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1 Introduction and summary

Liouville theory is one of the most interesting and most studied interacting two-dimensional
conformal field theories. It plays a central role in non-critical bosonic string theory where it
arises when one integrates the Weyl anomaly of the Polyakov action in a non-trivial metric
background in conformal gauge [1]. There are several reviews which cover the subject
very well and we refer to them for further motivations and thorough discussions [2–4].
Various generalisations have been considered, in particular supersymmetric ones, but also
to higher dimensions [5]. Here we will only discuss the two-dimensional bosonic theory. We
concentrate on a particular aspect of Liouville theory, namely the S-matrix of scattering
states, a subject which was initiated in [6]. An expression for the S-matrix in closed form
is not known and the purpose of this note is to report an observation which allows for a
reformulation of the problem, which might shed a new light on the issue.

The dynamics of Liouville theory is derived from the Liouville action. The classical
equations of motion can be solved and the general solution is specified by two arbitrary
functions. They are defined, respectively, on the two branches of the light cone or, in the
Euclidean formulation of the theory, by an holomorphic and an anti-holomorphic function.
These functions have to respect some regularity conditions and, as we will consider the
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theory on a cylinder, a periodicity requirement as well. The only regular solutions on
the cylinder are scattering solutions which interpolate between free asymptotic in- and
free asymptotic out-states. The transformation from in- to out-states is effected by the
S-matrix.

Our aim in this paper is to compute the quantum S-matrix of Liouville theory on the
cylinder with Minkowski signature. We proceed in two steps. In the first step we compute
the semiclassical S-matrix or, more precisely, the generating functional F for semiclassical
S-matrix elements in the Fock-space generated by the oscillator modes. It is the generating
function of the canonical transformation between the in- and out-fields which are free fields
and therefore split into two chiral sectors. We show that this transformation is canonical
for each chiral sector separately, with generating functionals F and F̄ . The two sectors
are only coupled through the zero-modes. In terms of the oscillator modes of the in- and
out-fields, in each sector it is a function of the positive modes of the former and of the
negative modes of the latter and, of course, of the zero mode, i.e. the momentum. As we
will explain in detail, the positive and negative modes in each chiral sector form conjugate
pairs which are related by a Legendre transformation with generating function F , and, as
usually, the momentum is conjugate to the position.

A slight but crucial modification of F , which affects only the two-point functions, leads
to a re-organization of the conjugate pairs in such a way that we can compute its Legendre
transformation. This is essentially just a rewriting of the known relation between the in-
and out-fields. The Legendre transform, which we call S, has the form of a one-dimensional
classical action with an unusual non-local kinetic energy term and an exponential potential
and where the momentum now plays the role of a coupling constant. We claim that this
action, when quantized, contains all the information about the quantum scattering in one
chiral sector. A priori this is not clear as the relevance of this action for the quantum theory
is not obvious. We support our claim by first computing loop diagrams, where the only
regularization required is ‘normal ordering’ of the potential. We compare these loop results
with those obtained from another way to compute scattering amplitudes. This method,
which works for the semiclassical and the quantum case, uses the fact that the improved
energy-momentum tensors for the in- and out-fields in each chiral sector coincide. Equating
them and expressing the resulting equation in terms of the independent canonical variables,
leads to a differential equation for the generating functional which can be solved in a power
series in the modes. We use this second method, which for the quantum amplitudes is more
efficient than the loop computations and produces results which are valid to all powers in
~, to check the Feynman diagram computations. We also find agreement with the results
obtained by Zamolodchikov & Zamolodchikov in [6].

The organization of the paper is as follows. In section 2 we review known facts about
classical Liouville theory on the cylinder, which will be relevant for the subsequent dis-
cussion. Next, in section 3, we discuss the canonical structure and introduce generating
functions for canonical transformations between the in- and out-fields. The most relevant
is the transformation between in- and out-oscillator modes, which is canonical in each
chiral sector separately. Its generating function F completely specifies the semiclassical
S-matrix in one chiral sector. Further details about the canonical structure are given in
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two appendices. F will be computed in section 4, where the relation between the classical
in- and out-fields is used to find S, the Legendre transform of F . We use it to compute
semiclassical scattering amplitudes via tree-level Feynman diagrams derived from S and
compare them with a direct computation, which exploits the equality between the improved
energy-momentum tensors of the asymptotic in- and out-states. In section 5 we compute
quantum corrections to the scattering amplitudes. We first do this by evaluating (mostly)
one-loop Feynman diagrams and then compare them to an explicit computation which
again uses the equality of the in and out energy-momentum tensors, with the quantum
corrections to the improvement term taken into account. We end with short conclusions.

2 Liouville dynamics and asymptotic fields

We study Liouville theory on a cylinder with spacetime coordinates σ ∈ S1 and τ ∈ R1.
The classical theory is described by the Liouville equation

∂2
τΦ− ∂2

σΦ + 4µ2 e2Φ = 0 . (2.1)

Φ is called the Liouville field and µ2 > 0 is a ‘cosmological’ constant.
We also introduce the Liouville field exponential V = e−Φ and the stress tensor com-

ponents, which in chiral coordinates (x = τ + σ, x̄ = τ − σ) are defined as

T = (∂xΦ)2 − ∂2
xΦ , T̄ = (∂x̄Φ)2 − ∂2

x̄Φ . (2.2)

The chirality conditions ∂x̄T = 0, ∂xT̄ = 0 follow from the Liouville equation (2.1). By (2.2)
V satisfies the pair of Hill equations

∂2
xV (x, x̄) = T (x)V (x, x̄) , ∂2

x̄V (x, x̄) = T̄ (x̄)V (x, x̄) , (2.3)

while (2.1), in addition, leads to

V ∂x∂x̄V − ∂xV ∂x̄V = µ2. (2.4)

Setting T = T̄ = 1
4 p

2 > 0, one finds a simple solution of (2.3) and (2.4)

V = e−Φ = µ

p

(
e−pτ + epτ

)
, (2.5)

with p =
√
p2 and µ =

√
µ2. The corresponding σ-independent Liouville field Φ describes

particle dynamics in an exponential potential and p is interpreted as the momentum of the
in-coming particle, while the momentum of the out-going particle is −p.

The space of solutions of (2.4) is invariant under conformal transformations

V (x, x̄) 7→ Ṽ (x, x̄) =
(
ζ ′(x)ζ̄ ′(x̄)

)− 1
2 V

(
ζ(x), ζ̄(x̄)

)
, (2.6)

where the chiral functions are monotonic (ζ ′ > 0, ζ̄ ′ > 0) and allow the mode expansion

ζ(x) = ζ0 + x+ i
∑
n 6=0

ζn
n
e−inx , ζ̄(x̄) = ζ̄0 + x̄+ i

∑
n 6=0

ζ̄n
n
e−inx̄ . (2.7)
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The conformal transformations of (2.5) generate all regular Liouville fields on the
cylinder [7]. The general solution can then be written as

e−Φ = e−Φin + e−Φout , (2.8)

where the fields Φin and Φout are parametrised as follows:

Φin = 1
2 log

[
ξ′(x) ξ̄′(x̄)

]
+ µ

2
[
ξ(x) + ξ̄(x̄)

]
,

Φout = 1
2 log

[
ξ′(x) ξ̄′(x̄)

]
− µ

2
[
ξ(x) + ξ̄(x̄)

]
,

(2.9)

with
ξ(x) = p

µ
ζ(x) , ξ̄(x̄) = p

µ
ζ̄(x̄) . (2.10)

The in and out notation will now be justified.
Due to (2.7), the non-periodic τ -dependent parts of Φin and Φout are p τ and −p τ ,

respectively. Since p > 0, one can neglect exp(−Φout) in (2.8) at τ → −∞ and exp(−Φin)
at τ → +∞. Hence, the fields Φin(τ, σ) and Φout(τ, σ) are interpreted as the asymptotic
fields of Liouville theory. They are 2d massless free scalar fields, since they are given as
the sum of the chiral and antichiral parts

Φin = φin(x) + φ̄in(x̄), Φout = φout(x) + φ̄out(x̄), (2.11)

with
φin(x) = 1

2 log
[
ξ′(x)

]
+ µ

2 ξ(x),

φout(x) = 1
2 log

[
ξ′(x)

]
− µ

2 ξ(x).
(2.12)

The antichiral part is similar and it suffices to analyze the chiral part only.
The integration of (2.12) defines ξ(x) through the asymptotic fields

eµ ξ(x) = µA(x), e−µ ξ(x) = µB(x), (2.13)

with
A(x) =

∫ x

−∞
dy e2φin(y), B(x) =

∫ ∞
x

dy e2φout(y). (2.14)

The integrated free-field exponents A(x) and B(x) are called screening charges. They are
conformal scalars similarly to the chiral field ζ(x). By (2.13) one has the functional relation
between the asymptotic fields, µ2A(x)B(x) = 1.

Note that the screening charges A(x) and Ā(x̄) parametrise the general solution of the
Liouville equation just in the form as was obtained by Liouville [8] (see (A.1)).

From (2.12) we also find the chiral out-field through the chiral in-field and vice versa

φout(x) = φin(x)− log [µA(x)] , φin(x) = φout(x)− log [µB(x)] . (2.15)

These fields have the monodromy φin(x+ 2π) = φin(x) +π p, φout(x+ 2π) = φout(x)−π p,
and the standard free-field mode expansion

φin(x) = q + p x

2 + i
∑
n 6=0

an
n
e−inx , φout(x) = q̃ − p x

2 + i
∑
n 6=0

bn
n
e−inx . (2.16)
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Thus, the momentum zero modes of the asymptotic fields differ only by their sign, while
the transformation of the other modes is highly non-trivial, according to (2.15).

The stress tensor (2.2) obtained from (2.8)–(2.9) is given by the Schwarzian derivative

T (x) = 1
4 p

2 ζ ′ 2(x) + 1
4

(
ζ ′′(x)
ζ ′(x)

)2
− 1

2

(
ζ ′′(x)
ζ ′(x)

)′
, (2.17)

and with (2.12) one finds its ‘improved’ free-field form in terms of the asymptotic fields

T (x) = φ′ 2in (x)− φ′′in(x) = φ′ 2out(x)− φ′′out(x) . (2.18)

Hence, the ‘improved’ free-field stress tensors of the in and out-fields coincide. This will
be crucial when we discuss the S-matrix.

3 Canonical structure

A more transparent free-field interpretation of Φin and Φout is obtained in the Hamiltonian
description defined by the first-order action

S[Φ,Π] =
∫

dτ
∫ 2π

0

dσ
2π

[
Π Φ̇−

(1
2 Π2 + 1

2 (∂σΦ)2 + 2µ2 e2Φ
)]

, (3.1)

where Φ(σ) and Π(σ) are canonically conjugated variables.
The canonical 2-form of Liouville theory induces a symplectic structure on the space of

parametrising chiral fields. In appendix A we consider the parameterisation of the general
solution by the in-field and obtain Ω = ω + ω̄, where Ω is the canonical 2-form, ω is the
standard chiral free-field symplectic form for the in-field

ω =
∫ 2π

0

dx
2π
[
δφ′in(x) ∧ δφin(x)

]
+ 1

2 δp ∧ δφin(0) , (3.2)

and ω̄ is its antichiral counterpart. The mode expansion (2.16) then leads to

Ω =
∫ 2π

0

dσ
2π δΠ(τ, σ) ∧ δΦ(τ, σ) = δpin ∧ δqin + i

∑
n 6=0

(
δa−n ∧ δan

n
+ δā−n ∧ δān

n

)
, (3.3)

with qin = q + q̄ and pin = p.
The right hand side of (3.3) corresponds to the canonical 2-form of the complete in-field

Φin(τ, σ) = qin + pin τ + i
∑
n 6=0

(
an
n
e−inx + ān

n
e−inx̄

)
, (3.4)

and its inversion provides the Poisson brackets

{pin, qin} = 1 , {am, an} = i

2 mδm,−n , {ām, ān} = i

2 mδm,−n . (3.5)

Thus, the transformation from the in-field to the Liouville field is canonical∫ 2π

0

dσ
2π δΠ(τ, σ) ∧ δΦ(τ, σ) =

∫ 2π

0

dσ
2π δΠin(τ, σ) ∧ δΦin(τ, σ) . (3.6)
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The same relation holds for the out-field and, therefore, the map from the in-field to the
out-field is canonical as well∫ 2π

0

dσ
2π δΠin(τ, σ) ∧ δΦin(τ, σ) =

∫ 2π

0

dσ
2π δΠout(τ, σ) ∧ δΦout(τ, σ) . (3.7)

Applying the map (2.15) to the chiral symplectic form (3.2), we find

ω =
∫ 2π

0

dx
2π
[
δφ′out(x) ∧ δφout(x)

]
− 1

2 δp ∧ δφout(0) . (3.8)

Hence, the map is canonical in the chiral sectors separately. We will now calculate the
corresponding generating functions.

First we consider the generating function G for the canonical transformation in the
chiral sector. According to (3.2) and (3.8), it is defined by the differential form

δG =
∫ 2π

0

dx
2π

[
φ′out(x) δφout(x)− φ′in(x) δφin(x)

]
+ 1

2 [φout(0) + φin(0)] δp . (3.9)

Using the parameterisation (2.12) and partial integration, we find G as a function of the
chiral part of the phase space

G = −p+ µ

2

∫ 2π

0

dx
2π ξ′ log ξ′ . (3.10)

By (2.12) and (2.16), this function can be written in terms of the Fourier modes
as follows

G = 1
2p(q̃ + q)− p+ i

∑
n 6=0

1
n
a−nbn . (3.11)

Now we calculate the generating function of the canonical transformation for the com-
plete asymptotic fields. Due to (3.7), the difference between the canonical presymplectic
forms of the out and in fields is an exact 1-form

δG[Φout,Φin] =
∫ 2π

0

dσ
2π [Πout(τ, σ) δΦout(τ, σ)−Πin(τ, σ) δΦin(τ, σ)] . (3.12)

To find this generating function, we use the parameterisation (2.9), which for the canonical
momenta yields

Πout = 1
2

(
ξ′′

ξ′
+ ξ̄′′

ξ̄′

)
− µ

2
(
ξ′ + ξ̄′

)
, Πin = 1

2

(
ξ′′

ξ′
+ ξ̄′′

ξ̄′

)
+ µ

2
(
ξ′ + ξ̄′

)
. (3.13)

Similarly to (3.9), the integrand in (3.12) can be written as an exact form and one extracts
G as

G = µ

2

∫ 2π

0

dσ
2π

[
ξ′ log ξ′ + ξ̄′ log ξ̄′ − ξ′ log ξ̄′ − ξ̄′ log ξ′ − 2

(
ξ′ + ξ̄′

)]
. (3.14)

Note that here τ is fixed, the arguments of ξ and ξ̄ are x = τ+σ and x̄ = τ−σ, respectively,
and ′ denotes the derivative with respect to the argument. Hence, G does not split into the
sum of the chiral and antichiral parts and it is τ -dependent.
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From (2.9) follows
ξ′ ξ̄′ = eΦ+ , µ(ξ′ − ξ̄′) = ∂σΦ− , (3.15)

with Φ± = Φin ± Φout, and the generating function (3.14) becomes

G =
∫ 2π

0

dσ
2π

1
2∂σΦ− log


√

(∂σΦ−)2 + 4µ2 eΦ+ + ∂σΦ−√
(∂σΦ−)2 + 4µ2 eΦ+ − ∂σΦ−

−√(∂σΦ−)2 + 4µ2 eΦ+

 .
(3.16)

This functional defines the semiclassical S-matrix in the Φ-representation. The details of
this correspondence are described in the next section.

Here we introduce another generating function F , which is related to the semiclassical
S-matrix in the Fock space. It is given as a sum of the chiral and antichiral parts F = F+F̄ ,
where F is obtained from the differential form

δF = (q̃ + q)δp− 2i
∑
m>0

1
m

(bmδb∗m + a∗mδam) , (3.17)

and one has a similar antichiral 1-form for δF̄ .
Thus, F is treated as a function of the variables (p, b∗m, am), with m > 0, and it

satisfies the equations

∂F

∂p
= q̃ + q ,

im

2
∂F

∂am
= a∗m ,

im

2
∂F

∂b∗m
= bm . (3.18)

The right hand sides can be obtained as functions of (p, b∗m, am), using the relations be-
tween the asymptotic fields (2.15), or (2.18). We will discuss this point further in sec-
tion 4.1.

It is not difficult to establish the relation between F and G. Indeed, the 1-forms in (3.9)
and (3.17) are given as a difference between the presymplectic forms of the asymptotic fields.
The difference F − G is, therefore, a quadratic combination of the Fourier modes. Using
the mode expansion (2.16) to evaluate (3.9), one finds

F −G = 1
2 p q+ − i

∑
m>0

1
m

(b∗m bm + a∗m am) , (3.19)

with q+ := q̃ + q, and from (3.11) follows

F = p q+ − p− i
∑
m>0

1
m

(b∗mbm + a∗mam + b∗mam − a∗mbm) . (3.20)

Here the independent variables are, as stated before, p and am, b∗m with m > 0. We will
refer to them as holomorphic variables. For later use we introduce

αn =

an n > 0
bn n < 0

(3.21)

They do not satisfy any reality condition which would relate αn to α−n.
In appendix B we will present another realisation of the generating function G. But in

our further discussion it is F (p, α) and its Legendre transform which play the central role.
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4 Semiclassical S-matrix

Assuming that the classical relations

δG
δΦout(σ) = 1

2π Πout(σ) , δG
δΦin(σ) = − 1

2π Πin(σ) , (4.1)

are valid at the quantum level with operator ordering such that Φ̂out stands to left of Φ̂in,
one obtains the equations

1
2π 〈Φout |Π̂out(σ) |Φin 〉 = −i~ δ

δΦout(σ)〈Φout |Φin 〉 = 〈Φout |Φin 〉
δG

δΦout(σ) ,

1
2π 〈Φout |Π̂in(σ) |Φin 〉 = i~

δ

δΦin(σ)〈Φout |Φin 〉 = −〈Φout |Φin 〉
δG

δΦin(σ) .
(4.2)

Up to a constant factor, they are solved by

〈Φout |Φin 〉 = e
i
~ G[Φout,Φin] . (4.3)

As the assumptions are generally valid up to O(~) terms, this only holds semiclassically.
Due to the complicated form of the functional G given in (3.16), eq. (4.3) is not convenient
for further analysis of the transition amplitudes in Fock space.

We now consider the quantum mechanical treatment of the generating function F .
The Fourier-mode operators of the in-field satisfy the commutation relations

[q̂, p̂] = i~ , [âm, â†m] = 1
2~m, where m > 0 and â†m = â−m . (4.4)

The p-dependent (p > 0) vacuum state for the chiral in-field is defined in the standard
way as

p̂|p, 0〉 = p|p, 0〉 , âm|p, 0〉 = 0 , for m > 0, (4.5)

and coherent states are constructed as

|p, a〉 = exp
(

2
~
∑
m>0

1
m
am â

†
m

)
|p, 0〉 . (4.6)

The out-field operators and bra-vectors 〈b∗, p̃|, with p̃ < 0, are defined similarly and one gets

âm |p, a〉 = am |p, a〉 , â†m |p, a〉 = 1
2~m

∂

∂am
|p, a〉 ,

〈b∗, p̃| b̂†m = b∗m 〈b∗, p̃| , 〈b∗, p̃| b̂m = 1
2~m

∂

∂b∗m
〈b∗, p̃| .

(4.7)

To analyze the matrix elements 〈b∗, p′|p, a〉, we insert the canonical operators and find

〈b∗, p̃| ˆ̃p+ p̂|p, a〉 = (p̃+ p)〈b∗, p̃|p, a〉 , 〈b∗, p̃| ˆ̃q + q̂|p, a〉 = i~(∂p̃ − ∂p)〈b∗, p̃|p, a〉 . (4.8)

If we require ˆ̃p = −p̂, which we know to be satisfied by the classical solutions, the left hand
side of the first equation vanishes and yields

〈b∗, p̃|p, a〉 = S(p, b∗, a) δ(p+ p̃) . (4.9)

– 8 –
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Assuming that the classical relations (3.18) are valid at the quantum level, and that the
operators b̂∗n in F (p, b∗, a) stand to the left of the operators ân, we obtain from (4.7)–(4.9)

− i~ ∂S
∂p

= ∂F

∂p
S , ~

∂S
∂am

= i
∂F

∂am
S , ~

∂S
∂b∗m

= i
∂F

∂b∗m
S . (4.10)

These equations are similar to (4.2), and we obtain semiclassically

S′(p, b∗, a) = e
i
~ F (p,b∗, a) . (4.11)

4.1 Semiclassical amplitudes 1

Our goal is to find the generating function F in terms of the holomorphic variables, i.e.
F (p, b∗, a). To construct this function from eqs. (3.18), one has to express their right hand
sides as functions of (p, b∗, a), using the relations between the in- and out-fields, and then
integrate. The relation between (q+, b, a

∗) and (p, b∗, a) is encoded in

φin(x) + φout(x) = log
[
φ′in(x)− φ′out(x)

]
− logµ , (4.12)

which follows from (2.12). This equation contains the full dynamical content of classical
scattering of Liouville theory on the cylinder and we can use it to compute F , as we will
now demonstrate. The reason for such a simple relation to exist is the classical integrability
of the theory.

Expanded in Fourier modes it yields

q + q̃ + i
∑
n 6=0

an + bn
n

e−inx = log
(
p/µ

)
+ log

(
1 +

∑
n 6=0

an − bn
p

e−inx
)
, (4.13)

from which we find the relations

q + q̃ = log
(
p/µ

)
− 1
p2

∑
m>0

(a∗m − b∗m)(am − bm) + . . . ,

i
an + bn

n
= an − bn

p
+ . . . .

(4.14)

The modes bm, a∗m, for m > 0, and q + q̃ can be obtained from these relations in power
series of the holomorphic variables (b∗, a) with p-dependent coefficients

bm = m− ip
m+ ip

am + . . . , a∗m = m− ip
m+ ip

b∗m + . . . ,

q + q̃ = log
(
p/µ

)
−
∑
m>0

4 b∗m am
(m+ ip)2 + . . . .

(4.15)

Integration of (3.18) gives F (p, b∗, a) = F (0) + F (2) + F (3) + · · · , where the upper index
indicates the total degree of the holomorphic variables. From (4.15) we then have

F (0) = p
[
log

(
p/µ

)
− 1

]
, F (2) = −2i

∑
m>0

1
m

(
m− i p
m+ i p

)
b∗m am . (4.16)
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The term F (0)(p), given in (4.16), defines the semiclassical reflection amplitude

R0(p) = e
2i
~ F

(0) (4.17)

of the p-dependent vacuum state |p, 0〉. The total reflection amplitude contains the same
contribution from the antichiral part. This doubling is taken into account in (4.17), which is
common for all transition amplitudes. The higher level states have additional contributions.
For instance, from the expression for F (2) we see that the scattering of the in-state â†m|p, 0〉
is given by the additional phase factor m−ip

m+ip .
The calculation of F (3) requires the next order terms in (4.14)–(4.15), and the contin-

uation of this procedure defines F (p, b∗, a) as a power series in holomorphic variables (b∗, a)
with p-dependent coefficients.

In the following we will present two alternatives to obtain the F (ν), both of which are
more efficient and they can be generalised to obtain the quantum scattering amplitudes.

4.2 Relation to classical one-dimensional field theory

We will now use the relation between the in- and out-fields to construct the Legendre
transform of F , or rather of a slightly modified version of F , which we will call F̃ ; it will
be defined momentarily. As a consequence of the general relation between semiclassical
scattering amplitudes and tree-level Feynman diagrams [10] we expect that the Legendre
transform of F̃ , which we will call S, is the action from which the Feynman rules are derived
and the tree-level Feynman diagrams generate F̃ and, therefore, F . In the next section we
will show that the quantum corrections to the scattering amplitudes are contained in the
loop diagrams derived from S.

To proceed, we first rewrite eq. (4.12) in the form

φ′in − φ′out = µ eφin+φout . (4.18)

We express this in terms of the modes

p+
∑
n 6=0

βn e
−inx = µ eq+ e

i
∑

n 6=0
1
n
γn e−inx , (4.19)

where we have defined the combinations

γn = an + bn , βn = an − bn . (4.20)

They are related to αn, which were defined in (3.21) via

αn = 1
2γn + 1

2ε(n)βn . (4.21)

Here ε(n) is the sign-function, i.e. ε(n) = +1 for n > 0 and ε(n) = −1 for n < 0. It will
turn out to be convenient to rescale the modes as

αn = − iε(n)
2 jn , (4.22)
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with
jn = i ε(n)γn + i βn . (4.23)

If we define1

F̃ = F − F (0) − i
∑
n 6=0

αnα−n
|n|

= F − p
(

ln p

µ
− 1

)
− 2 i

∑
m>0

1
m
b∗mam , (4.24)

we find
∂F̃

∂j−n
= 1
n
γn ≡ −i ϕn . (4.25)

Note that while the αn and therefore also the jn did not satisfy any reality condition,
ϕ∗n = ϕ−n, i.e. they are the Fourier modes of the real field ϕ = φin + φout.

If we now use

βn = µ eq+
∫ 2π

0
einxe

i
∑

k 6=0
1
k
γke
−ikx

= µ eq+
∫ 2π

0

dx

2πe
inxe

∑
k 6=0 ϕke

−ikx
, (4.26)

which follows from (4.19), we can write (4.23) in the form

jn = |n|ϕn + i µ eq+
∫ 2π

0

dx

2πe
inxe

∑
k 6=0 ϕke

−ikx != ∂S

∂ϕ−n
, (4.27)

where S is defined to be the Legendre transform of F̃ .
While j0 has not yet been defined, the above relation has an obvious extension to n = 0

with j0 = ip. Here we have used

p = µ eq+
∫ 2π

0

dx

2πe
i
∑

k 6=0
1
k
γke
−ikx

, (4.28)

which is the zero mode of (4.19). It is now also natural to extend (4.25) to n = 0 and
to define

q̃+ ≡ ϕ0 = ∂F̃

∂p
= q+ − ln p

µ
, (4.29)

such that µ eq+ = p eq̃+ = p eϕ0 .
We now integrate (4.27) and find

S = 1
2
∑
n∈Z

ϕ−n|n|ϕn + i p

∫ 2π

0

dx

2πe
∑

k∈Z ϕke
−ikx

. (4.30)

This finally gives a non-local action with exponential potential and an imaginary coupling
constant

S =
∫ 2π

0

dx

2π

(1
2ϕ(x)

√
−∂2

x ϕ(x) + i p eϕ(x)
)
, (4.31)

when written in ‘position space’. Note that in this expression p appears as a coupling
constant. It is not a dynamical variable. Those are ϕn, n ∈ Z.

1Even though we have no compelling a priori reason for this definition, we want to remark that the
terms which are subtracted from F to obtain F̃ are those terms in F which survive in the limit p → ∞,
while keeping all other parameters, including the mode numbers, finite.
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To recapitulate, we have introduced the conjugated pairs {jn, ϕ−n} and the two func-
tions {F̃ (j), S(ϕ)} which are Legendre transformed of each other

S(ϕ) = 〈ϕ j〉 − i F̃ (j) , (4.32)

where
〈ϕ j〉 =

∫ 2π

0

dx

2π j(x)ϕ(x) =
∑
n∈Z

jn ϕ−n . (4.33)

In other words,
e
i
~ F̃ (j) =

∫
Dϕe−

1
~ (S(ϕ)−〈ϕ j〉)

∣∣∣
δS
δϕ

=j
, (4.34)

where the functional integral over ϕ is evaluated at the saddle point. In the next section
we will include quantum corrections, i.e. fluctuations around the saddle point.

As mentioned before, F̃ is the generating functional for the tree level graphs computed
with S or, more precisely, due to the relation (4.11), of the connected graphs. We will
now compute the lowest order n-point functions and will then verify them by an explicit
calculation using (2.18).

The Feynman rules derived from (4.31) are:2

1. Draw all connected ν-point tree diagrams with r-valent vertices for all r ≥ 3. Each
external line carries an index ni, i = 1, . . . , ν. The labels of the internal lines are
dictated by ‘energy’ conservation at each vertex.

2. To each r-valent vertex assign a factor −ip.

3. To each line, including the external ones, assign a propagator 1
|n|+ip where n is the

‘energy’ carried by the line. All external lines are ingoing.

4. Sum over all distinct diagrams.

Note that in rule 3. we have included the quadratic term of the potential into the
propagator.

We now illustrate these rules, noting that the external lines always have ni 6= 0, as they
correspond to oscillator excitations. This excludes tadpoles. There is no such restriction
for the internal lines.

We expand3

F̃ =
∞∑
ν=2

1
ν!

∑
ni 6=0

f̃ (ν)
n1,...,nν jn1 · · · jnνδn1+···+nν , (4.35)

and write the amplitudes for ν ≥ 3 in the form

if̃ (ν)
n1...nν = −ip

 ν∏
j=1

1
|nj |+ ip

 U (ν)
n1...nν , (4.36)

2Here we set ~ = 1.
3For ν ≥ 3 the expansions for F and F̃ coincide.
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where we have factored out the contributions from the external lines and one power of
the coupling constant, i.e. the ν-point vertex contribution. We will also use if̃ (2) = 1

|n|+ip .
Therefore

iF (2) = i
∑
n 6=0

1
2 f̃

(2)jn j−n −
∑
n 6=0

1
|n|
αn α−n =

∑
n 6=0

1
|n|

( |n| − i p
|n|+ i p

)
αnα−n , (4.37)

which agrees with (4.16).
We will now evaluate a few tree-level diagrams. Loop diagrams will be considered in

section 5.
The simplest diagram is the three-point function: there is only the three-point vertex

contribution

n1

n2

n3

(4.38)

According to the Feynman rules, it evaluates to

− ip
3∏
i=1

1
|ni|+ ip

, (4.39)

and therefore U (3) = 1.
For the four-point function there are four distinct diagrams: a direct four-point vertex

and three exchange diagrams (s, t, u-channels in the language of particle physics):

n2 n3

n1 n4

+
n2

n1
n1+n2

n3

n4

+
n1 n4

n1+n4

n3n2

+
n2

n1
n1+n3

n3

n4

(4.40)

The first diagram evaluates to

− ip
4∏
i=1

1
|ni|+ ip

, (4.41)

while the second, the s-channel diagram, becomes

(−ip)2
( 4∏
i=1

1
|ni|+ ip

)
· 1
|n1 + n2|+ ip

. (4.42)

If we sum over all four diagrams we obtain

Un1 n2 n3 n4 = 1− i p

|n1 + n2|+ i p
− i p

|n1 + n3|+ i p
− i p

|n1 + n4|+ i p
. (4.43)

As a last example we consider the five-point function. There are now three topologically
distinct diagrams:

n3

n2n1

n5
n4

n1
n3+n4

n2

n5

n3

n4 n5

n1

n1+n5 n3+n4

n3

n4

n2

(4.44)
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For a given ‘energy’ assignment of the external lines, there are
(

5
2

)
= 10 distinct channels

with the topology of the second diagram and 1
2

(
5
2

) (
3
2

)
= 15 for the third diagram. The

first diagram gives

− ip
5∏
i=1

1
|ni|+ ip

. (4.45)

The second diagram evaluates to

− ip
( 5∏
i=1

1
|ni|+ ip

)
· −ip
|n3 + n4|+ ip

(4.46)

and the third diagram to

− ip
( 5∏
i=1

1
|ni|+ ip

)
· −ip
|n1 + n5|+ ip

· −ip
|n3 + n4|+ ip

. (4.47)

Summing over all diagrams we find

U (5) = 1 +
∑
i<j

(−i p)
|ni + nj |+ i p

+
∑

{i<j}∩{k<l}=0

(−i p)
|ni + nj |+ i p

· (−i p)
|nk + nl|+ i p

(4.48)

and so on for the higher U (ν).

4.3 Semiclassical amplitudes 2

We will now compute F directly. In section 4.1 we have shown how to use (4.12) and the
relations (3.18) to compute F . In this way we have obtained F (0) and F (2) and in principle
one can continue to higher orders. A more efficient algorithm for finding higher order
terms of F can be extracted from relation (2.18), which equates the free-field improved
energy momentum tensors expressed through the asymptotic in- and out-fields. With the
mode-expansions (2.16) and

T (x) =
∑
n∈Z

Ln e
−inx , (4.49)

one obtains Ln’s in terms of the Fourier modes of the in-field

L0 = 1
4 p

2 +
∑
k 6=0

a−k ak , Ln = (p+ i n)an +
∑
k,l 6=0

ak al δk+l,n , (n 6= 0) . (4.50)

The out-field mode expansion of Ln’s is obtained by replacing p 7→ −p, an 7→ bn.
Using complex conjugation and only positive indices for the Fourier modes of the

asymptotic fields, the equality between Ln’s of the in and out-fields can be written in
the form ∑

j≥1
a∗j aj =

∑
j≥1

b∗j bj ,

(p+ im)am + (p− im)bm =
∑
j,j′≥1

[ (
bjbj′ − ajaj′

)
δj+j′,m + 2

(
bjb
∗
j′ − aja∗j′

)
δj−j′,m

]
,

(p− im)a∗m + (p+ im)b∗m =
∑
j,j′≥1

[(
b∗jb
∗
j′ − a∗ja∗j′

)
δj+j′,m + 2

(
b∗jbj′ − a∗jaj′

)
δj−j′,m

]
,

(4.51)
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where m > 0. These relations become equations for (b, a∗). They have solutions as
power series in the holomorphic variables (b∗, a) with p-dependent coefficients. The func-
tion F (p, b∗, a) is then obtained by integration of (3.18). This leaves, however, F (0)

undetermined.
Alternatively, replacing the variables (b, a∗) in (4.51) by the derivatives of F , according

to (3.18), we find differential equations directly for the function F which can be solved as
power series in the holomorphic variables. This turns out to be the more efficient procedure.
In order to get a covariant structure for scattering amplitudes, it is convenient to use instead
of the modes am and b∗m for m > 0, the modes αn which we defined in (3.21) for all integer
n 6= 0. Doing this we find from (4.51) the system of first order non-linear differential
equations for F (p, α) ∑

k 6=0
k αk

∂F

∂αk
= 0 (4.52)

and

|n|(|n|+ ip) ∂F
∂αn

+ 2i(|n| − ip)α−n + i
∑
k,l 6=0

[ε(k)− ε(l)] |l|αk
∂F

∂α−l
δk+l+n

+
∑
k,l 6=0

[ε(k) + ε(l)]
(
αk αl + 1

4 |k| |l|
∂F

∂α−k

∂F

∂α−l

)
δk+l+n = 0 ,

(4.53)
where n is a non-zero integer.

A monomial αn1 · · ·αnν solves the linear equation (4.52) if n1 + · · · + nν = 0 and the
function F is then represented as a power series; cf. (4.24) and (4.35).

At this point it turns out to be convenient to introduce F̃ and the jn of section 4.2.
They lead to the simpler equation for F̃ :

in
(
|n|+ ip

) ∂F̃
∂jn
− nj−n − i

∑
k,l 6=0

ljk
∂F̃

∂j−l
δk+l+n −

∑
k,l 6=0

|k|l ∂F̃
∂j−k

∂F̃

∂j−l
δk+l+n = 0 . (4.54)

We insert the Ansatz (4.35) and solve (4.54) order by order in the αn and determine the
amplitudes f (ν) recursively.

At the linear order, we find
i f̃ (2) = 1

|n|+ i p
(4.55)

and at the quadratic order

i f̃ (3) = −i p ·
3∏
i=1

1
|ni|+ i p

. (4.56)

Both are in agreement with the results presented in section 4.2. The first non-trivial
case comes from solving (4.54) at cubic order. After a somewhat tedious calculation one
finds again complete agreement with the Feynman diagram calculation in section 4.2, i.e.
with (4.43).

Since the relation (2.18), which we exploited to obtain the differential equation obeyed
by F , follows immediately from (4.12) by differentiating w.r.t. x, it should be clear that
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we can also find S starting from (4.54). Indeed, using the relations

jn = ∂S

∂ϕ−n
, ϕn = i

∂F̃

∂j−n
(n 6= 0) (4.57)

in (4.54), it becomes

n
(
|n|+ ip

)
ϕ−n − n

∂S

∂ϕn
−
∑
k,l 6=0

l ϕl
∂S

∂ϕ−k
δk+l+n +

∑
k,l 6=0

|k|l ϕk ϕl δk+l+n = 0 . (4.58)

The simplification effected by passing from F to the shifted F̃ is that the quadratic terms
in the modes have cancelled in (4.54) and the functional differential equation satisfied by
S is therefore linear. If we make the Ansatz

S = 1
2
∑
n∈Z
|n|ϕ−nϕn +

∫ 2π

0

dx

2piV (ϕ) , (4.59)

we obtain a simple equation for V :

− i p nϕ−n + n
∂V

∂ϕn
+
∑
k,l 6=0

lϕl
∂V

∂ϕ−k
δk+l+n = 0 . (4.60)

Here a zero mode for ϕ is not included. But we can define ϕ0 as the variable conjugate to
j0 = ∂V

∂ϕ0
. If we identify the latter with ip, we find ϕ0 = i ∂F̃∂j0 = q̃+, as in the discussion in

section 4.1. The equation for V is then solved by V (ϕ) = i p eϕ. The constant term in V
stays undetermined by eq. (4.60), but it can be chosen arbitrarily, as it does not affect the
amplitudes. Here it is chosen as ip.

5 Quantum S-matrix

After having computed the semiclassical scattering amplitudes, we now turn to the quantum
corrected amplitudes. We compute them in two alternative ways. We first use the classical
action S, from which, as we have just shown, the semiclassical amplitudes can be obtained
as tree-level Feynman diagrams, to compute loop amplitudes. We then generalise the
procedure of section 4.3 by equating the quantum-corrected energy-moment tensors for the
asymptotic in- and out-fields. We then compare and find agreement.

The second method is computationally superior and it produces results which are valid
to all orders in ~, in agreement with an old result of Zamolodchikov and Zamolodchikov [6].
We will see that the simplicity of the equation satisfied by F̃ is destroyed and we have not
been able to use it to get the full quantum effective action, i.e. the generating functional for
the quantum scattering amplitudes, by integrating this equation, as we did in section 4.3.

5.1 Quantum amplitudes 1

The starting point is the action (4.30). The Feynman rules are the same as before, but now
we allow loops with the only restriction that self-contractions of two lines emanating from
the same vertex are not allowed. This corresponds to ‘normal ordering’ of the potential. It
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eliminates all possible divergences and therefore no further renormalisation is necessary.4

We also have to take into account symmetry factors, just as in conventional scalar field
theory. We now evaluate a few one-loop diagrams.

For the one-loop contribution of the two-point function there is a single diagram5

if̃
(2,1)
−nn = n −n = 1

2(−ip)2 ∆(n)2
∞∑

m=−∞
∆(m)∆(m+ n) . (5.1)

We have defined the propagator
∆(n) = 1

|n|+ip , (5.2)

and we have included a factor −ip for each vertex; 1/2 is the appropriate symmetry factor.
The (convergent) sum can be computed for general n in terms of the digamma function ψ,
but the expression is not very illuminating and we will not write it. A few special cases are

f̃
(2,1)
−1 1 = i p∆(1)2 , f̃

(2,1)
−2 2 = −1

2 i p (2p2 − 4 i p− 1)∆(1)2∆(2)2 . (5.3)

Next we look at one-loop diagrams with three external legs. There are three possible
topologies

n1

n2

n3

n1

n2

n3

n1

n2

n3

D
(3,1)
1 (n1,n2,n3) D

(3,1)
2 (n1,n2,n3) D

(3,1)
3 (n1,n2,n3)

(5.4)

and the amplitude is

if (3,1)
n1 n2 n3 = 1

2
(
D

(3,1)
1 (n1, n2, n3) +D

(3,1)
1 (n2, n3, n1) +D

(3,1)
1 (n3, n1, n2)

+D
(3,1)
2 (n1, n2, n3) +D

(3,1)
2 (n2, n3, n1) +D

(3,1)
2 (n3, n1, n2)

)
+D

(3,1)
3 (n1, n2, n3) .

(5.5)

All lines are ingoing with n1 + n2 + n3 = 0. Using the Feynman rules it is straightforward
to evaluate the diagrams; for example

n1

n2

n3

= (−ip)3
3∏
i=1

∆(ni)
∞∑

n=−∞
∆(n)∆(n+ n1)∆(n+ n1 + n2) . (5.6)

The sum can be performed for any given n1, n2, n3 with
∑
ni = 0.6 Some examples of the

complete amplitudes are

if̃
(3,1)
−2 1 1 = ip

(
p2 + ip+ 5

)
∆(1)3∆(2)2 ,

if̃
(3,1)
−3 1 2 = −ip

(
p4 − ip3 + 14p2 − 29ip− 11

)
∆(1)3∆(2)2∆(3)2 .

(5.7)

4We have not proven this statement but the overall degree of divergence of every diagram is clearly
negative.

5Here we use the notation f (n,`) for the `-loop contribution for the n-point function.
6E.g. with Mathematica. One can also work out a general expression for generic ni in terms of Polygamma

functions, but it is rather lengthy and does not seem to be particularly useful.
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For four external lines there are the following ten topologies:

(5.8)

Using the Feynman rules it is again straightforward to evaluate the diagrams and to add
them. A few examples for complete one-loop four-point amplitudes are

if̃
(4,1)
−1−1 1 1 = −2ip(p2 + 2ip+ 7)∆(2)2∆(1)4 ,

if̃
(4,1)
−3 1 1 1 = 2ip(p4 + 4ip3 + 30p2 − 20ip+ 29)∆(1)4∆(2)2∆(3)2 ,

if̃
(4,1)
−2−1 1 2 = 2ip(p4 + 2ip3 + 25p2 − 30ip+ 6)∆(1)3∆(2)2∆(3)2 .

(5.9)

It is easy to work out others, but the order of the polynomial in p in the numerator grows
fast with the occupation numbers of the external lines.

In principle one can go higher in the loop expansion, but the number of diagrams grows
quickly and the multiple sums can no longer be performed in closed form. For instance,
the following diagrams contribute to the two-loop corrections of the propagator

The double sums seem hard to do analytically, but one can do them numerically for some
fixed values of p (they converge rather slowly). This and the one-loop results can be
compared with the expressions obtained by the second method that we have alluded to
and to which we now turn.

5.2 Quantum amplitudes 2

A consistent quantization of Liouville theory leads to a deformation of the improvement
term in the stress tensor [13–15]. The quantum Virasoro generators in terms of the in-field
variables read (cf. (4.50))

L̂0 = 1
4(p̂2 + η2) + 2

∑
j≥1

â†j âj ,

L̂m = (p̂+ imη)âm +
∑
j,j′≥1

âj âj′ δj+j′,m + 2
∑
j>0

â†j âm+j ,

L̂−m = (p̂− imη)â†m +
∑
j,j′≥1

â†j â
†
j′ δj+j′,m + 2

∑
j≥1

â†m+j âj ,

(5.10)

where m ≥ 1 and η = 1 + ~. The same generators in terms of the out-field variables are
obtained by the replacements p 7→ −p, âj 7→ b̂j and â†j 7→ b̂†j .

The zero mode operators fix the transition amplitude between the in and out coherent
states (4.6) as in (4.9), where the freedom is given by the function S(p, b∗, a). Inserting the
Virasoro generators between the coherent states 〈p̃, b∗|L̂n|p, a〉 and using the relations (4.7),
one obtains equations for the function S(p, b∗, a).

– 18 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
1

To get a covariant structure of the scattering amplitudes we again combine the positive
and negative indices of Ln’s, as we did in the semiclassical treatment. We then obtain the
following equations∑

k 6=0
k αk

∂S
∂αk

= 0 , (5.11)

~|n| (p− i|n|η) ∂S
∂αn

+ 2(p+ i|n|η)α−n S

+~
∑
k,l 6=0

[ε(k)− ε(l)] |l|αk
∂S
∂α−l

δk+l+n

+
∑
k,l 6=0

[ε(k) + ε(l)]
(
αk αl S − ~2 |k| |l|

4
∂2S

∂α−k ∂α−l

)
δk+l+n = 0 . (5.12)

We represent S in the form7

S = R(p) e
i
~Fq , (5.13)

where R(p) is interpreted as the reflection amplitude, which is known as the 2-point function
of Liouville theory [6, 11, 12]

R(p) = −
(
µ2 sin(π~)

π~
Γ2(~)

)− ip~ Γ(ip/~)
Γ(−ip/~)

Γ(ip)
Γ(−ip) . (5.14)

It reduces to (4.17) in the ~ → 0 limit. This factor is canceled in (5.11)–(5.12) and Fq
satisfies

|n|(|n|η + ip)∂Fq
∂αn

+ 2i(|n|η − ip)α−n

+ i
∑
k,l 6=0

[ε(k)− ε(l)] |l|αk
∂Fq
∂α−l

δk+l+n (5.15)

+
∑
k,l 6=0

[ε(k) + ε(l)]
[
αk αl + |k| |l|4

(
∂Fq
∂α−k

∂Fq
∂α−l

− i~ ∂2Fq
∂α−k ∂α−l

)]
δk+l+n = 0 ,

which is the quantum analogue of (4.53). Planck’s constant appears through η and in the
last term. It is this last term which makes the solution of this equation considerably more
difficult than in the semiclassical case.

If we again introduce F̃ as

F̃q = Fq − i
∑
n 6=0

αnα−n
|n|

(5.16)

and perform the change of variables (4.22), as we did in the semiclassical discussion, we
arrive at the equation

i n
(
|n|η + ip

)∂F̃q
∂jn
− n η j−n − i

∑
k,l 6=0

l jk
∂F̃q
∂j−l

δk+l+n

−
∑
k,l 6=0

|k|l
(
∂F̃q
∂j−k

∂F̃q
∂j−l

− i ~ ∂2F̃q
∂j−k ∂j−l

)
δk+l+n = 0 .

(5.17)

7Fq starts at O(α2). If one includes both chiral sectors, this becomes S = R(p)e i
~ (Fq+F̄q); see also the

discussion in the conclusions.
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As before, we make a series Ansatz for F̃ , insert it into (5.17) and solve for the coefficients.
However, in contrast to the semiclassical case, i.e. as a consequence of the second derivative
term in the quantum equation, we can no longer solve for the f̃ qn1...nν for generic mode
numbers ni. But we can still solve them recursively and it is clear that they are rational
functions of p and ~.

For small ν and small mode numbers one can easily find explicit expressions, which
are valid to all orders in ~. A few examples are8

if̃
(2,q)
−1 1 = 1 + ~

1 + ~ + ip
, if̃

(2,q)
−2 2 =

(1 + ~)
(
2(1 + ip)2 + (5 + 4ip)~ + 2~2)

2(1 + ~ + ip)(2 + ~ + ip)(1 + 2~ + ip) ,

if̃
(3,q)
−2 1 1 = − i(1 + ~)p

(1 + ~ + ip)(2 + ~ + ip)(1 + 2~ + ip) ,

if̃
(3,q)
−3 1 2 = −

i(1 + ~)p
(
(1 + ip)2 + 2(2 + ip)~ + ~2)

(1 + ~ + ip)(2 + ~ + ip)(3 + ~ + ip)(1 + 2~ + ip)(1 + 3~ + ip) ,

if̃
(4,q)
−1−1 1 1 = 2i(1 + ~)p

(1 + ~ + ip)2(2 + ~ + ip)(1 + 2~ + ip) ,

if̃
(4,q)
−2−1 1 2 = 2i(1 + ~)p(1 + ip)(~ + ip)

(1 + ~ + ip)2(2 + ~ + ip)(3 + ~ + ip)(1 + 2~ + ip)(1 + 3~ + ip) ,

if̃
(4,q)
−3 1 1 1 = − 2i(1 + ~)p(1 + ~− ip)

(1 + ~ + ip)(2 + ~ + ip)(3 + ~ + ip)(1 + 2~ + ip)(1 + 3~ + ip) .

(5.18)

The expressions with higher mode numbers quickly become too long to display. We have
also restricted to at most four oscillator excitations because they are needed for the com-
parison with the results obtained from the loop calculations. Indeed, expanding to first
order in ~, we find agreement with (5.3) and (5.9). We also found agreement between the
O(~2) terms in f̃ (2,q)

−1 1 and f̃ (2,q)
−2 2 and the numerical results of the two-loop amplitudes.

6 Conclusions

Our aim in this paper has been the computation of the S-matrix of Liouville theory on
a cylinder. The analysis of the relation between the asymptotic fields shows that this
operator can be represented in the form

Ŝ = P̂ R(p)Sp(ân)Sp(ˆ̄an) , (6.1)

where P̂ is the parity operator that reflects the zero modes of the in-field

P̂ q̂inP̂ = −q̂in , P̂ p̂inP̂ = −p̂in , (6.2)

R(p) is the reflection amplitude (5.14), Sp(ân) depends only on the creation-annihilation
operators of the chiral in-field, Sp(ˆ̄an) is its antichiral counterpart and the matrix elements
of Sp(ân) in the basis of the coherent states (4.6) are defined by the function of holomorphic
variables S(p, b∗, a) introduced in (4.9). Since the reflection amplitude of Liouville theory is
known, the computation of the S-matrix is reduced to the analysis of the chiral sector only.

8The results at levels one and two agree with [6].
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The relevance of the computation of the chiral part of the S-matrix, given by Sp(ân),
goes beyond Liouville theory on the cylinder [14–16] and extends to the theory on the
strip [17], which has besides scattering solutions, also bound states [18, 19]. In particular,
the asymptotic in-field of Liouville theory on the strip with Neumann boundary conditions
has only one set of Fourier modes an and the S-matrix is represented by [20]

Ŝ = P̂ Rb(p)Sp(ân), (6.3)

where P̂ is again the parity operator (6.2), Rb(p) is the reflection amplitude of the boundary
theory and Sp(ân) is the same operator as in (6.1).

In contrast to the cylinder, the reflection amplitude on the strip, Rb(p) vanishes for a
discrete set of purely imaginary momenta, p = iθ, for θ < 0, which correspond to bound
states. The analytical continuation of the asymptotic fields in this region is given by
complex ‘free fields’, whose real and imaginary parts are related to each other. It was
argued in [20] that the analytical continuation of the S-matrix to the bound states defines
the scalar product between the Fock space vectors of this sector.

To compute the chiral part of the S-matrix we have commented on the canonical struc-
ture and used it to determine the action S(ϕ) of a one-dimensional theory, which has a
non-local first-order kinetic energy term and an exponential potential. It reproduces the
scattering amplitudes in the chiral sector, both semiclassical and quantum, via a loop ex-
pansion in Feynman diagrams, where the theory is regularised simply by ‘normal ordering’
the potential. More explicitly, we propose the equation∫

Dϕe−
1
~ (S(ϕ)−〈ϕj〉) = e

i
~ F̃q(j) (6.4)

with F̃q defined in (5.16) and the sources j are related to the modes of the Liouville
scattering problem by a simple rescaling as in (4.22). We proved this at the semi-classical,
i.e. tree level and performed some non-trivial checks at the loop level. We consider the
identification of the action S as the main result of this paper. It would be interesting to
study it further with the aim of computing the complete quantum generating functional.
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A Chiral symplectic forms

The Liouville field and its canonically conjugated momentum are

Φ(τ, σ) = 1
2 logA′(x) + 1

2 log Ā′(x̄)− log
[
1 + µ2A(x) Ā(x̄)

]
, (A.1)

Π(τ, σ) = 1
2
A′′(x)
A′(x) + 1

2
Ā′′(x̄)
Ā′(x̄)

− µ2 A
′(x) Ā(x̄) +A(x) Ā′(x̄)

1 + µ2A(x) Ā(x̄)
, (A.2)

where A and Ā are the screening charges of the in-field (see (2.8)–(2.13)).
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The canonical 2-form Ω defined by the left hand side of (3.3) can be written as

Ω = Ω0 + Ω1 + Ω2 + Ω3 , (A.3)

with

Ω0 =
∫ 2π

0

dσ
2π

[(
δA′

2A′
)′
∧ δA

′

2A′ +
(
δĀ′

2Ā′

)′
∧ δĀ

′

2Ā′

]
+ 1

8π
δA′

A′
∧ δĀ

′

Ā′

∣∣∣σ=2π

σ=0
, (A.4)

Ω1 =
∫ 2π

0

dσ
2π

[
µ2

2

(
δA′

A′
− δĀ′

Ā′

)
∧ δ

(
A′Ā−AĀ′

1 + µ2AĀ

)]

− 1
4π

(
δA′

A′
− δĀ′

Ā′

)
∧ δ

(
log[1 + µ2AĀ]

) ∣∣∣σ=2π

σ=0
, (A.5)

Ω2 =
∫ 2π

0

dσ
2π

[
µ2

2

(
δA′

A′
+ δĀ′

Ā′

)
∧ δ

(
A′Ā+AĀ′

1 + µ2AĀ

)]
, (A.6)

Ω3 =
∫ 2π

0

dσ
2π

[
µ4(Ā δA′ +AδĀ′) ∧ δ(AĀ)

(1 + µ2AĀ)2 + µ2 δĀ ∧ δA′ − δĀ′ ∧ δA
1 + µ2AĀ

]

+ µ2

2π
δA ∧ δĀ

1 + µ2AĀ

∣∣∣σ=2π

σ=0
. (A.7)

Here, we use the relations A′(x) = ∂σA(x), Ā′(x̄) = −∂σĀ(x̄) and apply partial integrations
in Ω1 and Ω3. This extracts the boundary terms in (A.5) and (A.7).

The integrands of Ω1, Ω2 and Ω3 cancel each other in (A.3). Using the monodromy
of the screening charges A(x+ 2π) = e2πpA(x), Ā(x̄+ 2π) = e2πp Ā(x̄), one finds that the
boundary terms of Ω1 and Ω3 cancel each other as well.

Thus, Ω = Ω0 = ω + ω̄, with similar chiral and antichiral parts. After the shift of the
integration variable σ = x− τ , one finds

ω =
∫ τ+2π

τ

dx
2π

[(
δA′(x)
2A′(x)

)′
∧ δA

′(x)
2A′(x)

]
+ 1

2 δp ∧
δA′(τ)
2A′(τ) . (A.8)

This 2-form is τ -independent and in terms of the in-field (2.12) one obtains (3.2).

B Generating function as action functional

In section 3 we have introduced the generating functionals G and Ḡ. We now describe
a different realisation of the generating functions based on the calculation of the action
functional on the solutions of the dynamical equations.

Let us consider a Liouville field Φ(τ, σ) and introduce two free fields Φ−(τ, σ) and
Φ+(τ, σ), which are tangent to Φ(τ, σ) at τ = τ− and τ = τ+, respectively. We also
introduce the actions S[τ+, τ−], S−[τ−, τ0] and S+[τ0, τ+], calculated for Φ, Φ− and Φ+
respectively, for the corresponding time intervals, i.e

S[τ+, τ−] = 1
2

∫ τ+

τ−
dτ
∫ 2π

0

dσ
2π
[
(∂τΦ)2 − (∂σΦ)2 − 4µ2 e2Φ

]
,

S−[τ−, τ0] = 1
2

∫ τ−

τ0
dτ
∫ 2π

0

dσ
2π
[
(∂τΦ−)2 − (∂σΦ−)2

]
,

S+[τ0, τ+] = 1
2

∫ τ0

τ+
dτ
∫ 2π

0

dσ
2π
[
(∂τΦ+)2 − (∂σΦ+)2

]
.

(B.1)
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Using the equations of motion for Φ and Φ±, together with the identity

(∂τΦ)2 − (∂σΦ)2 = ∂τ (Φ∂τΦ)− ∂σ(Φ∂σΦ)− Φ(∂2
τ − ∂2

σ)Φ , (B.2)

one obtains

S[τ+, τ−] = I + 1
2

∫ 2π

0

dσ
2π [Φ(τ+, σ)∂τΦ(τ+, σ)− Φ(τ−, σ)∂τΦ(τ−, σ)] ,

S−[τ−, τ0] = 1
2

∫ 2π

0

dσ
2π [Φ−(τ−, σ)∂τΦ−(τ−, σ)− Φ−(τ0, σ)∂τΦ(τ0, σ)] ,

S+[τ0, τ+] = 1
2

∫ 2π

0

dσ
2π [Φ+(τ0, σ)∂τΦ+(τ0, σ)− Φ+(τ+, σ)∂τΦ(τ+, σ)] ,

(B.3)

with
I(τ+, τ−) =

∫ τ+

τ−
dτ
∫ 2π

0

dσ
2π

[
−1

2 Φ
(
∂2
τ − ∂2

σ

)
Φ− 2µ2 e2Φ

]
. (B.4)

Since the fields Φ± are tangent to the Liouville field Φ, from (B.3) we find

lim
t±→±∞

(S0[τ0, τ+] + S[τ+, τ−] + S0[τ−, τ0])

= 2µ2
∫ ∞
−∞

dτ
∫ 2π

0

dσ
2π e

2Φ (Φ− 1)

+ 1
2

∫ 2π

0

dσ
2π [Φout(τ0, σ)∂τΦout(τ0, σ)− Φin(τ0, σ)∂τΦin(τ0, σ)] .

(B.5)

The left hand side here corresponds to the generating function (3.14) at τ = τ0. This
leads to

2µ2
∫ ∞
−∞

dτ
∫ 2π

0

dσ
2π e

2Φ(Φ− 1) = G+ Ḡ , (B.6)

where G is the generating function (3.10) and Ḡ is its antichiral counterpart.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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