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Abstract
The production of stamped parts from rolled aluminum sheets requires differ-
ent tempers and different thermal routes. While the slip and hardening behavior
of the alloy strongly depends on the temper and the process temperature, the
crystallographic texture remains largely static. Although the plastic anisotropy
of rolled sheet is largely a function of the crystallographic texture, a depen-
dency of plastic anisotropy on the temper has been reported for 6xxx series
alloys, indicating that slip and hardening behavior have some influence. A sys-
tematic investigation of the effect of the slip and hardening behavior on the
plastic anisotropy, however, does not exist. In this study, a crystal plasticity
fast Fourier transform framework is utilized to predict the r-values, a com-
mon measure for plastic anisotropy, of two widely used commercial aluminum
alloys possessing different crystallographic textures, AA6016 and AA5182. To
investigate the sensitivity of the r-values to changes in the modeling param-
eters, a suite of simulations is performed in which the modeling parameters
are systematically changed, and the resulting changes to the predicted r-values
are calculated. Furthermore, numerical parameters, such as the level of dis-
cretization and the number of simulated grains are studied. Results indicate that
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the predicted r-value is less dependent on changes to crystal plasticity model-
ing parameters than to the initial crystallographic texture. Resulting trends are
discussed.

Keywords: rolled aluminum, plastic anisotropy, crystal plasticity, deformation
modeling

(Some figures may appear in colour only in the online journal)

1. Introduction

Aluminum alloys are often used in various engineering applications, as they are lightweight,
resist corrosion, and exhibit desirable mechanical properties for use in forming operations.
Increasingly, aluminum is sought after for use in automotive and aerospace industries in an
attempt to exploit these properties. Worldwide demand for aluminum auto body sheets is pro-
jected to increase from 0.5 million tons in 2013 and 1.6 million tons in 2018 to 3.8 million tons
in 2027. The increase is mainly driven by the substitution of other materials with aluminum
sheets [1].

Automotive body parts require high strength and excellent formability. The latter is severely
affected by the plastic anisotropy of rolled sheet [2–4]. Typical technical specifications
for aluminum sheets by automobile manufacturers [5] therefore limit the extent of plastic
anisotropy exhibited by rolled aluminum sheets. The most common metric to quantify the plas-
tic anisotropy is the so called ‘r-value’ (sometimes referred to as the Lankford coefficient),
which relates the magnitude of the plastic strain in the sample’s thickness direction and the
magnitude of the plastic strain across the width of a sample [6, 7]. Depending on the crystal-
lographic texture of the rolled sheet, the r-value may be variable as a function of the sample’s
orientation with respect to the sheet’s loading direction [7–9]. The plastic behavior—and thus
the r-value—of rolled sheets tends to be highly dependent on their crystallographic texture.
For Al–Mg–Si alloys a small but significant effect of age hardening [10] and natural harden-
ing [11] on the r-value has been found. These effects are not yet fully understood but might
be related to the interplay of hardening mechanisms on different slip planes [12, 13]. In other
words, there are some indications that the tempering of rolled sheet—and resulting changes of
the hardening behavior—has some influence over the plastic anisotropy.

The relatively recent development of the full-field crystal plasticity simulation method
has allowed for the better prediction of both micro- and macroscopic behavior of materials
[14]. These simulations explicitly consider both the crystallographic texture and the three-
dimensional geometric character of a microstructure for a given sample. Simulations are com-
monly evaluated via either a crystal plasticity finite element solution method [15–17], or a
crystal plasticity fast Fourier transform (FFT) solution method [18–20]. By modeling the
single crystal deformation response as well as considering the spatial arrangement of grains
and phases (neighboring grain interaction), a better understanding of the macroscopic plas-
tic deformation response—and the influence of the plastic response at the crystal scale—can
be achieved. Comparative studies of computational approaches with increasing complexity by
Delannay et al [21] and Hu et al [22] showed that full-field methods based on three-dimensional
representations of the micro-structure yield the best predictions for the bulk behavior such as
texture evolution and plastic anisotropy.

Full-field crystal plasticity simulations require—generally at a minimum—input pertaining
to a sample’s microstructure (geometry and crystallographic texture), and the single crys-
tal elastic and plastic behavior. Texture measurements of specimens via electron backscatter
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Table 1. Chemical composition in wt% for aluminum alloys AA6016 and AA5182
utilized in this study.

Alloy Fe Mg Mn Si Al

AA6016 0.13 0.35 0.07 1.02 Balance
AA5182 0.19 4.73 0.43 0.12 Balance

diffraction or lab-source x-ray diffraction have become commonplace, and analysis has become
readily accessible via open-source tools [23]. Single crystal elastic and plastic parameters for
use in crystal plasticity simulations, however, can be difficult, time-consuming, and costly
to accurately quantify [24, 25]. As full-field modeling becomes more accessible and widely
adopted—especially in industrial applications—an understanding of the influence of model-
ing parameters on the deformation response is necessary to inform the modeler on the necessity
(or lack thereof) of accurate parameter quantification. Various studies have shown that great
care needs to be taken with respect to parameter estimation when investigating the intra-grain
deformation response of polycrystalline materials [26, 27]. To date, however, there has been
little work on understanding the sensitivity of the prediction of bulk behavior on changes to
crystal plasticity modeling parameters.

In this study, a full-field crystal plasticity solver is used to predict the r-value of two alu-
minum alloys—AA6016 and AA5182. Multiple samples for each alloy are generated, and
different loading cases are considered. Various modeling parameters—namely slip and hard-
ening parameters, the level of numerical discretization, the number of grains in a sample (the
geometric discretization), and the initial crystallographic texture (both the texture differences
between the two alloys, and through-thickness texture gradients)—are parameterized, and a
suite of simulations is performed in which each parameter is systematically altered to study it
is influence on the predicted r-value. Resulting trends as a function of changes to the modeling
parameters are examined, and the impact of such trends discussed.

2. Materials and methods

2.1. AA6016 and AA5182 sheet alloys

The commercial aluminum alloys AA6016 and AA5182 in this study are typical for stamped
parts in automobiles. Their chemical composition is given in table 1.

The texture of AA6016 is generally dominated by the cube texture component [28]. During
hot rolling, cube oriented grains grow at the expense of other orientations [29]. Cold rolling
and subsequent solution annealing further strengthens the cube texture component [30, 31]. The
propensity of the cube texture component to form originates from a complex micro-mechanism.
While cold rolling promotes the brass, copper and S texture components and reduces the cube
texture component, far more stable recrystallization nuclei are created during rolling with
cube orientations than with any other orientation [32, 33]. As a consequence, AA6016 sheets
typically exhibit a strong cube component in the final fully recrystallized state.

Compared with AA6016, the AA5182 alloy is comprised of a significant number density of
micron-sized AlMnFe particles, and a high content of solute Mg-atoms. The deformation zones
around the second-phase particles (which arise during rolling) are preferential nucleation sites,
thus creating randomly oriented recrystallization nuclei [34]. This so-called ‘particle stimu-
lated nucleation’ (PSN) competes with the cube orientation nucleation during recrystallization
[35]. The high solute content additionally reduces the cube advantage [36]. Both PSN and the
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Figure 1. Illustration of a rolled sheet and tensile specimen. The sheet is defined via
the processing directions: the rolling direction, RD, and transverse direction, TD, and
a third out of plane normal direction, ND. The specimen orientation is defined via the
orientation of the specimen’s tensile axis, A, with respect to the sheet’s rolling direction,
quantified as the angle φ.

presence of solute magnesium retard the development of a strong cube texture component and
lead to a mixture of retained rolling texture components and the cube texture component in the
final fully recrystallized sheet.

Samples in this work have been extracted from commercial sheets produced at AMAG
Rolling GmbH. The microstructure of both alloys is fully recrystallized. The alloy AA6016 has
been solution annealed in a continuous heat treatment line and subsequently water quenched
(a T4 temper). The alloy AA5182 has been annealed in a batch furnace and subsequently air
cooled (an O temper).

2.2. Determination of r-value

The r-value is typically determined via a tensile test at a certain angle to the rolling direction
(figure 1). The strains are measured in both the loading direction and across the width of the
sample (perpendicular to the loading direction). The strain across the thickness of the sam-
ple is derived from the condition of volume conservation. This study largely adheres to the
calculation of the r-value as described in ISO standard 10 113 [6]. In this standard, the true
plastic logarithmic strains in the loading direction, εA, and across the width of the sample, εW

(corresponding to axes ‘A’ and ‘W’, respectively, in figure 1) are collected continuously during
loading. Data points within a window from 8% to 12% strain in the loading direction are fitted
by linear regression. The slope of the regression line, m, is related to the r-value, r, via:

r = − m
1 − m

. (1)

This is illustrated in figure 2. In contrast to the ISO standard (pictured), in this study, the regres-
sion line is not required to pass the origin—that is, a linear regression is applied to only the
data between 8% and 12% strain. This modified procedure is used to calculate the r-value from
both the experimental data and the simulated data.

To quantify the plastic anisotropy of the alloys in this study, tensile tests were carried out
on a Zwick Z100 tensile machine according to the ISO 6892-1 standard [37] at a strain rate of
0.0067 per second. Tensile specimens with an initial width of 20 mm and a gauge length of
80 mm were extracted from the center of the sheets at angles (φ, figure 1) of 0◦, 22.5◦, 45◦,
67.5◦, and 90◦ to the rolling direction. Five specimens were extracted from each sheet at each
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Figure 2. Calculation of slope, m, used in r-value calculation of ISO 10113. Experimen-
tal plastic strains are measured (dashed lines), and a linear regression (dark solid line) is
performed in which the data points between axial plastic strains of 8% and 12% are con-
sidered (dark dashed line). In the standard, the linear regression is forced to intersect the
origin, though this constraint is not enforced in the present study. This figure is adheres
to the standard in [6].

inclination. The sheet thickness of the AA6016 and AA5182 alloys is 1.25 mm and 1.7 mm,
respectively.

2.3. Texture measurement

EBSD scans were performed on a Zeiss XB1540 with a Hikari detector, utilizing an electron
beam energy of 15 kV and a 5 × 5 binning mode. Scans are performed over the entire through-
thickness of the sheet samples to allow for the measurement of the grain structure and texture
of both the bulk material and selected regions through the thickness of the sheet. EBSD mea-
surements are plotted in figure 3. Qualitatively, grains in both scans are largely equiaxed and
homogeneous—that is, no indication of preferential elongation in any directions, with little
discernible intra-grain orientation gradient (at least at this resolution).

The EBSD data is used to calculate the crystallographic texture of the sheets. The bulk
texture of the entire through-thickness is represented via pole figure stereographic projections,
shown in figure 4. As detailed, the experimentally deduced textures are as expected for the
two alloys—that is, a texture dominated by the cube component for the AA6016 sample, and
a texture with retained rolling components for the AA5182 sample (see: section 2.1). Note the
strengths of the textures for the two samples are not particularly strong—with a maximum
peak component of 2.7 multiples of unity distribution (MUD) at the cube component for the
AA6016 sample, and 1.7 MUD at the brass component for the AA5182 sample. Pole figures
are plotted via the MTEX toolbox [23].

2.4. Crystal plasticity modeling

The model employed in this study considers the elastoplastic deformation response of single
crystals. The elastic portion of deformation considers elastic anisotropy, and plasticity is mod-
eled via a restricted slip rate dependent phenomenological power law with a saturation style
hardening model. Within a domain, a regular grid of material points is constructed. Each mate-
rial point is considered to represent a single crystal, and an ensemble of material points in three
dimensions a polycrystal (where, generally, a grain consists of multiple material points). The
model employed in this study is ductile and isothermal, and does not consider other modes
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Figure 3. EBSD scans through the thickness of the sheet (in the RD/ND plane) for the (a)
AA6016 sample, and (b) AA5182 sample. IPF color map is in reference to the sample’s
rolling direction (RD). Note the differences between the height of the images, corre-
sponding to the final thicknesses of the rolled sheets (nominally 1.24 mm and 1.74 mm,
respectively).

of plastic deformation (i.e., twinning). For sake of brevity, an abridged description appears
below. A full description of the kinematics, constitutive models, and implementation can be
found in [20].

Anisotropic single crystal elasticity is modeled via Hooke’s law, which relates the
Green–Lagrange strain, E, to the second Piola–Kirchhoff stress, S, via the anisotropic elastic
stiffness tensor, C:

S = CE. (2)

The stiffness tensor is reduced to reflect the symmetry of the crystal [38], in this case cubic.
Plasticity is governed by a rate dependent restricted slip model,

γ̇α = γ̇α
0

∣∣∣∣τ
α

ξα

∣∣∣∣
n

sgn (τα) . (3)

Here, γ̇0 is the fixed-state strain rate scaling coefficient, τ is the resolved shear stress, ξ is
the slip system strength (or resistance to shear), all on the αth slip system. Note that ξ is
initialized equally for all slip systems of a given slip family (ξ0). In this study, only the dominant
{111}〈011̄〉 family of slip systems is considered.
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Figure 4. Crystallographic texture (in units of MUD, or multiples of unity distribution)
calculated from EBSD measurements plotted on pole figure stereographic projections
for the (a) AA6016 sample (processing directions specified in the (111) pole figure), and
(b) AA5182 sample. Note how the AA6016 sample exhibits an overall stronger texture
than the AA5182 sample, as evidenced by the differences in color scaling. Plotted via
the MTEX toolbox [23].

The strength of each slip system evolves via a saturation model,

ξ̇α = h0

NS∑
β=1

∣∣γ̇β
∣∣ ∣∣∣∣1 − ξβ

ξβ∞

∣∣∣∣ sgn

(
1 − ξβ

ξβ∞

)
hαβ , (4)

where h0 is the strength hardening rate coefficient, NS is the number of slip systems (12 for
the {111}〈011̄〉 family of slip systems), and ξ∞ is the slip system saturation strength. The
interaction between a given slip system, α, and other slip systems, β, is considered via the
interaction matrix, hαβ , which allows for the selection of various hardening assumptions (i.e.,
isotropic, direct, and latent hardening).

An FFT method is employed to numerically approximate the solution, implemented in the
DAMASK software package [20]. Implementation is not described in this paper. Boundary
conditions are applied as volume averages–that is, a target average deformation gradient is set
for the entire volume. Local deformation gradients are solved iteratively to satisfy the global
average. It is worth noting that inherent in the FFT solution method is the necessity of periodic
boundary conditions. In other words, the applied macroscopic deformation is assumed periodic
in the directions of the sample basis. Consequently, the geometric morphology of the polycrys-
tal is forced to be periodic in the sample directions. Boundary conditions are explained in full
in [20].
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Table 2. Anisotropic single crystal elastic constants for fcc aluminum.

C11 (GPa) C12 (GPa) C44 (GPa)
106.75 60.41 28.34

Table 3. Plasticity parameters for fcc aluminum.

γ̇0 (m s−1) n h0 (MPa) ξ0 (MPa) ξ∞ (MPa) hαβ (α �= β)
0.001 20 75 31 63 1.4

When modeling r-values, the loading is generally fixed and the grain orientations are trans-
formed to mimic changes in texture with respect to the loading direction. In this study, the load-
ing is changed with respect to a fixed microstructure. Since boundary conditions are applied as
macroscopic average deformation gradients, different loading conditions are readily applied.
The applied macroscopic boundary condition, FBC, is altered via a rotation matrix, RBC, via
the transformation:

Fapp = RBCFBCRᵀ
BC, (5)

where Fapp is the resulting applied deformation gradient, and RBC represents the rotation rep-
resenting some in-plane inclination of the sample. In this way, different macroscopic loading
conditions can be applied to a single microstructure. This allows for grain neighborhoods to
remain constant as different loading conditions are applied.

Base elasticity and plasticity parameters are chosen for the dominant crystallographic phase,
as they represent the behavior of generic aluminum alloys [39, 40]. Elasticity parameters are
summarized in table 2, and plasticity parameters in table 3.

2.5. Simulation suite

To judge the sensitivity of the predicted r-value to changes in simulation parameters, a suite
of simulations is performed in which certain simulation parameters are systematically altered.
In this study, changes to the initial slip system strength, ξ0, the slip system saturation strength,
ξ∞, the hardening assumption (via the slip interaction matrix, hαβ), the rate dependence, n, the
degree of numerical discretization (the number of material points in a domain), the number of
grains in a domain (or the geometric discretization), and the initial crystallographic texture are
considered. Elastic parameters are fixed in this study. A base parameter set is chosen, com-
prised of the modeling parameters shown in tables 2 and 3, a numerical discretization of 323

voxels, a geometric discretization of 1000 grains, and an initial texture representing the bulk
sample (i.e., the entire through-thickness). For the plasticity parameters, numerical discretiza-
tion, and geometric discretization, values are systematically altered to values higher (double)
and lower (half) than the base values. Changes to these values are summarized in table 4.
Note that changes of this magnitude to the plasticity parameters are extremely large—beyond
what is normally utilized to model the deformation response of aluminum alloys. Changes to
the numerical discretization and geometric discretization are within bounds that reflect typical
modeling criteria.

The hardening assumption is parameterized via the adjustment of hardening interaction
parameters in the matrix hαβ . The base hardening assumption is that in which each slip system
self hardens, while activity on its in-plane neighbors contribute to its own hardening at a rela-
tively more rapid rate (1.4x) [20]. In addition, both full self hardening and full latent hardening
assumptions are employed. In the full self hardening assumption, the hardening interaction
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Table 4. Base simulation parameters and changes in parameters. Note that a total of
eleven parameter sets are described in this table: 1 using the base parameters, and 5
each for lower and upper bound changes to each of the modeling parameters. Changes
to the hardening assumption (full self hardening and full latent hardening) and to tex-
ture sampling (top of sample, middle of sample, and intermediary) are also considered,
accounting for an additional 5 parameter sets.

Parameter Base value Lower bound Upper bound

ξ0 (MPa) 31 15.5 62
ξ∞ (MPa) 63 31.5 126
n 20 10 40
Material points 323 103 643

Grains 1000 500 2000

matrix becomes identity—that is, each slip system hardens only due to its own slip activity. In
the full latent hardening assumption, the hardening interaction matrix is populated entirely with
unity values except for the diagonal, which is populated by zeros—that is, each slip system
hardens only due to activity on other slip systems.

Orientation sets are randomly sampled from the list of crystallographic orientations indexed
via EBSD. Direct sampling is utilized over other methods—such as calculating and sampling
an orientation distribution function—to avoid possible bias or under-representation of the true
texture. Direct sampling is appropriate to represent the overall texture of the sheet due to the
large amount of grains indexed in both EBSD scans. For the base sets of orientations, grain
orientations are randomly selected from the entire list of indexed orientations, and thus the
texture matches the bulk texture of the entire sheet volume. Consequently, we do not retain
any through-thickness texture gradients in the base orientation sets. To provide statistics of
the predicted sheet behavior, ten different orientation sets are generated for each alloy. To
determine the effect that through-thickness texture gradients may have on the predicted r-value,
orientation sets are generated using grains indexed in specific regions of the through-thickness
profile. Figure 5 details the three regions considered—one considering grains near the surfaces
of the sheets, one considering grains near the center of the sheets, and one considering grains
in an intermediary region. Again, ten different orientation sets are generated for each alloy and
each region considered to provide statistics for the predictions.

With the exception of changes in the initial slip system strength, only one parameter is
changed at a time. For simulations in which the initial slip system strength is variable, the slip
system saturation strength is also changed to retain the same available magnitude of hardening
(ξ∞ − ξ0) as the base parameter set (32 MPa). Specifically, when the initial slip strength is
doubled (to 62 MPa), the saturation strength is increased (to 94 MPa) to keep the magnitude
of hardening consistent. Similarly, when the initial slip strength is halved (to 15.5 MPa), the
saturation strength is decreased (to 47.5 MPa). For simulations in which the saturation strength
is variable, the initial strength is held constant at the base value.

Grain morphology is represented via a periodic Voronoi tessellation. Sensitivity to the geo-
metric morphology of the microstructure is not considered in this study, and thus only a single
geometric morphology is used. Figure 6 (plotted via ParaView [41]) details a domain dis-
cretized into 1000 grains utilizing numerical discretization levels of 103, 323, and 643 material
points. Note the refinement of the grain morphology as the level of numerical discretization is
increased. As stated in section 2.4, the geometric morphology of the microstructure is forced
to be periodic in the directions of the sample basis, to be consistent with the applied boundary
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Figure 5. EBSD scan for the AA5182 sample detailing the approximate boundaries
used to selectively sample orientations to test the effects of through-thickness texture
gradient. Region I considers grains near the surfaces of the sample, while region III con-
siders grains near the center of the sample. Region II considers grains in the intermediary
region. Proportional boundaries are used for the AA6016 sample (figure omitted due to
sake of brevity).

Figure 6. Example grain morphologies for samples containing 1000 distinct grains,
numerically discretized using (a) 103, (b) 323, and (c) 643 material points. Grains are
colored arbitrarily. Plotted via ParaView [41].
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conditions. In this study, minor crystallographic phases are ignored owing to their relatively
small volume fraction.

A total of 1600 simulations are performed (due to the computational efficiency, no design
of experiments was used, and instead all simulations across all variables considered were
performed). One base parameter set, upper and lower bound sets for 5 parameters (for ξ0,
xi∞, n, number of material points, and number of grains), 2 additional hardening assump-
tions, and three additional crystallographic textures are considered, for a total of 16 parameter
sets. Each parameter set is simulated 100 times—considering two different crystallographic
textures (samples), ten orientation sets from each texture, and five different loading cases to
match those from the experimental tests (corresponding to five different in-plane inclinations
of 0◦, 22.5◦, 45◦, 67.5◦, and 90◦, considered via the rotated boundary condition, Fapp, described
in the preceding section).

Note: completion of all 1600 simulations and post-processing analysis took approximately
168 h on a computational workstation with 2 Xeon Gold 6150 processors containing 18 cores
each (36 cores total). Simulations were performed in parallel utilizing the entirety of the
workstation’s processor resources.

3. Results and discussion

Results of the simulation suite are shown in figures 7–14. Plots depict changes in the r-value
as a function of changes in modeling parameters. Specifically, for a given set of modeling
parameters and a given loading direction (in-plane inclination), the mean value over the ten
orientation sets is plotted, with error bars denoting the standard deviation in the predicted r-
value for those ten simulations. For instance, in figure 7, the solid circle at φ = 0 shows that
for the ten simulations (for the different orientation sets, or samples) performed with no in-
plane inclination, the mean r-value was calculated to be approximately 0.83, with a standard
deviation of approximately 0.5.

To quantify the degree of sensitivity of the r-value to changes in modeling parameters,
the maximum and minimum absolute differences between high and low parameter sets are
determined for each sample. For a given variable parameter, the differences are calculated as:

Δrmax = max
∣∣ri

high − ri
low

∣∣
Δrmin = min

∣∣ri
high − ri

low

∣∣ ,
(6)

performed at the ith in-plane inclination, and high and low refer to the r-values calculated
using the high and low values for a given parameter set. These values are summarized in
table 5, which lists the loading direction (in-plane inclination) at which the maxima and minima
occur.

Compared to experimental values (figure 7), the simulations are able to capture the general
trends of the r-value with respect to changes in the loading direction, and changes in crystal-
lographic texture. It should be noted that there is not an exact match between simulation and
experiment. However, as the purpose of this study was to identify the role of modeling parame-
ters in predicting the r-value rather than attempting to directly recreate the experiments, various
assumptions were made (i.e., generic anisotropic elastic constants, no consideration of a second
minor crystallographic phase).
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Figure 7. Comparison between experimental and simulated r-values using base simu-
lation parameters. Error bars depict the standard deviation of the r-value for the sets of
experiments or simulations performed at each in-plane inclination, φ. Note: experiments
were conducted with 5 specimens at each in-plane inclination, while simulations were
conducted with 10 specimens at each in-plane inclination.

Figure 8. Simulated r-values for changes in the initial slip system strength, ξ0. Error
bars depict the standard deviation of the r-value for the sets of simulations performed at
each in-plane inclination, φ.

3.1. Effect of hardening parameters

Overall, the average predicted r-value tends to increase for the simulations in which the initial
slip system strength (ξ0) is increased and decreases in the simulations in which the slip sys-
tem saturation strength (ξ∞) is increased (figure 9). Both effects, however are small and the
maximum change of the r-value is 0.01 for the saturation stress and the initial yield stress. A
larger effect was found for the rate-sensitivity exponent. The average predicted r-value tends to
increase when the rate exponent n is increased. The maximum change of the r-value is 0.025.
The largest sensitivity was found for the latent hardening. The average predicted r-value tends
to increase when the latent hardening (hαβ where α �= β) is decreased and a maximum differ-
ence of r-values of 0.03 was determined. For latent hardening, a similar trend was observed by
other authors [42] as well.
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Figure 9. Simulated r-values for changes in the slip system saturation strength, ξ∞.
Error bars depict the standard deviation of the r-value for the sets of simulations
performed at each in-plane inclination, φ.

Figure 10. Simulated r-values for changes in the hardening assumption. Error bars
depict the standard deviation of the r-value for the sets of simulations performed at each
in-plane inclination, φ.

The comparison of AA6016 and AA5182 shows, that the r-value sensitivity itself depends
on the crystallographic texture. AA6016, which has a more pronounced texture with a strong
cube component, is generally more sensitive to changes in the hardening parameters than the
rather balanced texture of AA5182. The absolute values of this sensitivity study might be
therefore higher for highly textured materials such as 6xxx series extrusions.

The fact that the change of hardening assumption produces the most discernible results with
regard to plasticity parameters is not unexpected. Since the r-value is related to what slip sys-
tems are active (and to what degree they are active), any changes to how those slip systems may
activate can have an impact on the overall deformation response of the material [43]. The inter-
action of slip systems (non-zero off-diagonal terms of hαβ) means that active slip systems may
contribute to the hardening of non-active slip systems, potentially restricting or delaying their
activity. Additionally, if two slip systems are active, both of their hardening rates are increased
beyond their own hardening rate, leading to more rapid strength saturation. These phenom-
ena will result in increased anisotropy of the single crystal yield surface (SCYS), and thus the

13



Modelling Simul. Mater. Sci. Eng. 28 (2020) 085005 M Kasemer et al

Figure 11. Simulated r-values for changes in the rate dependence of the slip kinetics,
n. Error bars depict the standard deviation of the r-value for the sets of simulations
performed at each in-plane inclination, φ.

Figure 12. Simulated r-values for changes in the number of material points used to
numerically discretize the domain of the polycrystalline aggregate. Error bars depict the
standard deviation of the r-value for the sets of simulations performed at each in-plane
inclination, φ.

resulting yield surface of the polycrystal—though only early in deformation (when plasticity is
most transient, in the late elastic regime and early plastic regime). At some macroscopic strain
state, slip systems will saturate and the SCYS of individual grains will be similar regardless
of hardening assumption (the amount of available hardening does not change for each harden-
ing assumption). In this study, the r-value is calculated well into the plastic regime, at which
point these transient effects have likely reached steady state—explaining the small (though
significant) effect of the hardening assumption (one could hypothesize that if the r-value were
calculated closer to the point of macroscopic yield, the hardening assumptions may have a
more pronounced effect).

3.2. Effect of numerical discretization

Considering the behavior due to changes in numerical discretization, results are as expected.
As the number of material points is increased within a domain, and thus as the intra-grain
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Figure 13. Simulated r-values for changes in the number of grains within the domain
of the polycrystalline aggregate. Error bars depict the standard deviation of the r-value
for the sets of simulations performed at each in-plane inclination, φ.

Figure 14. Simulated r-values for changes in the crystallographic texture as a function of
the sampling area from the through-thickness EBSD scans, where outer, mid, and inner
refer to regions I, II, and III depicted in figure 5. Error bars depict the standard deviation
of the r-value for the sets of simulations performed at each in-plane inclination, φ.

refinement is increased, we expect the predicted response to reach a steady state, or saturate.
Note how in figure 12 there is a change between the simulations performed with a low number
of material points (103) and the base set (323), but little change between the base set and the
high number of material points (643). This indicates that the average predicted bulk response
has reached a steady state, and further refinement in terms of the number of material points
may not be necessary to better predict the r-value. Indeed, results from the base numerical
discretization may be trusted, and perhaps more desirable due to the decrease in computation
time.

3.3. Effect of the number of grains

As the number of grains within a domain is increased, the behavior of the average r-value is
not easily described. In the AA6016 sample, there seems to be a slightly positive correlation

15



Modelling Simul. Mater. Sci. Eng. 28 (2020) 085005 M Kasemer et al

Table 5. Maximum changes to the average r-value, calculated as the maxima of the
absolute differences between the average r-values in each parameter set, considering all
sample inclinations. The in-plane inclination angles at which the maxima occur are in
parentheses.

Δrmax

Parameter AA6016 AA5182

ξ0 0.0117 (45◦) 0.0090 (90◦)
ξ∞ 0.0119 (45◦) 0.0098 (90◦)
hαβ 0.0297 (0◦) 0.0157 (0◦)
n 0.0256 (0◦) 0.0228 (0◦)
Material points 0.0190 (45◦) 0.0327 (0◦)
Grains 0.0294 (0◦) 0.0213 (67.5◦)
Texture sampling 0.1612 (45◦) 0.1125 (45◦)

(though not generally so). In the AA5182 sample, there is perhaps a slightly negative corre-
lation (though, again, not generally so). While we expect a behavior similar to that witnessed
when the numerical discretization is increased—that is, a saturation toward a steady state as
the number of grains is increased—the trends do not indicate such a behavior. This is likely
due to two reasons. Firstly, as the number of grains is increased, the intra-grain refinement
decreases, as the level of numerical discretization is held constant (in this case at 323). Sec-
ondly, as the number of grains is increased, the grain statistics improve (i.e., the overall texture
of the virtual sample will more closely match that of the experimental sample). The interplay
of these two conditions is not readily understood from the data gathered in this study, and
requires investigation in a separate study. As such, it is difficult to say definitively the number
of grains necessary to reach a steady state response—though again, the differences between
the two samples (AA6016 shows greater changes in the r-value than the AA5182, which may
be reaching steady state) indicate that this is likely influenced by crystallographic texture.

3.4. Effect of initial crystallographic texture

Changes to the initial crystallographic texture of the sample have the largest impact on the
prediction of the r-value. Figure 14 indicates that the r-value is heavily dependent on changes
to the initial texture—or, in the case of this figure, the changes to the texture through the
thickness of the sample. Indeed, the largest changes in the average r-value as summarized
in table 5 occur due to changes in initial texture, which command the ability to sway the r-
value by values an order of magnitude greater than any of the other variables considered in
this study. Inspecting figure 14, note how not only the magnitude of the r-value changes as
the initial texture is altered, but so does the degree of in-plane anisotropy. For instance, the
AA6016 sample experiences a more isotropic response when considering the texture on the
outer surface of the sheet, whereas the AA5182 sample experiences a higher degree of in-
plane anisotropy when considering the same texture regions (and vice versa when considering
the innermost regions of the sheet).

4. Conclusions

In summary, a suite of simulations is performed in which the degree of plastic
anisotropy—quantified via the r-value—is predicted for two aluminum alloys. Simulation
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parameters are systematically altered to determine their influence on the predicted sheet behav-
ior. Namely, parameters governing the slip and hardening response of the material, numeri-
cal parameters, and geometric discretization are considered. A total of 1600 simulations are
performed to provide statistics for each parameter set. Overall, results show that:

• changes in the hardening assumption (latent, direct, or isotropic) and strain-rate sensitivity
have a larger effect on the predicted r-value than changes of the initial slip system strength
or the saturation strength. These changes, however, are small when compared to those from
variations to the initial texture;

• the sensitivity of the r-values to changes of the hardening parameters is larger for AA6016
than for AA5182. This result indicates, that the sensitivity may be generally higher for
pronounced textures than for balanced textures;

• as numerical discretization is increased, the average predicted r-value tends to saturate
and the spread in predicted values decreases (though not generally so), while the spread
in the data tends to decrease (though not generally so);

• as the number of grains is increased, the average predicted r-value, as well as the spread
in the data, show few discernible trends. Certainly, to investigate small changes of the r-
value, it is necessary to perform repeated simulations on multiple samples of the texture
to gain meaningful results.

Overall, this study demonstrates that a reasonable estimate in the majority of crystal plastic-
ity modeling parameters will yield a reasonable prediction of plastic anisotropy of rolled sheet.
Accurate quantification of microstructure (primarily crystallographic texture), and the deter-
mination of an appropriate hardening assumption are necessary to determine a sheet’s r-value,
whereas other modeling parameters (other slip and plasticity parameters) have little influence
on the bulk deformation response.
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