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I. NONLINEAR HAMILTONIAN

We consider an in-plane magnetized YIG film with surface normal along the x̂-direction and a static magnetic
field Happ applied along the ẑ′-direction (see Fig. 1 in the main text). We adopt the following Hamiltonian
for the YIG film magnetization

Ĥ = µ0

∫ [
αex

2

(
∇M̂

)2
− M̂ · Ĥdip

2
− M̂ ·Happ

]
dr, (S1)

where µ0 is the vacuum permeability, αex is the exchange stiffness, and Hdip is the dipolar field. We recover
the spin operators by the replacement M̂ = −γ~Ŝ with −γ being the electron gyromagnetic ratio, leading to

Ĥ = µ0

∫ [
γ~
2
S(r) · Ĥdip(r) +

γ2~2αex

2
∇S · ∇S+ γ~S ·Hext

]
dr. (S2)

We may disregard the dipolar interaction in ultrathin magnetic films that are excited by narrow striplines. In
terms of the magnon field operator Θ̂(r), the Holstein-Primakoff transformation reads

Ŝx(r) + iŜy′(r) = Θ̂†(r)

√
2S − Θ̂†(r)Θ̂(r),

Ŝx(r)− iŜy′(r) =

√
2S − Θ̂†(r)Θ̂(r)Θ̂(r),

Ŝz′(r) = −S + Θ̂†(r)Θ̂(r). (S3)

In a thin magnetic film wave interference leads to standing waves normal to the interfaces. Assuming free
boundary conditions, the magnon operator can be expanded as

Θ̂(r) =
∑
l

√
2

1 + δl0

1√
s
cos

(
lπ

s
x

)
Ψ̂l(ρ), (S4)

where l is the subband index and s the film thickness. In terms of Ψ̂l(ρ), the in-plane magnon field operators
for subband l, the Zeeman Hamiltonian reads

ĤZ = µ0γ~
∫
ŜzHappdr = µ0γ~Happ

∫
Θ̂†Θ̂dr

→ µ0γ~Happ

∑
l

∫
Ψ̂†

l (ρ)Ψ̂l(ρ)dρ. (S5)

The linear exchange Hamiltonian

ĤL
ex = µ0γ~Msαex

∫
∇Θ̂† · ∇Θ̂dr

→ µ0γ~Msαex

∑
l≥1

(
lπ

s

)2 ∫
Ψ̂†

l (ρ)Ψ̂l(ρ)dρ+ µ0γ~Msαex

∑
l

∫
∇ρΨ̂

†
l (ρ) · ∇ρΨ̂l(ρ)dρ. (S6)

The subbands edges of the magnon dispersion are therefore at

El = µ0γ~Happ + µ0γ~Msαex(lπ/s)
2. (S7)

In a YIG film with thickness below 10 nm and at temperatures T . 300 K, only the lowest three bands
l = {0, 1, 2} are significantly populated.
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The leading non-linear exchange Hamiltonian is given by

ĤNL
ex =

µ0γ
2~2αex

4

∫ (
Θ̂†(r)Θ̂†(r)∇Θ · ∇Θ+H.c.

)
dr

=
∑

l1l2l3l4

Ul1l2l3l4

∫
Ψ̂†

l1
(ρ)Ψ̂†

l2
(ρ)Ψ̂l3(ρ)Ψ̂l4(ρ)dρ

+
∑

l1l2l3l4

Vl1l2l3l4

∫
Ψ̂†

l1
(ρ)Ψ̂†

l2
(ρ)∇ρΨ̂l3(ρ) · ∇ρΨ̂l4(ρ)dρ+H.c., (S8)

in which

Ul1l2l3l4 =
µ0γ

2~2αex

4s

4√
(1 + δl10)(1 + δl20)(1 + δl30)(1 + δl40)

l3π

s

l4π

s
Al1l2l3l4 ,

Vl1l2l3l4 =
µ0γ

2~2αex

4s

4√
(1 + δl10)(1 + δl20)(1 + δl30)(1 + δl40)

Bl1l2l3l4 , (S9)

with form factors

Al1l2l3l4 =
1

s

∫ 0

−s

cos

(
l1π

s
x

)
cos

(
l2π

s
x

)
sin

(
l3π

s
x

)
sin

(
l4π

s
x

)
dx

=
1

8
(δl1+l2+l3,l4 + δl1+l2+l4,l3 + δl1+l3,l2+l4 + δl1+l4,l2+l3

−δl1+l2+l3+l4,0 − δl1+l2,l3+l4 − δl1+l3+l4,l2 − δl2+l3+l4,l1) ,

Bl1l2l3l4 =
1

s

∫ 0

−s

cos

(
l1π

s
x

)
cos

(
l2π

s
x

)
cos

(
l3π

s
x

)
cos

(
l4π

s
x

)
dx

=
1

8
(δl1+l2+l3,l4 + δl1+l2+l4,l3 + δl1+l3,l2+l4 + δl1+l4,l2+l3 + δl1+l2+l3+l4,0

+δl1+l2,l3+l4 + δl1+l3+l4,l2 + δl2+l3+l4,l1) . (S10)

The interaction strength increases with decreasing film thickness. Here we focus on the interaction of 〈Ψ̂l=0(ρ)〉,
i.e. the coherent magnons in the lowest band l1 = 0, and those in the thermally populated higher bands.
A0l2l3l4 -processes with {l3, l4} 6= 0 are governed by the selection rules

A0l2l3l4 =
1

4
(δl2+l3,l4 + δl2+l4,l3 − δl3+l4,l2) ,

B0l2l3l4 =
1

4
(δl2+l3,l4 + δl2+l4,l3 + δl2+l3+l4,0 + δl3+l4,l2) . (S11)

With [Ψ̂l′(ρ
′), Ψ̂†

l (ρ)] = δll′δ(ρ−ρ′) and the Heisenberg equation i~∂tΨ̂l′(ρ
′) = [Ψ̂l′(ρ

′), Ĥ], the dynamics
of the coherent magnons in the lowest band (l = 0) obeys

i~
∂〈Ψ̂l=0(ρ)〉

∂t
= El=0〈Ψ̂l=0(ρ)〉 − ~ωMαex∇2〈Ψ̂l=0(ρ)〉

+ 2
∑
l2l3l4

U0l2l3l4〈Ψ̂
†
l2
(ρ)Ψ̂l3(ρ)Ψ̂l4(ρ)〉+ 2

∑
l1l2l3

Ul1l2l30〈Ψ̂l1(ρ)Ψ̂l2(ρ)Ψ̂
†
l3
(ρ)〉

+ 2
∑
l2l3l4

V0l2l3l4

(
〈Ψ̂†

l2
∇ρΨ̂l3 · ∇ρΨ̂l4〉 − ∇ρ · 〈Ψ̂l2Ψ̂l3∇ρΨ̂

†
l4
〉
)
, (S12)

where ωH = µ0γHapp and ωM = µ0γMs. The terms involving U vanish in the mean-field approximation of
the 3-magnon amplitudes when 〈Ψ̂l 6=0(ρ)〉 = 0. The last term in Eq. (S12) when transformed into momentum
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space reduces to

− 4

~
∑
k

∑
l′

Vlll′l′e
ik·ρk ·

(∑
k′

~k′
(
〈Ψ̂l′(k

′)Ψ̂†
l′(k

′)〉+ 〈Ψ̂†
l′(k

′)Ψ̂l′(k
′)〉
))

〈Ψl(k)〉

=
8i

~
∑
l′

Vlll′l′∇ρ〈Ψ̂l(ρ)〉 ·
~
2i

(
〈Ψ̂†

l′(ρ)∇ρΨ̂l′(ρ)〉 − 〈Ψ̂l′(ρ)∇ρΨ̂
†
l′(ρ)〉

)
. (S13)

We recognize the magnon current density in subband l′ (in units of an angular momentum current J/m2)

Jl′(ρ) =
~
2i

(
〈Ψ̂†

l′(ρ)∇ρΨ̂l′(ρ)〉 − 〈Ψ̂l′(ρ)∇ρΨ̂
†
l′(ρ)〉

)
, (S14)

which can be integrated to an expression in terms of magnon occupation numbers

JJJ l′ =

∫
Jl′(ρ)dρ =

1

2

∑
k′

~k′
(
〈Ψ̂†

l′(k
′)Ψ̂l′(k

′)〉+ 〈Ψ̂l′(k
′)Ψ̂†

l′(k
′)〉
)
. (S15)

J is a spin current since the magnons carry spin ~. The expressions are consistent with the magnon density
current J̃l defined by the Heisenberg equation and the magnon conservation law (in the absence of damping)

∂ρ̂lm
∂t

=
1

i~
[ρ̂lm, Ĥ

L
ex] = −∇ · J̃l, (S16)

which leads to 〈
J̃l(ρ)

〉
= ωMαex

1

i

(
〈Ψ̂†

l (ρ)∇ρΨ̂l(ρ)〉 − 〈Ψ̂l(ρ)∇ρΨ̂
†
l (ρ)〉

)
, (S17)

which equals Jl divided by the constant magnon mass. The coherent magnons in the lowest band thereby
obey

i~
∂〈Ψ̂0(ρ)〉

∂t
= El=0〈Ψ̂0(ρ)〉 − ~ωMαex∇2〈Ψ̂0(ρ)〉

+
8i

~
∑
l′

V00l′l′∇ρ〈Ψ̂0(ρ)〉 · Jl′(ρ). (S18)

Both incoherent and coherent magnons contribute to the current density Jl′ .
A magnon current carried by incoherent or thermal magnons can be driven by a magnon chemical potential

or temperature gradients. These can be created either by the spin-Hall effect in, or Ohmic heating of, current-
biased Pt contacts. We can estimate the latter (spin Seebeck) effect by the linearized Boltzmann equation in
the relaxation-time approximation. Assuming that the drag term in the collision integral is small

−vk,l · ∇T
∂fk,l
∂T

= −
fk,l − f

(0)
k,l

τk,l
, (S19)

where vk,l = (1/~)∂El(k)/∂k = 2ωMαexk is the magnon group velocity, fk,l = 〈Ψ̂†
l (k)Ψ̂l(k)〉 is the magnon

distribution in the l-th subband, f (0)k,l = 1/{exp[Ek,l/(kBT )] − 1} is the equilibrium Planck distribution at
temperature T , and τk,l is the magnon relaxation time. A uniform ∇T = Eyŷ then generates a magnon
momentum current

Jl = ~ωMαexEyŷ
∫
dkydkz
2π2

k2yτk,l
∂f

(0)
k,l

∂T
, (S20)

which affects the coherent magnon amplitude by substitution into Eq. (S18).
To complete the dynamic equation, we need to account for the scattering between magnons which requires

a treatment beyond the mean-field approximation, which we address in the next section.
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II. ABSENCE OF EXCHANGE SCATTERING OF LOW-ENERGY MAGNONS

Here we describe the scattering processes between the coherent magnon of the lowest band and the incoherent
thermal cloud by dividing the magnon operator of the lowest band into a coherent number amplitude Ξ and
incoherent operator ψ̂

Ψ̂0(ρ, t) = Ξ(ρ, t) + ψ̂0(ρ, t) ≈ Ξ(t) + ψ̂0(ρ, t),

Ψ̂l>0(ρ, t) = ψ̂l(ρ, t). (S21)

The first interaction term

H
(1)
int → 2

∑
l2l3l4

U0l2l3l4Ξ
∗(t)

∫
ψ̂†
l2
(ρ)ψ̂l3(ρ)ψ̂l4(ρ)dρ+H.c., (S22)

with selection rules δl2+l3,l4 , δl2+l4,l3 , and δl3+l4,l2 ; the second interaction term

Ĥ
(2)
int → 2

∑
l2l3l4

V0l2l3l4Ξ
∗(t)

∫
ψ̂†
l2
(ρ)∇ρψ̂l3(ρ) · ∇ρψ̂l4(ρ)dρ+H.c., (S23)

with selection rules δl2+l3,l4 , δl2+l4,l3 , δl3+l4,l2 , and δl2+l3+l4,0. The processes in Eqs. (S22) and (S23) describe
the confluence of two low-energy magnons into a single one and vice versa, with an efficiency determined by
the coherent-magnon amplitude.

In the lowest band, H(1)
int vanishes because U0000 = 0. Energy-conserving scattering processes in

Ĥ
(2)
int → 2V0Ξ

∗(t)

∫
ψ̂†
0(ρ)∇ρψ̂0(ρ) · ∇ρψ̂0(ρ)dρ+H.c.

= −2V0Ξ
∗(t)

∑
kq

(k− q) · qψ̂†
0,kψ̂0,k−qψ̂0,q +H.c. (S24)

require that k2 ≈ |k − q|2 + q2 or (k − q) · q ≈ 0. We therefore may disregard interaction effects within the
lowest band and focus on the interband scatterings.

Most intriguing is the up-conversion of two magnons into nearly empty states, creating a hot magnon out
of two cold ones. The leading order scattering processes conserve energy:(

l3π

s

)2

+

(
l4π

s

)2

+ (k− q)2 + q2 ≈
(
l2π

s

)2

+ k2, (S25)

so

(k− q) · q ≈ l23 + l24 − l22
2

π2

s2
. (S26)

The interaction Hamiltonian then reduces to

Ĥint =
∑
l2l3l4

∑
k,q

Wl2l3l4Ξ
∗(t)ψ̂†

l2,k
ψ̂l3,k−qψ̂l4,q +H.c., (S27)

where

Wl2l3l4 = 2 [U0l2l3l4 − V0l2l3l4(k− q) · q]

≈ 2

(
U0l2l3l4 + V0l2l3l4

l22 − l23 − l24
2

π2

s2

)
(S28)
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is a contact potential since it does not depend on the wave number. Because of the selection rules δl2+l3,l4 ,
δl2+l4,l3 , and δl3+l4,l2 , the scattering potential vanishes by a cancellation of the U and V terms: when l4 = l2+l3

and l3 = l2 + l4, (l22 − l23 − l24)/2 = −l3l4 while when l2 = l3 + l4, (l22 − l23 − l24)/2 = l3l4. In conclusion, the
coherent magnon amplitude in the lowest subbands interacts only with coherent magnons in the other subbands
within the leading nonlinearity. We therefore may use a mean-field approximation to describe the dynamics
of low-energy coherent magnons in the nonlinear regime.

III. PARAMETER-DEPENDENCE OF SPIN CURRENTS AND SPIN-ORBIT INTERACTION

Here we discuss the maximal spin current excited by stripline microwaves as a function of material param-
eters. For small stripline currents I < Ic, the coherently excited spin currents shown in Fig. S1 turns out to
be proportional to I, rather thant I2 as expected for non-interacting magnons. We oberve saturation at a
critical drive Ic, and suppression for I > Ic by high-order magnon interactions that are implicitly included in
the numerical solutions of the LLG equation. The maximum spin current J

(c)
y ≈ 10−7 kg/(m.s) is smaller but

always close to that required for the Doppler-shift–induced spin-wave instability calculated by our mean-field
theory, which turns out to be a good estimate for the maximal spin current.
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FIG. S1. Coherently pumped magnon current Jy as a function of the applied electric current density I in the stripline
from numerical LLG calculations (“LLG”), non-interacting spin-wave theory (“SW-free”), and spin-wave theory includ-
ing the drag effect (“SW-drag”). The black arrows indicate the critical current Ic that causes a spin-wave instability
in the mean-field theory.

In the presence of an interfacial Dzyaloshinskii-Moriya spin-orbit interaction [1]

ĤDMI = − D

2µ0M2
s

∫
dr [ŷ · (M× ∂zM)− ẑ · (M× ∂yM)] , (S29)

where D is the DMI constant, the magnon dispersion [Eq. (11) in the main text] to leading order reads

ωky
= µ0γHapp + ωMαexk

2
y − [γD/Ms + (8/~2)V0kyJy]ky. (S30)

Figure S2 illustrates that a D = 7.5 × 10−5 J/m2 reduces the critical spin current to a value J
(c)

y ≈ 0.5 ×
10−7 kg/(m s) that according to the LLG equation augmented by the effective magnetic field from Eq. (S29),
can be excited by a stripline. A sufficiently large spin-orbit interaction can therefore assist the generation of
a Doppler-shift–induced spin-wave instability of the ground state magnetization.
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FIG. S2. Magnon dispersion [(a)] and coherently pumped spin current density Jy as a function of the applied electric
current density I in the stripline [(b)] in the presence of a DMI spin-orbit interaction. The curves in (b) are obtained
by numerically solving the LLG equation (“LLG”), by non-interacting spin-wave theory (“SW-free”), and by spin-wave
theory including the drag effect (“SW-drag”).
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