Using Generative Adversarial Network for modeling joint task/response distribution in functional Magnetic Resonance Imaging

Ju Young Lee^{1,2}, Johannes Stelzer^{2,3}, Alexander Loktyushin^{2,4}, Gabriele Lohmann^{2,3}

¹ Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany

² Magnetic Resonance Centre, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany

³ Department of Biomedical Magnetic Resonance Imaging, University Hospital Tübingen, Germany
⁴ Emperical Inference, Max-Planck-Institute for Intelligence System, Tübingen, Germany

Introduction -

- Functional Magnetic Resonance Imaging (fMRI) provides information about brain activity.

- We tried to model the joint distribution of brain response (fMRI) and task (experimental condition) using Generative Adversarial Network (GAN).

- Materials & Methods -

Material

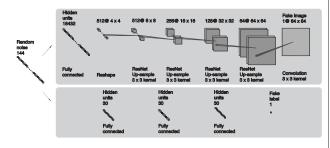
- Task-evoked fMRI were acquired from Human Connectome Project WU-Minn HCP 1200 Subjects Data (HCP S1200)^[2]

Response: fMRI matrix (64 x 64)

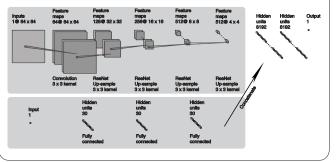
if left hand = 0

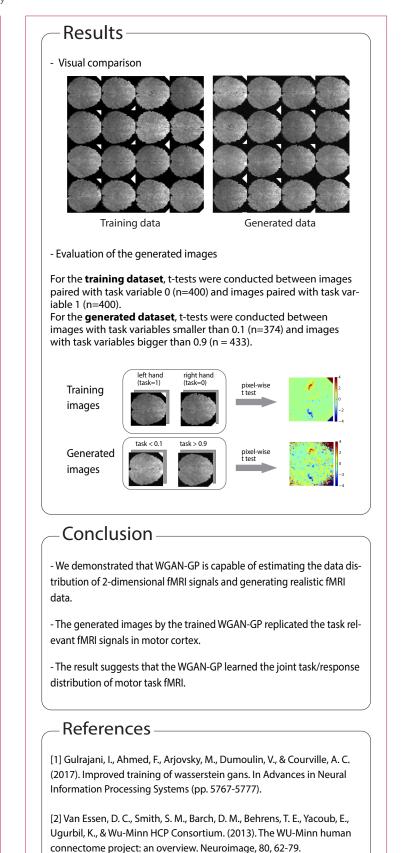
if right hand = 1

Task: hand movement (1)


Methods

- Wasserstein distance GAN with gradient penalty (WGAN-GP) $^{\scriptscriptstyle [2]}$


 $L = \mathop{\mathbb{E}}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\tilde{\boldsymbol{x}}) \right] - \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right] + \lambda \mathop{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]$


D(x): Discriminator output \mathbb{P}_g : pdf of generated data \mathbb{P}_r : pdf of real data λ : Lipschitz constraint $\mathbb{P}_{\hat{x}}$: sampled from the line \mathbb{P}_q and \mathbb{P}_r

- Generator network structure

- Disctiminator network structure

