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a b s t r a c t 

Examples of synchronization, pervasive throughout the natural world, are often awe- 

inspiring because they tend to transcend our intuition. Synchronization in chaotic dynam- 

ical systems, of which the Lorenz system is a quintessential example, is even more sur- 

prising because the very defining features of chaos include sensitive dependence on initial 

conditions. It is worth pursuing, then, the question of whether high-dimensional exten- 

sions of such a system also exhibit synchronization. This study investigates synchronization 

in a set of high-dimensional generalizations of the Lorenz system obtained from the inclu- 

sion of additional Fourier modes. Numerical evidence supports that these systems exhibit 

self-synchronization. An example application of this phenomenon to image encryption is 

also provided. Numerical experiments also suggest that there is much more to synchro- 

nization in these generalized Lorenz systems than self-synchronization; while setting the 

dimension of the driver system higher than that of the receiver system does not result 

in perfect synchrony, the smaller the dimensional difference between the two, the more 

closely the receiver system tends to follow the driver, leading to self-synchronization when 

their dimensions are equal. 

© 2021 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The Lorenz system [1] is a popular example of a relatively simple deterministic system exhibiting chaos. In the midst 

of chaos, however, there stands a curious and seemingly contradictory emergence of order when two chaotic systems are 

coupled in a specific manner. Chaos synchronization occurs when two coupled chaotic dynamical systems ultimately yield 

identical or synchronized solutions regardless of their initial conditions. The coupling can take many different forms. For 

example, under unidirectional coupling, one system, called the driver, transmits limited information about its solutions to 

the other system, called the receiver, but not the other way around. When both the driver and the receiver are assigned

identical systems, the resulting synchronization under such a set-up is referred to as self-synchronization , which the Lorenz 

system is known to exhibit [2,3] . The discovery of chaos synchronization was soon followed by promising developments 

of various applications in different disciplines including population dynamics [4] , climatology [5] , data assimilation [6] , and

secure communication technologies [7] . 
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One of the questions raised early on was whether self-synchronization might also be possible in hyperchaotic systems 

in higher dimensions, which was quickly answered in the affirmative [8,9] . There has recently been a resurgence of interest

in high-dimensional extensions of the Lorenz and Lorenz-like systems [10–14] , some exploring the possibility of finding 

hyperchaos [15,16] . One way to raise the dimension of the Lorenz system is by including additional modes when truncating

the Fourier series in the derivation. Done consistently, these extensions are akin to considering smaller-scale motions in the 

thermal convection model, bringing the Lorenz system closer to the original governing equations, a version of the Navier- 

Stokes equations. It has recently been noted in [17] that this way of raising the dimension leads to (3 N) - and (3 N + 2) -

dimensional generalizations of the Lorenz system for any positive integer N, which the present study aims to investigate for 

chaos synchronization. 

There are two main advantages of using the aforementioned (3 N) - and (3 N + 2) -dimensional generalizations to study

chaos synchronization. First, being able to set N to be any positive integer, one can study whether self-synchronization 

is a dimension-invariant property of this family of generalized Lorenz systems. Second, by experimentally assigning the 

driver and receiver systems with different dimensions, one can investigate whether there occurs synchronization in a more 

general sense beyond self-synchronization. One interesting aspect about this set-up is that the driver and receiver systems, 

though not identical, still belong to the same family of systems. The possibility of synchronization between high- and low- 

dimensional systems in this way has a particularly important conceptual link with modeling studies because any dynamical 

model for a natural phenomenon is likely a smaller subset of the actual system that governs the phenomenon [6] . From

this perspective, a model may not accurately simulate the reality unless there is synchronization between the reality, a 

higher-dimensional system, and the model, a lower-dimensional system. 

Motivated by these advantages, both from the theoretical and modeling perspectives, the first goal of this study is to 

present convincing numerical evidence in support of self-synchronization in these systems, requiring only the transmis- 

sion of the same amount of information sufficient for guaranteeing self-synchronization in the original three-dimensional 

Lorenz system. It is demonstrated that this unique feature of the generalized systems allows for a potentially useful ap- 

plication in chaos-based image encryption. The second goal of this study is to identify, if any, an indication of generalized

synchronization between two Lorenz systems differing in their dimensions. This has led to the identification of a surprising 

pattern relating generalized synchronization with dimensionality, hinting at a generalizing principle that may encompass 

self-synchronization as its special case. 

Section 2 briefly introduces the generalized Lorenz systems. Self-synchronization in these systems is discussed in 

Section 3 followed by a simple demonstration of an application to image encryption ( Section 4 ). Section 5 explores general-

ized synchronization between two systems with different dimensions. A summary and conclusions are given in Section 6 . 

2. Equations 

The three-dimensional Lorenz system [1] consists of the following three ordinary differential equations in three variables, 

X, Y, and Z: 

˙ X = −σX + σY, (1) 

˙ Y = rX − Y − X Z, (2) 

˙ Z = −bZ + X Y, (3) 

where r is the Rayleigh parameter, σ is the Prandtl number, and b is a geometric parameter. The dot above each variable

indicates its first derivative with respect to time t . In [17] , the three variables, X, Y, and Z are generalized as the k th vari-

ables, X k , Y k , and Z k , respectively, leading to a system with either (3 N) or (3 N + 2) ordinary differential equations, where N

is the number of equations with 

˙ X k on the left-hand-side. Typically, the derivations of Lorenz systems based on the govern- 

ing equations for Rayleigh-Bénard convection involve truncating Fourier series expansions [11] . Accordingly, these (3 N) - and 

(3 N + 2) -dimensional systems are generalizations of the ordinary differential equation systems obtained by choosing differ- 

ent numbers of modes to survive the truncation [17] . Although (3 N + 1) -dimensional systems appear to be missing from

these generalizations, as explained in [18] , attempting to derive a (3 N + 1) -dimensional system results in some extraneous

sinusoidal terms with which any such purported system of (3 N + 1) ordinary differential equations would not be reduced

to the Lorenz system, and thus they are not included in the generalization. 

The (3 N) -dimensional system is given by the following equations for each positive integer k ≤ N: 

˙ X k = −d k σX k + 

σ

d k 
Y k , (4) 

˙ Y k = rX k − d k Y k + 

∑ 

(i, j) ∈ P k 

(
jX i Z j S Y 

)
, (5) 
2 
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˙ Z k = −k 2 bZ k + 

∑ 

(i, j) ∈ Q k 

(
kX i Y j S Z 

)
, (6) 

where i and j are indices that form integer pairs belonging to the set P k or the set Q k defined for each k . These sets P k and

Q k are given by 

P k = { (i, j) : i + j = k } ∪ { (i, j) : j − i = k − 1 } ∪ { (i, j) : i − j = k } , (7) 

Q k = { (i, j) : | j − i | = k } ∪ { (i, j) : j + i = k + 1 } . (8) 

The sign functions S Y and S Z depend on which of the conditions in the above definitions of P k and Q k are satisfied: S Y = −1

if j − i = k − 1 and S Y = 1 if otherwise and S Z = −1 if | j − i | = k and S Z = 1 if otherwise. Here, d k = (a 2 + (2 k − 1) 2 ) / (1 +
a 2 ) , where a is usually set as 1 / 

√ 

2 . 

The (3 N + 2) -dimensional system is comprised of N number of X variables and N + 1 number of Y and Z variables each.

The first 3 N equations are also given by Eqs. (4) –(6) , but note that i and j can now go up to N + 1 . The additional equations

for k = N + 1 are given by 

˙ Y k = −d k Y k + 

∑ 

(i, j) ∈ P k 

(
jX i Z j S Y 

)
, (9) 

˙ Z k = −k 2 bZ k + 

∑ 

(i, j) ∈ Q k 

(
kX i Y j S Z 

)
. (10) 

Detailed derivations of these (3 N) - and (3 N + 2) -dimensional generalizations of the Lorenz system are found in [17] , which

also contains periodicity diagrams for these systems in various parameter spaces. Such periodicity diagrams provide infor- 

mation pertaining to which parameter pairs are likely to yield chaotic solutions. Given the standard value for b = 8 / 3 , the

parameter values around r ∼ 500 and σ ∼ 50 are reliable choices for harnessing chaos from these systems up to dimen- 

sion ∼33 . For this reason, in this study these parameter values are used extensively for numerically testing the generalized

Lorenz systems for chaos synchronization. 

3. Self-synchronization 

3.1. Numerical evidence 

To test for self-synchronization, the driver and receiver systems are assigned the same dimensions with only the so- 

lutions to variable X 1 being sent from the driver to the receiver. More precisely, suppose the driver and receiver are

both assigned the (N + M) -dimensional generalized Lorenz systems consisting of the ordinary differential equations of 

the form (4) –(6) if N = M and also (9) –(10) if M = N + 1 . Denote the driver system’s solution at time t by X D (t) =
(X 1 ,D , . . . , X N,D , Y 1 ,D , . . . , Y M,D , Z 1 ,D , . . . , Z M,D ) . Likewise, denote the receiver system’s solution at time t by X R (t) . The com-

putation of their numerical solutions is done using the fourth-order Runge-Kutta method with the time step size �t = 10 −4 .

If the receiver system’s solution for X 1 is replaced by X 1 ,D at every time step before the solution is fed back into the dif-

ferential equation solver, the driver is said to transmit to the receiver the variable X 1 . The (N + M) -dimensional system can

be said to self-synchronize under the transmission of X 1 if the driver transmitting X 1 implies lim t→∞ 

( X D (t) − X R (t) ) = 0 ; 

however, in most cases where a Lorenz system does self-synchronize, we have found that this convergence between the 

numerical solutions happens rather quickly, making it feasible to check numerically in finite time. 

In Fig. 1 , all three systems with dimensions 3, 12, and 30 appear to exhibit self-synchronization under the transmission of

variable X 1 . Note that self-synchronization in the three-dimensional Lorenz system is already known. A mathematical proof 

of self-synchronization can be established if an appropriate Lyapunov function for the error subsystem is found, which has 

been done for the three-dimensional Lorenz system [19] . This appears to be a challenging problem for the high-dimensional

Lorenz systems with dimension ≥ 6 , let alone for the (3 N) - and (3 N + 2) -dimensional generalizations. A common strategy

to finding a Lyapunov function, also adopted by Cuomo and Oppenheim [7] , is cleverly pairing up the equations in the error

subsystem so that the nonlinear terms would cancel out one another. There are two main difficulties in adopting such a

strategy in our generalized systems. The first reason is in the increased complexity of the system. As the dimension gets

higher, the P k - and Q k -sets increasingly contain a greater number of permutations for the (i, j) -pairs such that it quickly be-

comes infeasible to find the nonlinear terms with matching coefficients and opposite signs. In fact, the number of nonlinear 

pairs to be included follows a quasi-exponential curve [17] . The second reason has to do with the peculiar requirement that

only X 1 is transmitted from the driver to the receiver. It can be seen in (4) that raising the dimension beyond dimension 6

introduces additional X k variables. When X 1 is the only X variable in the system, finding a Lyapunov function comes down 

to a manipulation of the ˙ Y k and 

˙ Z k equations in equal numbers, and so pairings follow naturally. On the other hand, each

extra X k whose driver solution is not made available to the receiver introduces additional complications to this strategy. 
3 
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Fig. 1. Time series of the numerical solutions to Z 1 in the driver (black, dashed) and receiver (red, solid) systems of dimension (a) 3, (b) 12, and (c) 30 

with r = 500 , σ = 50 , and b = 8 / 3 , each starting at a different initial condition. The green shades indicate the absolute difference. (For interpretation of 

the references to color in all figure legends, the reader is referred to the web version of this article.) 

Fig. 2. Dimension- r space with σ = 10 and b = 8 / 3 showing (a) synchronization index γ computed with the initial condition (X 1 , Y 1 , Z 1 , . . . ) = (1 , 0 , 0 , . . . ) 

given for the driver system and that with the perturbation of +50 added to Z 1 for the receiver and independent systems and (b) periodicity of the driver’s 

solutions, a subset of results from Moon et al. [17] . 

 

 

 

 

 

 

 

 

 

Nevertheless, the numerical results indicate that the absolute differences between the driver’s and receiver’s solutions 

quickly approach 0 even in the relatively high-dimensional systems. Various different dimension and parameter combina- 

tions are further tested for self-synchronization, with more or less the equivalent results. In the particular cases shown in 

Fig. 1 , the higher-dimensional systems even appear to self-synchronize more quickly than the three-dimensional system. 

For a quantitative measure of self-synchronization, define the synchronization index γ based on root-mean-square differ- 

ences (rmsd) as follows: 

γ = 

√ 

1 

n 

∑ 

i 

(
Z (i ) 

1 ,D 
− Z (i ) 

1 ,I 

)2 −
√ 

1 

n 

∑ 

i 

(
Z (i ) 

1 ,D 
− Z (i ) 

1 ,R 

)2 
, (11) 

where subscripts D, R, and I stand for the driver system, the receiver system, and an independent system, respectively. The 

receiver system R is the system with the states of variable X 1 = X 1 ,R replaced by the driver’s solution to variable X 1 = X 1 ,D .

While the independent system I is identical to the receiver system R in form and initial conditions, it does not receive the

solutions X 1 ,D from the driver and thus is independent of the driver system D . In Eq. (11) , i and n are, respectively, the time

step index and the number of time steps in the duration over which the rmsd are computed so that Z (i ) 
1 ,D 

denotes the solution

to variable Z 1 in the driver system D at the i th time step. If self-synchronization occurs between D and R, then the rmsd

between the driver’s and receiver’s solutions are expected to be smaller than those between the driver and independent 

solutions. Therefore, if γ � 0 , it can be deduced that the detected synchronization is attributable to the coupling set-up. 

On the other hand, if γ ≤ 0 , then either there is no synchronization attributable to the coupling set-up or the two systems

synchronize trivially; that is, they only appear to synchronize because both solutions are stable. 

Fig. 2 (a) shows the synchronization index in a dimension- r space with �r = 1 , computed from the numerical solutions

in t ∈ [50 , 70] for each dimension-parameter combination. Note that the coupling and the perturbation to the initial con-

dition are not made until after t = 50 . Here, the driver system is given the initial condition (X , Y , Z , . . . ) = (1 , 0 , 0 , . . . ) .
1 1 1 

4 



S. Moon, J.-J. Baik and J.M. Seo Commun Nonlinear Sci Numer Simulat 96 (2021) 105708 

 

 

 

 

 

 

 

 

 

 

 

 

 

The receiver and independent systems are given the same initial conditions but with Z 1 perturbed by +50 . The dimension-

r periodicity diagram following the peak-counting scheme of [17] is plotted in Fig. 2 (b) for reference, showing for which 

dimension- r pairs the solution is chaotic ( period ≥ 8 ), periodic ( 0 < period < 8 ), and stable ( period = 0 ). Nowhere in the 

parameter- r space shown in Fig. 2 (a), we have γ < 0 . In fact, γ � 0 wherever there lies a non-stable solution. Observe also

the abrupt transition from γ > 0 to γ = 0 at the demarcations between the areas of stable and non-stable solutions, imply-

ing that the convergence of stable solutions occurs within the initial spin-up time t ∈ [0 , 50] and therefore is distinguishable

from convergence due to self-synchronization. 

3.2. The error subsystems 

Again, the complexity of the generalized Lorenz systems in Eqs. (4) –(10) makes finding appropriate Lyapunov functions 

of the error subsystems quite difficult, but the error subsystems can still be analyzed numerically. 

First consider a simpler case in which the solutions to all X k , 1 ≤ k ≤ N, from the driver system are sent to the receiver

system. This is a stronger condition than the conventional coupling set-up discussed so far, where only the solutions to X 1 
are sent from the driver to the receiver system. Let δX k , δY k , and δZ k denote the deviation of the receiver’s variables from

the driver’s variables for each k by setting 

Y ′ k = Y k + δY k , (12) 

Z ′ k = Z k + δZ k , (13) 

where the prime indicates that the variable belongs to the receiver system. The error subsystem in δY k and δZ k is then given

by 

d 

dt 
δY k = −d k δY k + 

∑ 

(i, j) ∈ P k 

(
jX i δZ j S Y 

)
, (14) 

d 

dt 
δZ k = −k 2 bδZ k + 

∑ 

(i, j) ∈ Q k 

(
kX i δY j S Z 

)
, (15) 

for each positive integer k ≤ N. The absence of r in the error subsystem comprised of Eqs. (14) –(15) strongly suggests that

this system is stable, in which case the driver and receiver systems would self-synchronize. 

Returning to the original condition for self-synchronization in question, suppose now only the solution to X 1 is transmit- 

ted from the driver to the receiver. Note that in this situation the receiver’s variables corresponding to X k for k > 1 must

also be decomposed into X ′ 
k 

= X k + δX k . We obtain the following error subsystem for the (3 N) -dimensional cases: 

d 

dt 
δX k = 

{ 

0 for k = 1 , 

−d k σδX k + 

σ

d k 
δY k for 2 ≤ k ≤ N, 

(16) 

and for each positive integer k ≤ N, 

d 

dt 
δY k = rδX k − d k δY k + 

∑ 

(i, j) ∈ P k 

(
j 
(
X i δZ j + δX i Z j + δX i δZ j 

)
S Y 

)
, (17) 

d 

dt 
δZ k = −k 2 bδZ k + 

∑ 

(i, j) ∈ Q k 

(
k 
(
X i δY j + δX i Y j + δX i δY j 

)
S Z 

)
. (18) 

Note that δX 1 = 0 as the receiver system simply inherits the solution to X 1 from the driver. We have tested various (3 N) -

dimensional Lorenz systems with different parameters and dimensions using the numerical solutions of Eqs. (16) –(18) , 

whose results suggest that the error subsystem is indeed stable. An example of such results is shown in Fig. 3 for the

21-dimensional system. 

4. Application in image encryption 

Over the years, there have been proposed numerous encryption schemes utilizing chaotic signals to securely mask cer- 

tain sensitive information in transit [7,20–23] . Many of these schemes rely on chaos synchronization to recover the ‘unpre-

dictable’ chaotic signals generated from the driver’s end. Although the naïve designs in early prototypes were criticized for 

being cryptographically weak [24–26] , recent and on-going efforts that employ modern and sophisticated techniques seem 

to suggest the viability of these chaos-based encryption schemes [27–29] . 

In this section, a pixel by pixel masking of a raster image is performed to demonstrate the potential utility of self-

synchronization in these generalized high-dimensional Lorenz systems. We showcase a chaos synchronization-based image 
5 
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Fig. 3. (a) Time series of the numerical solutions to X 1 in the 21-dimensional Lorenz system with parameters r = 500 , σ = 50 , and b = 8 / 3 as the driver 

system. The responses of (b) δY 1 and δZ 1 and of (c) δX 2 and δX 3 in the error subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

masking scheme using the standard test images of Baboon ( Fig. 5 (a)) and Barbara ( Fig. 5 (b)). For demonstrative purposes,

here we adopt a rather intuitive approach to masking the images, namely, a simple summation-based perturbation of the 

color indices for each pixel. In practical implementations, the masking effectiveness of the chaotic signals generated by the 

(3 N) -dimensional generalized Lorenz systems can be improved by utilizing more sophisticated encryption methods includ- 

ing the bitwise exclusive-or operator [30–33] . 

Suppose a raster image consists of ordered pixels P, each containing three numbers that represent red ( R ), green ( G ),

and blue ( B ). Let (R, G, B ) i ∈ P be the 3-tuple representing the i th pixel. Define a masking function m from the original

pixels P to the masked pixels ˜ P such that for each i, 

m : (R, G, B ) i 
→ (R, G, B ) i + α
l ∑ 

k =1 

(X 

(i ) 
k 

, Y (i ) 
k 

, Z (i ) 
k 

) , (19)

where (X (i ) 
k 

, Y (i ) 
k 

, Z (i ) 
k 

) is the solution of the driver system for the k th variable set at time step i . Clearly, convergence to chaos

must occur prior to using the solution to mask an image. While the convergence time varies depending on the dimension

of the system and the parameter values being used [18] , we found that t ≥ 50 is a long enough spin-up time, given the

parameter values used in this study. As can be seen in Fig. 1 , synchronization also appears to occur fairly quickly even

for systems with very high dimensions. Numerical solutions over t ∈ [50 , 250] with �t = 10 −4 provide a sufficiently large

number of time steps for covering test images with the resolution of 512 × 512 . Here, l ≤ N stands for level , which is the

number of (X k , Y k , Z k ) variable sets being used to perturb, if the amplitudes of chaotic signals are relatively small, or to

envelop, if the amplitudes are much greater than the color signals, the original image, and α is an amplification factor 

referred to as the intensity of chaotic masking. Once ˜ P is received along with the solution to X 1 by the receiver system, the

original pixels P can then be recovered using the solutions obtained from the synchronized receiver system. The driver’s 

initial condition does not need to be known since the receiver system under self-synchronization should be able to recover 

the rest of the driver’s solutions regardless of the initial condition. Note that the driver sending the solutions for X 1 to the

receiver in the context of the three-dimensional Lorenz system gives away 1/3 of the entire information needed to decode 

the encryption. With higher-dimensional systems that still only require the transmission of X 1 for self-synchronization, this 

fraction corresponding to the amount of information given-away gets substantially reduced. From this perspective, using 

high-dimensional Lorenz systems for encryption purposes has an added benefit of enhanced security. 

Note that, here, an image-covering scheme of the simplest kind is chosen in order to focus on demonstrating the utility of

high-dimensional Lorenz systems in image encryption, rather than one particular image encryption scheme itself. Nonethe- 

less, there still remain several issues with the vanilla scheme using (19) which can make rendering of ˜ P into a masked

image less effective even for the demonstrative purposes. The first issue stems from the fact that unlike X k or Y k , which

are symmetric with respect to the transformation (X, Y ) 
→ (−X, −Y ) [18] , the fluctuating Z k values tend to remain above 0,

meaning that the blue color at the receiving end of the chaotic signal from Z will continue to intensify. A direct application

of the scheme following (19) will, therefore, result in oversaturation of the blue color. This by itself is not an issue if the

delivery of the masked information is done using the signal ˜ P , but it can result in an over-representation of the blue color

in the rendered images. To compensate for this and other potential imbalances, a calibration process is adopted as follows. 

For any variable V k , the calibrated 

ˆ V k is given by 

ˆ V k = V k −
1 

2 

(
max 

i 
V 

(i ) 
k 

+ min 

i 
V 

(i ) 
k 

)
, (20) 

which is meant to simply pull down the average to 0. The second and related issue is that while chaotic signals of large

amplitudes can effectively hide (or envelop) the image signal, when such an image is rendered into a masked image with

the color scale ranging from 0 to 255, much information is lost from the masked signals, making it ambiguous whether the

improved masking using a high-dimensional Lorenz system is due to the enhanced security from having additional chaotic 

layers or simply a result of under- or oversaturation. Thus, for the masked images in Fig. 4 , the calibrated chaotic signals
6 
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Fig. 4. Masked image of Baboon using chaotic signals from the 30-dimensional driver system with parameters r = 500 , σ = 50 , and b = 8 / 3 under (a) 

level 1 and intensity 10, (b) level 1 and intensity 500, and (c) level 10 and intensity 10. Recovered image of Baboon using the self-synchronizing receiver’s 

solutions under (d) level 1 and intensity 10, (e) level 1 and intensity 500, and (f) level 10 and intensity 10. (g)–(i) and (j)–(l) are the same as (a)–(c) and 

(d)–(f), respectively, except the black-and-white image of Barbara is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have undergone normalization via 

l ∑ 

k =1 

ˆ V 

(i ) 
k 


→ 

255 

∑ l 
k =1 

ˆ V 

(i ) 
k 

255 + max i 
{∑ l 

k =1 
ˆ V 

(i ) 
k 

}
− min i 

{∑ l 
k =1 

ˆ V 

(i ) 
k 

} , (21) 

where V k = X k , Y k , or Z k for all k . 

Fig. 4 (a)–(c) are the masked images of Baboon using ( level , intensity ) = (l, α) = (1 , 10) , ( level , intensity ) = (1 , 500) , and

( level , intensity ) = (10 , 10) , respectively. Setting l = 1 is effectively equivalent to using the three-dimensional system, and

since l ≤ N, using a higher dimension of the generalized system unlocks higher levels to become available. Fig. 4 (d)–(f) are

the recovered images from the masked images in Fig. 4 (a)–(c), respectively. Note that in this simple masking scheme the

pixels to be perturbed are sequentially ordered from the top to bottom, thus creating the columnar patterns in the masked

images. In practical use, one can utilize a more sophisticated algorithm to redistribute sequential ordering of the pixels, 

which will make the masking patterns less obvious. As for black-and-white images such as that of Barbara in Fig. 5 (b),

the masking scheme following (19) is not directly applicable since each pixel is represented by a single number indicating

its grayscale rather than by an rgb 3-tuple. In this case, we have opted to utilize the chaotic solutions for the X variables

to mask the pixels ordered in the columnar direction, as is done for Fig. 4 (a)–(c), and use the chaotic solutions for the Y 

variables to mask the image again in the horizontal direction, creating a kind of a mesh in the resulting masked image

of Barbara shown in Fig. 4 (g)–(i). Having two chaotic signals criss-cross in both the horizontal and vertical directions for

Barbara instead of in just one direction as is done for Baboon appears to markedly improve the effectiveness of masking,

but this could be due to other skewing factors such as the particular image being more susceptible to masking. 

There exist many different methods for evaluating the effectiveness of chaos-based image masking schemes, most of 

which focus on randomness of the masked image [33] . One such method is to compute the correlation coefficients between

adjacent pixels, sweeping across the image horizontally (comparing the columns) or vertically (comparing the rows), or 

diagonally [34] . In this method, an unaltered image is known to yield the correlation coefficients fairly close to 1, and the

closer the correlation coefficients are to 0, the more random the altered image is determined to be. While our masking

scheme does not exactly result in random noise, such a method can still be utilized to quantitatively compare the relative

performance of the scheme under different settings. The average correlation coefficients amongst the adjacent columns 

(across horizontal) and the diagonals in the original and altered images from Fig. 4 are summarized in Table 1 . The original

images yield the average correlation coefficients > 0 . 8 both horizontally and diagonally. The masked images of Baboon have

the average correlation coefficients between the adjacent columns below 0.2. The average correlation coefficients between 
7 
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Fig. 5. Original image of (a) Baboon and (b) Barbara. Histogram showing the pixel distribution in terms of the rgb or grayscale intensity in the original 

image of (c) Baboon and (d) Barbara. Histogram showing the pixel distribution in terms of the rgb or grayscale intensity in the masked image of (e) Baboon 

and (f) Barbara, corresponding to Fig. 4 (c) and (i), respectively. 

Table 1 

Correlation coefficients against the original image (Fig. 5 (a) and (b)) and the average correlation coefficients between 

adjacent columns (horizontal) and diagonals for each original and altered image in Fig. 4 . The displayed numbers for 

the color image, Baboon, are averages of three correlation coefficients from the red, green, and blue color indices. 

Image/status Correlation against Correlation between adjacent pixels 

(level, intensity) original image Horizontal Diagonal 

Baboon/original - 0.8479 0.8116 

Baboon/masked 

(1, 10) 0.1811 0.1401 0.1607 

(1, 500) 0.0130 0.1114 0.1441 

(10, 10) 0.1295 0.1724 0.2294 

Baboon/recovered 

(1, 10) 0.9998 0.8476 0.8113 

(1, 500) 0.7848 0.5552 0.5502 

(10, 10) 0.9998 0.8476 0.8113 

Barbara/original - 0.8789 0.9378 

Barbara/masked 

(1, 10) 0.1233 0.6382 0.0550 

(1, 500) 0.0085 0.6342 0.0484 

(10, 10) 0.1028 0.8395 0.1069 

Barbara/recovered 

(1, 10) 0.9998 0.8790 0.9373 

(1, 500) 0.7273 0.9405 0.4018 

(10, 10) 0.9998 0.8789 0.9374 
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the diagonals in the masked Barbara images are � 0 . 1 . Note that because in the Baboon image the masking is applied to the

pixels that are ordered in the vertical direction, the correlation coefficients between the adjacent rows are necessarily fairly 

high, and for this reason these computations are excluded from Table 1 . Likewise, only the correlation coefficients between

the diagonals yield meaningful results concerning the masked images of Barbara in Fig. 4 (g)–(i), in which the masking is

applied to the pixels upon ordering them both vertically and horizontally. The relatively high average correlation coefficients 

between the adjacent columns in the masked Barbara images can be attributed to this reason. 

As a direct measure of masking-effectiveness, Table 1 also includes the correlation coefficients between all pixels of 

the masked and original images. The correlation coefficients between the masked and original images generally fall below 

0.15 except for the low level–low intensity case for Baboon. The correlation coefficients are exceptionally low for the high- 

intensity cases, and the masked images for the high-level cases generally show weaker correlations with the original image 

compared to the corresponding low level–low intensity cases. The masking performances of Fig. 4 (c) and (i) are further

examined through the histograms showing their color or grayscale distributions among the pixels before ( Fig. 5 (c) and

(d)) and after ( Fig. 5 (e) and (f)) masking. It is known that the more uniform the distribution is, the more robust the image

encryption can be, providing some protection against statistical attacks [32] . The histograms for both the Baboon and Barbara

images masked with level 10 and intensity 10 can be said to exhibit distributions that are more uniform compared to the

original images. 

In Fig. 4 , it is shown that there are two ways to improve the security of chaotic masking; namely, raising the level l and

raising the intensity α. The effectiveness of masking appears to be fairly poor in the low level–low intensity case in Fig. 4 (a).

Raising the intensity improves the masking effectiveness as can be readily seen in Fig. 4 (b) but at the expense of poor

quality in the recovered image as apparent from Fig. 4 (e) and (k), corresponding to the correlation coefficients of 0 . 7848

and 0 . 7273 against the original, respectively. On the other hand, raising the level instead of the intensity, as in Fig. 4 (c) and

(f) or Fig. 4 (i) and (l), improves the security of masking while, at the same time, being able to preserve the recovered image

quality comparable to using the low level–low intensity case in Fig. 4 (d) and (j), with the correlation coefficient of 0 . 9998

against the original in both cases. 

The deterioration of image quality visible in Fig. 4 (e) and (k) is caused by the seemingly unavoidable yet minuscule differ-

ences between the driver’s and receiver’s solutions, which becomes amplified by the factor α. The noise persists even after 

the two systems are effectively in synchrony. If a mathematical proof of exact self-synchronization in the generalized (3 N) -

dimensional systems is found, for example by finding a Lyapunov function [19] or by taking a more general approach [35,36] ,

then we are assured that the persistent noise is purely numerical. In this way, finding the proof of self-synchronization in

these (3 N) - and (3 N + 2) -dimensional generalizations of the Lorenz system takes on an additional layer of practicality. 

5. Beyond self-synchronization 

Experimenting further by assigning systems with different dimensions as the driver and the receiver while still transmit- 

ting only X 1 from the driver to the receiver, we stumbled onto a curious phenomenon that goes beyond self-synchronization.

Note that even when the driver and receiver systems are different, the two systems are still related in our set-up. In the

(3 N) - and (3 N + 2) -dimensional generalizations of [17] , any system with a higher dimension essentially contains all systems

with lower dimensions. For this reason, how different the driver and receiver systems are from each other can be quantified

by the dimensional difference between the two. The question is whether there is any hint of synchronization left when the

two coupled systems have different dimensions, and if so, whether that depends on how close or far apart the two systems

are, which in turn can be measured by their dimensional difference. 

Fig. 6 (a) and (b) show the difference trajectories for the cases corresponding to self-synchronization. The latter portions 

of the trajectories (solid with changing colors) are barely visible in Fig. 6 (a) and (b) because the differences between the

driver’s and receiver’s solutions to Y 1 and Z 1 quickly close in on 0. In contrast, when the driver and receiver systems have

different dimensions as in Fig. 6 (c) and (d), the difference trajectories do not quite converge to 0, although their magnitudes

seem to be bounded, fluctuating with smaller amplitudes after some time. This suggests that although there is no complete 

synchronization comparable to self-synchronization when the two systems have different dimensions, the receiver system 

does get influenced by the driver system to some extent and in the direction following the driver system’s solution. In other

words, such couplings still retain some traces of synchronization. 

To quantify how much out of sync they become, the rmsd in the numerical solutions between the driver and receiver

systems are computed. Each marker in Fig. 7 corresponds to a particular dimension and parameter choice. Here, the (r, σ )

parameter pairs are chosen from r ∈ { 500 , 520 , 550 , 575 , 600 } and σ ∈ { 50 , 51 , 52 } with which the (3 N) -dimensional systems

up to dimension 30 all have chaotic solutions [17] . The rmsd are computed over t ∈ [4 . 5 , 10] . The initial conditions X 1 = 1

and X 1 = 100 are used for the driver and receiver systems, respectively, with all other variables set to 0 initially. Surprisingly,

Fig. 7 shows a positive correlation between the dimensional difference and how closely in sync the two systems are. This

means that the general direction of how well the two systems synchronize is in agreement with achieving perfect or near-

perfect synchrony when the two systems are identical. This phenomenon is also readily seen in the trajectories. Fig. 8

shows that the further apart the dimension of the receiver system is from that of the driver system, the more dissimilar

their trajectories tend to become, resulting in greater rmsd. 

To see if there are differences in the patterns with which the rmsd and dimension are correlated, the correlation coef-

ficients for various groupings of scatters are computed and summarized in Table 2 . Overall, the correlation coefficients are
9 
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Fig. 6. Trajectories of the difference in the solutions for Y 1 and Z 1 between the driver and the receiver systems whose dimensions are given by (a) 24 and 

24, (b) 30 and 30, (c) 24 and 18, and (d) 30 and 18, respectively. The black dashed curves indicate the first 1/3 of the difference trajectories and solid lines 

in different colors are used for the latter portions of the trajectories. For (a) and (b), the end point of the trajectories are marked by red dots. 

Fig. 7. Root-mean-square difference between the driver’s and receiver’s solutions as a function of driver’s dimension with the receiver system dimension 

set to 3 (black), 12 (red), and 24 (blue). Different markers indicate the associated r values. 

10 
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Fig. 8. Trajectories of the receiver’s solutions in the systems of dimensions (a) 3, 5, 8, 12, 15, 17, 21, 26, and 30 synchronizing with the driver system of 

dimension 30, projected on the Y 1 − Z 1 plane. The parameters are given by r = 500 , σ = 50 , and b = 8 / 3 . The Y 1 − Z 1 projection of the driver’s solution 

trajectory (black, dashed) superposed on top of the receiver’s solution trajectory (other colors, solid) with the receiver system’s dimension given by (b) 30, 

(c) 15, and (d) 5. The driver’s initial condition at t = 0 is given by (X 1 , Y 1 , Z 1 , . . . ) = (1 , 0 , 0 , . . . ) . The receiver’s initial condition at t = 1 when the coupling 

starts is the same as the driver’s except Y 1 = 200 and Z 1 = 300 in the receiver system. 

Table 2 

Average correlation coefficients corresponding to the relationship between the rmsd (between the 30- 

dimensional driver system’s solutions and the receiver solutions) and the dimensional difference between 

the driver and receiver systems observed in Fig. 7 , classified based on the r values and the receiver system’s 

dimension. 

r value Receiver dimension 

500 525 550 575 600 3 12 24 

Correlation 0.9083 0.9240 0.8983 0.9041 0.8666 0.7883 0.9513 0.9611 

 

 

 

 

 

 

 

 

 

fairly close to 1 and are greater if the receiver system’s dimension is higher, which can also be seen in Fig. 7 with the blue

markers being more tightly aligned with one another compared to the red or black markers. This is expected since assigning

a high-dimensional system to the receiver brings the receiver system closer to the 30-dimensional system assigned to the 

driver, leaving very little wiggle room for the receiver system to act on its own independently of the driver’s solutions. As

for the groups of scatters classified based on the r values, the correlation coefficients range from 0 . 86 6 6 to 0 . 9240 , but there

are no signs indicating their dependence on parameter values in any particular direction. 

The negative relationship between the level of synchronization and the dimensional difference between the driver and 

receiver systems is also apparent in Fig. 9 , which shows the maximum differences between the driver’s and receiver’s solu-

tions corresponding to the dimensions of the two systems, computed with r = 500 and σ = 50 . As expected, the maximum

differences are significantly lower along the diagonal of Fig. 9 and its vicinity, which is indicative of synchronization when

the two systems have equal or nearly equal dimensions. Observe also that the maximum differences tend to be slightly 

smaller when the driver’s dimension is greater than the receiver’s dimension compared to the other way around. This is ex- 

pected because our coupling set-up is unidirectional from the driver to receiver systems. If the driver’s dimension is higher 

than the receiver’s dimension, then at least some of the extraneous information from the driver’s other variables is transmit- 

ted to the receiver system through the coupling. On the other hand, if the receiver system’s dimension is higher than that

of the driver system, then the extraneous variables are on the receiver’s side. In that case, the extra noise produced from

the interactions involving these additional variables in the receiver system is not fed back into the driver system, creating 

further discrepancies between the driver’s and receiver’s solutions. 
11 
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Fig. 9. Maximum differences in Z 1 between the driver and receiver systems with r = 500 and σ = 50 over t ∈ [60 , 70] in which the initial condition for the 

driver systems is given by (X 1 , Y 1 , Z 1 , . . . ) = (1 , 0 , 0 , . . . ) at t = 0 and the initial condition for the receiver systems is given by (X 1 , Y 1 , Z 1 , . . . ) = (100 , 0 , 0 , . . . ) 

at t = 50 as the coupling starts. The numbers inside the cells are the maximum difference values rounded to the nearest integer. 

 

 

 

 

 

6. Summary and discussion 

The numerical experiments strongly indicate that self-synchronization occurs in the (3 N) - and (3 N + 2) -dimensional

generalizations of the Lorenz system in the same way that the three-dimensional Lorenz system self-synchronizes. Such a 

property may find its uses in applications such as image encryption if combined with sufficiently sophisticated algorithms. 

Analyses of numerical results have also led to the identification of a broader pattern between the dimensional difference 

and the degree of generalized synchronization when the driver and receiver systems are assigned Lorenz systems with two 

different dimensions. It is particularly interesting that such a pattern appears to be in agreement with the general direction 

toward self-synchronization and thus has a potential to be part of some generalizing principles linking self-synchronization 

and generalized synchronization in these systems. 

Despite the encouraging results from the numerical experiments, whether precise self-synchronization in the mathemat- 

ical sense truly occurs in these generalized systems will remain as an open question until a rigorous proof is found. Further

investigation of the numerical results hinting at a more general relationship between dimension and synchrony may also 

lead to a proof of self-synchronization in these systems as a special case when the two systems are assigned the same

dimension. 

Synchronization between two systems with different dimensions can also provide an interesting insight relevant to mod- 

eling of natural phenomena. It is possible that certain nonlinear systems in nature, such as the atmosphere, have higher 

dimensions than the approximate models currently in use, partly because of the limitations in grid resolution and also be- 

cause of our limited knowledge of the real system. In any case, an accurate simulation of the reality by a model can be

thought of as the synchronization between a higher-dimensional driver system and a lower-dimensional receiver system 

with observations functioning as the information transfer from the driver to the receiver. From this point of view, the syn-
12 
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chronizing features explored in this study can make these generalized systems suitable for use in testing data assimilation 

schemes. Data assimilation is currently undergoing rapid progression in the field of atmospheric science for the purpose 

of optimally combining observation data with model outputs [37] . We plan on further pursuing such applications of these 

generalized Lorenz systems in a future study. 
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