 𝑃eq = 𝑃th + 𝑃α in the presence of alphas; and in the absence of alphas, the portion of 

equilibrium pressure associated with P is effectively replaced by the thermal contribution. Thus 

ensures that the “fluid” drive is the same for the mode studied in this work.  

The equilibrium toroidal current density is slightly modified from the original DEMO design. 

Figures 1(c-d) compare radial profiles of the surface averaged toroidal current density and the 

corresponding safety factor, between the original (solid blue, J1) and the modified (dashed red, J2) 

versions. The latter is obtained by slightly modifying the J1 profile near the plasma edge, to make 

vanishing equilibrium current at the plasma surface. As will be shown later on, this slight 

modification does not affect much the internal kink stability analysis, but helps to avoid the 

excitation of an edge-localized kink instability that is undesirable in our eigenvalue computations. 

The radial location of the q=1 surface, r1=0.38a as indicated by the dashed vertical line in Fig. 1(d), 

is farther away from the plasma edge. The influence of this slight edge current density change to the 

internal kink instability is thus minimal. We emphasize that the Grad-Shafranov equation is re-

solved for the modified current profile, so that a self-consistent (modified) equilibrium is generated 

for further stability analysis. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 1. The equilibrium radial profiles for an EU DEMO reference plasma, for (a) the plasma 

pressure normalized by 𝐵0
2 𝜇0⁄  and the density normalized to unity at the magnetic axis, (b) the 

density and pressure fractions due to fusion born -particles with respect to the electron density and 

the thermal pressure, respectively, (c) the two choices of the surface averaged toroidal current 

density normalized by 𝑅0𝐵0 𝜇0⁄ , and (d) the two safety factors q, corresponding to the two current 

density profiles from (c). p is the equilibrium poloidal magnetic flux, normalized to p = 0 at the 

magnetic axis and p = 1 at the plasma boundary. The vertical dashed lines in plots (c-d) indicate 

the radial location of the q=1 surface.  

 

 

3.2 Effects of ideal wall radial location and edge toroidal current  

 

It is well known that both the ideal internal [16] and external [35] kink modes can be stabilized by 

the presence of an ideally conducting wall. A close-fitting conducting wall surounding the plasma 

can stabilize the ideal internal kink, even when the plasma equilibrium pressure is above the Bussac 

limit [15]. For the EU DEMO plasma considered here, the m/n=1/1 ideal internal kink is indeed 

unstable at vanishing equilibrium flow, as computed by MARS-F. As mentioned earlier, in the 

presence of finite edge current (model J1 in Fig. 1(c) for the original equilibrium), another unstable 

mode also appears by moving the ideal wall, with radial location b, away from the plasma surface.  

Figure 2(a) reports both unstable roots for this equilibrium. One is the conventional m/n=1/1  

ideal internal kink ( “J1-root1”). This root is subject to relatively weak stabilization by the ideal wall. 
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In fact, the root is not sensitive to edge current density profile either – nearly the same root (marked 

as “J2” in Fig. 2(a)) is recovered by considering the modified equilibrium with vanishing edge 

current. The second root ( “J1-root2”) for the original equilibrium, however, is sensitive to the ideal 

wall location. This root is stabilized by an ideal wall located at the plasma surface, but becomes 

strongly unstable when the wall is moved away from the plasma. The second root becomes dominant 

at b>1.15a. No such a root is found for the modified equilibrium with vanishing edge current density, 

indicating that the second root is driven by the finite equilibrium current near the plasma edge for 

the original equilibrium.  

Analysis of the mode spectra, compared in Fig. 2(b) for the amplitude of the poloidal Fourier 

harmonics of the radial displacement, shows two large harmonics for the second root (“J1,b=2a, 

root2”), i.e. m/n=1/1 and m/n=5/1. All the other roots meanwhile only have one dominant harmonic 

m/n=1/1 which is the conventional internal kink component.  

 

 

(a) 

 

(b) 

 

Figure 2. The MARS-F computed (a) growth rate  of the instabilities, normalized by the on-axis 

Alfven frequency 𝜔𝐴 = 𝐵0 [𝑅0(𝜇0𝜌0)]⁄ , with varying radial location b/a of the ideal conducting 

wall, and (b) maximal amplitude (along the plasma minor radius) of the poloidal Fourier harmonics 

of the n=1 radial displacement ξ1, normalized to unity for the m/n=1/1 harmonic. The legends J1 and 

J2 indicate the corresponding toroidal current density profiles shown in Fig. 1(c).  

 

The m/n=5/1 component for the second unstable root is localized near the plasma edge as 

shown in Fig. 3(b), representing a peeling instability. In other words, the second root is a compound 

mode consisting of predominantly both m/n=1/1 internal kink and m/n=5/1 edge peeling 

components. For comparison, the eigenmode structure (the plasma radial displacement) is also 

plotted for the first root (Fig. 3(a)) of the original equilibrium, showing a typical internal kink.  

With the ultimate goal of investigating the m/n=1/1 internal kink instability in full toroidal geometry 

for EU DEMO in this study, we shall assume a close-fitting ideal wall (b=a) in what follows, in 

order to suppress any peeling component. Furthermore, to ensure that no such component is 

triggered by other physics effects (e.g. the drift kinetic effects considered in this work), we shall 

adopt the modified equilibrium with vanishing current density at the plasma edge (model J2).  The 

eigenstructure of the internal kink for the modified equilibrium is very similar to that shown in Fig. 

3(a). 
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(a) 

 

(b) 

 

Figure 3. Comparison of the eigenmode structure, in terms of the poloidal Fourier harmonics of the 

radial plasma displacement, for (a) the n=1 ideal internal kink computed with vanishing equilibrium 

current density at the plasma boundary (model J2 from Fig. 1(c)), and (b) the edge localized n=1 

ideal peeling mode driven by the edge current (model J1 from Fig. 1(c)) mixed with the internal kink 

component. An ideal conducting wall is placed far away from the plasma surface, radius, at b/a=2. 

The dashed vertical lines indicate the radial location of the q=1 surface.  

 

 

3.3 Effect of local magnetic shear at q=1 surface within fluid model 

 

It has been well established, both in theory and experiments, that the local magnetic shear near the 

q=1 surface plays a significant role in the internal kink stability, thus strongly impacting the 

sawtooth oscillation behavior [7, 20]. We carry out a systematic investigation of this effect here for 

the EU DEMO plasma. The study is based on the fluid model (MARS-F). The results with drift 

kinetic effects will be reported in the following sub-section.  

In experiments [20, 21], internal kink has been found to be destabilized by the localized current 

drive near the q=1 surface, by several methods including the electron cyclotron current drive and 

the ion cyclotron current drive. We model the current drive by introducing an equilibrium current 

perturbation with Gaussian function 

  
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where r1=0.38a is fixed at the radial location of the q=1 surface for the equilibrium labeled “J2” as 

shown in Fig. 1(d). Note that the Gaussian perturbed current produced by electron cyclotron current 

drive for EU DEMO has been shown in the ref. [36]. With the perturbed current, new equilibria are 

self-consistently computed using the fixed boundary equilibrium solver CHEASE [37], with slight 

change to the total plasma current while at fixed toroidal magnetic field.  

By tuning parameters CA and CW , a series of new profiles for the safety factor and the magnetic 

shear are obtained as shown Fig. 4. We find that, by fixing the product of CA and CW to a constant 

as well as fixing r1=0.38a, the radial location of the q=1 surface for all the new equilibria stays 

essentially unchanged. This is important since the radial location of the q=1 surface has large 

influence on the internal kink and fishbone stability [8]. Moreover, the total toroidal plasma current 
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(and hence the edge safety factor) also stays nearly the same as shown in Fig. 4(a). Figure 4 shows 

four representative cases, with the black curves (s1=0.6) corresponding to the profiles without 

application of the local current perturbation, Eq. (9). The others three cases (s1=1.5, 2.5 and 3.5) 

show progressive increase of the local magnetic shear.  

 

 

(a) 

 

(b) 

 

Figure 4. (a) A series of safety factor q-profiles with local variation of the magnetic shear s1 at the 

q=1 surface, while fixing the radial location of the q=1 surface at r1=0.38. (b) The corresponding 

radial profiles of the magnetic shear. The dashed vertical lines indicate the radial location of the q=1 

surface.  

 

Next, we study the influence of the local magnetic shear on the internal kink growth rate. Since 

the radial location of the ideal wall has minor effect on the mode stability for this EU DEMO plasma 

(Fig. 2(a)), we shall fix the ideal wall position at the plasma boundary, i.e. b=a. We also remark that 

the effect of the local magnetic shear on internal kink is qualitatively well understood in Porcelli 

theory. What we report here are quantitative results for a specific plasma from EU DEMO design. 

In addition, we shall consider the effect of the plasma resistivity as well, as shown in Fig. 5(a). Note 

that only the mode growth rate is shown here. The mode frequency remains vanishing without 

plasma equilibrium flow (which we assume) nor drift kinetic resonance effects. The key 

observations from Fig. 5(a) are the following. (i) At low plasma resistivity (including the ideal 

plasma limit), the local magnetic shear generally stabilizes the internal kink. A slight destabilization, 

however, occurs at large magnetic shear. (ii) The dependence is different for a highly resistive 

plasma (which is of course not DEMO-relevant but nevertheless of theoretical interest), in which 

case the local magnetic shear always destabilizes the mode. (iii) At fixed magnetic shear, the plasma 

resistivity destabilizes the internal kink – a result which is well known (see e.g. Ref. 14).  

Our further investigation of the internal kink stability and sawtooth behavior, based on the 

Porcelli model [7], requires computation of the perturbed MHD potential energy δWmhd. The latter 

is plotted against variation of the local magnetic shear in Fig. 5(b), while fixing the (normalized) 

plasma resistivity at 
910  , which is the value estimated for the EU DEMO plasma considered 

in this study. We remark that the same order of magnitude for the plasma resistivity was also 

assumed in a sawtooth study for ITER [7]. We also remark that the real part of δWmhd is normalized 
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by the product of the plasma inertia I (to be defined later) and the mode growth rate , with the 

latter being normalized by the on-axis toroidal Alfven frequency. The imaginary part of δWmhd 

vanishes within the fluid approximation. The normalized perturbed MHD potential energy scales 

linearly with the local magnetic shear (at least at reasonably low shear values), as shown by Fig. 

5(b).   

 

 

(a) 

 

(b) 

 

Figure 5. (a) The MARS-F computed growth rate of the n=1 resistive internal kink instability, 

normalized by the on-axis Alfven frequency, with varying plasma resistivity  and magnetic shear 

s1 at the q=1 surface. The resistivity η is normalized by , such that 1/η corresponds to the Lundquist 

number. (b) The computed MHD potential energy MARS

MHDW  , normalized by the product of the 

plasma inertia δI associated with the radial displacement and the growth rate   (also shown by the 

second vertical axis on the right) normalized by the on-axis Alfven frequency, versus the magnetic 

shear s1 at fixed 
91 10   . Presented in (b) is also an analytic fitting of the normalized potential 

energy. An ideal wall is placed at the plasma boundary: b/a=1. 

 

In order to better cast the MARS-F computational results into the Porcelli model, we notice 

that the mode is strongly unstable, with the normalized growth rate  being of order 
210
 despite 

the stabilizing effect from the enhanced magnetic shear at the q=1 surface. This indicates that the 

internal kink instability in this EU DEMO plasma is mainly determined by the perturbed potential 

energy, and less by the resistive layer physics around the q=1 surface. The layer physics effects 

become unimportant when the following condition is satisfied [7] 

  *
ˆ ˆ ˆmax , 2thi

c AW W         ⑽ 

where
1

ˆ
i r  , with i  being the thermal ion Larmor radius. 

*

thi indicates the thermal ion 

diamagnetic frequency, and A  the Alfven time. The values of the relevant parameters are listed 

in Tab. 1. Ŵ signifies the normalized potential energy 
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where δW represents the perturbed potential energy and δI refers to the inertial energy associated 
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with the radial displacement of the plasma alone. These two energy components are computed by 

MARS-F and denoted as MARS

MHDW and MARSI , respectively, in Fig. 5(b). According to the Porcelli 

model, the mode growth rate, normalized by the Alfven time, reduces to Ŵ   when the layer 

physics becomes negligible [7]. It is clear that Ŵ   in the Porcelli model is positive and 

decreases with increasing s1 (Eq. (11)), reflecting the stabilizing effect of the local magnetic shear 

on the internal kink mode.  

On the other hand, Fig. 5(b) shows a roughly linear analytic fitting for the MARS-F computed 

MHD energy perturbation as a function of the local magnetic shear,  

 

1

Re[ ]
0.072 0.077

Re[ ]

MARS

MHD

MARS

W
s

I



 
  


, ⑿ 

allowing us to introduce the following normalization  

 

 1

Re[ ]ˆ
Re[ ] 0.072 0.077

W
W

I s





  

 
, ⒀ 

in order to match that of the Porcelli model. In other words, both Eqs. (11) and (13) ensure 

Ŵ   . We emphasize that it is important to introduce the normalization in Eq. (13), in order to 

allow us to apply the MARS-F computed Ŵ to the Porcelli sawtooth model later on, when kinetic 

effects from EPs are included. We also note the slight difference in the form between Eqs. (11) and 

(13). In particular, a shifting constant of 0.077 is needed in the shear factor, in order to fit well the 

MARS-F computed mode growth rate (Fig. 5(b)), as compared to that of the simple analytic model 

in Eq. (11). Finally, we mention that these fitting coefficients around the magnetic shear only weakly 

depend on the plasma resistivity assumed in the MARS-F computations. 

 

Table 1. Relevant parameters of layer physics effect criterion in EU DEMO 

thermal ion Larmor radius i thi civ    0.5cm  

radius of the q=1 surface 1r  1.1m  

thermal ion diamagnetic frequency 
* 1/thi

PT eBr   3 13.2 10 s  

Alfven time 3A AR v   1.9 s  

 

 

3.4 Effect of local magnetic shear at q=1 surface with drift kinetic effects  

 

In what follows, we investigate the effect of local magnetic shear on the internal kink instability, in 

the presence of drift kinetic effects. Considered are the kinetic contributions from the precessional 

drift resonance due to trapped thermal ions and electrons (tP), the bounce resonance due to trapped 

thermal ions (tB) and the precessional drift resonance due to trapped fusion born alpha particles (P) 

in EU DEMO. As mentioned in section 2, we ignore the kinetic contributions from bounce motion 

of trapped thermal electrons, as well as transit motions of passing thermal particles and fusion alphas, 

due to their weak resonances with the internal kink. Finite orbit width (FOW) corrections of alpha 

particles are neglected as a model simplification. This effect may be important near the q=1 surface, 
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where the internal kink experiences large variation in the mode structure. On the other hand, toroidal 

computations (Fig. 3) reveal that the mode structure does not sharply vary near the q=1 surface, as 

has usually been assumed in theoretical models.  

The kinetic contributions to the perturbed potential energy, associated with the internal kink, 

are computed based on the computed mode eigenfunction by the non-perturbative MHD-kinetic 

hybrid code MARS-K. We emphasize that the non-perturbative nature of the MARS-K formulation 

allows self-consistent modification of the mode eigenfunction by the drift kinetic effects. Moreover, 

MARS-K also directly produce the mode eigenvalue, which will be compared with that obtained 

from the Porcelli model. We start by reporting results for the reference EU DEMO plasma without 

local modification of the magnetic shear. 

 

3.4.1 Internal kink stability and sawtooth crash for reference plasma                                                                                                                                                                                                          

 

Figure 6(a) compares the MARS-K computed eigenvalues of the internal kink for the EU DEMO 

equilibrium without changing the local magnetic shear, with various combinations of including drift 

kinetic effects. The growth rate of the internal kink, shown along the vertical axis, is reduced by the 

drift kinetic effect from each individual particle species and type of resonance. The largest effect 

comes from the precessional drifts of trapped thermal particles, which results in a substantial 

reduction (about a factor of two) of the mode growth rate, albeit no full stabilization of the mode is 

achieved. The (partial) stabilization is enhanced by the combination of the precessional drift 

resonance due to trapped thermal particles and the bounce resonance due to trapped thermal ions, 

reducing the fluid growth rate to less than a third. On the other hand, the presence of high energy 

alpha particles slightly weakens the stabilizing effect of thermal particles, indicating a cancellation 

effect of the precessional drift resonances between thermal and energetic particles. We mention that 

similar cancellation effect has previously be found, albeit for the external kink mode (the resistive 

wall mode) [38, 39]. Finally, we note that drift kinetic resonances also produce finite mode 

frequency (in the absence of the plasma equilibrium flow), as shown by the horizontal axis in Fig. 

6(a). The precession drifts from fusion born trapped alpha particles play a dominant role here. 

 

 

(a) 

 

(b) 

 

Figure 6. (a) The MARS-K computed growth rate  (vertical axis) and mode frequency  

(horizontal axis) for the n=1 internal kink instability, with inclusion of various drift kinetic effects 

associated with toroidal precession of trapped thermal particles (tP) or trapped fusion born alpha 
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particles (P), and with bounce motion of trapped thermal ions (tB). The symbol ‘+ ’ indicates 

inclusion of the MHD contribution. (b) The real and imaginary parts of the normalized potential 

energies, associated with the MHD and drift kinetic contributions. Other parameters are η=1×109, 

b/a=1. 

 

Based on the MARS-K computed mode eigenfunction (i.e. that self-consistently modified by 

the kinetic effects), various components of the perturbed potential energy are also evaluated and 

plotted in Fig. 6(b), including the MHD contribution and the kinetic contributions from thermal 

particles as well as from fusion-born alphas. These energy components help to analyze the sawtooth 

crash based on the Porcelli model [7]. The latter predicts triggering of sawtooth crashes when one 

of the following conditions is satisfied:   

 ˆ
core h D AW c      ⒁ 

 
*

ˆ 0.5 thi

AW     ⒂ 

 
*

ˆˆ 0.5 thi

Ac W        and * *

thi c    ⒃ 

where ch, cρ and c͙ are the numerical factors depending on the plasma equilibrium. We choose these 

factors to be the same as in an ITER study [7], i.e., ch=0.4, cρ=1 and c͙=1. 
14D E eBR  is the 

precessional drift frequency of alphas at the particle birth energy E. γρ is the characteristic growth 

rate of the internal kink instability in the ion-kinetic regime, characterized by the condition 

 
e id   

 
⒄ 

where de is the electron inertial skin depth and 1 3 1/3

1 1s    is the resistive layer width. For the 

EU DEMO-like plasmas, de is about one order of magnitude smaller than the thermal ion Larmor 

radius i , which defines the range of values for δη. It turns out that the inequality (17) is satisfied 

with 
91 10    and 1 [0.5, 4.0]s  , which is the parameter spaces covered by our study for the 

EU DEMO plasma.  

The quantity ˆ
coreW  from Eq. (14) represents the normalized the core plasma potential energy, 

composed by the perturbed fluid potential energy and the Kruskal-Oberman (KO) kinetic 

contribution from thermal particles in the Porcelli model. In the following estimates, the KO-

contribution is replaced by the drift kinetic energy perturbations associated with trapped thermal 

particles as shown in Fig. 6(b). The latter is supposed to be more accurate than the KO-value, since 

no high-frequency approximation is assumed. The quantity Ŵ   from Eqs. (15)-(16) is the 

normalized total perturbed potential energy, including the core contribution and the kinetic 

contribution from alpha particles. In other words, we have   

 ˆ ˆ ˆ
core mhd thW W W     ⒅ 

 ˆ ˆ ˆ
coreW W W     ⒆ 

where ˆ
thW denotes the thermal contributions (tP+tB) replacing the KO-contribution in the Porcelli 
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sawtooth model. Ŵ  is the perturbed energy due to precessional drifts of trapped alpha particles 

(αp). Note that, following the convention in the Porcell model, all the above perturbed potential 

energy components are normalized by the normalized factor  1Re[ ] 0.072 0.077I s   . 

Before proceeding with the analysis of sawtooth-triggering conditions (14)-(16), we point out 

that the Porcelli model neglects the imaginary part of the potential energy Im[δW], which is roughly 

valid for the internal kink mode (sawteeth). In term of the real part of the potential energy Re[δW], 

kinetic contribution from either thermal or alpha particles provides a stabilizing effect for the EU 

DEMO plasma, as shown by Fig. 6(b). Furthermore, the absolute value of the MHD energy, ˆ
mhdW , 

is larger than the kinetic energy from thermal particles (marked with “tPtB”), resulting in ˆ
coreW being 

negative according Eq. (18). This means that the internal kink remains unstable with thermal kinetic 

effects. On the other hand, 3ˆ 3.84 10coreW     is less than 38.74 10h D Ac     , indicating full 

stabilization of the mode by alpha particles. In fact, the total perturbed energy 3ˆ 9.85 10W    is 

indeed positive. It is also evident that condition (15) is not satisfied according to Tab. 1. This leaves 

us with condition (16). Part of the condition, 
* *

thi c   , is easily satisfied for this EU-DEMO 

plasma, but the other part, ˆ ˆW  , is not satisfied. Violation of all three Porcelli criteria (14)-(16) 

indicates that sawtooth crash will not be triggered in the EU DEMO reference plasma, without local 

modification of the magnetic shear (i.e. with s1≈0.6).  

We should point out that, although the Porcelli model predicts strong stabilization of the 

internal kink mode and thus no sawtooth crash for the reference EU DEMO plasma, the MARS-K 

eigenvalue computations still show a residual instability (Fig. 6(a)), albeit at much reduced mode 

growth rate by the drift kinetic stabilization. The difference in the results between two models can 

be attributed to couple of factors. (i) The MARS-K eigenvalue computations follow a non-

perturbative MHD-kinetic hybrid approach, whilst Porcelli model is based on the perturbative 

energy analysis. The main difference is that the non-perturbative approach allows self-consistent 

modification of mode eigenfunction by drift kinetic effects. This normally leads to a more unstable 

mode (essentially because we give the mode more freedom to develop itself). (ii) The Porcelli model 

includes finite Larmor radius (FLR) effect (in both criteria (15) and (16)) whilst this physics is 

absent in MARS-K with standard MHD formulation. This FLR effect is typically strongly 

stabilizing for the internal kink mode. (iii) The Porcelli model ignores Im[δW], which also affects 

the mode stability. In this regard, we mention a previous internal kink study for ITER [8], that 

included both Im[δW] and the inertial enhancement effect due to bulk thermal ion kinetic effects, 

while still following the perturbative approach.  

As a final remark, we mention the possibility of the fishbone drive in this EU DEMO plasma. 

As it is well known, fishbone oscillations can be triggered by the precessional drift resonance of 

energetic particles, when the following condition is met [40] (assuming that the on-axis safety factor 

is below or close to 1) 

 * 3/2

1 10.45fish

p p Ds         ⒇ 

where 𝛽𝑝𝛼
∗  is poloidal beta of alpha particles, which depends on the pressure gradient of alphas 

within the q=1 region. 𝜀1 = 𝑟1 𝑅⁄  is the inverse aspect ratio of the q=1 surface. The threshold value, 

𝛽𝑝𝛼
𝑓𝑖𝑠ℎ

, for fishbone triggering, is smaller without regard to the thermal ion Landau damping. We 
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have estimated that 𝛽𝑝𝛼
∗  and 𝛽𝑝𝛼

𝑓𝑖𝑠ℎ
 robustly have the same order of magnitude, and the value of  

𝛽𝑝𝛼
∗  is slightly greater than 𝛽𝑝𝛼

𝑓𝑖𝑠ℎ for the EU DEMO plasma under consideration (with s1≈0.6). 

This suggests that the fishbone may be driven by alpha particles in EU DEMO. On the other hand, 

it is the common wisdom that fishbones will not notably change the sawtooth activity (due to large 

separation of the modes frequency) [7].  

 

3.4.2 Effect of local magnetic shear  

 

Now, we turn to investigating the possibility of sawtooth triggering, via modification of the local 

magnetic shear near the q=1 surface for the EU DEMO plasma. In the following, we again consider 

the drift kinetic contributions from both thermal and fusion born α particles. According the Porcelli 

sawtooth crash criteria, there are two ways to cause sawtooth crash with increasing the local 

magnetic shear s1. (i) Increasing s1 makes it easier to satisfy the condition 
* *

thi c    in the ion-

kinetic regime, since γρ is proportional to s1 in this case. (ii) Since the drift kinetic contribution to 

the perturbed potential energy is stabilizing (i.e. positive) and is inversely proportional to s1, it is 

possible to decrease this stabilizing contribution by increasing the local magnetic shear and 

consequently to further destabilize the internal kink. (Note that this is achievable despite the fact 

that the destabilization role of the fluid potential energy is reduced by increasing s1.)  

In what follows, we choose three s1 values that are larger than that of the reference plasma 

without local current drive, i.e., 
1 1.5s  , 

1 2.5s   and 
1 3.5s  . The corresponding MARS-K 

results are reported in Figs. 7 and 8. Figure 7(a) shows that the real part of −δ𝑊̂𝑐𝑜𝑟𝑒 = −δ𝑊̂𝑚ℎ𝑑 −

δ𝑊̂𝑡ℎ  increases with increasing s1 (red curve). As stated above, Re[−δ𝑊̂𝑚ℎ𝑑 ] decreases with 

increasing s1, indicating that the kinetic contribution from thermal particles (Re[δ𝑊̂𝑡ℎ]) is positive 

and weakens with increasing s1. Similarly, it can be deduced from Fig. 7(b) (red curve) that the 

kinetic stabilization from alpha particles (Re[δ𝑊̂𝛼]) also gradually declines with increasing s1. In 

general, we find that the drift kinetic stabilization weakens with increasing the local magnetic shear 

near the q=1 surface.  

Now considering the sawtooth crash criterion (14), Fig. 7(a) shows that ˆ
coreW  , though 

substantially increases with s1, is still less than 
h D Ac    even at 

1 3.5s  . This means that the 

internal kink is still fully stabilized by alphas at increased local magnetic shear, according to the 

Porcelli criterion (14) (and assuming ch=0.4). On the other hand, the MARS-K computed total 

potential energy ˆRe[ ]W  changes from positive to negative values as s1 increases (Fig. 7(b)), 

making the condition (15), i.e. 
*

ˆRe[ ] 0.5 thi

AW     , satisfied at 
1 3.5s   . This shows that 

sawtooth crash is indeed possible at increased local magnetic shear. At first glance, this conclusion 

appears to be contradicting that obtained with condition (14). The reason is in the choice of the 

numerical factor ch, which is sensitive to the plasma equilibrium. The value of ch in EU DEMO is 

probably smaller than that estimated for ITER. Figure 7(b) also shows that the Porcelli criterion 

(16), for the onset of internal kink in the ion-kinetic regime, can be satisfied in a range of (increasing) 

local magnetic shear. This is because the condition 
* *

thi c     is always satisfied, hence the 

threshold condition is ˆ ˆW  , which holds at
1 2.8s ; . In summary, Fig. 7 shows that sawtooth 

crashes can occur in EU DEMO at enhanced local magnetic shear near the q=1 surface, by satisfying 
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at least one of the Porcelli criteria.    

 

 

(a) 

 

(b) 

 

Figure 7. Comparison of the MARS-K computed perturbed potential energies with various Porcelli 

criteria for the sawtooth onset, for (a) the normalized potential energy ˆ
coreW  including drift 

kinetic contributions from thermal particles, and (b) the normalized potential energy Ŵ  

including kinetic contributions from both thermal and fusion born alpha particles. Varied is the local 

equilibrium magnetic shear s1 at the q=1 surface. The Porcelli criterion 
h Dh Ac    is associated 

with trapped alpha stabilization due to fast precessional drift. The criterion is associated with 

diamagnetic stabilization, and 𝜌̂ = 𝜌𝑖 𝑟1⁄ = 4.5 × 10−3  is the normalized thermal ion Larmor 

radius. Other parameters are η=1×109, b/a=1. 

 

Meanwhile, the MARS-K non-perturbative MHD-kinetic hybrid eigenvalue computations 

show more robust occurrence of sawtooth crash (i.e. the presence of unstable internal kink), but in 

the absence of the diamagnetic stabilization. Figure 8 compares the computed eigenvalue and 

perturbed potential energy of the internal kink, for equilibria with 1 1.5s  , 2.5 and 3.5. The mode 

remains unstable with large growth rates, at all three values of s1 and with inclusion of various drift 

kinetic effects (Fig. 8(a)). The latter provide a stabilization effects to the mode, similar to the Porcelli 

model. Porcelli model based on the perturbative approach. On the other hand, drift kinetic 

contributions, in particular that of fusion born alphas, also provide large imaginary part of the energy 

perturbation that is comparable to the real part by magnitude (Fig. 8(b)). The imaginary part of the 

drift kinetic energy perturbation, being not included into the Porcelli model, also plays a role in the 

mode stability.   
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(a) 

 

(b) 

 

Figure 8. (a) The MARS-K computed growth rate  and mode frequency normalized by the on-

axis Alfven frequency, for the n=1 internal kink, with each group representing inclusion of a specific 

drift kinetic effect. Within each group, comparison is also made among different choices of local 

magnetic shear s1. (b) The real and imaginary parts of the perturbed potential energies due to MHD 

as well as various drift kinetic contributions – the precession drift of trapped thermal particles (tP) 

or fusion born alpha particles (P), the bounce motion of trapped thermal ions (tB) – within each 

group. Compared are also different groups with varying local magnetic shear at the q=1 surface:  

1 1.5s  , 1 2.5s  , 1 3.5s  . Other parameters are η=109, b/a=1.  

   

Our study so far did not include the influence of plasma equilibrium flow on the internal kink 

instability. It is well known that the (uniform) toroidal flow can provide a stabilizing effect on the 

internal kink, via the so-called gyroscopic mechanism. For instance, It has been demonstrated that 

a sonic-range toroidal plasma rotation provides strong stabilization to the mode [41]. Furthermore, 

sonic-range toroidal flow can significantly modify the plasma equilibrium due to centrifugal effect, 

which in turn leads to important consequences in the flow stabilization/destabilization of the internal 

kink [42]. On the other hand, slow plasma flow is likely expected for the EU DEMO plasmas 

(similar to ITER). Assuming an ITER-like sheared toroidal flow profile [40], with flow amplitude 

well within the sub-sonic level, we carried out the MARS-F stability computations for the EU 

DEMO plasma, and found little impact of the plasma flow on the internal kink instability. This also 

agrees with findings from an early study with similar assumptions [17].  

 

 

4. Summary 

 

For a reference EU DEMO plasma, we carried out systematic investigation on the internal kink 

instability and sawtooth crash triggering, with particular emphasis on the role of local modification 

of the magnetic shear near the q=1 surface via local current drive. Employed are both fluid (MARS-

F) and MHD-kinetic hybrid (MARS-K) models that take into account full toroidal effects, as well 

as the semi-analytical Porcelli model for sawtooth crash prediction. The rational for considering 

both MARS-K and Porcelli models is to take advantages of both approaches (e.g. non-perturbative 

kinetic closure, full toroidal geometry with MARS-K, FLR and ion-kinetic layer physics in the 



18 

 

Porcelli model).    

The presence of a finite edge current in the original equilibrium, designed for EU DEMO, leads 

to a peeling mode instability with the dominant m/n=5/1 harmonic (in the absence of a closing fitting 

ideal wall). In order to eliminate the interference of this instability, we slightly modified the toroidal 

current density profile near the plasma edge in our modeling, by making the current density vanish 

at the plasma boundary. This modification has little impact on the m/n=1/1 internal kink instability 

that we are interested in.  

According to the Porcelli model, the internal kink is stable in the target EU DEMO plasma, 

due to fusion born alpha stabilization as well as the diamagnetic stabilization. However, sawtooth 

crash can be triggered by additional local current drive near the q=1 surface, which enhances the 

local magnetic shear. In particular, sawtooth crashes can occur by accessing the (unstable) ion-

kinetic regime, at s1~2.8 or higher in EU DEMO, based on the Porcelli criterion. The local magnetic 

shear s1 stabilizes the internal kink mode based on the fluid model, but destabilizes the mode when 

the drift kinetic effects are included as predicted by the Porcelli model.  

Similar trend is obtained by direct, non-perturbative MARS-K MHD-kinetic hybrid eigenvalue 

computations. On the other hand, MARS-K predicts less stabilization of the internal kink mode and 

hence a more robust access to the sawtooth regime, than that by the Porcelli model. This discrepancy 

can be largely attributed to the following three factors. (i) The MARS-K eigenvalue model is a non-

perturbative model, whilst the Porcelli model is a perturbative model. (ii) The Porcelli model 

includes finite Larmor radius (FLR) effect, whilst this physics is absent in the standard single fluid 

MHD formulation within MARS-K. (iii) The Porcelli model ignores the imaginary part of the 

energy perturbations.  

With the expectation of slow plasma flow in EU DEMO, a static equilibrium is assumed in 

most of the present study. A sub-sonic equilibrium toroidal flow is found to only weakly affect the 

mode stability by MARS-F. The effect of energetic particles from auxiliary heating is also neglected 

in this work. This contribution may provide additional stabilization to the internal kink mode [43], 

although the dominant effect may still come the fusion born α-particles in EU DEMO due to large 

pressure fraction. More quantitative investigation on this issue remains a future work.    
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