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Study of the Inert Doublet Model in the light of Dark Matter physics and
Electroweak Phase Transition:
Albeit there exists a plethora of theories targeted at the description of Dark Matter
(DM) and of the matter-antimatter-asymmetry, evidence for a robust theory beyond
the Standard Model of Particle Physics is pending. In this thesis, I study the Inert
Doublet Model both in the light of DM physics and of Electroweak Phase Transition
(EWPhT). Thereby, the latest limits from the XENON1T experiment as well as fur-
ther constraints from cosmology and particle physics are taken into account. After
discussing the dependence of the relic abundance on the mass spectrum and on the
Higgs portal coupling for small and large DM masses, I focus on the low-mass regime
for an in-depth analysis of (co-)annihilations. The constrained parameter space for DM
masses 55 GeV . mH . 75 GeV is investigated in the context of EWPhT, subsequently,
providing for the first time a detailed scan of the parameter space that comprehensively
takes current constraints into account. Lastly, the threefold relation between the EW-
PhT types, masses and coupling parameters is examined for benchmark points leading
to the measured relic abundance and to a strong first-order EWPhT either via one or
two steps.

Untersuchung des Inert Doublet Models in Hinblick auf die Physik der
Dunklen Materie und den Elektroschwachen Phasenübergang:
Trotz einer Vielzahl an Theorien, die eine Erklärung der Dunklen Materie (DM) und
der Materie-Antimaterie-Asymmetrie anstreben, steht ein Beweis für eine belastbare
Theorie für die Physik jenseits des Standardmodells der Teilchenphysik noch aus. In
dieser Thesis betrachte ich unter Berücksichtigung der aktuellen Limits des XENON1T-
Experiments sowie weiterer Einschränkungen durch Kosmologie oder Teilchenphysik
das Inert Doublet Model sowohl in Bezug auf die Physik der DM als auch auf den
Elektroschwache Phasenübergang. Nach der Diskussion der Abhängigkeit des DM-
Vorkommens von dem Massenspektrum und der Higgs-Portal-Kopplung für kleine und
große DM-Massen fokussiere ich mich für eine eingehende Analyse von (Ko-)Annihi-
lationen auf kleine Massen. Anschließend wird der eingeschränkte Parameterbereich
für DM-Massen 55 GeV . mH . 75 GeV im Rahmen des Phasenübergangs unter-
sucht. Hierbei wird erstmals ein detaillierter Parameterscan durchgeführt, welcher die
aktuellen experimentellen Einschränkungen umfassend berücksichtigt. Der Zusammen-
hang zwischen den Phasenübergangsarten und den Massen sowie den Kopplungspara-
metern wird für Punkte herausgearbeitet, die zu dem bestimmten DM-Vorkommen und
einem starken Phasenübergang erster Ordnung über einen oder zwei Schritte führen.
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Chapter 1

Motivation

In spite of various experimental observations, highly accurate experiments and in-
triguing theoretical proposals, the existence of DM has largely been supported but
convincing positive results are still absent up to today. Because of the continuous
improvements, many DM models suffer from the restricted parameter spaces. Conse-
quently, they are ruled out and must be modified by additional degrees of freedom, for
instance, in order to relax the tight constraints. Another observation that cannot be
answered by the Standard Model of Particle Physics (SM) is why our universe appears
to consist of ordinary matter only. The SM predicts equal amounts of particles and
antiparticles which obviously cannot be true in our universe as both partners annihilate
immediately when they collide. Many theories exist for explaining also this observation.
Given the ongoing puzzles, I formulate the objectives of this thesis as largely two-fold:
Both puzzles shall be addressed by means of the Inert Doublet Model (IDM) together
with theoretical constraints on the one hand and the latest results from direct detection
experiments, searches for invisible SM Higgs decays as well as the measurement of the
DM relic abundance on the other hand.

Henceforth, the structure of this Master thesis is as follows: Firstly, a thorough
theoretical background of cosmology is followed by insights into the SM and its short-
comings as well as DM in Chapter 2. Thereafter, Chapter 3 deals with the investigation
of different DM mass regimes in the IDM, a detailed analysis of (co-)annihilations and
the restriction of the parameter space due to several experimental constraints. Subse-
quently, the basics of EWPhT are presented and applied in order to study the impact
of the model parameters on the EWPhT type and its strength in Chapter 4. Finally,
the results are summarized and discussed in the context of potential probes and further
studies in Chapter 5.
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Chapter 2

Theoretical background

2.1 Basics of cosmology

Cosmological models based on General Relativity predict the expansion of our universe
if spatial isotropy and homogeneity on large scales are considered. These assumptions
are reflected by the Cosmological Principle which states that any position in space is
equivalent to any other one.

Taking the time-dependent cosmological scale factor R (t) and curvature parame-
ter k into account, distances in (3 + 1) dimensions are determined by the Robertson-
Walker metric [1]

ds2 = dt2 −R2 (t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
(2.1)

with the comoving coordinates (t, r, θ, ϕ). After rescaling such that r is dimensionless
and R (t) has the dimension of length instead, the parameter k ∈ {−1, 0,+1} can
be directly related to the curvature of the universe: the universe is open (closed) for
k = −1 (+1) and flat for a vanishing curvature parameter.

The ratio of the first time-derivative of the scale factor and the scale factor itself
results in the definition of the Hubble function [1]

H (t)
def
=

Ṙ (t)

R (t)
, (2.2)

which describes the relative change of the scale factor. The Hubble constant H0 corre-
sponds to the Hubble function evaluated at present time t0, thus

H0
def
= H (t0) . (2.3)
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CHAPTER 2. THEORETICAL BACKGROUND

The scale factor is also used to express the change of frequencies since the frequency is
inverse-proportional to the wavelength which depends on the scale factor. For relativis-
tic particles, e.g., photons, one finds that the frequency νemission at the time of emission
differs from the observed frequency ν0. The strength of deviation is represented by the
redshift z via the relation

ν0
νemission

=
R (temission)

R (t0)
def
=

1

1 + z
. (2.4)

If the time evolution of R (t) is known the time-of-flight of the photon is determined.
The evolution of the scale factor is given by Einstein’s equations which read [1]

Rµν −
1

2
Rgµν = 8πGNTµν + Λgµν (2.5)

with the metric gµν defined in Eq.(2.1), the Ricci tensor Rµν with the components

R00 = −3
R̈ (t)

R (t)
, Rij = −

(
R̈ (t)

R (t)
+ 2

Ṙ2 (t)

R2 (t)
+ 2

k

R2 (t)

)
gij (2.6)

and the Ricci scalar

R = −6

(
R̈ (t)

R (t)
+

Ṙ2 (t)

R2 (t)
+

k

R2 (t)

)
(2.7)

on the left-hand side as well as the Newtonian constant of gravitation GN , the cosmo-
logical constant Λ and the energy-momentum tensor [2]

Tµν = −pgµν + (p+ ρ)uµuν (2.8)

for a perfect fluid with the comoving four-velocity uµ
def
= (1, 0, 0, 0)µ on the right-hand

side. The energy density ρ and pressure p are related by the equation of state

p = ωρ , (2.9)

where ω depends on the state of the universe and is assumed to be constant. The
relation between the energy density and the scale factor in terms of the equation-of-
state parameter ω results from the assumption of energy conservation and reads

ρ ∝ R−3(1+ω) . (2.10)
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CHAPTER 2. THEORETICAL BACKGROUND

For a radiation-dominated universe (ω = 1/3), the corresponding energy density evolves
as ρr ∝ R−4 since the spatial volume changes by R−3 and the wavelengths by the
additional factor R−1. In case of matter-domination (ω = 0), the energy density reads
ρm ∝ R−3. If vacuum energy dominates, ρv ∝ const. and the pressure equals minus the
energy density. The currently best value for ω under the assumption of being constant,
but without the restriction to zero curvature, is ω = −1.028(31) [3].

From the 0-0 component of the Einstein equations, the Friedmann equation

Ṙ2

R2
+

k

R2
=

8πGN

3
ρ (2.11)

is deduced which can also be cast as [1]

k

H2R2
=

8πGNρ

3H2
− 1 . (2.12)

The first term on the right-hand side is defined as Ω
def
= Ωm + Ωr + Ωv being the ratio

of the total energy density and the critical density. The latter is given by

ρcrit
def
=

3H2

8πGN

= 1.87834(4) · 10−29h2 g cm−3 (2.13)

with the reduced Hubble constant

h =
H0

100 km/ (s ·MPc)
= 0.674(5) (2.14)

and the latest measurement from Ref.[3]. The critical density marks the density which
is required by a flat universe, i.e., k = 0.

2.1.1 The Standard Big Bang Cosmological model

The currently best description of our universe is the Standard Big Bang Cosmological
model which is also known as the ΛCDM-model since it assumes spatially flatness, cold
DM (CDM) and a non-vanishing cosmological constant. It is composed of six indepen-
dent parameters which are summarized in Tab.2.1 along with the latest result allowing
for a derivation of other attributes like the age of our universe t0 = 13.80(4) Gyr [3].

The Friedmann equation in Eq.(2.12) can be written as

∑
i

Ωi − 1 = Ωb + ΩCDM + Ων + Ωγ + ΩΛ − 1 =
k

H2R2
(2.15)
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Table 2.1: Free parameter of the flat ΛCDM-model. Values are given in Ref.[3].

parameter value parameter value parameter value

Ωbh
2 0.02237(15) τ 0.054(7) ln (1010∆2

R) 3.044(14)
ΩCDMh

2 0.1200(12) 100θMC 1.04092(31) ns 0.965(4)

with the density ratios for baryonic matter Ωb, cold DM ΩCDM, neutrinos Ων , photons
Ωγ and the vacuum ΩΛ. Here, the former two constitute free parameters while the
remaining are derived from a fit. The third parameter in the table is the reioniza-
tion optical depth τ which is related to the probability that a photon scatters off an
ionization electron. Moreover, the parameter θMC corresponds to the approximated
angular size of the sound horizon which is the comoving distance that pressure waves
can propagate until recombination. Finally, ∆2

R is associated with the amplitude of
perturbations in the spatial curvature of a comoving slice of space-time that are esti-
mated by a power-law at the scale k0 = 0.05MPc−1 and spectral index ns (see, e.g.,
Refs.[4, 5] for details). One of the main aspects in the current work will be the relic
abundance of CDM which will be referred to as Ωh2 def

= ΩCDMh
2 in the following.

2.2 History of the early universe

The previously discussed ΛCDM-model also describes early stages of the universe.
This is manifested in the observed expansion of the universe and the successful repli-
cation of the observed amount of light chemical elements via Big Bang nucleosynthesis
(BBN) [6] on the one hand, and measurements of the Cosmic Microwave Background
(CMB), whose spectrum can be described by the blackbody radiation spectrum with
a temperature T = 2.7255(6) K [7], on the other hand.

In order to overcome problems in understanding the uniform temperature distri-
bution in the CMB with relative temperature deviations of ∆T/T ∼ 10−5 [7] and the
spatial flatness of the universe, the theory of cosmological inflation was introduced. It
states that a real scalar field (inflaton) was originally displaced from its true vacuum.
While moving slowly towards its vacuum, the energy density of the universe was domi-
nated by the almost constant potential of the scalar inflaton and therefore, the universe
expanded quasi-exponentially. Eventually, the inflaton started to oscillate around the
vacuum expectation value and decayed into light particles, resulting in a transition
from the vacuum-dominated to the radiation-dominated universe. The temperature,
at which this oscillation and decay happened, is called reheat temperature.
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Remarkably, the model of cosmic inflation solves the flatness problem, whereby the
flatness of our universe is favoured by the results of the PLANCK collaboration [5].
Combined measurements of the energy content of the universe show that it consists of
Dark Energy (DE), CDM and baryonic matter which is often referred to as ordinary
matter. Approximately 68.5% of the energy budget arises from the unknown DE and
furthermore, about 26.5% stem from CDM that will be referred to as DM. The familiar
baryonic matter constitutes only 5% of the energy density [3].

At the very beginning, the universe is assumed to stay in thermal equilibrium1. An
approximation for the criterion for departing from thermal equilibrium is the domi-
nation of the Hubble expansion rate over the particle interaction rate, i.e., H > Γ.
Shortly after the Big Bang, several phase transitions took place. Following the discus-
sion in Ref.[6], it is tempting to assume a unified gauge group for the universe which
is given by the putative grand unified theory (GUT). Attractive ideas are the SU (5)

symmetry group as in the Georgi-Glashow model2 [8] or the SO (10) [9] symmetry
group, for instance. The particles were massless in the unbroken GUT-phase but the
gauge group broke down to the SM gauge group SU (3)c×SU (2)L×U (1)Y at the tem-
perature T ∼ 1016 GeV (t ∼ 10−37 s) and some non-SM particles which are predicted
by the GUT acquire masses. The EWPhT led to a further break-down, resulting in
the symmetry group SU (3)c×U (1)em at the temperature T ∼ 100 GeV (t ∼ 10−10 s).
At T ∼ 1 GeV (t ∼ 10−4 s), quarks began to form hadrons due to color confinement.
The absence of a sufficiently strong EWPhT is a shortcoming of the SM which will be
dealt with in the next section.

2.3 The Standard Model of Particle Physics

The SM is an overwhelmingly precise quantum theory for describing interactions be-
tween particles. The elementary particles can be divided into two groups, namely
fermions which are particles with half-integer spin and bosons with integer spin. The
set of fermions consists of leptons and quarks. The latter are the constituents of the
hadrons, i.e., baryons and mesons. The SM describes properties of these particles as
well as their interactions between each other and is tested up to energies of O (1 TeV).
Thanks to its renormalizability, it is possible to compare the contributions from higher

1From a mathematical point of view, this statement cannot be fulfilled due to the absence of a
time-like Killing vector [1].

2According to Ref.[1], this model is under pressure as its prediction for the proton decay contradicts
experimental lower limits for the proton lifetime.
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orders in perturbation theory to the very accurate experimental results. A fundamen-
tal concept of the SM is the concept of spontaneous symmetry breaking (SSB) which
leads to gauge-invariant mass terms for both fermions and gauge bosons.

One of the crucial features of the SM is its description of nature by fundamental
symmetries. The unbroken gauge group is SU (3)c × SU (2)L × U (1)Y with the first
gauge group SU (3)c corresponding to Quantum Chromodynamics (QCD) and the
remaining two SU (2)L×U (1)Y to the Glashow-Salam-Weinberg theory of electroweak
(EW) interactions.

The theory of QCD predicts gluons as the gauge bosons which mediate the interac-
tions between quarks. These particles are charged under this symmetry group and are
said to carry the color c. Since QCD is a non-Abelian gauge theory, the gauge bosons
themselves are color-charged and self-interactions between those are possible.

The second part of the SM gauge group reads SU (2)L×U (1)Y and the correspond-
ing charges are the three components of the weak isospin I and the weak hypercharge Y .
The gauge bosons of SU (2)L are the three weak isospin fields W

(1)
µ , W (2)

µ , W (3)
µ which

transform as a triplet because of its weak isospin I = 1, whereas the weak hypercharge
field Bµ is the gauge boson of U (1)Y . Since it originates from the Abelian gauge group
U (1)Y , it carries neither hypercharge nor weak isospin. These four bosons become
the mass eigenstates of the EW gauge bosons after the SSB via the Higgs mechanism
which will be presented in the next section. For the SU (2)L gauge group, the chirality
is an important property. An arbitrary fermion field Ψ can be decomposed into left-
and right-handed components, reading

Ψ = ΨL +ΨR
def
=

1− γ5

2
Ψ +

1 + γ5

2
Ψ (2.16)

with γ5 def
= iγ0γ1γ2γ3 and the Dirac matrices γµ [10]. In the ultrarelativistic limit3,

chirality can be approximated by the helicity which is negative for particles, whose
momentum and spin are anti-parallel, and positive for a parallel alignment. The left-
handed projections of the fields transform as SU (2) doublets and right-handed projec-
tions as singlets under this symmetry group. The doublets with j,k as the lepton and
quark generation, respectively, are represented by

(Lj)L
def
=

(
νlj
lj

)
L

, (Qk)L
def
=

(
uk

dk

)
L

, lR , uR , dR . (2.17)

3Since the helicity operator ĥ ∝ p̂ · ŝ with the momentum and spin operators p̂ and ŝ, respectively,
is not a Lorentz-invariant operator, it is possible to choose a reference frame in which the sign of the
helicity flips for massive particles.
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The right-handed component of the neutrinos are zero in the SM which is experimen-
tally ruled out by the observation of neutrino oscillations [11, 12]. Only left-handed
particles participate in the weak interactions. See, e.g., Ref.[13] for more information
on the SM.

A huge shortcoming of the SM at this point was the absent masses of the W± and
Z bosons in weak interactions. Due to the experimentally confirmed short range of the
weak force, the corresponding gauge bosons have to be massive. The mechanism for
mass acquisition of these bosons is based on the principle of SSB which is realized by
the Higgs mechanism which will be discussed in the next section.

2.3.1 The Higgs mechanism

The idea of spontaneous symmetry breaking was adapted to particle physics after the
realization of this concept in Condensed Matter physics by Anderson [14]. Three re-
search groups worked on and succeeded in finding a mechanism to address the problem
of massless bosons of the weak interactions (see Refs.[15–17]), thus it could be called
Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism. For simplicity, the proposed
mechanism is called Higgs mechanism in this work, bearing the contributions of the
other groups in mind.

The SM covariant derivative contains the terms of the weak isospin fields W (j)
µ and

the weak hypercharge field Bµ, reading

Dµ ⊃ i

2
gWσjW

(j)
µ +

i

2
g′Y Bµ (2.18)

with the SM gauge couplings gW , g′ and the three Pauli spin-matrices σj. The SSB
results in a break-down of the gauge symmetry SU (2)L×U (1)Y to the electromagnetic
gauge symmetry U (1)em. According to the Glashow-Salam-Weinberg theory of EW
interactions, the two weak isospin fields W

(1)
µ , W (2)

µ can be superimposed, yielding the
electrically charged gauge bosons

W±
µ =

1√
2

(
W (1)

µ ∓W (2)
µ

)
. (2.19)

The remaining two fields W
(3)
µ , Bµ form the present Z boson and the photon Aµ by

a non-trivial linear combination which is associated with a rotation by the Weinberg
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angle θW . The relation between them is given by(
Aµ

Zµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Bµ

W
(3)
µ

)
. (2.20)

The field which breaks the EW symmetry spontaneously is called the SM Higgs field
and is represented by a SU (2) doublet. The SM Higgs doublet is generally given by

H1 =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(2.21)

with weak isospin I = 1/2 and weak hypercharge Y = 1 [10]. Due to SSB, three
massless Goldstone bosons become the longitudinal degrees of freedom of the W± and
Z bosons and the Higgs field acquires a non-zero vacuum expectation value (VEV) v.
Hence, the SM Higgs doublet in unitary gauge can be written as

H1 =
1√
2

(
0

v + h

)
(2.22)

with the massive scalar SM Higgs boson h. Adding the SU (2) doublet H1 does not
break the gauge symmetry U (1)em and the photon thus remains massless which agrees
with the latest experimental limit mγ < 10−18 eV [18]. The SM Higgs mass can be
deduced from the potential

V (H1) = µ2
1H

†
1H1 + λ1

∣∣∣H†
1H1

∣∣∣2 (2.23)

with µ2
1 < 0 and the real parameter λ1. According to Ref.[18], the latest experimental

value for the SM Higgs boson mass is

mh =
√
2λ1v = 125.10(14) GeV . (2.24)

From the kinetic term of the Lagrangian, i.e., (DµH1)
† (DµH1), the masses of the gauge

bosons after SSB can be derived. Their masses are proportional to the SM Higgs VEV
and the latest results from Ref.[18] are

mW =
gW
2
v = 80.379(12) GeV , mZ =

gW
2 cos θW

v = 91.1876(21) GeV . (2.25)

In addition to the mass generation of some of the EW gauge bosons, the Higgs mecha-
nism also leads to the fermion masses. For this, the SM Higgs doublet is added to the
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corresponding mass term to achieve gauge-invariance. Since the fermion mass term4

mΨ̄Ψ = m
(
Ψ̄LΨR + h.c.

)
(2.26)

must be absent from the SM Lagrangian as it violates the SM gauge symmetry, an
additional SU (2) doublet is necessary. Here, the Higgs doublet H1 comes for the
rescue. The resulting mass term for the lepton lj of the j-th generation reads

ylijΨ̄H1Ψ = ylij
[(
L̄i

)
L
H1 (lj)R + h.c.

]
(2.27)

with the Yukawa coupling yij with 1 ≤ i, j ≤ 3. Since the neutrinos are massless in
the SM, the mass term for the lepton lj results in

ylijΨ̄H1Ψ =
ylij√
2
v
[(
l̄i
)
L
(lj)R + h.c.

]
+

ylij√
2
h
[(
l̄i
)
L
(lj)R + h.c.

]
(2.28)

by using the Higgs doublet in Eq.(2.22). The first term on the right-hand side cor-
responds to the lepton mass term, whereas the second one describes the interaction
between the lepton and the SM Higgs boson.

Unlike the down-type quarks whose masses are generated equivalently to Eq.(2.27),
the generation of the up-type quark masses require the conjugate doublet [10]

Hc
1

def
= −iσ2H

∗
1 (2.29)

and the mass term for up-type quarks then reads

yuij
[(
Q̄i

)
L
Hc

1 (uj)R + h.c.
]
=

yuij√
2
(v + h)

[
(ūi)L (uj)R + h.c.

]
. (2.30)

After diagonalization, the Higgs-fermion interactions which correspond to the rotation
to the fermion mass eigenstate basis, the Yukawa couplings of the fermion f reads [10]

yf =
√
2
mf

v
. (2.31)

With the Higgs mechanism at hand, the SM is able to account both for gauge boson
and for fermion masses. Nevertheless, it is not perfect in its state and the succeeding
section will elaborate on shortcomings of the SM.

4Products for equal chirality vanish as Ψ̄L/RΨL/R = Ψ†P †
L/Rγ

0PL/RΨ = Ψ†γ0PR/LPL/RΨ = 0.
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2.3.2 Shortcomings of the Standard Model of Particle Physics

In spite of the highly precise descriptions of the known particles and the interactions
between each other, the SM fails to answer some crucial questions. These are not
inconsistencies but questions which the model allows to ask in the splendour of its
success. Besides the absence of the neutrino masses, further shortcomings arise from
considering possible, gauge-invariant terms in the Lagrangian.

As described in Ref.[19], the Lagrangian of QCD contains the term

LQCD ⊃ − θ

32π2
Ga,µνG̃a

µν (2.32)

with the gluon field strength tensor Ga and its dual G̃a, 1 ≤ a ≤ 8, which is theoretically
allowed but strongly suppressed in nature because of null results for the electric dipole
moment of the neutron. The unnaturalness of the parameter θ . 10−10 is known as
the Strong CP problem and gives rise to the Peccei-Quinn-mechanism and the axion
as the corresponding pseudo-Goldstone boson (see Ref.[20] for an overview).

In addition, an explanation for the smallness of the SM Higgs boson mass is pending.
Due to quantum corrections, induced by particles5 at a new mass scale that is larger
than the EW mass scale should lift the SM Higgs mass up to new mass scale, e.g.,
the Planck mass MP ∼ 1019 GeV (see Refs.[21, 22] for details and proposed solutions).
However, it is rather unlikely that there are not any new states between the EW mass
scale MEW ∼ 100 GeV and the Planck scale MP. Hence, it is surprising that the
SM Higgs boson is that light. A further hierarchy problem is related to the wide
mass spectrum of the quarks and the leptons. The SM is not able to explain why the
top-quark or the muon is (much) heavier than the up-quark or the electron.

A shortcoming, relevant for this thesis, is related to the fact that the observed mat-
ter in our universe is in fact matter. If the SM was complete, matter and anti-matter
would have been produced in (approximately6) equal amount and would have annihi-
lated immediately. The fact that these lines have been written and are read right now
shows that there must exist a mechanism which prevented matter and antimatter from
annihilating completely. Compelling experimental evidence for the baryon asymmetry
of the universe (BAU) stems from measurements of the CMB by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) and subsequent Planck missions as well as from

5This is obviously only possible if non-SM particles exist.
6The amount of CP -violation in the SM is not sufficient to explain the observed matter-antimatter

asymmetry. However, even if the CP -violation was large enough the SM Higgs boson mass would be
too large to prevent a washout of the baryon asymmetry (see Ref.[23] for more details).
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determinations of the deuterium abundance during BBN. Their results for the baryon-
to-entropy ratio read [24]

nB − nB̄

s
=


(7.3± 2.5)× 10−11 for BBN

(9.2± 1.1)× 10−11 for WMAP

(8.59± 0.11)× 10−11 for Planck

. (2.33)

To avoid a washout of BAU, the Sakharov conditions must be fulfilled. They state that
the conservation of the baryon number must – obviously – be violated as well as the
C-symmetry must since otherwise the excess of matter over antimatter equals the ex-
cess of antimatter over matter and the net asymmetry vanishes. However, violation of
C-symmetry is not sufficient as the number of left-handed matter and right-handed an-
timatter would equal the left-handed antimatter and right-handed matter, respectively.
Hence, CP -symmetry violation is additionally required. Due to CPT -symmetry these
imbalances would be cancelled in thermal equilibrium. The third Sakharov condition
thus states the departure from thermal equilibrium. [25–27]

A further shortcoming of the SM is the missing ∼ 95% of the energy content in the
universe. Proposed ideas for the missing energy are the DE along with DM which will
be focussed on in the next section.

2.4 Dark Matter

2.4.1 Evidence for Dark Matter

The first indication for additional, unobservable matter was published by Fritz Zwicky
in the 1930s. After observing extragalactic objects in the Coma cluster, he applied the
virial theorem to it, stating with brackets denoting time averages [28, 29]

1

2
〈 d

2

dt2

∑
i

mir
2
i︸ ︷︷ ︸

momentum
of inertia

〉 = 〈
∑
i

~ri · ~Fi︸ ︷︷ ︸
cluster′s
virial

〉+ 〈
∑
i

miv2i︸ ︷︷ ︸
twice

kinetic energy

〉 = 0 (2.34)

for a stationary cluster. Assuming a uniform mass distribution within a sphere of ra-
dius R and averaging over the velocity (denoted by a bar) leads with Zwicky’s notation,

Mv2
def
= 〈
∑
i

miv2i 〉 , (2.35)
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the total mass M of the cluster and Newtonian constant of gravitation GN to [28]

M =
5R

3GN

v2 . (2.36)

After counting the sun-like stars, Zwicky found a mass-to-light ratio of about 500 and
concluded on the existence of invisible matter in the Coma cluster [28].

Another observation and convincing explanation is the unexpected shape of rotation
curves of galaxies which can be replicated by taking invisible matter into account. The
velocity of the visible objects, measured via the Doppler shift of the 21 cm hydrogen
line for instance, is higher than predicted by computations of the gravitational forces
between the visible objects. The rotational velocity v (r) at the radius r from the center
of the galaxy is in good approximation given by the ’Keplerian’ velocity profile

v (r) ∝
√

Min (r)

r
(2.37)

with the enclosed mass Min (r). Instead of falling off according to v (r) ∝ r−1/2 outside
the visible part, the rotation curve is measured to be almost constant. The flatness
of the rotation curve calls for an additional gravitational source with the mass density
ρ (r) ∝ r−2, such that the mass increases linearly with the radius r and falls off rapidly
at some larger radius to ensure finite galaxy mass.

A further compelling indication of DM is the observation of the Bullet Cluster
(1E0657-558; see Ref.[28] for instance). A subcluster passed through the main cluster
and the interactions of the stars, the baryonic intergalactic gas and the assumed DM
were studied. While the stars of the galaxies were not greatly influenced by the col-
lision but only decelerated due to gravitation, the hot gases of the clusters interacted
electromagnetically and thus emitted X-rays. By investigating gravitational lensing of
background objects, it was found that the lensing effects are not strongest in the region
of the colliding baryonic gases but in areas further apart from the other two.

These findings strongly contradict non-DM theories but instead support the as-
sumption of weakly and gravitationally interacting DM. The currently most accurate
determination of the relic abundance ΩCDMh

2 originates from various measurements
and global fits of the cosmological parameters, e.g., from the measurement of the CMB
and its anisotropy. According to Ref.[3], it leads to

ΩCDMh
2 ≡ Ωh2 = 0.1200(12) (2.38)
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as stated in Tab.2.1. In the following, the best value in Eq.(2.38) will be referred to as
Ωh2

best = 0.1200 and the standard deviation as σ = 0.0012.

2.4.2 Candidates for Dark Matter

Once the proposal of the existence of an unknown kind of matter was supported by
many observations, the question about its nature arose. From experiments and the-
oretical requirements, the following criteria for possible DM candidates have been es-
tablished (see Refs.[30, 31] for instance):

1) The DM candidate is required to be stable on cosmological time scales since the
influence of the DM is still measurable. If it was not stable it would have already
decayed and thus not be present anymore.

2) The electric charge of the DM candidate must be – at least close to – zero due to
the absence of electromagnetic interactions (as seen from the measurement of the
Bullet Cluster). Usually, the DM candidate is assumed to be electrically neutral.

3) The model that contains the DM candidate must provide the measured relic
abundance Ωh2 to be a reasonable theory for DM.

Various ideas for possible candidates have been proposed. Besides primordial black
holes [32], which were formed in the early stage of the universe, and axions [33], that
were proposed for solving the Strong CP problem, sterile neutrinos as well as weakly
interacting massive particles (WIMPs) are possible DM particles. In this work, the
focus will be on WIMPs.

WIMPs are particles with a mass of the range few GeV . mWIMP . few TeV and
an interaction strength which is approximately weak. When the WIMPs were in ther-
mal and chemical equilibrium with the hot and dense particle sea of particles their
density was Boltzmann-suppressed for temperatures smaller than the WIMP mass and
the relic density can be computed reliably [31]. The thermal evolution of the WIMPs
will be discussed in Sec.2.4.3.

Following the discussion in Ref.[28], the initial form of the Boltzmann equation con-
nects the Liouville operator L̂, that describes the change of the phase space density
with time, to the collision operator Ĉ which is related to the change of the particle
density per phase space volume and unit time. It reads

L̂ [f ] = Ĉ [f ] (2.39)
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for the phase-space density f ≡ f (t, E). The Liouville operator can be expressed as

L̂ [f ] = E
∂f

∂t
−H |p|2 ∂f

∂E
(2.40)

with the energy E, Hubble rate H and spatial momentum p. Integrating over the
phase-space and introducing g for the number of spin degrees of freedom leads to [28]

g

∫
d3p

(2π)3E
L̂ [f ] =

1

R3

d

dt

(
R3n

)
=

dn

dt
+ 3Hn (2.41)

with the particle number density

n = g

∫
d3p

(2π)3
f (t, E) . (2.42)

Considering the process 1+2 → 3+4 with the particle 1 as the WIMP and the particles
3, 4 in thermal equilibrium, the right-hand side of Eq.(2.39) can be cast as [28]

g1

∫
d3p

(2π)3E
Ĉ [f1] = −〈σv〉 (n1n2 − neq

1 neq
2 ) (2.43)

with the total cross section σ for all possible final states and the particle number
densities n

(eq)
1,2 of species 1, 2 (in equilibrium). The Møller velocity v in the thermally

averaged cross section 〈σv〉 is in Ref.[28] defined as

v
def
=

√
(p1 · p2)2 − (m1m2)

2

E1E2

, (2.44)

where pi, mi, Ei are the four-momentum, mass and energy of the i-th species, respec-
tively. Under the assumption of a Maxwell-Boltzmann distribution as an approxima-
tion of the Bose-Einstein or Fermi-Dirac distribution, the thermal average of the cross
section times velocity reads [34]

〈σv〉 =
∫
d3p1d

3p2 σv e−(E1+E2)/T∫
d3p1d3p2 e−(E1+E2)/T

(2.45)

under the assumption of negligible chemical potentials µ1,2. Thus, the Boltzmann
equation for particle species 1 is given by [34]

dn1

dt
= −3Hn1 −

∑
j

〈σv〉1j
(
n1nj − neq

1 neq
j

)
, (2.46)
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which takes both annihilation and co-annihilation processes into account. The first
term on the right-hand side corresponds to the decrease of the number density due to
the Hubble expansion of the universe, the second term reflects the conversion of DM
into SM particles. According to Ref.[34], the rate of the non-SM particles for scattering
off particles in the thermal background is much higher than the annihilation rate and
the Boltzmann equation can consequently be approximated by

dn1

dt
= −3Hn1 − 〈σeffv〉

[
n2
1 − (neq

1 )2
]
, (2.47)

where the effective annihilation cross section for annihilations as well as co-annihilations
is defined as

〈σeffv〉
def
=
∑
j

〈σv〉1j
neq
1 neq

j

(neq
1 )2

. (2.48)

The particle number density in thermal equilibrium under the assumption of a Maxwell-
Boltzmann distribution with µi = 0 for the temperature T reads [34]

neq =
∑
i

neq
i =

T

2π2

∑
i

gim
2
iK2

(mi

T

)
. (2.49)

The Boltzmann equation in Eq.(2.47) can be re-written by defining the ratio Y1
def
= n1/s

of particle number density and entropy density, the ratio x
def
= m/T and the interaction

rate Γ
def
= neq

1 〈σeffv〉 as [28]

x

Y eq
1

dY1

dx
= − Γ

H

[(
Y1

Y eq
1

)2

− 1

]
, (2.50)

which allows for studying the evolution of the relic abundance in the following.

2.4.3 Thermal production mechanism of Dark Matter

Shortly after the Big Bang (strictly speaking after the putative inflation), our universe
was radiation-dominated. During that period the DM particles are assumed to be pro-
duced in the thermal plasma. Due to the large momenta of the particles, even much
lighter particles, e.g., a vector boson pair or a fermion pair, were able to accumulate a
sufficiently high center-of-mass energy to create DM particles. As long as the expansion
rate H of the universe was negligible compared to the interaction rate Γ, the produc-
tion and annihilation rates of DM were in equilibrium. During the evolution of the
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universe, the comoving number density changed (see Fig.2.1). According to Ref.[30],
the following two aspects during the evolution are crucial:

1) When the Hubble expansion rate was much smaller than the interaction rate, the
number of particles with a sufficient energy E for creating a DM pair decreased
exponentially as the temperature T dropped during the expansion and the par-
ticle number is assumed to follow Maxwell-Boltzmann statistics fi ∼ e−Ei/T .
Because of Γ � H, the right-hand side in Eq.(2.50) drives Y to the equilibrium
value. This behaviour for a fixed WIMP mass is apparent in Fig.2.1 for high T .

2) When H & Γ, the particles diluted and the annihilation rate fell consequently.
Once the annihilation rate dropped below the expansion rate H of the universe,
the particles were chemically decoupled. After decoupling, the number of WIMPs
in a comoving volume was approximately constant (freeze-out) which also emerges
from Eq.(2.50). The final particle number density depends on the annihilation
cross section 〈σeffv〉 since a larger annihilation cross section results in a smaller
number density at the freeze-out.

Figure 2.1: Evolution of the comoving particle number density Y with respect to
the WIMP mass mx and the temperature T for different annihilation cross sections
〈σv〉 corresponding to 〈σeffv〉. The DM relic abundance ΩDMh

2 ≡ Ωh2 is related to the
comoving number density after freeze-out. The figure was taken from Ref.[30].
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2.4.4 Searches for Dark Matter

Several experiments are currently dedicated to detecting DM directly or indirectly. A
common obstacle for direct detection experiments is the expected tiny probability for
a DM particle interacting with a nucleon of the target material. This probability is
represented by the cross section σ. In Fig.2.2, a comparison7 of the DM-mass-dependent
upper limits for the cross section for various experiments is presented. Strict constraints
on the spin-independent DM-nucleon cross section σSI are set by PandaX-II [35] and
the XENON1T experiment [36]. Both experiments are based on the principle of a dual
phase time projection chamber and use xenon as the target material. It is present
both in liquid and in gaseous phase. An incoming DM particle may scatter off a
target nucleus and thus transfer momentum to it, inducing scintillation and ionization.

7The figure was adopted from the Dark Matter Limit plotter with the data set by May 16 2019.
URL: supercdms.slac.stanford.edu/dark-matter-limit-plotter (accessed: May 21, 2020)
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Figure 2.2: Comparison of cross section limits of various experiments. The grey-
shaded space above the curves corresponds to the excluded parameter space and the
yellow-filled area in the lower part to the neutrino floor. Since the XENON1T exper-
iment is currently the most sensitive experiment the cross-section limits are deduced
from that experiment. The figure was created by using the Dark Matter Limit plotter
by the Stanford Linear Accelerator Center.
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Detecting the emitted scintillation photon yields the first signal S1. Because of an
external electric field, the free electrons drift upwards and eventually transit from the
liquid to the gaseous xenon phase. There they create photons via electroluminescence
which are detected and cause a further signal S2. The big advantage of these two
signals is the possibility to localize the interaction in three dimensions. While the time
difference between both signals gives rise to the depth of interaction in the liquid, the
second signal S2 allows to resolve the interaction laterally. Furthermore, the ratio of
the signals allows to discriminate between different interaction types. This is crucial
because the interaction between the DM particle and the nucleus will probably cause
nuclear recoil. Since electronic recoils take place as a dominant background signal as
well, it is necessary to clearly distinguish between these types. Finally, the transferred
energy to the nucleus can be extracted from the signal strengths. [36]

2.5 Inert Doublet Model

This thesis deals with one particular WIMP model, namely the Inert Doublet Model.
Its properties as well as theoretical requirements and experimental exclusions are dis-
cussed in the following.

2.5.1 Properties of the Inert Doublet Model

The IDM is a slightly extended version of the SM and was already studied in great
detail (see, e.g., Refs.[37–47]). The SM is extended by an additional Higgs doublet H2

which has the form

H2 =

(
H+

(H + iA) /
√
2

)
. (2.51)

The new Higgs doublet H2 contains two electrically charged Higgs scalars H+ ≡ (H−)
∗

together with two neutral scalars H, A and is odd under a discrete Z2-symmetry in
order to provide a stable DM particle. The Lagrangian L (Φ) of a theory is invariant
under a ZN -symmetry if the arbitrary field Φ transforms as [48]

Φ 7→ e2πiX/NΦ , X,N ∈ N (2.52)

with the exponent 0 ≤ X ≤ N−1. The particles in the inert doublet H2 are odd under
the Z2-symmetry, i.e., X = 1, while all SM particles are even, i.e., X = 0. Either the
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additional CP -even8 scalar H or the CP -odd scalar A can act as the DM particle,
depending on the mass hierarchy of these scalars.

The extended Lagrangian L which is built up by the SM Lagrangian and the new
terms contains the terms

L ⊃ T (H2)− V (H1, H2) , (2.53)

which will be studied in the following investigations. The kinetic term reads

T (H2)
def
= (DµH2)

† (DµH2) (2.54)

with the covariant derivative Dµ for the EW sector, given by [10]

Dµ
def
= ∂µ +

i

2
gWσjW

(j)
µ +

i

2
g′Y Bµ . (2.55)

The second term corresponds to the SU (2)L gauge group with the SM gauge couplings
gW , the Pauli spin-matrices σj and the fields W

(1)
µ , W

(2)
µ and W

(3)
µ . The last term

contains the SM gauge coupling g′, the weak hypercharge Y as well as the field Bµ and
corresponds to the U (1)Y gauge group. The gauge group SU (3)c does not enter the
covariant derivative in this discussion since the second Higgs doublet H2 is not charged
under that group. The explicit evaluation of the covariant derivative and the kinetic
term T (H2) is given in Appendix A.

The tree-level potential of the Lagrangian in Eq.(2.53) reads [50]

V (H1, H2) = µ2
1 |H1|2 + µ2

2 |H2|2 + λ1 |H1|4 + λ2 |H2|4 + λ3 |H1|2 |H2|2

+ λ4

∣∣∣H†
1H2

∣∣∣2 + λ5

2

[(
H†

1H2

)2
+
(
H†

2H1

)2]
(2.56)

with µ2
1 < 0 and the real parameters µ2, λi. In general, the last term contains both the

parameter λ5 and its complex conjugate counterpart, but here λ5 ∈ R. One shall note
that the potential in Eq.(2.56) does not allow for CP -violating interactions because of
real parameters [51]. An extension of the IDM in order to take those processes into
account is discussed in Ref.[52], for instance. The potential can be re-written in terms

8As pointed out in Ref.[49], the scalars H, A have opposite CP -properties but it is not possible to
assign the CP -properties unambiguously since the properties are not observable. Although the names
are kept for simplicity, the reader shall bear this in mind.
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of the physical mass eigenstates, resulting in

V
(
h,H,A,H−) = 1

4
λ1h

4 + λ1vh
3 +

v2

2
µ2
1 +

v4

4
λ1 +

(
λ1v

3 + µ2
1v
)
h

+
µ2
1 + 3λ1v

2

2
h2 +

2µ2
2 + λ3v

2

2
H+H− +

2µ2
2 + λ345v

2

4
H2 +

2µ2
2 + λ̄345v

2

4
A2

+ λ2H
+H−A2 +

1

4
λ2H

4 +
1

4
λ2A

4 +
1

2
λ2A

2H2 + λ2H
+H−H2 + λ2

(
H+H−)2

+ λ3vH
+H−h+

1

2
λ345vH

2h+
1

2
λ̄345vA

2h

+
1

2
λ3H

+H−h2 +
1

4
λ345H

2h2 +
1

4
λ̄345A

2h2 (2.57)

with the short-hand notations

λ345
def
= λ3 + λ4 + λ5 , λ̄345

def
= λ3 + λ4 − λ5 . (2.58)

The first line in Eq.(2.57) contains quartic and cubic interaction terms as well as
constant and tadpole terms which are already known from the SM Higgs sector. The
second line consists of the mass terms for the five scalar particles h, H±, H and A (the
mass term for h is already part of the SM Lagrangian, of course). The terms in the
third line are associated with interactions between the new scalar particles exclusively
and the last two lines describe interactions between the new scalars and either one
or two SM Higgs bosons, respectively. The corresponding Feynman rules are given in
Tab. 2.2. Using the relation for the VEV

v =

√
−µ2

1

λ1

, (2.59)

the masses of the scalar particles are given by

m2
h = 2λ1v

2 , m2
H± = µ2

2 +
1

2
λ3v

2 ,

m2
H = µ2

2 +
1

2
λ345v

2 , m2
A = µ2

2 +
1

2
λ̄345v

2 . (2.60)

After introducing the IDM, the theoretical and experimental constraints for the nu-
merical analysis will be presented in the subsequent sections.
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2.5.2 Vacuum stability constraints

The model parameters in Eq.(2.56) are {µ1, µ2, λ1, λ2, λ3, λ4, λ5}. Since the parameter
basis is not unique, it can be changed to the mass basis via an appropriate basis trans-
formation. Using the mass basis, the parameters read {mh, v,mH± , mH , mA, λ2, λ345}
with the masses of the scalar particles and two couplings.

To achieve vacuum stability, the four constraints [43]

λ1 > 0 , λ2 > 0 , λ3 > −2
√

λ1λ2 , λ3 + λ4 − |λ5| > −2
√

λ1λ2 (2.61)

Table 2.2: Feynman rules for interactions between particles of at least one of the two
Higgs doublets. Being aware of L = T − V and the additional factor i for each vertex
factor, the factor −i is omitted. The Feynman rules for the potential-related vertices
are deduced from Eq.(2.57) and the others follow from the kinetic term in Appendix A.
They can partly be cross-checked with Ref.[42].

vertex Feynman rule vertex Feynman rule
hhh 6λ1v H+H−γZ −

(
1− 2 sin2 θW

)
egZ/2

hhhh 6λ1 γγH+H− −2e2

hHH λ345v ZZH+H− −
(
1− 2 sin2 θW

)
g2Z/2

hhHH λ345 ZZHH −g2Z/2
hAA λ̄345v ZZAA −g2Z/2
hhAA λ̄345 γW+H−H −egW/2
hH+H− λ3v γW+H−A −iegW/2
hhH+H− λ3 γW−H+H −egW/2
HHHH 6λ2 γW−H+A iegW/2
AAAA 6λ2 ZW+H−H sin2 θWgWgZ/2

H+H−H+H− 4λ2 ZW+H−A i sin2 θWgWgZ/2
HHAA 2λ2 ZW−H+H sin2 θWgWgZ/2

HHH+H− 2λ2 ZW−H+A −i sin2 θW gWgZ/2
AAH+H− 2λ2 W+W−H+H− −g2W/2

W+W−HH −g2W/2
W+W−AA −g2W/2
γH+H− −ie (pH− − pH+)µ
H+H−Z i

(
1− 2 sin2 θW

)
(pH+ − pH−)µ gZ/2

HAZ (pA − pH)µ gZ/2

H−HW+ −i (pH− − pH)µ gW/2

H−AW+ (pH− − pA)µ gW/2

H+HW− i (pH+ − pH)µ gW/2

H+AW− (pH+ − pA)µ gW/2

39



CHAPTER 2. THEORETICAL BACKGROUND

must be fulfilled simultaneously. They can be expressed in terms of the free parameters
of the model. The SM Higgs mass mh as well as the corresponding VEV v are fixed
by experimental results, whereas the other parameters are free, though. While λ2 is a
free parameter, the other parameters λi are either determined by the SM,

λ1 =
m2

h

2v2
, (2.62)

or by the masses of the non-SM particles, reading9

λ3 = λ345 +
2
(
m2

H± −m2
H

)
v2

, λ4 =
m2

A +m2
H − 2m2

H±

v2
, λ5 =

m2
H −m2

A

v2
. (2.63)

A charge-breaking vacuum is avoided by [43]

λ4 − |λ5| < 0 . (2.64)

2.5.3 Perturbative unitarity constraints

In order to ensure convergence of the series expansion for applying perturbation theory
reliably, sufficiently small coupling parameters are required and upper bounds for the
absolute values of the coupling parameters are imposed. Following Refs.[39, 43], the
eigenvalues of the scattering matrix for interaction between two scalar particles, two
gauge bosons and between one of each species are relevant for the unitarity of these
processes. They are composed of combinations of the coupling parameters λi. The
absolute values of these must be smaller than the perturbation limit, i.e., |ci| ≤ 8π.
The combinations ci of coupling parameters read [43]

c1,2 = λ3 ± λ4 , c3,4 = −3λ1 − 3λ2 ±
√

9 (λ1 − λ2)
2 + (2λ3 + λ4)

2 , (2.65a)

c5,6 = λ3 ± λ5 , c7,8 = −λ1 − λ2 ±
√
(λ1 − λ2)

2 + λ2
4 , (2.65b)

c9,10 = λ3 + 2λ4 ± 3λ5 , c11,12 = −λ1 − λ2 ±
√

(λ1 − λ2)
2 + λ2

5 (2.65c)

and imply the upper bounds |λi| < 8π on the coupling parameters.

9The derivation of the expressions for the λi can be found in Appendix B.1.
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2.5.4 Electroweak precision data

According to Ref.[43], the precise measurements of the decay width of both the W±

and the Z boson exclude non-SM particle masses, which do not exceed the masses of
the EW gauge boson, because deviations from experimental data would be apparent
otherwise. Hence, the constraints for the masses are

mH +mA > mZ , mH± >
1

2
mZ , (2.66a)

mH +mH± > mW± , mA +mH± > mW± . (2.66b)

By these constraints of the non-SM particle masses, the decays of the EW gauge bosons
into DM particles are kinematically forbidden.

2.5.5 Electroweak precision test

The Peskin-Takeuchi parameters S, T and U have been proposed to parametrize con-
tributions from new physics beyond the SM to radiative corrections in the EW sector
of the SM [53]. Following the definitions in Ref.[43], the first two parameters are given
by

S
def
=

1

72π (x2
2 − x2

1)
3

[
x6
2fa (x2)− x6

1fa (x1) + 9x2
2x

2
1

(
x2
2fb (x2)− x2

1fb (x1)
)]

(2.67)

T
def
=

1

32π2αv2
[
fc
(
m2

H± ,m2
A

)
+ fc

(
m2

H± ,m2
H

)
− fc

(
m2

A,m
2
H

)]
, (2.68)

while the last parameter is assumed to be U = 0. In Eqs.(2.67) and (2.68), the
substitutions

x1
def
=

mH

mH±
, x2

def
=

mA

mH±
, fa (x)

def
= −5 + 12 lnx , fb (x)

def
= 3− 4 ln x (2.69)

and

fc (x, y)
def
=


x+y
2

− xy
x−y

ln x
y

for x 6= y

0 for x = y

(2.70)
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have been applied, respectively. Taking the SM Higgs mass as mh = 125 GeV, the best
fits for the two parameters S and T are [43]

S = 0.06± 0.09 , T = 0.10± 0.07 . (2.71)

2.5.6 Constraints for exotic SM Higgs decays

The predicted total decay width of the SM Higgs boson, given by [54],

Γpred (h → SM) = 4.07 MeV+4.0%
−3.9% , (2.72)

is by three orders of magnitude smaller than the resolution of experiments. So far, no
indications for any broadening effects arising from new physics were found at this level
of resolution. The branching ratio of the SM Higgs boson is hence constrained by [18]

BR (h → inv.)
def
=

Γ (h → inv.)

Γ (h → inv.) + Γpred (h → SM)
< 0.26 . (2.73)

42



Chapter 3

Dark Matter physics in Inert
Doublet Model

Having discussed the theoretical background, this chapter concerns DM physics. In
the current work, the scalar H from the second Higgs doublet is assumed to constitute
the DM. The masses of the three other Z2-odd scalars are taken to be degenerate, i.e.,
mH < mA = mH± , if not stated differently. It can be deduced from the potential in
Eq.(2.57) that the parameter λ2 does not enter interactions at tree-level but only at
loop-level since it is related to the coupling of four non-SM scalars.

Two DM particles can annihilate via many interaction channels, shown in Fig.3.1.
Depending on the center-of-mass energy of the annihilating particles, the particles in
the final state can be SM fermions or bosons. In principle, the DM particles can re-
scatter or create a pair of two other Z2-odd particles during the early universe. Around
the freeze-out temperature, however, creation of heavy non-SM particle is exponentially
suppressed and can therefore be neglected. First, different annihilation processes will
be considered. Possible co-annihilations will be studied in detail later in Sec.3.4.

The incoming DM particles can annihilate via four-point interactions either into
EW gauge bosons with SM couplings or into a pair of SM Higgs bosons h with the
coupling parameter λ345. The outgoing particles are SM bosons because the non-SM
particles do not couple to fermions due to the unbroken Z2-symmetry. Hence, only three
four-point interactions are possible, visualized1 in the first row of Fig.3.1. The second
type of annihilation channel is the SM-Higgs-mediated s-channel (Higgs portal) with
a coupling strength for the HHh-vertex proportional to λ345. The final state consists
of either SM bosons or fermions and the coupling of the intermediate SM Higgs boson

1The Feynman diagrams in this thesis were drawn by using the TikZ-Feynman package by Joshua
P. Ellis [55].

43



CHAPTER 3. DARK MATTER PHYSICS IN INERT DOUBLET MODEL

H W+

H W−

H Z

H Z

H h

H h

h

H

H W+

W−

h

H

H Z

Z

h

H

H h

h

H−

W+H

H W−

A

ZH

H Z

H

hH

H h

H−

H W+

W−H

A

H Z

ZH

H

H h

hH

h

H

H f

f̄

Figure 3.1: Tree-level annihilation processes with SM particles in the final state.

to those is determined by the SM. Two further types are the t- and u-channel. They
are mediated by a non-SM particle for symmetry reasons. The DM particle mediates
these channels if the final state consists of SM Higgs bosons whereas outgoing Z (W±)

bosons require the non-SM particle A (H±) as the mediator.
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3.1 Vacuum stability constraints revisited

The vacuum stability constraints, presented in Sec.2.5.2, are affected by a basis trans-
formation yielding the parameter set {mh, v,mH± , mH , mA, λ2, λ345}. Hence, the
constraints must be expressed in terms of the new parameters, which are the physical
masses of the additional scalars as well as the couplings λ2 and λ345. Unlike the free
parameter λ2 > 0, the Higgs portal coupling is constrained by2

λ345 > −mh

v

√
2λ2 − 2

m2
H± −m2

H

v2
(3.1)

λ345 > −mh

v

√
2λ2 +

m2
H −m2

A + |m2
H −m2

A|
v2

. (3.2)

Note that the lower limit for the Higgs portal coupling is determined by Eq.(3.2)
because the sum of the masses vanishes for H as the DM particle, leading to a stricter
condition than Eq.(3.1). Also the constraint

λ4 − |λ5| < 0 (3.3)

for avoiding a charge-breaking vacuum must be written in terms of the new parameters.
It becomes a condition for the mass of the electrically charged Higgs, reading

mH± >
1√
2

√
m2

A +m2
H − |m2

H −m2
A| . (3.4)

For the choice of H-DM, the constraint states

mH± > mH , (3.5)

which is automatically fulfilled by the mass hierarchy with H as the DM particle.

3.2 Dark Matter relic abundance

After discussing possible annihilation channels as well as calculating the conditions
for the coupling parameters λ2, λ345 to account for vacuum stability, this section is
dedicated to the computation of the DM relic abundance. This quantity is numerically
calculated by using the software package micrOMEGAs 5.0.8 which relies on the pack-
age CalcHEP for the computation of the matrix elements [56, 57]. The program takes

2The derivations can be found in Appendix B.2.
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tree-level processes into account and computes the cross sections and relic abundance.
Despite the possibly significant influence of one-loop processes – as found in Ref.[49] –
the computation is restricted to tree-level here. The dependence of the relic abundance
on the DM mass for different mass splittings and Higgs portal couplings is shown in
Fig.3.2 and key points of the discussion in Ref.[43] are presented here for the analysis.

First, the left-hand plot is considered where the small mass splitting ∆m = 1 GeV

leads to co-annihilations of the DM particle H and different Z2-odd particle via a W± or
Z boson. A splitting of the curves is apparent for DM masses mH ∼ 10 GeV but shrinks
and they ultimately overlap for approaching the two dips at mH = mW±,Z/2. These are
caused by the resonant creation of an on-shell gauge boson and the overlap of the curves
in the vicinity of these resonance poles is due to the λ345-independent interactions. The
curve splitting for off-resonance originates from the h-mediated annihilation channel3

HH → h∗ → bb̄ that contributes significantly for large Higgs portal couplings. The
behaviour of the squared matrix element4 for this process reads

∣∣∣Mbb̄
s

∣∣∣2 ∝ (λ345mb)
2

(s−m2
h)

2
+ (mhΓh)

2
(3.6)

3Since the heaviest accessible quark is the b-quark, the SM Higgs boson prefers to decay into bb̄.
4The calculation of the matrix element is given in Appendix D.1.

Figure 3.2: Dependence of the relic abundance Ωh2 on the DM mass Mh1 ≡ mH for
different Higgs portal couplings λ345 and for small (a) and large (b) mass splittings
Mh2−Mh1 = Mh± −Mh1 ≡ ∆m with Mh2 ≡ mA and Mh± ≡ mH± . The horizontal red
line corresponds to the relic abundance Ωh2 = 0.1184(12) (value from Ref.[43]) and the
red-shaded region to excluded DM masses due to absent decays of W± or Z bosons to
non-SM particles. The figure was adopted from Ref.[43].
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with the squared center-of-mass energy s and the corresponding masses mh, mb and
decay width Γh. Once the center-of-mass energy differs from the masses of the EW
gauge boson to a sufficiently large degree, the annihilation s-channel to bb̄ dominates
the co-annihilation channel and leads to smaller relic abundances for larger |λ345|. This
mass region, however, is excluded by LEP data due to missing hints for a decay of a
gauge boson to two non-SM particles – as discussed in Sec.2.5.4.

At mH = mh/2, a further significant decrease in Ωh2 is apparent for the resonant
annihilation of DM particles via an on-shell SM Higgs boson h. The resulting relic
abundance depends on the Higgs portal coupling but still not on its sign as the coupling
parameter enters the relic abundance as Ωh2 ∝ λ−2

345.
Further resonances are present at mH = mW±,Z due to the DM annihilation into

a pair of these two on-shell EW gauge bosons. Since the two gauge boson masses
are rather close to each other and the decay width is finite, the two dips appear as
being degenerate. Apart from that, the sign of the Higgs portal coupling begins to be
relevant. For equally large |λ345|, the relic abundance is smaller for positive values of
λ345 as compared to negative Higgs portal couplings due to constructive contributions
to the cross section.

A sixth significant dip at mH = mh is explained by two outgoing SM Higgs bosons.
At this DM mass, the dependence of the relic abundance on the sign of the Higgs portal
coupling flips for large |λ345| because of the sign flip in the denominator in Eq.(3.6).
This behaviour is due to their smallness not visible for the other coupling values. The
reason for that is similar to the former: The DM annihilation into two SM Higgs bosons
takes place via several channels and a significant negative contribution leads to larger
cross sections than interactions with positive Higgs portal couplings.

For sufficiently large DM masses, a SM Higgs can decay into a tt̄-pair. Exceeding
the threshold at mH = mt ≈ 173 GeV [58] results in a change of the slope. Since the
HHh-vertex factor is proportional to λ345, the SM Higgs decay into tt̄ is suppressed
for small Higgs portal couplings. That is the reason why the curve for |λ345| = 1 shows
a significant kink but the others do not.

In contrast to the quasi-degenerate mass spectrum, the co-annihilations are highly sup-
pressed for large mass splittings ∆m. The impact of the mass splitting ∆m = 100 GeV

is shown in the right-hand panel of Fig.3.2. The degeneracy of the curves indicates
that the value of the Higgs portal coupling plays a crucial role. The resonances at
mH = mW±,Z/2, which have been found in the previous discussion, do not appear in
this case due to high suppression of the responsible processes.
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Since the most relevant annihilation process for mH . mh/2 is HH → h∗ → bb̄,
the relic abundance depends inverse-quadratically on the Higgs portal coupling which
appears to be a good approximation of the evolution of Ωh2 in the low mass region.

The behaviour of the relic abundance at mH = mh/2 is similar to the one for small
mass splittings. When additional annihilation channels with on-shell gauge bosons are
accessible, the relic abundance decreases rapidly. It keeps declining for small |λ345|
without any sign dependence and increases moderately for λ345 = 1. The latter case
depends apparently on the sign of the Higgs portal coupling, clearly showing the fea-
tures due to resonant on-shell particle production at mH = mW±,Z,h,t discussed above.
The different asymptotic behaviour for large DM masses is due to enhanced couplings
to the longitudinal modes of the EW gauge boson (see Ref.[43]).

After discussing the contributions of (co-)annihilation processes, it can be concluded
from Fig.3.2 that large DM masses mH & 600 GeV are required by highly-degenerate
mass spectra, whereas DM masses mH . 80 GeV are viable for large mass splittings
only. Both kinds of interactions are not negligible for mass splittings in between.

3.2.1 Low-mass regime

As a conclusion from the previous section, two mass regimes are interesting for further
investigations. This section is concerned with small DM masses in the mass range
10 GeV ≤ mH ≤ 120 GeV and the relic abundances for different mass spectra are shown
in Fig.3.3. Note that the free coupling parameter λ2 does not enter interactions at tree-
level but beyond only. Since this work is restricted to the tree-level computation, the
parameter can be chosen for satisfying vacuum stability and perturbativity constraints.
While the curves in Fig.3.2 show the profiles for fixed Higgs portal couplings, the plots
in Fig.3.3 demonstrate the evolution of Ωh2 for the relevant range of the Higgs portal
coupling. The colour indicates the relic density and the white spaces originate from
over-abundant DM, i.e., Ωh2 > Ωh2

best + 3σ. Due to kinematically allowed – but not
observed – decays of the massive EW gauge bosons into a pair of Z2-odd particles for
2mH+∆m ≤ mW,Z and the independence of these decays on the Higgs portal coupling,
the entire parameter space up to this critical DM mass is excluded.

Taking an overall look at the four plots, one can see that the relic abundance
appears to be independent of the sign of λ345 for DM masses mH ≤ 50 GeV and any
∆m due to the symmetric profiles with respect to zero Higgs portal coupling. Since
the incoming momenta are assumed to be negligibly small and mH � mW,Z , channels
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Figure 3.3: Relic abundance Ωh2 ≤ Ωh2
best + 3σ for different mass splittings for

DM masses mH with mA = mH± . Grey-shaded areas are excluded for unobserved
gauge boson decays and white spaces for DM over-abundance. Upper left: Highly-
degenerate mass spectrum with ∆m = 12 GeV. Upper right: A mass splitting
∆m = 50 GeV is sufficiently large to open the funnel for mH . mh/2. Lower row:
Different mass splittings ∆m ∈ {100, 300} GeV appear not to change the funnel region
but the mass regime where interference effects are significant.

49



CHAPTER 3. DARK MATTER PHYSICS IN INERT DOUBLET MODEL

with intermediate vector bosons are highly suppressed due to their off-shellness and
the dominant annihilation channel is HH → h∗ → bb̄. The symmetric profile of the
relic abundance originates from the dependence of the squared matrix element on the
Higgs portal coupling which is given in Eq.(3.6).

Considering the upper left panel in Fig.3.3, the large excluded parameter space
for unobserved gauge boson decays as well as the opening parameter space for over-
abundant DM are clearly visible. The reddish boundary indicates that the relic abun-
dance is – at least close to – the upper 3σ-limit of the measured relic density. The under-
abundant DM at masses mH ≈ 40 GeV stems – as discussed in Sec.3.2 – from relevant
co-annihilation channels and the resonant production of massive EW gauge bosons.
With a mass splitting ∆m = 12 GeV and the EW gauge boson masses mW± = 80 GeV

and mZ = 91 GeV, the resonance poles are expected to be at mH = 34 GeV and
mH = 39.5 GeV for the resonant production of on-shell W± and Z bosons, respectively.
The value |λ345| is small for masses close to the resonance masses as the h-mediated
annihilation channels must be suppressed in order to obtain the full relic abundance.
For this, the absolute value of the coupling is extremely small at the pole but in-
creases rapidly apart from it. However, the increase is interrupted by the s-channel
annihilation of a DM pair which is mediated by the SM Higgs boson. This interaction
approaches its resonance at mH = mh/2. Thus, it dominates other interactions and
the Higgs portal coupling for the full relic abundance must decline for the same reason
as before. Beyond the SM Higgs resonance pole, the profile of the parameter space
is not symmetric anymore. Negative values of the Higgs portal coupling are preferred
after the re-opening for increasing DM mass in order to compensate interactions with
constructive contributions.

The remaining three panels in Fig.3.3 correspond to mass spectra with large mass
splittings. Each funnel-shaped region for mH < mh/2 shows a symmetric distribution
of the relic abundance with respect to zero Higgs portal coupling. The differences
between the upper left and the other plots are both the evolution of the funnel re-
gion and the shape of the viable parameter space beyond the SM Higgs resonance at
mH = mh/2. The comparison of the parameter spaces for a significant amount of DM
is given in Fig.3.4. It shows that the funnel regions for the mass spectra with large
∆m overlap which is due to sufficiently suppressed co-annihilation processes and the
resulting dominance of h-mediated annihilations to fermions. Furthermore, the con-
tributions from the non-DM Z2-odd particles to the particle number density in the
thermal bath are irrelevant – as it shall be found in Sec.3.4.1. According to Eq.(3.6)
and the relation Ωh2 ∝ λ−2

345, the bands of viable parameter space gets broader for

50



CHAPTER 3. DARK MATTER PHYSICS IN INERT DOUBLET MODEL

20 40 60 80 100

-0.4

-0.2

0.0

0.2

0.4

Figure 3.4: Shape of the parameter spaces for different mass splittings ∆m. The
parameter spaces lead to a relic abundance 0.6Ωh2

best ≤ Ωh2 ≤ Ωh2
best + 3σ. The

truncations for specific mass splittings at low DM masses are due to LEP exclusions.

smaller DM masses because |λ345| gets larger. Apart from that, it also shows that
the larger the mass splitting is, the larger is the mass interval which gives the full
amount of DM for a proper Higgs portal coupling since many ∆m-dependent annihi-
lation channels contribute to the relic abundance. They contain additional, non-DM
scalar particles as mediators and different mass splittings do consequently have an im-
pact on the cross sections σ as well as on the annihilation cross section 〈σeffv〉 which
depends on the total particle number density in thermal equilibrium (see Eq.(2.48)).
The more extended viable parameter space for large ∆m is due to suppressed t- and
u-channel interactions. It is apparent that the contours of viable parameter spaces
beyond the SM Higgs threshold do not uniformly shrink but change non-trivially. An
in-depth analysis of (co-)annihilation channels will be performed in Sec.3.4.2.

3.2.2 High-mass regime

According to Fig.3.2, only highly-degenerate mass spectra lead to viable solutions to
obtain a significant amount of the measured relic abundance in the region of high DM
masses. Except for large Higgs portal couplings, the viable solutions should be found
at mH ∼ 600 GeV. This is reflected by the results in Fig.3.5. In accordance with the
result from Ref.[43] in Fig.3.2, the three smallest absolute values of the Higgs portal
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Figure 3.5: Dependence of the relic abundance Ωh2 on the DM mass mH and λ345

for quasi-degenerate mass spectra. Left: The mass spectrum leads to a significant
fraction of the measured abundance for DM masses mH & 600 GeV. Right: Relaxing
the degeneracy results in an enhanced asymmetry and a shift towards smaller λ345.

couplings in that figure are close to zero, resulting in almost the same DM mass, and
the DM mass which leads to the measured relic abundance for λ345 = 1 is beyond the
considered mass range.

Taking a closer look at Fig.3.5, asymmetric shapes of the relevant parameter space
can be recognized. Negative values of the Higgs portal coupling must have a larger
absolute value than their positive counterparts in order to give the correct relic abun-
dance. This asymmetry is investigated quantitatively by studying the most dominant
interaction processes for a fixed DM mass and two Higgs portal couplings with the
same absolute value. The cross sections 〈σeffv〉 for several selected (co-)annihilation
processes are listed in Tab.3.1. The total cross section is larger for the positive Higgs
coupling, leading to Ωh2 = 0.1121 for λ345 = −0.2 and Ωh2 = 0.0952 for λ345 = 0.2.

The two most-contributing interaction channels are annihilations into an EW gauge
boson pair. The production of W+W− is more relevant for both Higgs portal couplings
than the creation of a ZZ-pair. However, the annihilation cross section 〈σeffv〉 is larger
for the positive Higgs portal coupling. This can be explained by the contribution of
the channel which includes the SM Higgs boson (see Feynman diagrams in Fig.3.1).
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Table 3.1: Comparison of a selected relevant (co-)annihilation processes and their
(relative) cross sections 〈σeffv〉. The quasi-degenerate mass spectrum with the mass
splitting ∆m = 1 GeV contains the DM mass mH = 600 GeV (cf. Fig.3.5). Differences
between the sum of the listed cross sections and the total sum are due to truncation.

λ345 = −0.2 λ345 = 0.2

Process 〈σeffv〉 [10−2 pb] Process 〈σeffv〉 [10−2 pb]

HH → W+W− 6.7 (9.3%) HH → W+W− 9.0 (10.6%)
HH → ZZ 5.1 (7.1%) HH → ZZ 6.3 (7.4%)

H+H → γW+ 4.8 (6.7%) H+H → γW+ 4.8 (5.7%)
H+H → ZW+ 1.7 (2.4%) H+H → ZW+ 1.7 (2.1%)
HH → hh 1.4 (2.0%) HH → hh 1.2 (1.5%)

total sum 72.2 total sum 85.0

The next two processes involve a combination of two EW gauge bosons in the
final state. Since these co-annihilation processes do not depend on the Higgs portal
coupling, the cross section 〈σeffv〉 does not change. The independence of λ345 is a
necessary consequence of the absence of the SM Higgs boson.

The last process in Tab.3.1 is the DM annihilation into a pair of SM Higgs bosons.
Unlike the other presented processes, the annihilation cross section is smaller for the
positive Higgs portal coupling in this case. The total matrix element5 for this process
including four-point as well as s-, t- and u-channel interactions is

Mh ∝ λ345

[
1 +

3m2
h

s−m2
h + imhΓh

+ λ345v
2

(
1

t−m2
H

+
1

u−m2
H

)]
(3.7)

with the mass mh and decay width Γh of the SM Higgs boson und the Mandelstam
variables s, t and u.

The cross sections for the selected processes in Tab.3.1 depend – of course – both
on the mass spectrum and the Higgs portal coupling. But this comparison shows
how relevant processes depend on the sign of λ345 and that the contribution of each
interaction channel can lead to crucial changes in the cross section and finally in Ωh2.

A relaxed degeneracy leads to asymmetric viable regions (see right-handed plot
in Fig.3.5). Particularly with regard to EW baryogenesis (EWBG), the subsequent
investigation will focus on the low-mass regime (where large mass splittings are viable)
and a closer examination of the high-mass regime is left for future studies.

5The derivation of the matrix elements for each channel can be found in Appendix D.1.
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3.3 Experimental limits on the parameter space

Due to the huge amount of possible interaction channels and their specific dependence
on the Higgs portal coupling λ345, the parameter space which leads to a significant
amount of DM, has a particular shape. This parameter space is already constrained by
very precise measurements of the relic abundance, being Ωh2 = 0.1200± 0.0012. This
precision is responsible for the narrow bands in Fig.3.4. However, there are further,
independent experiments which are able to set tight limits on the viable space.

The null results of the search for exotic6 SM Higgs boson decays exclude a large pa-
rameter space for DM masses below half of the SM Higgs mass. The decay width Γ of
the SM Higgs boson to undetected, i.e., invisible, particles in the IDM is given by7

Γ (h → inv.) =
∑
i

1

ni!

(λiv)
2

16πmh

√
1− 4

(
mi

mh

)2

(3.8)

with the sum over the non-SM particles H, A, H± and the mass-coupling combinations
(mH , λ345),

(
mA, λ̄345

)
and (mH± , λ3) as long as the decay products are kinematically

accessible. The factor ni corresponds to the number of identical particles in the final
state: nH± = 1 for the electrically charged scalars and nH,A = 2 for the other two. For
energy conservation, this constraint on the decay width is applicable only in the mass
range mH ≤ mh/2 = 62.5 GeV. For small mass splittings ∆m between the non-SM
particles, the other decay channels can contribute to the decay rate as well. However,
for ∆m > mh − 2mH the sum in Eq.(3.8) reduces to [43]

Γ (h → HH) =
(λ345v)

2

32πmh

√
1− 4

(
mH

mh

)2

. (3.9)

The upper limit on the branching ratio for the invisible SM Higgs decay is given by
Ref.[18], reading

BR (h → inv.) =
Γ (h → inv.)

Γ (h → inv.) + 4.07 MeV+4.0%
−3.9%

< 0.26 (3.10)

with the decay width from Eq.(2.72). Although there is a stronger limit from the CMS
experiment [59], providing the upper limit BR (h → inv.) < 0.19 at 95% confidence

6These decays are exotic since they are not predicted by the SM.
7The derivation of this formula can be found in Appendix D.3.
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level, the result from Ref.[18] is kept to account for possible uncertainties in the result
for the more-restricting upper limit.

A second experiment, dedicated to look for Dark Matter interactions with a nucleus,
is the XENON1T experiment whose working principle was described in Sec.2.4.4. The
latest limits for the spin-independent cross section σSI are shown in Fig.3.6. Possible
interactions are spin-independent as well as spin-dependent scatterings. The latter is
suppressed by a factor v2/c2 (see Ref.[60] for details) since cold DM is assumed in
the ΛCDM-model. Therefore, spin-dependent interactions are neglected in this work.
Spin-independent interactions are mediated by an SM Higgs boson, for example, and
the corresponding cross section depends on both the Higgs portal coupling λ345 and the
mass of the involved nucleus. Further processes are those, in which the incoming DM
particle converts to a heavier non-SM particle via exchange of a vector boson8 Z, W±.
The corresponding Feynman diagrams are presented in Fig.3.7. The combination of
large target mass as well as long exposure time results in 278.8 days×1.3 t = 1.0 t×yr

and leads to the currently best limit on the spin-independent cross section in the world.
The limits have been extracted from the Dark Matter Limit plotter by SLAC with the
online application9 WebPlotDigitizer and checked against the limits from Ref.[36]. The

8A photon exchange is not allowed due to absent couplings of a photon to H or A.
9URL: automeris.io/WebPlotDigitizer (accessed: April 8, 2020)
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Figure 3.6: Replicated XENON1T limits from 2018 for the spin-independent cross
section σSI with a nucleus. The coupling strength must be chosen such that σSI is below
the curve. The data is given in Appendix C.
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h
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H+H
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Figure 3.7: Spin-independent interactions between the DM particle H and a quark q

of the nucleus in the XENON1T experiment. In case of an electrically neutral mediator,
the DM particle can scatter off any quark in the target nucleus without changing its
flavour. A mediating W+ converts a down-type d to an up-type quark u.

limits incline approximately linearly for DM masses mH & 100 GeV. Due to the large
amount of extracted data points for DM masses in the non-linear regime, it is valid
to interpolate linearly also in that mass regime. The limits constrain the coupling
strength to |λ345 (mH)| . 0.01 in the DM mass range which yields a rather large viable
parameter space in the low-mass regime for a large ∆m-range. The constraints for
the branching ratio from exotic SM Higgs decay searches and for the spin-independent
cross section from the XENON1T experiment are shown in Fig.3.8.

55 60 65 70 75 80 85

-0.04

-0.02

0.00
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Figure 3.8: Viable parameter space after imposing constraints both from exotic SM
Higgs decay searches and the XENON1T experiment. The contours show the relic
abundance 0.6Ωh2

best ≤ Ωh2 ≤ Ωh2
best + 3σ as in Fig.3.4.
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3.4 Analysis of (co-)annihilation channels

Focussing on the low-mass regime, this section deals with a detailed analysis of relevant
processes and their cross sections 〈σeffv〉. After investigating the dependence of cross
sections on temperature and mass splitting, the contributions of different processes to
the cross section for a given DM mass and Higgs portal couplings will be studied.

3.4.1 Dependence of cross section on temperature and mass
splitting

First, the tree-level interactions for the DM annihilation into SM vector bosons, i.e.,
HH → W+W− and HH → ZZ (see Fig.3.1), are considered. In both cases, several
viable interaction channels exist. In addition to the h-mediated s-channel and the four-
point interaction, interactions via t- and u-channels are possible. Unlike the first two,
the last two processes are mediated by non-SM scalar bosons. As discussed earlier (e.g.,
see Fig.3.1), two Z (W±) bosons in the final state require the (charged) Higgs boson
A (H±) as the mediator. If the coupling parameter λ345 equals zero, the s-channel is
closed and only the four-point interaction and the t- as well as the u-channel remain.
The contribution of the contact interaction to the cross section σ is determined by
the SM, i.e., it does not depend on the masses of any Z2-odd particle. Yet, that is
not the case in the t- and u-channels, but in each case one of the non-DM Z2-odd
particles is irrelevant. Considering two Z bosons in the final state, one could expect
that the annihilation cross section 〈σeffv〉 does not change for different masses mH± of
the electrically charged Higgs boson since σ is independent of this mass. The same
should hold for W± bosons in the final state and the mass mA. However, it is not
correct to transfer this expectation to 〈σeffv〉 since it in fact depends on the mass for
temperatures above a certain threshold, as shown in Fig.3.9.
The explanation for this observation can be deduced from the annihilation cross section
〈σeffv〉 which reads [34]

〈σeffv〉 =

∫∞
0

dpeff p2effWeffK1

(√
s

T

)
T
[∑4

i=1
gi
g1
m2

iK2

(
mi

T

)]2 (3.11)

with the effective momentum

peff =

√
s− 4m2

1

2
(3.12)
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Figure 3.9: Temperature-dependent annihilation cross section 〈σeffv〉 both for the
DM annihilation into two W± bosons (left) and into two Z bosons (right) with the
DM mass mH = 500 GeV and λ345 = 0. For temperatures T . 15 GeV, the splitting
becomes negligibly small. The cross sections were computed by using micrOMEGAs.

and the effective annihilation rate

Weff = 2
4∑

i,j=1

[
s− (mi −mj)

2] [s− (mi +mj)
2]√

s (s− 4m2
1)

gigj
g21

σij . (3.13)

In this calculation the particles and number of degrees of freedom are re-labelled, e.g.,
m1 = mH and g1 = gH . Changing the integration variable from peff to the Mandelstam
variable s by using Eq.(3.12), the general total averaged cross section results in [34]

〈σeffv〉 =
∫ ∞

4m2
H

ds

∑4
i,j=1 gigjσij (s)

[
s−(mi−mj)

2
][

s−(mi+mj)
2
]

√
s

K1

(√
s

T

)
8T
[∑4

i=1 gim
2
iK2

(
mi

T

)]2 , (3.14)

which accounts for annihilations as well as co-annihilations. Note that σij = 0 for
√
s < mi + mj. A formula that explicitly contains the matrix element M is derived

in Appendix D.2. The sums are over the four non-SM particles H, A and H±. If
one is interested in the averaged cross section for a particular process, the sum in
the numerator reduces to the term for the specific process. However, the sum in the
denominator does not simplify as it stems from the total number density in equilibrium
and thus accounts for all non-SM particles. According to Eq.(3.14), the cross section
〈σeffv〉 for a specific DM annihilation and co-annihilation process read

〈σeffv〉ann =

∫ ∞

4m2
H

ds
σ (s)

√
s (s− 4m2

H)K1

(√
s

T

)
8T
[∑4

i=1 gim
2
iK2

(
mi

T

)]2 (3.15)
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and

〈σeffv〉co−ann =

∫ ∞

4m2
H

ds

σ(s)√
s
[s−∆m2]

[
s− (2mH +∆m)2

]
K1

(√
s

T

)
8T
[∑4

i=1 gim
2
iK2

(
mi

T

)]2 , (3.16)

respectively, with the corresponding cross section σ and the mass splitting ∆m between
the DM particle H and the co-annihilating particle. Note that the formula for the co-
annihilation simplifies to the one for annihilation if two DM particles annihilate, i.e.,
∆m = 0. The result shows that also in case of pure annihilation the other particles of
the second Higgs doublet appear in the calculation and influence the annihilation cross
section. For temperatures T � mA,H± , contributions from these non-SM particles are
highly suppressed and the deviation of the curves in Fig.3.9 vanishes.

For Eq.(3.14) and the resulting formulae in Eqs.(3.15)-(3.16), the following three
assumptions have been made [61]:

1) All co-annihilating particles decay into the DM particle H which is the lightest
non-SM particle and stable on cosmological time scales. The final DM density is
given by the sum of the co-annihilating particle densities since the decay rates
are higher than the expansion rate of the universe.

2) The scattering cross section of the co-annihilating particles off the thermal back-
ground is of the same order of magnitude as their annihilation cross section.
Therefore, their momentum distribution remains constant as the thermal back-
ground density is larger than the number densities of the co-annihilating particles.

3) All co-annihilating particles are semi-relativistic such that the Fermi-Dirac and
Bose-Einstein distribution can be approximated by the Maxwell-Boltzmann dis-
tribution.

In Fig.3.10, the numerator and denominator of the formula for co-annihilations in
Eq.(3.16), which is also valid for annihilation processes, are visualized. The contribu-
tion from the numerator without the energy-dependent cross section σ (s) is defined
as

fnum
def
=

[s−∆m2]
[
s− (2mH +∆m)2

]
√
s

K1

(√
s

T

)
(3.17)

and the one from the denominator without accounting for the constant prefactor as

fdenom
def
=

[
m2

HK2

(mH

T

)
+ 3 (mH +∆m)2K2

(
mH +∆m

T

)]2
T , (3.18)
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where the factor three in the second term arises from the degenerate masses of the
non-DM Z2-odd particles. Their behaviour for the squared center-of-mass energy s

and the mass splitting ∆m, respectively, is shown in Fig.3.10. In case of annihilation,
the numerator contributes for s ≥ 4m2

H and approaches zero for larger s after a steep
increase. The situation is similar for co-annihilations (∆m 6= 0). However, the integral
with respect to the squared center-of-mass energy s is smaller due to the increased
lower integration limit s = (2mH +∆m)2 > 4m2

H on the one hand, and the smaller
values of fnum on the other hand (left-handed plot in Fig.3.10). Simultaneously, a
large ∆m results in smaller contributions to the particle number density neq in the
denominator (right-handed plot). The function for the denominator is a sum of positive
contributions. Hence, there is a lower bound for the denominator, being

fdenom >
[
m2

HK2

(mH

T

)]2
T , (3.19)

and the denominator cannot compensate the decrease in the numerator. As a result,
the averaged cross section 〈σeffv〉 for co-annihilations approaches zero for large mass
splittings – given that the s-dependence of the cross section σ (s) is tamed by the mod-
ified Bessel function in fnum for large s.
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Figure 3.10: Evolution of the numerator and denominator of the effective annihila-
tion cross section 〈σeffv〉. Left: The numerator fnum from Eq.(3.17) is shown with
respect to the squared center-of-mass energy s for different mass splittings ∆m and
temperatures T . The solid (dashed) lines correspond to (co-)annihilation processes in
this plot. Right: The dependence of the denominator fdenom on the mass splitting
∆m is shown for different temperatures. For illustration purposes, both the DM mass
mH and the reference temperature T0 are set to unity in both plots.
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In the case of annihilation, the numerator does not depend on the mass splitting,
as being obvious in Eq.(3.15). Thus, the integral

∫
ds fnum is constant and the de-

nominator gets influenced by the mass splitting in the way discussed above. Since the
denominator becomes smaller for larger mass splittings, the annihilation cross section
〈σeffv〉 is expected to increase. However, the cross section σ that was not taken into
account in fnum can depend on the mass splitting. The t- and u-channels for DM
annihilation into final SM vector bosons, for instance, receive momentum-dependent
contributions from the masses of the other non-SM particles A, H±.

The temperature-dependence is apparent in Eq.(3.14) and Fig.3.10 which confirms
the observation above. For sufficiently high temperatures, contributions from particles
which do not take part in the specific interaction but are part of the thermal background
become relevant for the averaged cross section.

3.4.2 In-depth analysis of the (co-)annihilations

For investigating the dependence of (co-)annihilations on the mass splitting ∆m, two
parameter points (mH , λ345) were chosen. The cross sections 〈σeffv〉 for significantly
contributing channels were computed by using micrOMEGAs and are shown in Fig.3.11.

The upper panel shows the dependence of the total cross section 〈σeffv〉 on the
mass splitting ∆m for the DM mass mH = 65 GeV and two values of the Higgs portal
coupling λ345. After a steep declination for small mass splittings, the cross section
is subject to an abrupt change at ∆m ≈ 30 GeV, leading either to a further (but
moderate) decrease or to an increase. The shape of the curves can be cross-checked
by considering Fig.3.8. A large cross section 〈σeffv〉 results in a small relic abundance
Ωh2 and vice versa. Regarding the three mass splittings from Fig.3.8, the cross section
is largest for ∆m = 12 GeV and smallest for ∆m = 50 GeV with λ345 = 0.02 as an
example. The parameter point is very close to the inner boundary of the contour for
the second mass splitting. The boundary for the largest mass splitting is below the
previous one and the boundary for ∆m = 12 GeV is far below that indicating a cross
section increase for ∆m = 50 GeV, ∆m = 300 GeV and ∆m = 12 GeV successively.
This behaviour is reflected by Fig.3.11 and after repeating the check, also the curve for
λ345 = −0.04 is found to be related to Ωh2.

The lower two panels show the averaged cross sections 〈σeffv〉 for particular anni-
hilation and co-annihilation processes. The latter dominate for relatively small mass
splittings and decrease with increasing ∆m whereas the contributions of the annihila-
tion processes increase and eventually dominate the co-annihilations. The decrease of
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Figure 3.11: Dependence of the thermally averaged cross section 〈σeffv〉 on the mass
splitting ∆m at freeze-out temperature. Upper row: Total (co-)annihilation cross
sections for fixed DM mass mH and two Higgs portal couplings λ345. Lower row:
Comparison of (co-)annihilation channels with fixed DM mass but different Higgs portal
couplings. Co-annihilations (dashed) into quarks qi and up-type (down-type) quarks
uj (dj) with i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2} are relevant at small mass splittings, whereas
annihilations (solid) dominate for large ∆m. Deviations of the accumulated 〈σeffv〉
from the total cross section are due to neglected channels.

cross sections for increasing mass splitting in the co-annihilation case was explained
in the previous section. The increase of the cross sections 〈σeffv〉 for annihilations
was partly derived. Even though essential features of the curves can be understood, a
detailed discussion of 〈σeffv〉 is only possible for a given matrix element.

The SM Higgs boson does not participate in the co-annihilations10 and the corre-
sponding cross sections are therefore independent of λ345. These processes are medi-
ated by the EW gauge bosons W+, Z, instead. The suppression of the co-annihilation
AH → qq̄ is due to the intermediate Z boson. The remaining two given co-annihilation
processes are mediated by a W+ boson.

10A detailed evaluation of the most relevant Feynman diagrams is presented in Appendix D.1.
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The annihilation channels, however, do depend on the Higgs portal coupling. The
first to-be-studied process is HH → h → bb̄. According to Eqs.(D.11) and (D.38), the
annihilation cross section for this process can be written as

〈σeffv〉bb̄ann =
λ2
345m

2
b

64πT
[∑4

i=1 gim
2
iK2

(
mi

T

)]2 ∫ ∞

4m2
H

ds
(s− 4m2

b)
3/2
√

1− 4m2
H

s
K1

(√
s

T

)
(s−m2

h)
2
+m2

hΓ
2
h

(3.20)

and gives rise to the enhancement of the cross section for HH → bb̄ for larger absolute
values of the Higgs portal coupling. The arising enhancement factor, resulting from
the relation 〈σeffv〉 ∝ λ2

345, can be clearly found in Fig.3.11. The same holds for the
process HH → gg which includes an effective11 top-loop. Therefore, also the cross
section 〈σeffv〉 for this process increases for increasing |λ345|. The dependence on the
mass splitting is contained in the sum of the prefactor in Eq.(3.20). Despite the de-
creasing contributions to the sum in the prefactor (see Fig.3.10) for increasing ∆m,
the annihilation cross section decreases for larger mass splittings ∆m & 17 GeV. Note
that the freeze-out temperature depends on the mass splitting.

Another interesting aspect is the behaviour of the averaged cross section for the anni-
hilation into SM vector bosons W+W− and ZZ. As the DM mass is too small and the
DM particles are assumed to be cold, at least one of these bosons is off-shell and decays
into fermions, subsequently. Hence, the final states consist of three SM particles. The
observation that the annihilation cross section for the Z bosons is smaller than that
for W± bosons is due to different masses mZ > mW .

The illustrated annihilation processes12 in Fig.3.11 can be mediated by an SM Higgs
boson. However, in case of SM bosons in the final state, four-point interactions as
well as t- and u-channels are possible in addition to the s-channel. The processes with
vector bosons in the final state are more complicated due to the interference of several
interaction channels like four-point interaction, s-channel as well as t- and u-channel as
it was discussed earlier in Sec.3.2.1. Nonetheless, the dependence of many annihilation
as well as co-annihilation processes on the mass splitting and the Higgs portal coupling
were found.

11The top-loop contribution is approximated by an effective hgg-coupling in the numerical compu-
tation.

12One shall be aware of the plethora of further annihilation processes that do also significantly
contribute to the final cross section. However, I restrict myself to those four for illustration purposes.
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3.5 Summary of results for Dark Matter physics

Taking constraints from the relic abundance and the latest XENON1T limits among
others into account, the parameter space in the low-mass regime for λ345 and the DM
mass mH , that leads to a significant amount of the measured relic abundance, was
constrained (see Fig.3.8). Allowing for any viable Higgs portal coupling, the surviving
parameter space can be separated into two subspaces. The first viable region holds for
DM masses 55 GeV . mH . 63 GeV, being rather independent of the mass splitting.
The mass region of the second surviving parameter space is much more sensitive to the
mass splitting due to contributions from additional interaction channels. From Fig.3.8,
the mass window 68 GeV . mH . 75 GeV remains open for further investigations.
Both viable mass regions, especially the latter, do not only depend on the mass splitting
but also on the fraction of the full relic abundance.

Similar result were found in Fig.3.12 from Ref.[62] which is based on a scan over
the DM mass, the degenerate masses of the other non-SM particles and over the Higgs

Figure 3.12: Scatter plot of a scan for both the DM mass mS ≡ mH and the degen-
erate masses mA = mH± of the other Z2-odd particles. The blue dots correspond to
those combinations of DM mass and coupling strength which satisfy the conditions for
the relic abundance in addition to those for direct detection. Furthermore, the red dots
refer to fulfilled constraints for an EWPhT. Black dots obey each of these constraints.
The plot was taken from Ref.[62].
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portal coupling. Relevant for the DM discussion in this scatter plot are the blue and
black points which indicate that these mass spectra fulfil the direct detection limits
and give rise to the measured relic abundance.

The results in the present work are an improvement of that part of Fig.3.12 from
Ref.[62] as the resolution of the systematic (grid-like) scan over the DM mass mH for
certain mass splittings and over the Higgs portal coupling λ345 allows the visualization
of the viable parameter space as an area in Fig.3.8 instead of single points. Furthermore,
the results from the work at hand are based on the latest constraints from searches
for exotic SM Higgs decays and measurement of the relic abundance. Moreover, the
latest direct detection limits from the XENON1T experiment were taken into account,
whereas the result in Fig.3.12 is based on those from XENON100. These weaker limits
lead to a broader first mass window 53 GeV . mH . 64 GeV. The second, slim range
for viable mass spectra is at mH ≈ 75 GeV, being a subset of my findings.

In conclusion, it was found that there is – in spite of the tight exclusion limits from
the XENON1T experiment – a viable parameter space which allows a large amount of
the measured relic abundance with Higgs portal couplings |λ345| . 0.01. These results
shall be connected to the Electroweak Phase Transition. The red and also black dots
in Fig.3.12 correspond to mass spectra which give rise to a strong first-order EWPhT.
The aspects of EWPhT will be investigated in the subsequent section.
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Chapter 4

Electroweak Phase Transition in
Inert Doublet Model

This part of the thesis is dedicated to the study of the EWPhT in the IDM. The
EWPhT is one elegant way to explain EWBG and the resulting dominance of matter
over antimatter. Consequently, it was studied extensively in the literature (see, e.g.,
Refs.[63, 64]). Since the EWPhT did obviously not happen at zero – and not even
at approximately zero – temperature, new concepts from finite-temperature Quantum
Field Theory must be applied in the upcoming two-field analysis in order to account for
thermal effects. Applying perturbation theory, leading-order thermal corrections are
assumed to appear at one-loop level. Therefore, one-loop corrections both for zero and
for non-zero temperature are taken into consideration to properly incorporate thermal
contributions.

4.1 Inert Doublet Model potential at zero temper-
ature

Since the Goldstone modes acquire masses at finite temperatures, they must be taken
into account in the SM Higgs doublet. The SU (2) doublets thus read

H1 =

(
φ+

1√
2
(h+ iφ)

)
, H2 =

(
H+

1√
2
(H + iA)

)
(4.1)

with the Goldstone bosons φ+ ≡ φ−∗ and φ. The electrically neutral scalar H from the
second Higgs doublet is assumed to be the lightest boson of H2 again.
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4.1.1 Tree-level potential

The tree-level potential for the scalar sector equals the potential in Eq.(2.56), being

Vtree (H1, H2) =µ2
1 |H1|2 + µ2

2 |H2|2 + λ1 |H1|4 + λ2 |H2|4 + λ3 |H1|2 |H2|2

+ λ4

∣∣∣H†
1H2

∣∣∣2 + λ5

2

[(
H†

1H2

)2
+ h.c.

]
. (4.2)

Further, the mass matrices for the CP -even h and H, CP -odd φ and A and the
electrically charged scalars φ+ and H+ read

M2
e =

(
2λ1v

2 0

0 λ345

2
v2 + µ2

2

)
, M2

o =

(
0 0

0 λ̄345

2
v2 + µ2

2

)
, M2

ch =

(
0 0

0 λ3

2
v2 + µ2

2

)
, (4.3)

respectively. The masses are determined by the eigenvalues of the corresponding mass
matrices, i.e.,

m2
X = eigenvalues

[
M2

X

]
, (4.4)

and the squared tree-level masses of the scalars can be read off immediately, yielding

m2
h = 2λ1v

2 , m2
H =

λ345

2
v2 + µ2

2 , m2
A =

λ̄345

2
v2 + µ2

2 , m2
H± =

λ3

2
v2 + µ2

2 . (4.5)

These masses match those in Eq.(2.60). The mass matrices in Eq.(4.3) are given here
explicitly as they get modified in the following sections.

4.1.2 Coleman-Weinberg potential

Following Refs.[50, 65], the Coleman-Weinberg potential for one-loop contributions in
the modified minimal subtraction (MS) scheme and the Landau gauge (ξ = 0) reads

VCW (h,H) =
∑
i

(−1)2si
ni

64π2
m̂4

i (h,H)

[
ln

(
m̂2

i (h,H)

Q2

)
− Ci

]
, (4.6)

where si ∈ {0, 1/2, 1} denotes the spin, ni the number of degrees of freedom, m̂i (h,H)

the field-dependent mass and Ci the renormalization-scheme dependent constant for
the i-th particle. The values of the degrees of freedom ni and the constants Ci are
given in Tab.4.1. In order to maximize the reliability of perturbation theory in the
calculation, the scale Q is chosen to be the EW scale v. The masses of the EW gauge
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Table 4.1: Number of degrees of freedom ni and parameter values Ci for the Coleman-
Weinberg potential. The values can be found in Ref.[65]. Although the components of
the photon γ are not necessary for the Coleman-Weinberg potential, they are required
for the corrections due to finite temperature (see below).

Particle ni = ncharge
i · nspin

i · ncolor
i Ci

quark 12 = 2 · 2 · 3 3/2
lepton 4 = 2 · 2 · 1 3/2
longitudinal W± 2 = 2 · 1 · 1 3/2
transversal W± 4 = 2 · 2 · 1 1/2
longitudinal Z 1 = 1 · 1 · 1 3/2
transversal Z 2 = 1 · 2 · 1 1/2
h, φ,H,A 1 = 1 · 1 · 1 3/2
φ±, H± 2 = 2 · 1 · 1 3/2
longitudinal γ 1 = 1 · 1 · 1 −
transversal γ 2 = 1 · 2 · 1 −

bosons depend on the field configuration (h,H) and are given by [50]

m̂2
W (h,H) =

1

4
g2W
(
h2 +H2

)
, m̂2

Z (h,H) =
1

4

(
g2W + g′2

) (
h2 +H2

)
, m̂2

γ = 0 (4.7)

with the SM gauge couplings gW = 2mW/v and g′ = 2
√

m2
Z −m2

W/v. The photon
mass vanishes for gauge invariance reasons. The squared fermion mass reads [50]

m̂2
f (h) =

1

2
y2fh

2 (4.8)

with the SM Yukawa coupling yf =
√
2mf/v and solely depends on the SM Higgs

field since H does not couple to fermions. The masses logically approach the predicted
masses at zero temperature because of h = v and H = 0 at T = 0. The field-dependent
masses m̂2 (h,H) of the scalars can be derived from

M̂2
e =

1

2

(
6λ1h

2 − 2λ1v
2 + λ345H

2 2hHλ345

2hHλ345 6λ2H
2 + λ345h

2 + 2µ2
2

)
(4.9)

M̂2
o =

1

2

(
2λ1h

2 − 2λ1v
2 + λ̄345H

2 2hHλ5

2hHλ5 2λ2H
2 + λ̄345h

2 + 2µ2
2

)
(4.10)

M̂2
ch =

1

2

(
2λ1h

2 − 2λ1v
2 + λ3H

2 hH (λ4 + λ5)

hH (λ4 + λ5) 2λ2H
2 + λ3h

2 + 2µ2
2

)
. (4.11)
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It is apparent that the field-dependent mass matrices above reduce to those in Eq.(4.3)
when approaching the EW vacuum (h,H) = (v, 0) for T → 0.

Since the second derivative of the Coleman-Weinberg potential in Eq.(4.6) contains
Goldstone-dependent terms, reading

∂2

∂h2
VCW ⊃ 1

32π2

∑
i=φ,φ±

(
∂m̂2

i (h,H)

∂h

)2

ln
m̂2

i (h,H)

Q2
, (4.12)

where the logarithm is ill-defined at zero temperature due to massless Goldstone bosons,
infrared (IR) divergences occur [66]. Therefore, the Goldstone bosons are removed from
VCW and the regulator scale mIR = mh is added to the counter-term potential which
will be discussed next.

4.1.3 Counter-term potential

Including the Coleman-Weinberg potential leads to a deviation of the VEV from the
one at tree-level which matches the measurement. To restore the original vacuum and
to overcome the IR divergences discussed above, the counter-term potential must be
introduced. Based on the estimates in Ref.[65], it can be cast for the IDM as

VCT (h,H) =
1

2
δm2

hh
2 +

1

2
δm2

HH
2 +

1

4
δλ1h

4 , (4.13)

where the coefficients are to be obtained by applying the renormalization conditions

∂VCT

∂h

∣∣∣∣
VEV

= − ∂VCW

∂h

∣∣∣∣
VEV

(4.14)

∂2VCT

∂h2

∣∣∣∣
VEV

= −

∂2VCW

∂h2
− 1

32π2

∑
i=φ,φ±

(
∂m̂2

i (h,H)

∂h

)2

ln
m̂2

i (h,H)

Q2

∣∣∣∣∣∣
VEV

(4.15)

∂2VCT

∂H2

∣∣∣∣
VEV

= −

∂2VCW

∂H2
− 1

32π2

∑
i=φ,φ±

(
∂m̂2

i (h,H)

∂H

)2

ln
m̂2

i (h,H)

Q2

∣∣∣∣∣∣
VEV

(4.16)

with the Goldstone masses approaching the IR cut-off, i.e., m2
φ(±) (h,H) |VEV = m2

IR,
and the scale Q introduced for VCW. The renormalization conditions are chosen such
that the contributions of the Coleman-Weinberg potential to the masses of the SM
Higgs h, to the non-SM particle H and lastly to λ1 are compensated. Further counter-
terms like, e.g., δλ345 or δλ2 are neglected here as the shifts are assumed to be small.
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4.2 Finite-temperature corrections

So far, the resulting total potential corresponds to the one-loop potential at zero tem-
perature. In order to deal with EWPhT, corrections for finite temperatures must be
accounted for. Those will be discussed subsequently.

4.2.1 Resummation of daisy diagrams

Following the discussion in Ref.[23], symmetry restoration at high temperatures T is
only possible in the case of non-negligible loop contributions since the tree-level poten-
tial is T -independent. Hence, perturbation theory with respect to the pure couplings
is not applicable anymore for high temperatures and must be modified.

The loop contribution reads TDf (m/T ) with the superficial divergence D, reading

D
def
= dL− 2GB −GF , (4.17)

where d is the number of space-time dimensions, L the number of loops and GB(F) the
number of boson (fermion) propagators. In the absence of IR divergences for m/T → 0,
the function f can be omitted. A quadratically-divergent one-loop contribution to the
self-energy reads like λT 2 with the generic coupling parameter λ in a model of one
self-interacting real scalar field (see left-hand diagram in Fig.4.1). To a fixed order in
loop expansion, the largest contributions are given by those diagrams consisting of the
maximum number of loops with D = 2. For N further loops attached to the first loop
(see right-hand diagram in Fig.4.1), the contribution reads

λN+1T
2N+1

µ2N−1
≡ λ2T

3

µ
αN−1 with α

def
= λ

T 2

µ2
, (4.18)

with the mass scale µ for rescaling the powers of the temperature. The one-loop

∼ λT 2
N − 4

∼ λ2 T 3

µ
αN−1

Figure 4.1: Contributions of daisy diagrams to the self-energy. The dashed lines corre-
spond to the interacting scalar particles. The left-hand diagram shows the quadratically
divergent contribution. The right-hand plot shows the single one-loop contribution,
added by N further loops.
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approximation is justified only if the coupling parameter as well as the new parameter
α are sufficiently small, i.e.,

λ � 1 and α � 1 . (4.19)

However, the perturbative approach is not justified anymore for T & Tc because of
the relation Tc ∼ µ/

√
λ and the subsequent analysis must treat contributions at those

temperatures correctly. Therefore, higher loop-corrections from quadratically divergent
loops have to be considered. The daisy resummation accounts for all powers of α and
substitutes the masses by the thermal masses m̃2

X which are obtained from one-loop
resummed diagrams to leading order in temperature.

4.2.2 Thermal mass correction

Since the leading order in temperature is taken into consideration, the finite-temperature-
correction matrix Π̂ (T ) for the two-point function in the high-temperature approxi-
mation is given by the diagonal matrix1 [50]

Π̂ (T ) =
T 2

24

(
π1 + 12λ1 + 4λ3 + 2λ4 0

0 π2 + 12λ2 + 4λ3 + 2λ4

)
(4.20)

with the coefficients

π1
def
= 6y2t + 6y2b + 2y2τ +

9

2
g2W +

3

2
g′2 , π2

def
=

9

2
g2W +

3

2
g′2 . (4.21)

The matrix component Π̂11 corresponds to the SM Higgs doublet and contains fermion
couplings and the SM parameter λ1. Although each fermion contributes to π1, only
the three heaviest fermions are chosen here because of the relation yf ∝ mf/v. Since
H2 does not couple to fermions, these contribution are removed from Π̂22. The SM
parameter is replaced by λ2 since the latter only enters in interactions between non-SM
particles.

The squared Debye masses m̃2
X (h,H, T ) are then given by the eigenvalues of the

mass matrix which is corrected for field-dependence and contributions from daisy dia-
grams at finite temperatures, thus

m̃2
X (h,H, T ) = eigenvalues

[
M̂2

X (h,H) + Π̂ (T )
]
. (4.22)

1The matrix Π̂ (T ) is taken as diagonal because of the imposed Z2-symmetry and further suppres-
sion of off-diagonal entries by coupling parameters, as argued in Ref.[50].
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Following Ref.[65], only the longitudinal components are to be corrected for finite
temperatures in the EW gauge sector. The field- and temperature-dependent masses
of the SM gauge bosons are thus given by

m̃2
WL

(h,H, T ) =
1

4
g2W
(
h2 +H2

)
+ 2g2WT 2 (4.23)

m̃2
ZL,γL

(h,H, T ) =
1

8

(
g2W + g′2

) (
h2 +H2

)
+
(
g2W + g′2

)
T 2 ±∆ (4.24)

with the squared substitution

∆2 def
=

1

64

(
g2W + g′2

)2 (
h2 +H2 + 8T 2

)2 − g2Wg′2T 2
(
h2 +H2 + 4T 2

)
. (4.25)

4.2.3 Finite-temperature potential

According to Ref.[65], the leading-order temperature-dependent correction of the po-
tential in the Landau gauge reads

VT (h,H) =
T 4

2π2

( ∑
i=bosons

nB
i JB

[
m̂2

i (h,H)

T 2

]
+

∑
i=fermions

nF
i JF

[
m̂2

i (h,H)

T 2

])
(4.26)

with the number of degrees of freedom n
B(F)
i for bosons (fermions). The thermal func-

tions for the bosonic and fermionic terms are given by [65]

JB/F (x)
def
= ±

∫ ∞

0

dt t2 ln
[
1∓ exp

(
−
√
t2 + x

)]
, (4.27)

which can be – following Ref.[23] – expanded for |x| � 1, i.e., high temperatures, as

JB (x) = −π4

45
+

π2

12
x− π

6
x3/2 − x2

32
ln

x

16π2e−2γE+3/2

−2π7/2

∞∑
l=1

(−1)l
ζ (2l + 1)

(l + 1)!
Γ

(
l +

1

2

)( x

4π2

)l+2

(4.28)

JF (x) = −7π4

360
+

π2

24
x+

x2

32
ln

x

π2e−2γE+3/2

+
π7/2

4

∞∑
l=1

(−1)l
ζ (2l + 1)

(l + 1)!

(
1− 2−2l−1

)
Γ

(
l +

1

2

)( x

π2

)l+2

(4.29)
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with the Euler-Mascheroni constant γE ≈ 0.5772, the Riemann ζ-function and the Γ-
function. The thermal functions can be expressed as an infinite sum of modified Bessel
functions of the second kind K2 for |x| � 1, i.e., small temperatures, leading to

JB/F (x) = ∓ lim
N→∞

N∑
l=1

(±1)l x

l2
K2

(√
xl
)
. (4.30)

The results in Ref.[65] show that the expression in Eq.(4.30) with N ≥ 5 is an appro-
priate approximation for both integrals in Eq.(4.27) for a large range of x. With regard
to optimizing computation time, these thermal functions will be applied with N = 5

in this work.
There are different concepts to deal with finite-temperature corrections. Either all

masses are replaced by the temperature-dependent masses or these replacements are
restricted to terms containing masses to one particular power.

4.2.4 Choice of approach

Different approaches exist for treating higher-order corrections. The approach by Par-
wani [67] can be thought of as considering only thermal masses in the thermal potential
of Eq.(4.26). This standard approach in calculations at finite temperatures is referred
to as Full Dressing (FD) and prescribes to replace all field-dependent masses m̂i (h,H)

by field- and temperature-dependent masses m̃i (h,H, T ). These can be obtained by
calculating the corresponding self-energies in the high-temperature limit, in the exact
thermal functions [23, 66]. The thermal potential V FD

T hence reads

V FD
T (h,H, T ) =

T 4

2π2

∑
i

nB
i JB

[
m̃2

i (h,H, T )

T 2

]
+ nF

i JF

[
m̃2

i (h,H, T )

T 2

]
. (4.31)

This approach takes the daisy contributions to all orders into account, but the thermal-
mass correction, however, is truncated at one-loop level. To overcome this inconsis-
tency, it was proposed to consider the high-temperature approximation in Eq.(4.28).
As the field-dependent terms in the logarithms of the expansion and VCW cancel each
other out, cubic terms with respect to mass remain and give rise to2 [65]

V daisy
T (h,H, T ) = − T

12π

∑
i

ni

([
m̃2

i (h,H, T )
]3/2 − [m̂2

i (h,H)
]3/2)

. (4.32)

2The overall minus sign originates from the high-temperature approximation of the bosonic thermal
function JB (h,H, T ) in Eq.(4.28).
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The thermal functions JB,F do not depend on the thermal masses in this approach
which was proposed by Arnold and Espinosa [68]. However, since the high-temperature
approximation will not be justified throughout the entire analysis and the FD approach
leads – according to Ref.[66] – to reliable results in both temperature regimes, the FD
approach is maintained for the following analysis.

4.3 Evolution of the potential in the early universe

According to the standard picture of cosmology, the EW symmetry was restored at the
very beginning, when our universe was dense and hot. In other words: The potential
was symmetric with the global minimum at h = 0 in the one-field plane at each point
in space. During cooling, the global minimum could have evolved in different ways3

towards the present vacuum:

1) If the phase transition takes place smoothly, i.e., without any potential barrier
between two local minima, it is a second-order EWPhT.

2) In case of a potential barrier, two subclasses are possible:

a) If the critical temperature Tc, that corresponds to the temperature at which
the two local minima are degenerate, exceeds the corresponding field value
vc, the phase transition is said to be first-order.

b) If the critical temperature is, however, equal or smaller than vc, it is a strong
first-order EWPhT.

3) It is also possible that additional fields acquire a non-zero VEV and contribute
to the global minimum during the evolution, resulting in a multi-step EWPhT.

In the light of EWBG, the focus in the present study will be on the second and third
scenario. As illustrated in Fig.4.2 for a first-order EWPhT, the global minimum is
at the origin for T > Tc and differs from that for T < Tc. The EW symmetry gets
spontaneously broken when it is energetically favoured. At the nucleation temperature
Tn < Tc, bubbles where 〈h〉 6= 0 were created and expanded until the entire universe
was in the broken phase. At the current temperature T ≈ 2.73 K, the VEV is at the
experimentally determined value v ≈ 246 GeV.

3Note that the information about the number of steps is omitted both for a first- and for a second-
order one-step EWPhT in the current work for convenience. However, it is written in some cases for
stressing.
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Figure 4.2: Qualitative evolution of the potential V (in arbitrary units) for different
temperatures T . The two local minima are laterally degenerate at the critical temper-
ature Tc and the resulting potential barrier signals that this evolution corresponds to
a first-order EWPhT.

Since the SM Higgs mass mh = 125 GeV does not lead to a potential barrier, the
apparent baryon asymmetry cannot be explained by the SM without additional scalars
which couple to the SM Higgs boson [69]. Feasible extensions of the SM must lead to
a strong first-order EWPhT. A rule of thumb for a first-order EWPhT to be labelled
as strong can be found in, e.g., Ref.[23] and reads

ξ
def
=

vc
Tc

& 1 . (4.33)

This criterion is not fixed as the ratio depends on the chosen gauge, among others4.
According to Refs.[65, 70], both the numerator and the denominator can be significantly
gauge-dependent. Thus, other publications chose a smaller value for the lower limit for
uncertainty reasons, cf. Ref.[70]. In this work, the criterion ξ ≥ 1 is applied.

While the kind of EWPhT and its strength which includes the critical temperature
are especially crucial, further quantities can also be generally relevant for EWBG.
This includes the nucleation temperature which corresponds to the moment in time at
which a bubble of the broken phase is created, the bubble wall profile and ultimately
the nucleation rate. The latter is a measure for how fast further regions transit to the

4Further theoretical uncertainties regarding the criterion in Eq.(4.33) are given in Ref.[70].
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broken phase. In principle, also the sphaleron rate is necessary to compute but it is
suppressed if the criterion in Eq.(4.33) is fulfilled. The sphaleron process is discussed
in, e.g., Refs.[1, 23, 71, 72], and the basic principle is sketched in the following.

The anomalous global group UB+L with baryon and lepton number B and L, re-
spectively, gives rise to a periodic vacuum structure of the EW theory with degenerate
vacua. Different baryon numbers are assigned to the different vacua and transitions
between those potential minima result in changes ∆B. Two ways of those transitions
are: quantum tunnelling as an instanton process or surmounting the potential barrier
as a sphaleron process. Unlike the instanton which is assumed to be negligible due to
its small rate Γi ∼ e−4π/αW � 1, the sphaleron is relevant. In case of a sufficiently
fast sphaleron rate Γs, a baryon excess is erased – but such a washout must be avoided
in order to explain BAU. The sphaleron rate per unit time and unit volume in the
symmetric phase differs from that in the broken phase, i.e.,

Γs (〈h〉 = 0) ∝ (αWT )4 , Γs (〈h〉 6= 0) ∝ T 4e−Es/T (4.34)

with the sphaleron energy Es being proportional to the VEV 〈h〉 [23, 72]. Bubbles,
that correspond to those regions where the EW symmetry is broken, are created at
T = Tn and expand such that the EWPhT takes place due to the departure of thermal
equilibrium at the bubble walls. A net baryon asymmetry is achieved due to CP -
violating interactions at the walls as well as sufficiently slow Γs. The rate is controlled
by the EWPhT strength in Eq.(4.33). The process is depicted in Fig.4.3.

moving wall

transition

of q

bouncing

of q̄

〈h〉 6= 0

Γs ∼ e−〈h〉/T〈h〉 = 0

Figure 4.3: Schematic picture of bubble expansion. The number of baryons and
anti-baryons is equal outside the bubble, i.e., in the symmetric phase. CP -violating
interactions of the (anti-)quarks q (q̄) at the wall (here: bouncing for simplification)
and a sufficiently slow sphaleron rate Γs yield a baryon asymmetry inside the bubble.
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4.4 Description of numerical procedure

In the subsequent analysis5, the nature of EWPhT shall be investigated. The numerical
approaches, e.g., for scans over non-SM particle masses, are described in the following.

4.4.1 Algorithm for finding the global minimum

In order to assess if the vacuum is located correctly, it will be of utmost importance to
find the global minimum at zero temperature. The minimum is to be determined in
the two-field plane and this problem shall be solved numerically.

First, an arbitrary point (h0, H0) is chosen and its surrounding points, given by
the rectangle (h0 + a · δh,H0 + b · δH) with a, b ∈ {−1, 0,+1} as well as the step sizes
δh and δH, are determined. The potential depths of those points are compared to
each other and stored in a list which contains all previously investigated points. After
comparison, the point with the deepest potential (local minimum of these points) is
chosen to be the central point for the next step. The surrounding points of that
new central point are determined subsequently, checked for previous consideration6

and compared to each other again. This routine finds a local minimum by following
the smallest gradients. Once the minimum with certain scan step sizes δh, δH is
found, the step sizes are decreased in order to perform a more precise localisation
of the minimum. It is possible to find only one local minimum by considering one
initial point. However, it is likely that the potential possesses two7 minima. In order
to find both of them, at least two initial points are necessary which must be located
appropriately. Dislocation of the global minimum is suppressed by choosing four initial
points which are located near the corners of the considered (h,H)-plane. Finally, the
potential depths of the found local minima are compared to each other in order to
determine the global minimum. Thus, this algorithm also accounts for local minima
existing at H 6= 0. If the global minimum is at H 6= 0 or at h 6= v, the vacuum does
not correspond to the measured EW vacuum.

In Fig.4.4, the trajectories of the temporary local minima are visualized. They
start at the initial points which are located near the corners of the considered two-field
plane and end in local minima. Only the left-handed plot in the upper row shows the
true EW vacuum which is successfully identified by the four lines whereas the other

5The computations were carried out by using the software Wolfram Mathematica 10.3.1.0.
6If a point has already been considered, ignore it since it would have been chosen before as the

new temporary minimum if it was a minimum.
7Here, it is assumed that there cannot be more than two local minima in the potential of this

model.
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three plots demonstrate the possibility to miss a local – and maybe even the global –
minimum if not enough or inappropriate initial points are chosen.
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Figure 4.4: Local minima of potentials at zero temperature are determined for differ-
ent parameter sets. Dashed lines show the paths of the preliminary local minima and
green diamonds mark global minima. White spaces exceed the color scale deliberately
in order to obtain a higher resolution of the relevant field space.
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4.4.2 Algorithm for determining the kind of EWPhT

The nature of EWPhT, i.e., the kind of phase transition, is to be examined by the algo-
rithm described below. The masses mH , mA, mH± are taken as fixed in the description
but the algorithm can be repeated automatically for a mass scan.

First, the constraints for vacuum stability, perturbative unitarity and the Peskin-
Takeuchi parameters S and T are checked (the latter under the assumption of U = 0).
Afterwards, the algorithm determines the global minimum of the potential at zero
temperature for the mass point (mH ,mA) and compares the result to the correct EW
vacuum with 〈h〉 = 246 GeV and 〈H〉 = 0. In the case of a wrong EW vacuum at zero
temperature, the mass point is stored in a dedicated list.

If the mass point passes all checks and leads to the correct EW vacuum, the global
minima for temperatures 10 GeV ≤ T ≤ 140 GeV in steps of δT = 10 GeV are
computed8. If a two-step EWPhT is detected, i.e., 〈H〉 6= 0 at any temperature, the
mass point is stored in the corresponding list. One shall note that 〈H〉 = 0 holds for
very high temperatures.

If there is no two-step EWPhT, either a first- or a second-order one-step EWPhT
is present and the computation reduces to the one-field analysis since 〈H〉 = 0 ∀T .
The overarching goal of this step concerns the check for the critical temperature Tc.
Hence, it is looked for a local minimum near and far away from the origin and the
temperature is determined at which the potential levels are equal. The concept of
finding the correct temperature is based on Heron’s method. Initially, two temperatures
are chosen which lead to the boundary scenarios: The temperature Thigh = 180 GeV

yields the restored symmetry which is already broken at Tlow = 20 GeV. In addition,
the mean temperature Tmean

def
= (Thigh + Tlow) /2 is calculated. Subsequently, the local

minima are computed9 for all three temperatures, i.e., six local minima are found in
total. In the case that the separation of the two local minima at T = Tmean is larger
than 10 GeV, the potential levels of the local minima at this temperature are compared
to each other: If the potential level of the first local minimum (near the origin) is below
that of the second one, Thigh = Tmean is set for the next step; if the potential level of
the first local minimum is above that of the second one, the new lower temperature is
Tlow = Tmean. The algorithm is repeated until ∆T

def
= Thigh − Tlow ≤ 1 MeV. Finally,

8Despite the fact that this step is very time-consuming the temperature range must be large and
the scan step size relatively small in order to avoid missing a two-step EWPhT.

9The two local minima are computed numerically starting near (h = 10−5 GeV) and far away
(h = 250 GeV) from the origin. Due to this approach, the algorithm always delivers two values for
the local minima for each potential, regardless of the possibility of them forming the same minimum
or not.
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the algorithm gives three temperatures which are very close to each other and lead to
two (almost) degenerate local minima each. To check for a potential barrier, i.e., to
discriminate between first- and second order EWPhT, the potential level at the center
of the two local minima is computed. Due to numerical uncertainties, an arbitrary
threshold of ∆V = 100 GeV is introduced to consider only the clearly first-order
cases10. The potential levels between the two local minima are computed for each of
the three temperatures. If no potential barrier is found the mass point corresponds
to a second-order EWPhT. Otherwise, the EWPhT strength ξ is calculated for the
temperature which leads to the smallest difference between the potential levels of the
corresponding two local minima. The point is either labelled as a strong first-order
EWPhT if ξ ≥ 1 or as first-order otherwise.

4.4.3 Algorithm for finding the critical mass splitting

Bearing the method for examining the EWPhT type presented above in mind, many
mass spectra with the same mass mH can be studied for finding the critical mass
splitting ∆mc = mc

A −mH inducing a change of the EWPhT type. In the following,
the basic working principle of the algorithm will be described.

At first, the scan range in mA as well as the initial scan step size δmA are set.
Optimally, each step leads to a different kind of EWPhT. Subsequently, always two
neighbouring mass points with the mass splittings ∆m1,2 with respect to mH are
considered and a method, similar to the previous one, is applied to find the mass
splitting at which the EWPhT type changes. Concerning the mean mass splitting
∆mmean = (∆m1 +∆m2) /2, the kind of EWPhT is determined and used to reduce
the blind area between the two regions for the determined EWPhT types. For all
neighbouring mass points, this procedure is repeated six times in the analysis which
leads to a resolution of 150/26 GeV for each critical mass splitting.

4.5 Investigation of Electroweak Phase Transition

As discussed in Sec.4.2.4, the analysis in the current work will be performed by fol-
lowing the FD method. Testing some parameter points demonstrate that the two
methods for treating finite-temperature contributions lead to quantitative but also
qualitative differences. Parameter points for a first-order EWPhT in one approach can

10This approach may label some first-order EWPhTs as second-order EWPhTs. However, the
EWPhT strength ξ is negligibly small in those cases such that the threshold is justified.
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be second-order in the other one and the vacuum in the symmetric phase, i.e., for high
temperatures, is at H = 0 for the FD approach but at H 6= 0 in the second approach.

In the following, the objective of establishing the dependence of the EWPhT type
on the mass spectrum and coupling parameters will be pursued. According to the
results in Sec.3.5, the DM mass mH is constrained to 55 GeV . mH . 75 GeV in the
low-mass regime. This mass range will be the focus in this section. A first notion of
the dependence is given by Fig.4.5.
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Figure 4.5: Dependence of EWPhT type on masses mH,A,H± and parameters λ2, λ345.
The legend of the first plot is valid throughout. Note that mA 6= mH± in the last row.
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Every plot in Fig.4.5, in which the masses of the non-SM particles as well as the
coupling parameters are varied, shows the same order of EWPhT types. For sufficiently
small masses mA, a second-order one-step EWPhT is present, whereas a potential bar-
rier forms for larger masses when exceeding a critical – coupling-dependent – value; the
EWPhT becomes first-order one-step. Even larger mA lead to an enhanced transition
strength, yielding a strong first-order one-step EWPhT. Before leading to a wrong EW
vacuum, a two-step EWPhT exists in a relatively small mass band.

Changing the parameters in this regime does not lead to great qualitative differ-
ences, regardless of shifts of the critical masses and of resulting changes of the band
widths. Since the EWPhT types appear not to be very sensitive to the Higgs portal
coupling λ345 in this DM mass and coupling regime, I chose λ345 = 0.005 and degenerate
masses mA = mH± for the purpose of including the results from Sec.3.5 in the anal-
ysis. Upon taking them into account, parts of the parameter space get excluded (see
Fig.4.6). The grey-shaded spaces correspond to exclusions by the latest XENON1T
limits, searches for exotic SM Higgs decays and the measurement of the relic abun-
dance. In addition to the EWPhT types, the evolution of the EWPhT strength ξ and
the critical temperature Tc are shown for the one-step EWPhT scenario in this plot.
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Figure 4.6: Kinds of EWPhT depending on DM mass mH and the masses mA, mH±

of the other non-SM particles for fixed coupling parameters. The EWPhT strength ξ

and the critical temperature Tc are visualized by dashed and dotted lines, respectively.
Concerning the experimentally excluded parameter space (grey-shaded regions), four
BMPs are selected which are indicated by red dots.
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Due to the relation between the EWPhT strength ξ and the VEV 〈h〉c at the critical
temperature Tc for a one-step EWPhT, reading

ξ =
〈h〉c
Tc

≡ vc
Tc

, (4.35)

it is not surprising that the EWPhT strength increases for a decreasing critical temper-
ature and non-decreasing vc. The behaviour of the VEV vc at the critical temperature
for increasing mass splitting will be investigated later.

Possessing a map of EWPhT types for a wide range of non-SM masses enable a
choice of particular BMPs for the subsequent analysis. Four BMPs will be selected
from Fig.4.6 which have the following properties: Two of them shall lead to a strong
first-order one-step EWPhT with a EWPhT strength close to the threshold ξ = 1

and the remaining two shall correspond to a two-step EWPhT. The selected BMPs
are given in Tab.4.2. Besides the couplings λ2, λ345 and the mass spectrum, the table
shows the relic abundance Ωh2 as well as the cross section of the DM particle H for
interacting with a neutron or proton of the target nucleus. These BMPs agree both
with the measurement of the relic abundance in Eq.(2.38) within 3σ and the latest
limits from the XENON1T experiment (see Fig.3.6). As stated above, the XENON1T
limits restrict the parameter space for the Higgs portal coupling very tightly. Therefore,
the values are close to zero11. However, the free parameter λ2 is irrelevant for the tree-
level computations of the relic abundance and can therefore be chosen here to respect
constraints arising from vacuum stability and perturbativity.

Due to the observation of only slight changes in mass regions for the specific kinds of
EWPhT as a response to different Higgs portal couplings around zero, the four BMPs

11A vanishing Higgs portal coupling λ345 = 0 is not excluded and direct detection experiments like
XENON1T or PandaX are insensitive to this scenario.

Table 4.2: Benchmark points for the further investigation of the EWPhT. The relic
abundance Ωh2 is within the 3σ-interval of the currently best value Ωh2

best and the
cross sections σn, σp for scattering off a neutron or a proton, respectively, agree with
the latest XENON1T constraints.

BMP mH [GeV] mA,H± [GeV] λ345 Ωh2 σn [10−13pb] σp [10−13pb]

1 56 330 0.0037 0.1188 379.7 372.2
2 56 500 0.0037 0.1188 379.7 372.2
3 71 340 0.0020 0.1201 69.5 68.1
4 71 515 0.0020 0.1174 69.5 68.1
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in Tab.4.2 are assumed to have the desired properties mentioned above. However, this
assumption deserves an explicit examination and the result is provided in Fig.4.7. In
this figure, the dependence of the EWPhT strength ξ(j) on the mass difference ∆m is
shown. Unlike the first-order one-step EWPhT which consists of one transition with
the EWPhT strength ξ, two transitions take place in the first-order two-step EWPhT.
The definition of the EWPhT strength in Eq.(4.35) is a special case of the general
definition

ξj =

√
〈h〉2c + 〈H〉2c

Tj

, (4.36)

where j ∈ {1, 2} indicates the number of the step during the two-step EWPhT and the
VEVs 〈h〉c, 〈H〉c are associated with those at the appropriate transition temperature Tj.
The EWPhT strength ξ1 corresponds to the transition that occurs first, i.e., for higher
temperatures, and ξ2 to the later one. The order ξ1 < ξ2 is explained by ξj ∼ T−1

j .
From Fig.4.7, the kind of EWPhT as well as the strengths are extracted. The results
are listed in Tab.4.3.
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Figure 4.7: Dependence of the EWPhT strength ξ(j) on the mass splitting ∆m. A
second-order EWPhT is present for sufficiently small ∆m and for very large mass split-
tings, the EWPhT is either two-step (dashed) or the EW vacuum at zero temperature
is not correct. The red dots correspond to the four BMPs.
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A monotonous increase of the EWPhT strength is apparent for both sets of DM
mass mH and Higgs portal coupling λ345. The red dots indicate the four BMPs and cor-
respond to the desired kinds of EWPhT. The curves for the two parameter sets overlap
for small mass splittings ∆m ∼ 150 GeV but in line with increasing mass splittings the
difference between the EWPhT strengths of both parameter sets also inclines. This
figure also reflects the large region of mass splittings which lead to a (strong) first-order
EWPhT. For mass splittings ∆m & 440 GeV, a two-step EWPhT is present and for
∆m & 450 GeV, the EW vacuum at zero temperature does not match the measured
vacuum with 〈h〉 = v and 〈H〉 = 0 anymore.
As observed in Fig.4.6 for the one-step EWPhT, the EWPhT strength increases in the
light of decreasing critical temperature. Hence, the behaviour of the critical tempera-
ture is interesting to study for the two parameter sets from Fig.4.7 for different mass
splittings. The upper plot in Fig.4.8 shows that the transition temperature Tc for a
one-step EWPhT as well as T2 for the transition from 〈h〉 = 0 to 〈h〉 6= 0 decrease for
increasing mass splitting ∆m. The transition temperature T2 approaches zero which
signals the absence of the correct VEV 〈h〉 for sufficiently large mass splittings – the
truncation of the curves on the right-hand side are in fact due to a wrong EW vacuum
which shall be found later. However, the temperature T1 increases and the difference
of the transition temperatures in a two-step EWPhT becomes larger for increasing ∆m

which corresponds to a longer duration of the vacuum with 〈H〉 6= 0. Moreover, the
evolution of the VEVs 〈h〉c, 〈H〉c at the transition temperature is visualized in the
lower plot of that figure. The VEVs for a two-step EWPhT increase which is related to
increasing ’heights’ of the steps. Like the curves in Fig.4.7, the curves almost overlap
for small mass splittings ∆m ∼ 150 GeV. Yet, on contrary, the evolution of the curves
for larger mass splittings differ from each other. While the first parameter set leads
to higher transition temperatures throughout the ∆m-range, the VEVs behave in the
opposite way. The resulting enhancement of EWPhT strengths is explained by the
general definition in Eq.(4.36).

Table 4.3: Kinds and strengths of EWPhT for the BMPs with λ2 = 0.4.

mH [GeV] mA,H± [GeV] λ345 EWPhT type ξ1 ξ(2)

56 330 0.0037 one-step strong first-order − 1.08
56 500 0.0037 two-step 1.19 3.67
71 340 0.0020 one-step strong first-order − 1.10
71 515 0.0020 two-step 1.25 4.46
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Figure 4.8: Dependence of the transition temperature T and VEVs 〈h〉c, 〈H〉c at the
corresponding transition temperature on the mass splitting ∆m. For sufficiently small
mass splittings the EWPhT is of second order; for very large ∆m either a two-step
EWPhT (dashed) or a wrong vacuum is present.

The shapes of the potential for both BMPs leading to a strong first-order EWPhT
are shown in Fig.4.9. The potential barrier which is characteristic for a first-order
EWPhT is clearly visible between the two degenerate local minima and significantly
exceeds the arbitrary threshold which was described in Sec.4.4.2. The height of the
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Figure 4.9: Shape of potential Vnorm at critical temperature Tc for BMPs. The
potential is normalized such that the degenerate minima are at zero level. The EWPhTs
are clearly first-order. At the critical temperature, the minima at the origin and h > 0

are degenerate, visualized by the dashed line. The EWPhT strength ξ for both cases
is given in Tab.4.3.

potential barrier is indirectly relevant for the EWPhT strength because a higher po-
tential barrier results in a larger VEV vc of the second local minimum. For these two
BMPs, the critical field value vc slightly exceeds the critical temperature Tc which gives
rise to a strong first-order EWPhT, following the presumption that the simplification
of Eq.(4.33) holds.

Now, the EWPhT types of the BMPs from Tab.4.2 are known and they fulfil the
theoretical and experimental requirements to lead to a relic abundance that agrees
with the measured relic abundance within 3σ. Although the relic abundance does not
depend on λ2 at tree-level, the strength of the EWPhT may do, though. Hence, it
is interesting to investigate the λ2-dependence. For this, the BMPs for a two-step
EWPhT with λ2 = 0.4 are chosen and both EWPhT strengths ξ1,2 are computed for
different coupling parameters λ2. The results in Fig.4.10 show a clear tendency of the
EWPhT strengths with respect to the coupling parameter. As already seen in Fig.4.8
for one particular coupling parameter λ2, the clear difference between the two EWPhT
strengths is apparent here: The EW vacuum is wrong for sufficiently small λ2 and a
larger parameter leads to smaller EWPhT strengths. The strength ξ1 decreases slowly,
whereas ξ2 is very large for values of λ2 near the threshold to the wrong EW vacuum
and decreases quickly for small and slowly for large λ2. The order of EWPhT strengths
remains ξ2 > ξ1. For sufficiently large free parameters, the two-step EWPhT becomes
one-step, hence the truncation of the solid lines for large λ2.
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Figure 4.10: Dependence of EWPhT strength ξ(j) on λ2 for two BMPs. Solid lines
correspond to two-step phase transitions, whereas dotted lines are related to one-step
EWPhTs. The small discontinuities arising from changes from a two-step to a one-step
EWPhT are due to slightly different numerical resolutions. The dashed lines represent
the threshold for an EWPhT to be strong. The grey area on the left side, i.e., for small
coupling parameters, visualizes the range for λ2 that is forbidden due to a wrong EW
vacuum at zero temperature.

So far, I concluded on the dependence of the EWPhT strengths on the mass split-
ting ∆m and the coupling parameter λ2. Furthermore, the transition temperatures as
well as the corresponding VEVs were studied in the light of different mass spectra.

A further interesting aspect is the evolution of the VEVs 〈h〉, 〈H〉 during the evo-
lution of the universe. This is depicted in Fig.4.11 for the BMPs from Tab.4.2. Those
two BMPs with the same DM mass are compared to each other in one of the two
panels in the upper row. A first-order one-step EWPhT is represented by a horizontal
line at 〈H〉 = 0. While a dashed line indicates a non-continuous step in the evolution
which is characteristic for a first-order EWPhT, a solid line visualizes a smooth transi-
tion. Hence, after the abrupt change of the SM Higgs VEV from the symmetric origin
〈h〉 = 〈H〉 = 0 to 〈h〉 6= 0, the VEV evolves smoothly until it reaches the measured
value at 〈h〉 = 246 GeV. Since the two-step EWPhT is defined by a departure of 〈H〉
from zero, the evolution of the vacua is depicted by a triangle in the two-field plane.
These two BMPs for the two-step EWPhT show that the VEVs 〈h〉, 〈H〉 are not differ-
ent from zero at the same time and 〈H〉 departs from zero before 〈h〉 does. That is the
reason why the vacuum is inappropriate for sufficiently large mass splittings in Fig.4.8:
As long as 〈h〉 = 0 and T ≤ T1 hold, the vacuum is not correct, i.e., 〈H〉 6= 0, and
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Figure 4.11: Evolution of the VEVs 〈h〉, 〈H〉 for two benchmark parameter sets.
Dashed lines correspond to an abrupt departure of the field from zero while solid lines
are assigned to a smooth evolution. Different mass spectra are shown to demonstrate
the phenomenological differences.

if T2 approaches zero, the wrong vacuum remains until zero temperature is reached.
The evolution of the vacua for the EWPhT is also shown in the lower row that clearly
visualizes the two steps.

The analysis in this chapter results in several viable parameter sets which lead to
a strong first-order EWPhT with ξ(2) ≥ 1. This occurs in spite of the small coupling
λ345 arising from null results in direct detection experiments and searches for exotic
SM Higgs boson decays.
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Chapter 5

Discussion and Outlook

In this Master thesis, the conundrum of the nature of Dark Matter was connected to the
concept of EWPhT in the context of the IDM. First, interactions between DM and SM
particles were investigated by applying various up-to-date experimental results from,
e.g., direct detection experiments and searches for exotic SM Higgs decays. Viable
parameter spaces were found both in the low-mass and in the high-mass regime which
were analysed in depth with regard to the underlying interaction processes. In the
present work, I focussed on the low-mass regime 55 GeV . mH . 75 GeV where the
surviving parameter space |λ345| . 0.01 was identified. Second, this parameter space
was studied in the light of EWPhT. After discussing the FD approach by Parwani as
well as the method by Arnold and Espinosa for the finite-temperature potential, the
impact of the mass spectra – both with and without degenerate masses mA, mH± –
and of the coupling parameters λ2, λ345 on the EWPhT type was examined. Consid-
ering degenerate masses mA = mH± , I investigated the dependence of the EWPhT
types, the transition temperatures, e.g., the critical temperature Tc for a first-order
one-step EWPhT, and the EWPhT strengths on the mass spectrum both for the rel-
evant DM mass regime and for different parameter sets with particular properties. In
this context, a strong first-order one-step EWPhT was concluded to be present for
∆m & 270 GeV and a two-step EWPhT for ∆m & 440 GeV. The parameter space
for a two-step EWPhT is small compared to the one for a (strong) first-order EWPhT
while the vacuum is wrong for ∆m & 460 GeV. It was found that the kind of EWPhT
and its strength are sensitive both to the mass splitting and to the coupling parameter
λ2 in the considered parameter space. I explicitly studied the influence of ∆m and λ2

on the EWPhT strength.
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In order to improve the results for the cross section 〈σeffv〉 and for the relic abun-
dance Ωh2, higher orders in perturbation theory should be taken into account. It was
shown in Ref.[49] that more accurate results are obtained by accounting for one-loop
corrections since their contribution amounts ∼ 10% of tree-level contributions.

Higher orders in perturbation theory should also be considered in the effective
potential to correct for finite temperatures more accurately. Moreover, the standard
FD approach should be improved in order to treat the thermal loop-corrections more
accurately. For the purpose of accounting for large temperature ranges, the thermal
mass matrix Π̂ should be applied without any temperature approximation.

To gain an enhanced understanding of the potential and its evolution, the transition
to a strong first-order EWPhT as well as the switch from a one-step to a two-step
EWPhT could be investigated in future studies. It would be worthwhile to try to get
a better analytical control over the parts of the potential which are responsible for
the height of potential barrier. Thereby, the analytical relation between the EWPhT
strength or the location of the EW vacuum and the model parameters – the mass
splitting in particular – could be found. However, many obstacles are yet to overcome.
These include for instance analytical solutions of equations in which the variables of
interest are embedded in complicated expressions like the thermal functions JB,F.

Moreover, the electrically neutral, CP -odd scalar A could be considered as an
additional contributor to the EWPhT. This would require a potential analysis in three
fields which demands a higher numerical effort, though. Further improvements concern
computations of additional EWPhT quantities like the nucleation temperature or the
bubble wall profile. Furthermore, including the computation of the sphaleron energy
in the analysis would enable a more accurate labelling of the EWPhT types since the
criterion in Eq.(4.33) would be improved.

Experimental probes of the results presented in the second part of the thesis concern
searches for particular gravitational wave signatures arising from a first-order one-step
or two-step EWPhT. This aspect is left for future studies.

Despite the mentioned limitations and pathways for improvements, this Master the-
sis provides valuable insights in the Inert Doublet Model in the light of DM and of
EWPhT.
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Appendix A

Derivation of the kinetic term in
the Lagrangian

The SM Higgs doublet H1 and the inert doublet H2 read, respectively,

H1 =
1√
2

(
0

v + h

)
, H2 =

(
H+

(H + iA) /
√
2

)
. (A.1)

The covariant derivative is given by

Dµ = ∂µ +
i

2
gWσjW

(j)
µ +

i

2
g′Y Bµ (A.2a)

=

∂µ +
i
2
gWW

(3)
µ + i

2
g′Y Bµ

i
2
gW

(
W

(1)
µ − iW

(2)
µ

)
i
2
gW

(
W

(1)
µ + iW

(2)
µ

)
∂µ − i

2
gWW

(3)
µ + i

2
g′Y Bµ

 . (A.3a)

The fields W
(3)
µ and Bµ mix to the Zµ field and the photon field Aµ, according to(

Bµ

W
(3)
µ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
Aµ

Zµ

)
. (A.4)

Using this relation, the weak hypercharge Y = 1 for H2 and the relation for the physical
W±

µ fields

W±
µ =

1√
2

(
W (1)

µ ∓W (2)
µ

)
, (A.5)
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the covariant derivative reads with gW sin θW = g′ cos θW = gZ sin θW cos θW = e

Dµ =

(
∂µ + ieAµ + i e

2
(cot θW − tan θW )Zµ igW√

2
W+

µ

igW√
2
W−

µ ∂µ − i e
2
(cot θW + tan θW )Zµ

)
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∂µ + ieAµ + igZ

1−2 sin2 θW
2

Zµ igW√
2
W+

µ

igW√
2
W−

µ ∂µ − igZ
2
Zµ

)
. (A.6)

Note that this expression for the covariant derivative is only valid if it is applied to
an SU (2) doublet with weak hypercharge Y = 1. The second Higgs doublet H2 obeys
these conditions, leading to

DµH2 =

(
∂µH

+ + ieH+Aµ + igZ
1−2 sin2 θW

2
H+Zµ + igW

2
W+

µ (H + iA)

igW√
2
W−

µ H+ + 1√
2
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2
√
2
Zµ (H + iA)

)
(A.7)

and its complex-conjugated and transposed

(DµH2)
† =

(
∂µH

− − ieH−Aµ − igZ
1−2 sin2 θW

2
H−Zµ − igW

2
W−

µ (H − iA)
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2
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2
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2
√
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)T

. (A.8)
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Thus, the kinetic term is given by

(DµH2)
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−µ
(gWgZ

2
sin2 θWH+H − i

gWgZ
2

sin2 θWH+A
)

+W+
µ W−µ

(
g2W
2
H+H− +

g2W
4
H2 +

g2W
4
A2

)
. (A.9)
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Appendix B

Derivation of λi and vacuum
stability constraints

B.1 Derivation of expressions for λi

The masses being free parameters read

m2
h = 2λ1v

2 , m2
H± = µ2

2 +
1

2
λ3v

2 , m2
H = µ2

2 +
1

2
λ345v

2 , m2
A = µ2

2 +
1

2
λ̄345v

2 . (B.1)

Consequently, the expressions for λi can be derived:

λ1=
m2

h

2v2
(B.2)

λ2 is a free parameter besides λ345 and the masses mj (B.3)

λ3=
2
(
m2

H± − µ2
2

)
v2

=
2
(
m2

H± −m2
H + 1

2
λ345v

2
)

v2
=

2
(
m2

H± −m2
H

)
v2

+ λ345 (B.4)

λ4=
2 (m2

A − µ2
2)

v2
− λ3 + λ5 =

m2
A −m2

H − 2
(
m2

H± −m2
H

)
v2

=
m2

A +m2
H − 2m2

H±

v2
(B.5)

λ5= λ345 − λ3 − λ4 = −
2
(
m2

H± −m2
H

)
+m2

A +m2
H − 2m2

H±

v2
=

m2
H −m2

A

v2
(B.6)

107
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CONSTRAINTS

B.2 Derivation of vacuum stability constraints

The first two constraints λ1, λ2 > 0 are either given by the measured values of the SM
Higgs mass mh and the SM Higgs VEV v or can be fulfilled by the proper choice of λ2.

The remaining two constraints λ3, λ3 + λ4 − |λ5| > −2
√
λ1λ2 need to be calculated

for the Higgs portal coupling λ345.

2
m2

H± −m2
H

v2
+ λ345 > −2

√
m2

h

2v2
λ2

⇔ λ345 > −mh

v

√
2λ2 − 2

m2
H± −m2

H

v2
(B.7)

λ345 +
m2

A −m2
H − |m2

H −m2
A|

v2
> −2

√
m2

h

2v2
λ2

⇔ λ345 > −mh

v

√
2λ2 −

m2
A −m2

H − |m2
H −m2

A|
v2

(B.8)
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Appendix C

Limits from XENON1T experiment

The data was extracted with the online application1 WebPlotDigitizer (see Fig.C.1) and
compatible with the limits from Ref.[36]. Unlike the spin-independent cross sections σSI

for DM masses mH . 100 GeV, the limits for the cross section increase linearly. Hence,
a linear interpolation appears to be a valid approximation in that mass regime. The

1URL: automeris.io/WebPlotDigitizer (accessed: April 8, 2020)

Figure C.1: Selected points for replicating the direct detection cross section limits
from the XENON1T experiment. The red dots apparently reflect the shape of the
curve. Limits from the Dark Matter Limit Plotter v5.12 by SLAC.
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data points that were extracted via this approach are given in Tab.C.1.

Table C.1: Extracted limits on the spin-independent DM-nucleus cross section σSI

from the XENON1T experiment for DM masses mH .

mH [GeV] σSI [10−11pb] mH [GeV] σSI [10−11pb] mH [GeV] σSI [10−11pb]

6.01576 2336.22 27.8118 4.3119 171.591 14.8619
6.16678 1844.67 29.2138 4.13766 180.241 15.5459
6.33187 1480.98 30.6864 4.07989 189.327 16.2614
6.50402 1170.29 32.2333 4.14931 198.87 17.0577
6.68085 926.366 33.8582 4.22388 208.895 17.893
6.86528 734.03 35.5649 4.30382 219.426 18.699
7.04907 581.946 37.3577 4.37296 230.487 19.67
7.24073 461.841 39.2409 4.44737 242.105 20.5946
7.43759 365.58 41.219 4.57422 254.31 21.5223
7.63981 290.379 43.2968 4.73567 267.129 22.5762
7.84752 229.856 45.4794 4.91661 280.595 23.7708
8.097 183.991 47.772 5.08537 294.74 24.8881

8.44832 142.363 50.1801 5.26485 309.597 26.1069
8.75596 112.449 52.7096 5.47115 325.204 27.3854
9.09511 89.1899 55.3667 5.69085 341.597 28.7265
9.48974 70.8108 58.1577 5.9083 358.817 30.0768
9.92364 56.3803 61.0894 6.11109 376.904 31.5497
10.4006 46.3792 64.1688 6.3446 395.904 33.0947
10.9249 38.5946 67.4035 6.58702 415.861 34.6179
11.4756 32.0565 70.8013 6.85154 436.824 36.3813
12.0541 26.6509 74.3703 7.14006 458.844 38.2704
12.6617 22.1569 78.1193 7.44073 481.974 40.1445

13.3 18.4034 82.0572 7.74679 506.27 42.1499
13.9704 15.3145 86.1937 8.06544 531.791 44.214
14.6747 12.732 90.5386 8.40507 558.598 46.3792
15.4144 10.9381 95.1026 8.7508 586.756 48.7417
16.1914 9.65597 99.8966 9.11075 616.334 51.1766
17.0076 8.5241 104.932 9.51222 647.403 53.6325
17.865 7.5249 110.222 9.9407 680.038 56.4173
18.7655 6.64283 115.778 10.3885 714.319 59.1801
19.7115 5.87516 121.614 10.8666 750.327 62.0782
20.7051 5.4917 127.745 11.3667 788.15 65.2404
21.7489 5.27473 134.184 11.8787 827.88 68.3712
22.8452 5.06634 140.949 12.3906 869.613 71.7194
23.9968 4.87074 148.054 12.9608 913.45 75.4434
25.2065 4.67392 155.517 13.5828 959.496 79.0638
26.4771 4.48505 163.356 14.208 998.891 82.3159
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Appendix D

Derivation of matrix elements and
cross sections

D.1 Derivation of matrix elements M for two final
SM particles

This chapter deals with the calculation of the matrix elements M for two SM parti-
cles in the final state. If the center-of-mass energy is not high enough to lead to two
outgoing particles, at least one of these participates as an off-shell particle. The final
state consists in such a case of three or more particles.

In this appendix, those (co-)annihilation channels are considered which are relevant
for Figs.3.2 and 3.11:

1. HH → V V̄ with V = W−, Z 2. HH → hh

3. HH → h → ff̄ 4. AH → Z → qq̄

5. H+H → W+ → uid̄j 6. H+H → γW+

The Feynman rules for the SM that will be used in the following calculations can
be found in Refs.[10, 73], for instance.

First, the annihilation of two DM particles H into a pair of vector bosons V = W−, Z is
considered. The initial DM particles H posses the four-momenta p1, p2 and the outgo-
ing W± bosons have the polarization vectors ε∗µ (k1, λ1) ≡ ε∗µ (λ1), ε∗µ (k2, λ2) ≡ ε∗µ (λ2)

with the outgoing four-momenta k1, k2.
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APPENDIX D. DERIVATION OF MATRIX ELEMENTS AND CROSS SECTIONS

1a. HH → V V̄ (contact interaction)

The contact interaction is depicted in Fig.D.1. The Feynman rule for the vertex reads
ig2V /2 with gV ∈ {gW , gZ}. Thus, the matrix element MV

ci for outgoing V bosons reads

iMV
ci = i

g2V
2
ε∗µ (λ1) ε

∗µ (λ2) = 2i
m2

V

v2
ε∗µ (λ1) ε

∗µ (λ2) , (D.1)

where the relation gV v = 2mV was applied.

1b. HH → V V̄ (s-channel)

The s-channel is mediated by the SM Higgs h and its propagator contributes via
i/ (s−m2

h + imhΓh) with s = (p1 + p2)
2, the mass mh and the decay width Γh to the

matrix element. The Feynman rules for the vertices read −iλ345v and imV gV with
gV ∈ {gW , gZ}. The process is illustrated in Fig.D.2 and the corresponding matrix
element MV

s is given by

iMV
s = i

λ345mV gV v

s−m2
h + imhΓh

ε∗µ (λ1) ε
∗µ (λ2) = 2i

λ345m
2
V

s−m2
h + imhΓh

ε∗µ (λ1) ε
∗µ (λ2) . (D.2)

1c. HH → V V̄ (t-channel)

The t-channel interaction is mediated by a charged Higgs H± in case of final W±

bosons or by the CP -odd scalar A for final Z bosons (see Fig.D.3). In the general
formula, the interaction is accompanied by a Z2-odd scalar X which contributes via
i/ (t−m2

X + imXΓX) with t = (p1 − k1)
2, the mass mX , the decay width ΓX to the

matrix element and possesses the four-momentum t̃µ = kµ
1 − pµ1 = pµ2 − kµ

2 . The

H W+

H W−

p1

p2

k1

ε∗ (λ1)

k2

ε∗ (λ2)

H Z

H Z

p1

p2

k1

ε∗ (λ1)

k2

ε∗ (λ2)

Figure D.1: Annihilation of a pair of the DM particle H and subsequent creation of
an EW gauge boson pair via the contact-interaction.

112



APPENDIX D. DERIVATION OF MATRIX ELEMENTS AND CROSS SECTIONS

p1

p2
s̃

h

k1

ε∗ (λ1)

k2

ε∗ (λ2)

H

H

W+

W−

p1

p2
s̃

h

k1

ε∗ (λ1)

k2

ε∗ (λ2)

H

H

Z

Z

Figure D.2: Annihilation of a pair of the DM particle H and subsequent creation of
an EW gauge boson pair via the s-channel.

vertices yield derivative couplings between the incoming DM particle and the mediator.
Considering the momentum flow in Fig.D.3, the factors for the upper and lower vertex
read iguV

(
t̃− p1

)
µ
/2 and iglV

(
t̃+ p2

)
µ
/2 with guV ∈ {gW , igZ} and glV ∈ {gW ,−igZ},

respectively. With kν
1ε

∗
ν (λ1) = kν

2ε
∗
ν (λ2) = 0, the matrix element MV

t is given by

iMV
t = i

guV
2
ε∗µ (λ1)

(
t̃− p1

)
µ︸ ︷︷ ︸

=(k1−2p1)µ

i

t−m2
X + imXΓX

i
glV
2
ε∗ν (λ2)

(
t̃+ p2

)
ν︸ ︷︷ ︸

=(2p2−k2)ν

= −i
guV g

l
V

4 (t−m2
X + imXΓX)

(k1 − 2p1)µ (2p2 − k2)ν ε
∗µ (λ1) ε

∗ν (λ2)

= 4i
m2

V

(t−m2
X + imXΓX) v2

p1µp2νε
∗µ (λ1) ε

∗ν (λ2) . (D.3)

p1 k1

t̃ H+

p2 k2

H W+

H W−

p1 k1

t̃ A

p2 k2

H Z

H Z

p1

A

p2

H Z

H Z

k2
k1

Figure D.3: Conversion of a pair of the DM particle H to an EW gauge boson pair
via the t- and u-channel. For illustration purpose, the latter is shown for final Z bosons
only.
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1d. HH → V V̄ (u-channel)

The u-channel interactions for final EW gauge bosons are depicted in Fig.D.3 (and also
in Fig.3.1). The interaction with final Z bosons is mediated by the CP -odd Higgs A and
final W± bosons require an electrically charged H±. For sake of generality, the mediator
is called X again. The corresponding propagator contributes via i/ (u−m2

X + imXΓX)

with u = (p1 − k2)
2, the mass mX , the decay width ΓX to the matrix element. The

mediator possesses the four-momentum ũµ = kµ
1 − pµ2 = pµ1 − kµ

2 . The matrix element
Mu is given by

iMV
u = i

guV
2
ε∗µ (λ1) (ũ+ p1)µ︸ ︷︷ ︸

=(k1−2p1)µ

i

u−m2
X + imXΓX

i
glV
2
ε∗ν (λ2) (p2 − ũ)ν︸ ︷︷ ︸

=(2p2−k2)ν

= −i
guV g

l
V

4 (u−m2
X + imXΓX)

(k1 − 2p1)µ (2p2 − k2)ν ε
∗µ (λ1) ε

∗ν (λ2)

= 4i
m2

V

(u−m2
X + imXΓX) v2

p1µp2νε
∗µ (λ1) ε

∗ν (λ2) (D.4)

since kν
1ε

∗
ν (λ1) = kν

2ε
∗
ν (λ2) = 0.

2a. HH → hh (contact interaction)

The incoming pair of two DM particles HH annihilate and create a pair of two SM
Higgs bosons hh, as depicted in Fig.D.4. The vertex factor is −iλ345. Hence, the matrix
element simply reads

iMh
ci = −iλ345 . (D.5)

2b. HH → h → hh (s-channel)

Considering Fig.D.4, the incoming DM particles with the squared center-of-mass energy
s = (p1 + p2)

2 couple to the mediating SM Higgs h with the strength λ345v. The vertex
factor involves the coupling of the mediator to the two final SM Higgs bosons and is
given by −3im2

h/v. Hence, the matrix element reads

iMh
s = −iλ345v

i

s−m2
h + imhΓh

(
−3i

m2
h

v

)
= −3i

λ345m
2
h

s−m2
h + imhΓh

. (D.6)
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H h

H h

p1

p2

k1

k2

p1

p2
s̃

h

k1

k2

H

H

h

h

p1 k1

t̃ H

p2 k2

H h

H h

p1

H

p2

H h

H h

k2
k1

Figure D.4: Feynman diagrams for HH → hh.

2c. HH → hh (t-channel)

The incoming DM particles posses the momenta pi and the outgoing SM bosons the
momenta ki (see Fig.D.4). With the vertex factor −iλ345v and the squared momentum
t = (p1 − k1)

2 of the mediating H, the matrix element with ΓH = 0 reads

iMh
t = −iλ345v

i

t−m2
H

(−i)λ345v = −i
(λ345v)

2

t−m2
H

. (D.7)

2d. HH → hh (u-channel)

As in the t-channel case, the incoming and outgoing particles posses the momenta pi

and ki, respectively (see Fig.D.4). With the vertex factor −iλ345v and the squared
momentum u = (p1 − k2)

2 of the mediator, the matrix element can be written as

iMh
u = −iλ345v

i

u−m2
H

(−i)λ345v = −i
(λ345v)

2

u−m2
H

. (D.8)

115



APPENDIX D. DERIVATION OF MATRIX ELEMENTS AND CROSS SECTIONS

3. HH → ff̄ (s-channel)

Here, the s-channel with an HH-pair in the initial state and a fermion-anti-fermion
pair ff̄ in the final state with the SM Higgs boson h as the mediator is considered.
The initial particles posses the momenta p1, p2 and the final particles the momenta k1,
k2. The matrix element reads

iMf
s =

λ345v

s−m2
h + imhΓh

(
−i

mf

v

)
ū (k1) v (k2) =

−iλ345mf

s−m2
h + imhΓh

ū (k1) v (k2) . (D.9)

Summing over the spin states of the final fermions results in

∑
spin

∣∣Mf
s

∣∣2 = λ2
345m

2
f

(s−m2
h)

2
+m2

hΓ
2
h

∑
spin

|ū (k1) v (k2)|2

=
λ2
345m

2
f

(s−m2
h)

2
+m2

hΓ
2
h

Tr
[
( /k1 +mf )

(
/k2 −mf̄

)]︸ ︷︷ ︸
=4

(
k1µk

µ
2−m2

f

) . (D.10)

Using mf̄ = mf and the relation k1µk
µ
2 = s/2−m2

f , the result reads

∑
spin

∣∣Mf
s

∣∣2 = 2λ2
345m

2
f

s− 4m2
f

(s−m2
h)

2
+m2

hΓ
2
h

. (D.11)

4. AH → Z → qq̄ (s-channel)

The s-channel for initial particles H, A with the momenta p1, p2 and final (anti-)quarks
q, q̄ with k1, k2 is depicted in Fig.D.5. The process is mediated by a Z boson. The
derivative coupling of A,H to the Z boson is gZ (pµ1 − pµ2) /2, and the SM coupling is

p1

p2
s̃

Z

k1

k2

H

A

q

q̄

p1

p2
s̃

W+

k1

k2

H

H+

q

q̄′

Figure D.5: Feynman diagrams for co-annihilations with final quarks.
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−igZγ
ν (cV − cAγ

5) /2. Hence, the matrix element Mf
s is given by

iMq
s =

gZ
2

(p1 − p2)
µ (−i)

gµν −
(p1+p2)µ(p1+p2)ν

m2
Z

s−m2
Z + imZΓZ

(−igZ) γ
ν cV − cAγ

5

2
ū (k1) v (k2)

=
g2Z [(p1 − p2)ν m

2
Z − (m2

H −m2
A) (p1 + p2)ν ]

4m2
Z (s−m2

Z + imZΓZ)
γν
(
cAγ

5 − cV
)
ū (k1) v (k2) . (D.12)

5. H+H → W+ → uid̄j (s-channel)

Here, the s-channel with the incoming particles H, H+ with the momenta p1, p2 and
the outgoing up-type and down-type quarks ui and d̄j, respectively, which have the
momenta k1, k2, is considered. The derivative coupling of H,H+ to the mediator W+

is −igW (p1 − p2)µ /2 and the SM coupling reads −igWγν (1− γ5)Vji/
√
8 with the ji-th

component Vji of the CKM matrix. The matrix element Mf
s is given by

iMud̄
s = −i

gW
2

(p1 − p2)µ (−i)
gµν − (p1+p2)

µ(p1+p2)
ν

m2
W

s−m2
W + imWΓW

(
−i

gW√
8

)
γν
(
1− γ5

)
Vjiū (k1) v (k2)

=
ig2W [(p1 − p2)

ν m2
W − (m2

H −m2
A) (p1 + p2)

ν ]√
32m2

W (s−m2
W + imWΓW )

γν
(
1− γ5

)
Vjiū (k1) v (k2) .(D.13)

6a. H+H → γW+ (contact interaction)

The contact interaction with the initial particles H+ and H which posses the momenta
p1 and p2, respectively, is depicted in Fig.D.6. The outgoing particles W+ and γ posses
the polarization vectors ε∗µ (k1, λ1) and ε∗µ (k2, λ2), respectively. The vertex factor is
iegW/2, resulting in

iMγW
ci = i

egW
2

ε∗µ (λ1) ε
µ∗ (λ2) = i

mW e

v
ε∗µ (λ1) ε

µ∗ (λ2) . (D.14)

6b. H+H → γW+ (s-channel)

The incoming scalar particles H, H+ posses the momenta p1, p2, and the outgoing
particles W+,γ the momenta k1, k2 and polarizations λ1, λ2, respectively. The first
vertex factor reads igW (p2 − p1)µ /2 and the second one can be derived from Ref.[73].
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The matrix element reads

iMγW
s = i

gW
2

(p2 − p1)µ (−i)
gµν − (p1+p2)

µ(p1+p2)
ν

m2
W

s−m2
W + imWΓW

ieε∗σ (λ1) ε
∗λ (λ2)

· [−gσν (k1 + s̃)λ + gνλ (s̃+ k2)σ + gλσ (k1 − k2)ν ]

= i
mW e

v
(p2 − p1)µ

gµν − (p1+p2)
µ(p1+p2)

ν

m2
W

s−m2
W + imWΓW

ε∗σ (λ1) ε
∗λ (λ2)

· [−gσν (k1 + s̃)λ + gνλ (s̃+ k2)σ + gλσ (k1 − k2)ν ] . (D.15)

6c. H+H → γW+ (t-channel)

The incoming scalars H and H+ posses the momenta p1 and p2, the outgoing vectors
W+ and γ the momenta k1 and k2, respectively. The mediating H+ posses the mo-
mentum t̃

def
= k1 − p1 = p2 − k2. The vertex factor of the vertex including the W+

reads −gW
(
t̃− p1

)
/2, the other one, including the photon γ, reads e

(
t̃+ p2

)
. Thus,

the matrix element reads

iMγW
t = −i

gW
2

(
t̃− p1

)
µ
ε∗µ (λ1)

i

t−m2
H± + imH±ΓH±

ie
(
t̃+ p2

)
ν
ε∗ν (λ2)

=
igW e

2
(
t−m2

H± + imH±ΓH±
) (k1 − 2p1)µ (2p2 − k2)ν ε

∗µ (λ1) ε
∗ν (λ2)

=
−4imW e(

t−m2
H± + imH±ΓH±

)
v
p1µp2νε

∗µ (λ1) ε
∗ν (λ2) . (D.16)

H W+

H+ γ

p1

p2

k1

k2

p1

p2
s̃

W+

k1

k2

H

H+

W+

γ

p1 k1

t̃ H+

p2 k2

H W+

H+ γ

Figure D.6: Conversion of a pair of the DM particle H to two EW gauge bosons via
contact interaction, s- and t-channel.
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Sum of the matrix elements with final vector bosons
W±, Z

Assuming negligible contributions from t- and u-channels, the sum of the matrix ele-
ments for final vector bosons V , V̄ reads

iMV
ci+s = i

(
MV

ci +MV
s

)
= 2i

m2
V

v2

(
1 +

λ345v
2

s−m2
h + imhΓh

)
ε∗µ (λ1) ε

µ∗ (λ2) (D.17)

with gV ∈ {gW , gZ}. Squaring and summing over the possible final polarization states
give rise to the term∑

λ1,λ2

∣∣ε∗µ (λ1) ε
µ∗ (λ2)

∣∣2 =∑
λ1

ε∗µ (k1, λ1) ε
ν (k1, λ1)︸ ︷︷ ︸

=−gµν+
k
µ
1 kν1
m2

V

∑
λ2

εν∗ (k2, λ2) ε
µ (k2, λ2)︸ ︷︷ ︸

=−gµν+
k
µ
2 kν2
m2

V

= 2 +
(k1 · k2)

2

m4
V

= 3− s

m2
V

+
s2

4m4
V

, (D.18)

where energy-momentum conservation as s = (p1 + p2)
2 = (k1 + k2)

2 for the Mandel-
stam variable s was used. Thus, it follows

∑
λ1,λ2

∣∣MV
ci+s

∣∣2 = 4
m4

V

v4

∣∣∣∣1 + λ345v
2

s−m2
h + imhΓh

∣∣∣∣2(3− s

m2
V

+
s2

4m4
V

)

=
[s−m2

h + λ345v
2]

2
+m2

hΓ
2
h[

(s−m2
h)

2
+m2

hΓ
2
h

]
v4

(
12m4

V − 4sm2
V + s2

)
. (D.19)

Since it is possible to have two identical particles in the final states, the result must be
divided by two in case of final Z bosons.
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D.2 Derivation of the cross section 〈σeffv〉 for two
final SM particles

Here, the formula for the cross section of the process HH̄ → ff̄ with the final SM
particles f , f̄ is to be derived by following Ref.[1]. For clarity, the two initial scalars
are distinguished by denoting one of them as H̄. The final state can consist of two SM
vector bosons as well as of two fermions. For this, the general equation

〈σeffv〉ff̄ann =
(2π)4

(neq)2

∫ ∏
i

dΠi δ
(4)
(
pH + pH̄ − pf − pf̄

)
|M|2 e−(EH+EH̄)/T (D.20)

with the phase space differential

dΠi =
d3pi

(2π)3 2Ei

(D.21)

for the incoming and outgoing particles is applied. The denominator of 〈σeffv〉 contains
the particle number density in thermal equilibrium which is assumed to follow the
Maxwell-Boltzmann distribution. This assumption is valid in the case of T � mi. For
four non-SM particles, the number density is given by

neq =
4∑

i=1

neq
i =

4∑
i=1

gi

(2π)3

∫
d3pi e

−Ei/T (D.22)

with the statistical weights gi. The integral can be evaluated by using spherical coor-
dinates, i.e.,∫

d3pi e
−Ei/T = 4π

∫ ∞

0

d |pi| p2
i e−Ei/T = 4π

∫ ∞

mi

dEi Ei

√
E2

i −m2
i e−xEi/mi (D.23)

with the parameter xi = mi/T and the energy E2
i = m2

i+p2
i . Substituting the exponent

Ei/mi = cosh t simplifies the integral to∫
d3pi e

−Ei/T = 4πm3
i

∫ ∞

0

dt sinh2 t cosh t︸ ︷︷ ︸
= sinh 2t

2
sinh t

e−xi cosh t

= 2πm3
i

∫ ∞

0

dt sinh 2t sinh t e−xi cosh t︸ ︷︷ ︸
= 2

xi
K2(xi)

= 4πTm2
iK2 (xi) . (D.24)
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Thus, the particle number density in thermal equilibrium reads

neq =
4∑

i=1

neq
i =

T

2π2

4∑
i=1

gim
2
iK2 (xi) . (D.25)

At this point, the denominator of Eq.(D.20) is determined. The numerator can be
split up into one phase-space integral of the initial particles H, H̄ and one phase-space
integral of the final ones f , f̄ . Beginning with the latter demands the evaluation of

Iff̄
def
=

∫
d3pf

(2π)3 2Ef

d3pf̄

(2π)3 2Ef̄

(2π)4 δ(4)
(
pH + pH̄ − pf − pf̄

)
. (D.26)

The matrix element |M|2 can be written in terms of the squared center-of-mass energy
s, such that it can be taken into account later. Assuming mf = mf̄ and using spherical
coordinates in the center-of-mass frame yield

Iff̄ =
1

16π2

∫
d3pf d3pf̄
EfEf̄

δ(1)
(
EH + EH̄ − Ef − Ef̄

)
δ(3)

(
pH + pH̄ − pf − pf̄

)
c.o.m.
=

1

16π2

∫
d3pf d3pf̄
EfEf̄

δ(1)
(√

s− Ef − Ef̄

)
δ(3)

(
pf + pf̄

)
=

1

4π

∫
d |pf |

m2
f + p2

f

p2
f δ(1)

(√
s− 2

√
m2

f + p2
f

)
. (D.27)

According to Ref.[74], the Dirac delta function can be written as

δ (f (x)) =

∣∣∣∣df (x)

dx

∣∣∣∣−1

x=x0

δ (x− x0) (D.28)

with x0 as the root of f (x) and the integral results in

Iff̄ =
1

4π

∫
d |pf |

m2
f + p2

f

p2
f

1

2

√
1− 4m2

f

s

δ(1)
(
|pf | −

√
s

4
−m2

f

)

=
1

8π

√
1−

4m2
f

s
. (D.29)

One shall note that this formula only holds in the case
√
s ≥ 2mf to ensure that the

outgoing SM particles f , f̄ are on-shell. Be aware of the additional factor 1/n! in case
of n identical particles in the final state.
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Next, the second part of the integral will be computed. With the result above, the
integral IHH̄ reads

IHH̄
def
=

1

8π

∫
d3pH

(2π)3 2EH

d3pH̄

(2π)3 2EH̄

e−(EH+EH̄)/T

√
1−

4m2
f

s
|M|2 . (D.30)

The next step is to reduce the dimension of this integral from six to only one by choosing
proper integration variables, following the procedure in Ref.[75]. First, the current
differential is re-written by introducing the angle ϑ between the spatial momenta of
the particles H and H̄, inducing

d3pH d3pH̄ = 4π |pH |EH dEH 4π |pH̄ |EH̄ dEH̄

1

2
d cosϑ . (D.31)

Furthermore, the dimensionality of the integral can the be reduced by introducing new
integration variables which read

E+
def
= EH + EH̄ (D.32a)

E−
def
= EH − EH̄ (D.32b)

Mandelstam s
def
= (pH + pH̄)

2 = m2
H +m2

H̄ + 2EHEH̄ − 2 |pH | |pH̄ | cosϑ (D.32c)

and lead to the replacement

d3pH

(2π)3 2EH

d3pH̄

(2π)3 2EH̄

=
1

(2π)4
dE+ dE− ds

8
. (D.33)

Using this, the integral is now reduced to three dimensions. The former integration
regions

EH ≥ mH (D.34a)

EH̄ ≥ mH̄ (D.34b)

|cosϑ| ≤ 1 (D.34c)
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change for the new integration variables and thus become

s ≥ (mH +mH̄)
2 = 4m2

H (D.35a)

E+ ≥
√
s = 2mH (D.35b)

∣∣∣∣E− − E+

m2
H̄
−m2

H

s

∣∣∣∣︸ ︷︷ ︸
=|E−|

≤ 1√
s

√
s− (mH +mH̄)

2
√
s− (mH −mH̄)

2︸ ︷︷ ︸
=
√

s−4m2
H

√
E2

+

s
− 1 . (D.35c)

Inserting Eq.(D.33) into Eq.(D.30) gives rise to

IHH̄ =
1

8π

∫
1

(2π)4
dE+ dE− ds

8
e−(EH+EH̄)/T

√
1−

4m2
f

s
|M (s)|2

=
1

1024π5

∫ ∞

4m2
H

ds

√
1−

4m2
f

s
|M (s)|2

∫ ∞

2mH

dE+ e−E+/T

∫ √
s−4m2

H

√
E2

+/s−1

−
√

s−4m2
H

√
E2

+/s−1

dE−

=
1

512π5

∫ ∞

4m2
H

ds

√
1−

4m2
f

s
|M (s)|2

√
s− 4m2

H

∫ ∞

2mH

dE+ e−E+/T

√
E2

+

s
− 1 .(D.36)

The substitution cosh t
def
= E+/

√
s and the differential dE+ =

√
s sinh t dt lead to

IHH̄ =
1

512π5

∫ ∞

4m2
H

ds
√

s− 4m2
f

√
s− 4m2

H |M (s)|2
∫ ∞

0

dt sinh2 t e−
√
s/T cosh t︸ ︷︷ ︸

= T√
s
K1

(√
s

T

)

=
T

512π5

∫ ∞

4m2
H

ds
√

s− 4m2
f

√
1− 4m2

H

s
|M (s)|2K1

(√
s

T

)
. (D.37)

Thus, the averaged annihilation cross-section for two final SM states reads

〈σeffv〉ff̄ann =

∫ ∞

4m2
H

ds

√
s− 4m2

f

√
1− 4m2

H

s
|M (s)|2K1

(√
s

T

)
128πT

(∑4
i=1 gim

2
iK2

(
mi

T

))2 (D.38)

with initial particles H, H̄ and final SM particles f , f̄ . Again, this formula is only
valid for mH ≥ mf , otherwise the outgoing particles would not be on-shell.
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This equation with the explicit dependence on |M|2 is equivalent to the formula from
the literature, reading

〈σeffv〉ann =

∫ ∞

4m2
H

ds
σ
√
s (s− 4m2

H)K1

(√
s

T

)
8T
[∑4

i=1 gim
2
iK2

(
mi

T

)]2 (D.39)

with the substitution

σ =
|M|2

16πs

√
s− 4m2

f

s− 4m2
H

. (D.40)

Applying the formula, given, e.g., in Ref.[74] , the derivation for this relation reads

σ =
|M|2

4
√

(pH · pH̄)
2 −m4

H

(2π)4
∫

d3pf

(2π)3 2Ef

d3pf̄

(2π)3 2Ef̄

δ(4)
(
pH + pH̄ − pf − pf̄

)
︸ ︷︷ ︸

= 1
8π

√
1−4m2

f/s (see Eq.(D.29))

=
|M|2

32π
√
s
√

s2

4
− sm2

H

√
s− 4m2

f

=
|M|2

16πs

√
s− 4m2

f

s− 4m2
H

. (D.41)

The complete thermally averaged annihilation cross section 〈σv〉2SMann for the annihilation
of a DM pair into two SM particles is given by the sum of the partial cross sections,
i.e.,

〈σv〉2SMann = 〈σv〉W
−W+

ann + 〈σv〉ZZ
ann + 〈σv〉hhann +

∑
fermions f

〈σv〉ff̄ann . (D.42)

The annihilation processes into SM gauge bosons include both s- (mediated by the
SM Higgs boson) and t- and u-channels (mediated either by a charged Higgs H± or
the CP -odd scalar A), as well as the contact interactions. The creation of a fermion-
antifermion-pair is only viable via the s-channel due to the imposed Z2-symmetry. If
final fermions are accessible depends on the center-of-mass energy

√
s.

Since the matrix element M takes all these different processes into account, the an-
nihilation cross sections for two final W± bosons, Z bosons, SM Higgs bosons h and

124



APPENDIX D. DERIVATION OF MATRIX ELEMENTS AND CROSS SECTIONS

fermions f read, respectively,

〈σeffv〉W
+W−

ann = ρ

∫ ∞

4m2
H

ds
√

s− 4m2
W

√
1− 4m2

H

s
K1

(√
s

T

) ∣∣∣∣∣ ∑
channels

M (s)

∣∣∣∣∣
2

(D.43)

〈σeffv〉ZZ
ann = ρ

∫ ∞

4m2
H

ds
√

s− 4m2
Z

√
1− 4m2

H

s
K1

(√
s

T

) ∣∣∣∣∣ ∑
channels

M (s)

∣∣∣∣∣
2

(D.44)

〈σeffv〉ff̄ann = ρ

∫ ∞

4m2
H

ds
√

s− 4m2
f

√
1− 4m2

H

s
K1

(√
s

T

) ∣∣∣∣∣ ∑
channels

M (s)

∣∣∣∣∣
2

(D.45)

with the common prefactor

ρ
def
=

1

128πT
(∑4

i=1 gim
2
iK2

(
mi

T

))2 . (D.46)

The prefactor ρ depends on the temperature T , the number gi of internal degrees of
freedom as well as the mass mi of the four non-SM scalar particles.

D.3 Derivation of the decay rate

The differential decay rate for an unstable particle A reads [74]

dΓ (A → 1 + 2) =
1

2mA

2∏
i=1

d3pi

(2π)3 2Ei

|M|2 (2π)4 δ(4) (ph − p1 − p2) . (D.47)

Here, the focus is on the exotic SM Higgs decay into two Z2-odd scalar pair XX̄. The
matrix element can easily be obtained since three scalars are involved. Hence, the sum
over spins does not take place in the calculation and the squared matrix element is
given by

|M|2 = (λXv)
2 (D.48)

with the corresponding coupling parameter λX and the SM Higgs field VEV v. Thus,
the decay rate reads

Γ
(
h → XX̄

)
=

(λXv)
2

2mh

∫
d3pX

(2π)3 2EX

d3pX̄

(2π)3 2EX̄

(2π)4 δ(4) (pA − pX − pX̄) . (D.49)

125



APPENDIX D. DERIVATION OF MATRIX ELEMENTS AND CROSS SECTIONS

This integral has already been solved in Eq.(D.29) and the decay rate results in

Γ
(
h → XX̄

)
=

(λXv)
2

16πmh

√
1− 4m2

X

m2
h

. (D.50)

If the particles in the final state are identical, an additional factor of 1/2 must be taken
into account.
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