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1 Introduction

The advent of machine learning research started with the proposal of the basic framework
of the neural network, perceptron by Rosenblatt in 1958. Soon in 1975, Werbos developed
the back-propagation, a learning algorithm that can train multi-level perceptron. But it
took almost four decades to implement a ‘deep’ neural network on a large industrial scale.
Since then, classical machine learning has been an indispensable tool in various fields
ranging from healthcare to robotics. The most crucial factor that directed the mammoth
success of classical machine learning is the advancement of computational power. Back
in the 1980s, Feynman proposed utilizing the quantum mechanical power of nature to
compute, which led to the idea of quantum computers. But to avoid the decoherence
effect in qubits, low temperature is required to sustain the coherence property of qubits.
Due to these engineering issues, it took nearly three decades to build a practical quantum
computer [1–5]. Recently, Google has been able to simulate quantum chemistry reactions
using only 12 hydrogen atoms representing 12 qubits of information in these quantum
computers [1, 6]. Quantum computer researchers lately have shown interest in quantum
machine learning, performing machine learning tasks using the computational power of
the quantum mechanical world. There has been a lot of focus recently on the proposal of
a quantum neural network as a quantum analog of a classical neural network with back-
propagation as its learning algorithm [7–10].

Similar to classical machine learning, quantum machine learning can be categorized
into supervised, unsupervised, and semi-supervised learning like reinforcement learning.
The paper focuses on the supervised learning of quantum neural networks. In a classical
supervised learning algorithm, the neural network is provided with two sets of data, a
training set, and a testing set. The dataset comprises ordered pairs of input and desired
output, and the neural network samples these ordered pairs to the training set under a
fixed probability distribution. The neural network learns from the labeled data of the
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training set and predicts the unlabelled data of the testing set with given accuracy and
a confidence parameter. We define a loss function f , which represents the training error
between the predicted output by the neural network and actual output in the labeled data.
The neural network optimizes the loss function during the training period. In the quantum
supervised learning scenario, there can be three different possible data-algorithm pairs in
terms of quantum and classical nature of data and learning algorithms. In this paper, we
use a hybrid quantum-classical neural network where we train quantum data with classi-
cal learning algorithms like stochastic gradient descent. In the quantum-classical hybrid
framework proposed by Mitarai, a Parametrized Quantum Circuits (PQCs) is introduced
by [11, 12]. The quantum circuit is characterized by parameters that are optimized using a
classical learning algorithm to optimize the loss function and simultaneously reducing the
testing error. A gradient-based learning algorithm is used for back-propagation. In this
paper, we have used Stochastic Gradient Descent (SGD) as our learning algorithm [13–15].
SGD performs gradient descent in batches rather than on the complete training set. Re-
markable progress has been made in executing quantum neural networks, but there has
been no significant progress in developing the quantum analogy of the statistical learning
theory of neural networks. The learning theory of classical neural networks has been an im-
portant tool for computer scientists to decipher the black-box of information processing in
neural networks [16–21]. Learning theory can be analyzed from two different perspectives:
statistical approach and information-theoretic approach. For classical neural networks, the
work by [16, 17] analyzed the learning dynamics using the evolution of mutual information
between the output and the layers of the neural network. From a quantum analogy of the
information-theoretical approach, the works by [22, 23] correlated the dynamical behavior
of the tripartite information with the loss function in the training process. In this paper,
we analyze from a statistical and differential geometric perspective of evaluating chaos and
complexity in QNN. One of the most important aspects of learning theory is the deter-
mination of stability in the learning process of the QNN. In classical neural networks, the
work [20] showed the learning trajectory of deep linear networks is exponentially stable.
On the other hand, there can be neural network systems with limit cycles in the phase por-
trait [21]. Moreover, it is argued by [24] that the coherent systems with oscillations or limit
cycles are essential in the stability of continuous memory in the human brain. The stability
of the learning trajectory in classical neural networks motivated us to have a look from the
QNN perspective. On the other hand, over the years, scientists searched for chaos in vari-
ous fields ranging from population models to black holes. The search for chaotic patterns
in neuroscience has been analyzed since the inception of the Hodgkin-Huxley model [25].
The work is further extended with experiments performed by the work [26]. The chaos in
neural networks has been well studied over the past years [27–29]. The quantum processing
in neurons proposed by [30] signifies that its equivalence with the human brain, which jus-
tifies the analysis of the learning theory of quantum neural networks. Yet, there has been
no significant progress in the chaos in quantum neural networks. Recently, [22] analyzed
chaos from the notion of information scrambling in quantum neural networks. In this pa-
per, we approach to analyze the chaos and complexity in a quantum neural network from
a statistical perspective. The analysis will form a basis to further co-relate the chaos in a
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quantum neural network with other known physical models like black holes or economic
models. This would give a deep insight into how different the human brain-motivated
quantum neural networks behave from the rest of the physical models.

A recent research direction in the classical machine learning context has been the
possibility of searching for optimal neural architecture [31–34]. The ability to search for
optimal architectures given the training dataset gives us the power to predict an optimal
neural network theoretically before the long training periods. The optimality is defined on
two competing terms. Firstly, the time constant of the decay of the training error, better
neural network shows a larger time constant. On the other hand, one also needs to take
care of the generalization error. When the neural network attains more minima in the
learning manifold, the probability of reaching a wide minima increases, which would result
in minimum generalization error. But for a larger time constant, the number of minima
attended decreases, thus a trade-off resulting in higher generalization error. To attain this
optimal ability for the neural network to reach a large number of minima with an optimal
time constant, the paper attempts to map the learning trajectory or unitary evolution of
QNN to the trajectory of parameters using a Riemannian manifold called diffusion metric.
The diffusion metric is introduced by Foressi in [35] and it is constructed by perturbing
the flat Euclidean space by the magnitude of the noise in the gradient of the loss function.
We can observe how the manifold changes in changing the neural architecture. In doing
so, we will be able to correlate the optimal unitary evolution of QNN with optimal i.e.
stationary action path of particles in diffusion metric. The correlation has two implications,
firstly searching for an optimal QNN architecture as mentioned before, another coming
from a more theoretical high energy physics perspective. The optimal unitary evolution
denotes the minimum number of computations required to generate the final unitary Uf
from the initial unitary Ui which in other words, the relative complexity [36–38] between
the initial and final unitary, C(Uf ,Ui). This measure of complexity in unitary space is
directly correlated with the optimal trajectory evolution of parameters or geodesic in the
parameter space. The correlation establishes complexity as a function of the parameters of
the QNN. After establishing the complexity, an extensive study of quantum chaos has been
studied [36, 37, 39–44]. The stability of the neural network in terms of Lyapunov stability
and its evolution establishes how the neural architecture governs the stability of the neural
network. Rather than an extensive study of the Lyapunov evolution, an extremal study in
terms of the growth of the complexity has been carried out. In this connection, the out-of-
time-correlator (OTOC) has also been calculated using the universality relation between
complexity and OTOC, given by C = − log(OTOC).1

1The concept of out-of-time-correlator (OTOC) is treated as a very important probe to quantify the
amplitude of quantum chaos in terms of Quantum Lyapunov exponent. In this paper we have not explicitly
computed the expression for the OTOC from the first principle, rather using the relation between complexity
and OTOC we have determined OTOC in terms of complexity for a specific region of parameter space where
the relation holds good. On the other hand, for the other part of the parameter space where this relationship
does not hold good one needs to explicitly compute the expression for the OTOC from the first principle
which we have not studied in this paper. Though we have explicitly studied the behavior of the circuit
complexity as a function of time for the other part of the parameter space and we have found various
other non-chaotic behavior and for all of these studies, the mentioned relationship between the complexity
function and OTOC is not at all valid. This statement will be more justifiable from the performed analysis
which we will show in the rest half of this paper.
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Figure 1. Roadmap of the paper.

The paper considers a hybrid quantum-classical neural network framework based on
PQCs [11, 12] optimizing quantum data with classical gradient-based algorithms like
stochastic gradient descent (SGD). Throughout the paper, we have assumed that the length
of the training dataset is large enough for the loss function to stabilize i.e. the loss function
doesn’t change as we increase the length of the training set. This led us to avoid fluctu-
ations due to sampling. The assumption of a large training dataset and the stabilizing of
the loss function is inspired by Bialek et al. [45] corresponding to quantum computation
at thermal equilibrium [46]. The paper established the behavior of noise in SGD, which is
governed by the neural architecture and dataset of QNN using the diffusion metric. The
parameterized complexity of QNN is established by corresponding with the geodesic of
parameter trajectories in the diffusion metric. The paper further analyses the stability of
QNN using the Lyapunov exponent as a function of the neural architecture and dataset.

The paper is divided into three sections, building up the mathematical background in
section 2 to the analysis of stability using the Lyapunov exponent in section 4. In section 2,
Parameterized Quantum Circuits were introduced as a universal function approximator [47]
and analysis was performed as a quantum analog of the statistical learning theory based
on [45]. The diffusion metric [35] is introduced in section 3, correlating the learning tra-
jectory of QNN to the evolution of noise in SGD during training. After establishing the
fundamental and mathematical concepts in section 2 (Mathematical background) and sec-
tion 3 (Diffusion Metric), the paper determines complexity as a function of parameters
in section 4.1 (Parameterized Complexity). The complexity of QNN determines the Lya-
punov exponents and thus the stability analysis was established in section 4.2 (Quantum
Lyapunov exponents), along with section 4.3 (Results and discussions) showing the varia-
tions of Complexity with the architecture of the QNN.
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2 Mathematical background

We focus on executing supervised learning tasks using Parameterized Quantum Circuit
framework. In classical supervised learning, the model learns to map from an input dataset
{xi} to the output {ŷi}. The map represents a w-parameterized function yi = m(xi;w),
which is optimized to be close to the output ŷi for all data index i belonging to the training
dataset. The metric used to define the closeness of the parameterized function and output
is called the loss function. The loss function can represent any metric like cross-entropy,
likelihood loss, log loss, etc [13]. Here, we consider the mean square error loss. The main
objective of the model is to optimize the loss function using a certain learning algorithm.
These algorithms update the parameters w of the parameterized function m(xi;w) to op-
timize the loss function. Here, the model optimizes the loss function employing stochastic
gradient descent (SGD) as its learning algorithm. SGD is an iterative method for optimiz-
ing the loss function by using the gradient of the loss function calculated from a randomly
selected subset of the training dataset [13, 14]. This supervised learning scenario is valid
for both classical and quantum neural networks. In the quantum neural network context,
the initial density matrix ρin(xi) is created by encoding the input data stream {xi} onto the
Encoder Circuit Unitary Uφ(xi), which acts on the ground state |0〉 [11, 12]. The Unitary
Uφ can be represented as a sum of a linear combination of the basis operators α spanning
over K-dimensional space with basis functions φ(x) as coefficients. The Encoder Circuit
Unitary Uφ is characterized by basis functions φµ(x), where x is sampled independently
and identically from the training dataset under a fixed probability distribution P (x) with
variance σ2

η [15, 45]. Mathematically the unitary Uφ can be represented by:

Encoder Circuit Unitary: Uφ(x) =
K∑
µ=1

φµ(x)σµ , (2.1)

using which the input density matrix ρin is defined as:

Input Density Matrix: ρin(xi) = Uφ(xi) |0〉 〈0| U†φ(xi) . (2.2)

Here the input density matrix ρin is created from the input dataset using the equa-
tion (2.2). The quantum neural network (QNN) applies a parameterized Unitary operator
Uθ on the input density matrix to produce an output density matrix ρout at every epoch
(or iteration). Here, it is important to note that similar to the universal approximation
theorem in artificial neural networks [47], there always exists a quantum circuit that can
represent a target function within an arbitrarily small error. The parameterized quantum
circuit learning will always be able to optimize to any arbitrary small error but the depth
or complexity of the circuit increases. This optimization also doesn’t guarantee the gen-
eralization capability of the quantum neural network which would result in a high testing
error. Motivated by the notion of deep neural networks and the unitary arrangement pro-
posed by Beer et al. [7], we use the quantum neural network architecture of stacked unitary
operators with a L number of layers. The unitary operator of the whole quantum circuit
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parameterized by θ is given by:

Uθ =
L∏
i=1
Ui, (2.3)

where Ui is the unitary at ith layer parameterized by weights w. The unitary at ith layer
can be expressed as the sum of the linear combination of the basis operators σ with w as
its coefficients. Mathematically, the unitary Ui can be expressed as follows:

Ui =
∑
ν

wiνσ
ν . (2.4)

Combining equations (2.3)–(2.4), the parameterized unitary operator can be expressed
as the sum of the linear combination of the basis operators σ spanning over P -dimensional
space with parameter θ as its coefficient. Mathematically, the unitary operator Uθ can be
expressed as follows:

Parameterized Unitary: Uθ =
K∑
ν=1

θνσ
ν , (2.5)

where θν = gν(w) is a function of weights. The parameters θ gets updated by the learning
algorithm to optimize the loss function. The unitary operator Uθ given by equation (2.5)
acts on the initial density matrix given by equation (2.2) to produce the output density
matrix ρout. We measure the output density matrix ρout using the observer operator B to
get an expected value of the observation B given by Tr(Bρout). QNN aims to optimize this
expected observation value to a target observation value B̄ as an output. For every input
dataset {xi}, we consider a corresponding output observation dataset {Bi}. During the
training period, the training dataset (xi, B̄i) is sampled under the distribution P (x). The
parametrized unitary operator Uθ maps the input {xi} encoded initial density matrix to
output density matrix. The observer maps this output density matrix to the loss function
value f . Now using a learning algorithm (here, stochastic gradient descent) the QNN must
find a sub-space of the unitary operator Uθ̄ for which the loss function f is at its minimum.
But again this sub-space doesn’t guarantee generalization over dataset or minimum of
testing error.2 The framework for Quantum Neural Network can be summarized following
equations (2.1)–(2.2) and (2.3)–(2.5) as:

Output Density Matrix: ρout(xi) = U†θρin(xi)Uθ , (2.6)

and

Loss function: f = 1
N

N∑
i=1

(
B̄i − Tr(Bρout(xi))

)2

, (2.7)

2There may be an overlapping sub-sub space for which the QNN could both optimize and generalize.
Note that there can also be a situation when the sub-space of optimization doesn’t overlap with the sub-
space of generalization. In that case, a trade-off takes place which is not favourable and a different neural
architecture or Encoder Circuit should be looked after.
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where N is the length of the training dataset. We introduce a mapping Ω which the
equations (2.6)–(2.7) maps Ω : θ 7→ f for every epoch. It is important to note that there
is a reduction in dimension to form a surjective K − to − 1 mapping. This results in
many sub-spaces of optimal parameters for which the loss function f is minimum. Under a
learning algorithm (here, stochastic gradient descent) QNN changes the unitary operator
every epoch t by applying a mapping Θ : θt 7→ θt+1. To optimize the loss function, the
learning algorithm tends to map Θ such that E(f(θt)) > E(f(θt+1)). SGD tends the
corresponding loss function to decreases iteratively at every epoch and finally reach the
unitary Uθ̄, characterized by θ̄. In other words, when the parameters optimize θ → θ̄, the
expected value of observation B will tend towards B̄, resulting in the zero training error.
The parameters θ̄ are the optimal parameters. So, the matrix B̄ can be represented as:

B̄i =
(
Tr(BU†

θ̄
ρiinUθ̄) + ηi

)
, (2.8)

where we used a shorthand ρiin = ρin(xi) and ηi are the Gaussian noise with mean zero and
σ2

Γ variance, similar to the classical variant used in [45]. The neural network optimizes by
updating its parameters using stochastic gradient descent (SGD). The learning algorithm
or the mapping Θ : θt 7→ θt+1 can be given as follows:

Stochastic Gradient Descent: θt+1 =
(
θt −

Γ
|B|

∑
i∈B

∂fi
∂θ

,

)
, (2.9)

where Γ represents the learning rate. Rather than optimizing the whole training dataset, we
optimize the dataset in batches B, randomly picked from the whole training data. This not
only reduces the computational cost but also adds stochasticity due to random sampling of
batches which proves to be very essential in the generalization context, which will be dis-
cussed later in section 4 (Complexity & stability). The batch size |B| is much less than the
total length of the training dataset N . The stochasticity in the SGD arises when |B| � N ,
which allows for higher stochasticity in random sampling while training. When both the
length |B| ∼ N then the stochasticity loses and SGD becomes simple (not stochastic!)
gradient-descent. SGD in the last few decades has been experimentally the most efficient
in terms of accuracy and computational cost. This lead to its increasing interests and doc-
umentations in the computer-science community. Recently, with the works of [14, 15, 35],
there is a huge surge in interest in analyzing the SGD from a dynamical system perspective.
We discuss this important aspect of SGD in section 3 (Diffusion metric).

The loss function plays an essential part in the QNN framework as it is the objective
function and purposely drives the gradient in the learning algorithm. Combining equa-
tions (2.1)–(2.2) and equations (2.5)–(2.7), the loss function can be expressed as:

f = σ2
η +

K∑
µ,ν,δ,γ

(θ∗µθν − θ̄∗µθ̄ν)(θ∗δθγ − θ̄∗δ θ̄γ)Tr
(

1
N

N∑
i=1

(Bσµρiinσν ⊗Bσδρiinσγ︸ ︷︷ ︸
≡∆

)
)
. (2.10)
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Further simplifying the factor ∆ under the condition that N → ∞ (large N) as eval-
uated in [15, 45] we get:

∆ =
K∑

j,k,p,q

A∞j′kp′q

(
Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ

)
(2.11)

where the expansion co-efficient A∞j′kp′q can be expressed as:

Encoder-Dataset Tensor: A∞j′kp′q = lim
N→∞

{
1
N

N∑
i=1

φ∗j (xi)φ∗p(xi)φq(xi)φk(xi)
}
. (2.12)

The 4-rank tensor A∞ exists under the assumption that the equation (2.12) thermalizes
or reaches equilibrium. The basis functions of the Encoder Circuit unitary operator Uφ
play a pivotal part in creating the initial density matrix ρin in equations (2.1)–(2.2). The
basis functions are constant for a framework and thus selected prior to any training. The
selection of these basis functions is thus important as the input dataset gets encoded into
the basis functions. The tensor A∞ signifies the relation between the architecture of the
Encoder Circuit and dataset. Hence, we call the tensor A∞ as Encoder-Dataset tensor. The
Encoder-Dataset tensor plays the essential role to prepare the input density matrix from the
input {xi}. It may not be obvious that this tensor plays an essential role in determining the
behavior of learning in QNN. But later in section 4.2, we have shown that the eigenvalues
of the Encoder-dataset matrix play an essential role in determining the chaotic nature
of QNN. Here, we assumed that the loss function stabilizes when the number of training
data is large enough to neglect the fluctuations. Continuing equation (2.10) and replacing
∆ using equation (2.12), as shown in appendix A the loss function takes the following
simplified form:

f = σ2
η +

K∑
µ,ν,δ,γ,j,k,p,q

A∞j′kp′q(θ∗µθν − θ̄∗µθ̄ν)(θ∗δθγ − θ̄∗δ θ̄γ)

× Tr
(
Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ

)
. (2.13)

The above equation shows how the loss function is governed by the selection of Encoder-
Dataset tensor A∞, given the observation matrix B. An important observation from equa-
tion (2.13) is that: when the parameters optimize i.e. θ → θ̄, the loss function minimizes
to a non-zero constant σ2

η, the variance of sampling distribution P (x). It is easy to math-
ematically validate as the loss function f is a mean squared error loss, the sampling of the
ordered pairs (xi, B̄i) also attributed to the loss function. Consider the sampling distri-
bution P (x) as a delta function with σ2

η → 0, then the loss function min f also tends to
zero. Now, when we increase the variance of the distribution, or in other words, increase
the diversification of the training dataset, the min f also increases. This also shows that
the neural network will fail for a uniform sampling distribution with σ2

η →∞, there has to
be an underlying structure of the dataset for the neural network to optimize.
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3 Diffusion metric

Previously in section 2, we discussed the notion of stochasticity in stochastic gradient
descent (SGD) using equation (2.9). The hyper-parameters of SGD i.e. the batch size |B|
and the learning rate Γ are crucial in achieving optimal learning trajectory in the context of
computational cost and accuracy [14]. The learning trajectory accounts for the trajectory of
parameters in the learning manifold, from the initial condition governed by the dynamical
equation given by equation (2.9). A faster learning rate will skip minimal in the learning
manifold, thus reducing the probability of achieving better minimal for optimization and
generalization. Though a smaller batch size will reduce the computational cost, it also on
the other hand increase the stochastic behavior of SGD large enough to skip the minimal,
increasing training and testing error. This brings the focus to find a metric to calculate
the stochasticity in the SGD, to analyze the effect of the hyper-parameters, the Encoder
Circuit along the neural architecture of QNN on the behavior of stochasticity in the learning
trajectory. The literature by Foressi et al. [35] showed that the Diffusion matrix D which
is essentially the covariance matrix of the gradient of the loss function provides a great
insight into the stochastic nature of SGD. The diffusion matrix D becomes a null matrix
when the learning trajectory is governed by a simple (not stochastic!) gradient-descent.
This implies that when the matrix D is null, the sampling of the batches is irrelevant to the
learning algorithm. At this time, the loss function has reached its critical point or in other
words, the model has learned the training dataset. The magnitude of the Diffusion matrix
determines the amount of stochasticity of SGD. The work [35] introduced a metric called
Diffusion metric D̃, which is created by perturbing the Euclidean space of parameters with
the magnitude of noise in the stochastic gradient descent. Foressi et al. [35] showed that
the trajectory of parameters θ governed by SGD follows a geodesic path in the diffusion
metric under a potential given by V . Mathematically, the diffusion metric is given by the
following expression:

Diffusion Metric: D̃µν =
(
δµν + εDµν

)
, (3.1)

where ε < 1/max λD where λD is the set of eigenvalues of diffusion matrix D and ε is
the order of perturbation to the Euclidean space in the above expression. The Euclidean
space corresponds to the diffusion matrix being D = 0 or in other words, the learning
trajectory is governed by simple gradient-descent. Perturbing this Euclidean space with
weak perturbation will distort the straight line geodesic path of parameters governed by
simple gradient descent. This path corresponds to the path of the parameters with no
excitation to explore other minima, thus increasing the probability of finding a better
minima point resulting in better generalization. As mentioned earlier, the diffusion matrix
is a covariance matrix of the gradient of the loss function f , which is mathematically
expressed by the following expression:

Diffusion Matrix: Dµν = 1
N

N∑
i=1

(
∂fi
∂θµ

)(
∂fi
∂θν

)
− 1
N2

N∑
i,j=1

(
∂fi
∂θµ

)(
∂fj
∂θν

)
. (3.2)
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To evaluate the diffusion matrix, we consider evaluating the gradient of the loss function
f as follows:

fi =
{ K∑
µ,ν

(θ∗µθν − θ̄∗µθ̄ν)Tr
(
Bσµρiinσ

ν
)

+ η

}2
, (3.3)

using which we compute:(
∂fi
∂θζ

)
=
{ K∑
µ,ν,δ,γ

(θ∗µθν − θ̄∗µθ̄ν)
(
Ḡδζθγ + Gγζ θ

∗
δ

)
Tr
(
Bσµρiinσ

ν ⊗Bσδρiinσγ
)

+2η
K∑
δ,γ

(Ḡδζθγ + Gγζ θ
∗
δ )Tr

(
Bσδρiinσ

γ
)}
, (3.4)

(
∂f

∂θζ

)
=
{ K∑
µ,ν,δ,γ,j,k,p,q

2A∞j′kp′q(θ∗µθν − θ̄∗µθ̄ν)
(
Ḡδζθγ + Gγζ θ

∗
δ )
)

Tr
(
Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ

)
+2η

K∑
δ,γ,j,k

A∞j′k

(
Ḡδζθγ + Gγζ θ

∗
δ

)
Tr
(
Bσδσj |0〉 〈0|σkσγ

)}
, (3.5)

where the dependency of θµ with respect to θν can be given by the Jacobian Gµν as follows:

Jacobian Matrix: Gµν =
(
∂θµ

∂θν

)
=


∑

l∈{L(ν)}

(
∂gµ(w)
∂wl

)(
∂wl

∂gν(w)

)
µ 6= ν

1 µ = ν

 (3.6)

where {L(ν)} is the collection of indexes l for which ∂gν(w)
∂wl

6= 0 as shown in [15]. It is
important to note that G changes with epochs as weights evolve with time. The matrix
G measures the dependence between the different parameters represented as coordinates.
The matrix G being the Dirac-delta function infers that the parameters are independent
and the parameter space corresponds to the Euclidean space. From the dynamical system
perspective, the matrix G governs the dependence of a parameter with other parameters,
which in turn changes that parameter itself. One can correlate this scenario with many-
body interactions with long-range hopping where the hopping energy from lattice site i to
j corresponds to the magnitude of the matrix Gji . When the magnitude of each element
of the matrix G is large enough, the hopping energy is large, making the disorder strength
to decrease- ergodicity arises. On the other hand, when the magnitude of each element of
the matrix G is small enough, the hopping energy is small making the disorder strength
to increase- localization arises and ergodicity is lost. In the work by [21], the inverse
temperature β is defined by the hyper-parameters of SGD. This motivated us to correlate
the Jacobian matrix G with the hopping energy. The correlation provides a holistic phase
diagram between temperature T and disorder strength W similar to any Ising-like models
as shown in [48, 49]. The phase diagram will provide a deeper understanding between
the equilibrium systems or non-equilibrium systems in an artificial neural network context.
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The study of equilibrium and non-equilibrium aspects in artificial neural networks has been
discussed in [21].

Similar to the assumption in the equation (2.12) that the 4-rank tensor A∞ thermalizes
or reaches equilibrium, the diffusion matrix given in (3.2) also thermalizes. Using the
similar treatment as [15, 45], the approximated diffusion matrix can be given by

Approximated Diffusion Matrix:

D∞ζη = lim
N→∞

Dζη = 4
[

K∑
µ,ν,δ,γ,ω,κ,ξ,π,j,k,p,q,r,s,a,b

(
A∞j′kp′qr′sa′b −A∞j′kp′qA∞r′sa′b

)
(θ∗µθν − θ̄∗µθ̄ν)

(
Ḡδζθγ + Gγζ θ

∗
δ

)
(θ∗ωθκ − θ̄∗ω θ̄κ)

(
Ḡπη θξ + Gξηθ∗π

)
Tr
(
Bσµσj |0〉〈0|σkσν⊗Bσδσp |0〉〈0|σqσγ⊗Bσωσr |0〉〈0|σsσκ⊗Bσπσa |0〉〈0|σbσξ

)
+σ2

η

K∑
δ,γ,π,ξ,p,q,a,b

A∞p′qa′b

(
Ḡδζθγ + Gγζ θ

∗
δ

)(
Ḡπη θξ + Gξηθ∗π

)

Tr
(
Bσδσp |0〉 〈0|σqσγ ⊗Bσπσa |0〉 〈0|σbσξ

)]
, (3.7)

where the matrix index Ḡδζ denotes the dependency of the complex conjugate of θδ on the
parameter θζ . Mathematically, the matrix index is given by Ḡδζ =

(
∂θ∗δ
∂θζ

)
. The 8-rank

Encoder-Dataset matrix A∞j′kp′qr′sa′b can be expressed as:

A∞j′kp′qr′sa′b = lim
N→∞

{
1
N

N∑
i=1

φ∗j (xi)φ∗p(xi)φ∗r(xi)φ∗a(xi)φq(xi)φk(xi)φb(xi)φs(xi)
}
. (3.8)

The stochasticity of SGD changes with time which provides a temporal variation of the
magnitude of perturbation in the Euclidean space. This perturbation in the approximated
Diffusion metric can be correlated with the movement of masses in a Riemannian man-
ifold where the parameters form the space-time coordinates. We now shift the problem
from the approximated Diffusion metric with parameters to the trajectory of particles in
the Riemannian manifold with the presence of small random masses. The magnitude of
these masses is given by the magnitude of the noise in SGD, thus changes with time. The
mass distribution on the Riemannian manifold also changes. Now, imagine you are told to
control the trajectory of a particle from an initial point to its final point, by changing the
mass distribution. The reward or aim of the particle is to visit more intermediate points
while also reaching the target within a considerable time. The number of intermediate
points corresponds to the generalization capability of the neural network and time here is
the training time the QNN takes to reach the optimal points. In zero-mass distribution
configuration, the parameters’ trajectory would’ve been a straight line, reaching in less
training time but also with less generalization capability. Changing the mass distribu-
tion increases the probability of the particle to more intermediate points, thus increasing
the generalization capability. Analyzing the temporal distribution of mass thus becomes
important in controlling the particle trajectory in maximizing its rewards. Realizing the
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correspondence, it thus becomes important to understand the stochasticity flow of SGD
to control the parameter trajectory. The equation (3.7) shows the dependence of neural
architecture and Encoder-Dataset tensor on the stochasticity. Thus the neural architecture
and Encoder-Dataset tensor play an important role in controlling the trajectory of param-
eters in the Diffusion metric, in the context of generalization capability and convergence
rate. A detailed study is performed in section 4 (Complexity & stability).

Approximated diffusion matrix D∞ being a covariance matrix, is a positive semi-
definite matrix with all positive eigenvalues. This property of the matrix D∞ restricts
the domain of parameters θ. The QNN in their whole learning trajectory should al-
ways have a parameter set θ for which λD(θ) ≥ 0. To visualize the limiting condition
on the parameters, let us consider the parameters are equally optimized in all the direc-
tions θ∗µθν − θ̄∗µθ̄µ = |∆θ|2 for all index µ ≤ P . The Jacobian matrix G and the observation
matrix B are considered identity matrices. The dimensions P,K = 4 where all the ba-
sis operators are Pauli operators including the identity matrix. Using equation (3.7), the
restrictions on the difference of parameters ∆θ can be evaluated as:

D∞ζη = 8Re2
[ 4∑
µ,ν,ω,κ

4∑
j,k,p,q,r,s,a,b

(
A∞j′kp′qr′sa′b −A∞j′kp′qA∞r′sa′b

)
︸ ︷︷ ︸

≡Ψ

∣∣∣∆θ∣∣∣2

×Tr
(
σµσj |0〉 〈0|σkσν ⊗ σζσp |0〉 〈0|σqσζ ⊗ σωσr |0〉 〈0|αsσκ ⊗ σησa |0〉 〈0|σbση

)
︸ ︷︷ ︸

≡Φ2

+σ2
η

4∑
p,q,a,b

A∞p′qa′bTr
(
σζσp |0〉 〈0|σqσζ ⊗ σησa |0〉 〈0|σbση

)
︸ ︷︷ ︸

≡Φ1

]
. (3.9)

Further simplifying the factor Ψ using the definitions of Encoder-Dataset tensor in
equation (2.12) and (3.8), we get

Ψ = cov
(
φ∗r(x)φ∗a(x)φs(x)φb(x), φ∗j (x)φ∗p(x)φq(x)φk(x)

)
(3.10)

where cov(a, b) is the covariance between two vectors ~a and ~b. Using the properties of Pauli
matrices, the quantity Φ1 can be simplified to

Φ1 = 4δpqδab (3.11)

It is important to observe than Φ1 is independent of the index (ζ, η). Similarly, the
quantity Φ2 is also independent of the index (ζ, η). Thus the approximated diffusion
matrix in (3.9) is a constant matrix with all elements as a constant number c, where the
quantity c = D∞ηζ for all indexes (η, ζ) as shown in (3.9). The eigenvalues of matrix D∞
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are λD = {0, 0, 0, 4c}, which has to be a positive quantity:

0 ≤
[ 4∑
µ,ν,ω,κ

4∑
j,k,p,q,r,s,a,b

cov
(
φ∗r(x)φ∗a(x)φs(x)φb(x), φ∗j (x)φ∗p(x)φq(x)φk(x)

)∣∣∣∆θ∣∣∣2
Tr
(
σµσj |0〉 〈0|σkσν ⊗ σζσp |0〉 〈0|σqσζ ⊗ σωσr |0〉 〈0|σsσκ ⊗ σησa |0〉 〈0|σbση

)
+4σ2

η

4∑
p,q,a,b

A∞p′qa′bδpqδab

]
. (3.12)

The above equation may not always be true as it completely depends on the selected
Encoder-Dataset tensor A∞. Notice that when 4-rank Encoder-Dataset tensor A∞ has all
negative values at A∞p′pa′a for all a, p ≤ 4, then the inequality (3.12) cannot reach |∆θ| = 0.
If the parameters optimize completely i.e. |∆θ| = 0 then the inequality doesn’t hold true,
thus a contradiction. In these cases, a stricter inequality can be evaluated according to the
elemental value of the matrix A∞ and thus a limit to optimization can be evaluated. One
can again correlate the inequality (3.12) with particles in the Riemannian manifold where
the K = 4 parameters are the 4 space-time coordinates. In the space-time context, the
inequality (3.12) shows that in certain metric (or Encoder-Dataset tensor), the space-time
coordinates can be restricted in reaching its final coordinate i.e. θ̄, making the difference
|∆θ| a non-zero quantity. It is certainly not surprising that these types of space-time
restrictions are quite common to see, reflecting an interesting correlation with QNN.

4 Complexity & stability

At every epoch of training of QNN, a particular unitary operator Uθ is prepared by the
Parameterized Quantum Circuit. Brown and Susskind [37, 44, 50, 51] viewed the prepa-
ration of Uθ as a time-series of discrete motions of an auxiliary particle on the Special
Unitary SU group space. The particle starts at the identity operator I and ends at a
target unitary operator U . The complexity of the unitary operator Uθ is the number of
minimum operators required to create Uθ by the given circuit. Mathematically, it is given
by the geodesic on the SU group space. QNN employs a unitary operator Uθ at every
epoch, thus the complexity of the QNN changes with epochs. In the QNN context, the
final or target unitary operator is given by Uθ̄ to produce minimum training error. The
particle in group space travels from the initial unitary operator Uθ′ to the unitary operator
Uθ̄. On the other hand, this can correspond with a particle in the Diffusion metric trav-
eling from initial parameter configuration θ0 to the optimal parameter set θ̄ as discussed
in section 3 (Diffusion metric). A consequence of this correspondence is that the geodesic
path traveled by the particle in the Diffusion metric can be correlated with the complexity
as the geodesic traveled in the group space. Reflecting from the parameterized version of
the approximated diffusion metric in equation (3.7), the complexity as a function of pa-
rameters can be correlated. Based on the parameterized complexity, one can further study
the quantum chaos and complexity in QNN.
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4.1 Parameterized complexity

The main objective of this section is to establish the complexity [36, 37, 51–57] as a func-
tion of parameters. This is motivated by the parameterized version of the approximated
diffusion metric presented in equation (3.7). The parameterized complexity is evaluated by
corresponding to the diffusion metric introduced in [35]. The stochastic gradient descent
follows a geodesic path on this diffusion metric, which has been discussed in [35] is given
by the following equation:

Geodesic on Diffusion Metric:
(
∂θ

∂t

)
= −(I − εD∞)

(
∂f

∂θ

)
(4.1)

where D∞ is the approximated diffusion matrix and measures the degree of stochasticity.
When the matrix D∞ becomes a null matrix, then equation (4.1) represents the simple
gradient descent as a learning algorithm. The optimal parameter θ̄ by integrating equation
4.1 can be shown as:

θ̄ν = θ0 −
∫ T

0

4∑
µ=1

(δµν − εD∞µν)
(
∂f

∂θµ

)
dt (4.2)

where T is a hypothetical total training time to reach the optimal parameters from the
initial parameter set θ0. The equation (2.5) in section 2 (Mathematical background) corre-
lates the parameters set θ with the unitary Uθ. The trajectory of a particle in group space
from initial unitary operator Uθ′ exactly correspondence to the trajectory of parameters in
Diffusion metric from the initial parameter set θ0 to θ̄ due to the linearity in (2.5). Using
this correspondence, the evolution of unitaries in the unitary space as follows:

Evolution of Unitary:
(
∂Uθ
∂t

)
= −

4∑
ν=1

4∑
µ=1

(δµν − εD∞µν)
(
∂f

∂θµ

)
σν . (4.3)

Initiating with an initial unitary operator Uθ′ , the unitary Uθ evolves with epochs
tending towards the target unitary operator Uθ̄. Susskind [37] discretized the special unitary
group space in ε0-balls, where the auxiliary particle takes discretized steps into these balls
to corresponds with the evolution of Unitaries. We assume a parameter set to belong to the
optimal parameter set θ ∈ θ̄, when the unitaries corresponding to the parameter fall in the
ε0 balls or, in other words, |Uθ−Uθ̄| < ε0. The work [35] showed that SGD follows a geodesic
path in diffusion metric at every epoch, which also corresponds to the complexity path on
the group space. Based on the Complexity-Action conjecture in [36, 37, 44, 50, 53–55, 57],
we correspond the complexity of the unitaries in the group space with the action on the
diffusion metric. The Complexity-Action conjecture as shown in [36, 37, 44, 50] is given by:

Complexity-Action Conjecture: C = A
π
. (4.4)

The above equation shows that a change of complexity in group space will reflect a change
in action in the diffusion metric and vice versa. The definition of Action defined on the
diffusion metric [35] is given by

Action: A =
∫ [√∑

µ,ν

D̃∞µν θ̇
µθ̇ν − V

]
dt where, V = −

∫ θ̄

θ

∑
µ

[
∂

∂t

(
∂f

∂θ

)]
dθ . (4.5)
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From the Parameterized Quantum Circuit perspective, a change in the complexity will
ensure a change in the unitary operator. This change in the unitary operator will cause a
change in the parameter configuration in the diffusion metric, thus changing the action in
the metric. Using equations (4.3) and (4.5), the unitary as a function of complexity can
be written as:(

∂U
∂C

)
= 1

π

[√∑
µ,ν

D̃∞µν θ̇
µθ̇ν − V

] 4∑
ν,µ=1

(
δµν − εD∞µν

)( ∂f

∂θµ

)
σν . (4.6)

where V is the potential under which the parameters evolve. On the other hand, using
equation (2.5) the gradient of unitary with respect to change in complexity is given by:(

∂U
∂C

)
=

4∑
µ

4∑
ν

Gνµσν

Cµθ
(4.7)

where we have introduced the following quantity:

Cµθ =
(
∂C
∂θµ

)
(4.8)

Therefore, equating the equations (4.6) and (4.7), one can conclude:

(
∂C
∂θµ

)
=

π

[√∑
ζ,η

D̃∞ζη θ̇
ζ θ̇η − V

]
∑
ν

[
G−1(I − εD∞)

]
µν

(
∂f

∂θν

) . (4.9)

The above equation establishes the distribution of complexity as a function of parameter
and

[
G−1(I − εD∞)

]
µν

represents the elemental value of the matrix G−1(I − εD∞). The
complexity is thus given by the following expression:

Parameterized Complexity: C(θ) = π
∑
µ

∫ θ

θ0

[ √∑
ζ,η D̃

∞
ζη θ̇

ζ θ̇η − V∑
ν

[
G−1(I − εD∞)

]
µν

(
∂f

∂θν

)]dθµ .
(4.10)

The above expression of Complexity C is difficult to evaluate exactly, analytically. We
evaluate the complexity at specific epochs of the learning trajectory, as established in the
next subsection 4.2.

4.2 Stability analysis using quantum Lyapunov exponents

Using [42, 43, 58–61], one can write down the following relation between OTOC and com-
plexity:

C = − log(OTOC) and OTOC = exp (− exp(λθ)) . (4.11)
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The computed Complexity function and the OTOC are connected through this consistency
relation as shown in equation (4.11). But it is important to note that the relationship
holds for the parameter space where the exponential growth-like feature can be observed
for the time scale. This is not a universal relation. In general, there will be parameter
sets for which this desired exponential growth and then saturation bound-like behavior
cannot be observed. In these cases, to compute OTOC, one needs to explicitly compute
OTOC as stated previously [58, 61] and not by connecting complexity and OTOC as
shown in equation (4.11). Without doing an explicit rigorous computation of the OTOC
function in the present context, we want to extract the information regarding the quantum
chaotic phenomena from the obtained numerical time-dependent solution of the Complexity
function. For other parameter values involved in the complexity of the function we cannot
able to get such a desired chaotic feature and consequently in that regime, it is not at
all possible to connect the Complexity function with the OTOC function just by using
a simple relationship. Additionally, it is important to note that, in this desired chaotic
regime, for the given choice of the parameter values, the analyticity of the OTOC allows
us to numerically implement the connection between the Chaotic function and OTOC
function using the above mentioned relation (4.11). For other ranges of the parameter
values, this is not at all true. We have computed complexity for which the Complexity
C − OTOC relationship holds namely, figure 2. But on the other hand, we also gave
examples for which exponential growth is not observed namely, figures 5–9, for which the
relation (4.11) doesn’t hold. The equation (4.11) further implies the following combined
universal relation which particularly holds good in the context of the quantum description
of chaotic phenomena:

Complexity: C = − log(OTOC) = exp(λθ) , (4.12)

where λ is identified to be the Lyapunov exponent.
Similar to the argument made above, this relation is only valid for the parameter set

for which there is exponential growth. There may be other parameter space for which
complexity may have a different later time behavior like oscillatory (figures 6–8) nature.
For cases when there is exponential growth, one can compute the Lyapunov exponent from
the Complexity plot by using:

Lyapunov Exponent: λ =
(
∂ log(C)
∂θ

)
(4.13)

which is basically can be measured from the slope of the log(C) vs θ plot, which we have
plotted in the later half of this paper.

In equation (4.10), the complexity expression is difficult to evaluate. We analyze
complexity in certain critical learning epochs, when the system is in a steady state i.e. the
velocity of parameters θ̇ = 0. Note that the set of parameters when the loss function is
at a local minimum, the system is necessarily in a steady state using equation (4.1). We
introduce a steady-state parameter set θss during which the system is stationary. So the
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optimal parameter θ̄ belongs to the parameter set θss.3 Thus, in the framework of QNN
the Lyapunov exponent is evaluated from the complexity for these epochs by the following
simplified expression:

~λ = 1∫ θss

θ0

∑
µ

dθµ∑
ν

[
G−1(I − εD∞)

]
µν

(
∂f

∂θν

) ×


1∑
ν

[
G−1(I − εD∞)

]
µν

(
∂f

∂θν

) ∣∣∣∣∣
θ=θss


~µ

,

(4.14)

where [.]~µ represents vector running through the parameter µ. Using equation (4.14), it

is evident that sign
(∑

ν

[
G−1(I − εD∞)

]
µν

(
∂f

∂θν

) ∣∣∣
θ=θss

)
determines the nature of the

system. It is important to note that there can be a case of inflection in terms of the system
stability when the Lyapunov exponent changes its sign. The Lyapunov exponent takes
an intermediate form when the matrix G−1(I − εD∞)

(
∂f

∂θ

) ∣∣∣
θ=θss

becomes singular. For
the further computational simplification purpose we introduce a function, p(θ) which is
defined as:

p(θ) :≡ G−1(I − εD∞)
(
∂f

∂θ

)
. (4.15)

We analyse the equation (4.14) by tending the quantity p at its extremal values i.e. ini-
tially we analyse when p → 0 and then we analyse when p → ∞. Using this mentioned
identification we get the following simplified expression for the Lyapunov exponent:

λ =

 1

p(θss)
∫ θss

θ0

dθ

p(θ)

 =


1

θss − θ0 +
∫ θss

θ0

(
p′(θ)

∫
dθ

p(θ)

)
︸ ︷︷ ︸

≡K(θ)

dθ


, (4.16)

where we introduce a new function K(θ), which is given by the following expression:

K(θ) = p′(θ)
∫

dθ

p(θ) . (4.17)

During this simplification, we have used the integration by parts in the above mentioned
second step.

This paper considers two extreme situations i.e. when the quantity p(θ) → 0 and
p(θ)→∞. Initially, a conditioned analysis on the stability of the system is performed here

3If the loss function f has only one minimum i.e. its global minimum, then the steady state θss set will
only contains the optimal parameter θ̄.
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using p(θ)→ 0:

λ = lim
p→0

 1

p(θss)
∫ θss

θ0

dθ

p(θ)

 = lim
p→0


1

θss − θ0 +
∫ θss

θ0

(
p′(θ)

∫
dθ

p(θ)

)
︸ ︷︷ ︸

≡K(θ)

dθ


, (4.18)

Using the equation, the following observations can be made when p→ 0:

1. If p′(θ) is a negative finite quantity at the critical parameter set θ∗ when p(θ∗) = 0,
then Lyapunov exponent tends towards 0−, thus the system stabilises with oscillations
or limit cyclic behavior in the phase space.

2. While if p′(θ) is a positive finite quantity at the critical parameter set θ∗ when
p(θ∗) = 0, then Lyapunov exponent tends towards 0+, where the chaotic nature of
the system arises with unstable limit cycles.

3. If p′(θ) = 0, then K(θ) can be further simplified to be following form:

K(θ) = log(p(θ)) +
∫ (

p′′(θ)
∫

dθ

p(θ)

)
dθ . (4.19)

When p′′(θ) = 0, the value of K(θ) → −∞ thus the Lyapunov exponent λ → 0−,
stabilizing the system with limit cycles.

So, the condition with the quantity p(θ) → 0, shows the system inherently can execute
stable or unstable limit cycles in the phase space.

Now, let us consider another limiting condition with p(θ)→∞, the Lyapunov exponent
is given by the following simplified expression:

λ = lim
p→∞

 1

p(θss)
∫ θss

θ0

dθ

p(θ)

 = lim
p→∞


1

θss − θ0 +
∫ θss

θ0

(
p′(θ)

∫
dθ

p(θ)

)
︸ ︷︷ ︸

≡K(θ)

dθ


≈ 1
θss − θ0

(4.20)

which can be further generalized to the set of Quantum Lyapunov exponents ~λ =[ 1
θss − θ0

]
~µ
from the obtained result. Now, here it is important to note that the result

here we have obtained is actually irrespective of p′(θ). Using the equation (4.20), it is
evident that when θ → θ̄, the Lyapunov exponent λ→∞.

An optimization limit can be achieved from equation (4.20), by analyzing the different
learning epochs of the training phase. Optimization for the artificial neural network(ANN)
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with a high number of trainable parameters is empirically easy and can fit any training
dataset resulting in zero training data. But the zero training error doesn’t assure the
generalization capability of neural networks [62–64]. When a neural network generalizes
over a dataset, it understands the underlying structure of the dataset and thus reduces the
difference between training error and testing error, called generalization error. Not much
is discussed in the context of generalization or optimization in QNN as compared to ANN.
Recently, [65] showed that QNN with the same structure as the corresponding ANN will
have a better generalization property. In this paper, we mainly discussed or focused on the
optimization property of QNN. We focused on the trajectory of parameters to their optimal
parameter set in the learning manifold. But this is focusing on one-half of the portion
training error. We introduce the generalization capability of QNN inspired by the notion
of generalization in ANN as discussed in [14, 17, 18, 62, 63, 65]. As the QNN framework
used in the paper is a quantum-classical hybrid, where the parameters are optimized in
classical SGD, we can use the concepts of generalization in ANN. Thereby, we focused on
the fact that the generalization capability of a neural network is associated with the variance
of the parameters [14, 21], higher generalization capability has high variance. Intuitively,
it is taking into account the fact that a higher variance of parameters will increase the
probability of finding a better optimal point which would result in better generalization
capability. Thus the variance of parameters is a measure of the generalization in neural
networks. The variance of parameters when the system is in a steady-state condition is
given by the following expression:

σ2
θ

∣∣∣
θ=θss

= 1
K

K∑
µ

(θµ − θ̂)2
∣∣∣
θ=θss

≥ K(
K∑
µ

1
(θµ − θ̂0)2

) ∣∣∣∣∣
θ=θss

+ |δ̃θ|2 + 2K|δ̃θ|(
K∑
µ

1
(θµ − θ̂0)

) ∣∣∣∣∣
θ=θss

(4.21)

where δ̃θ = θss − θ0 and in the last step we have used the well known Cauchy Schwartz
Inequality. After working out a bit we derive the following bound on the variance:

Generalization Capability Bound: σ2
θ

∣∣∣
θ=θss

≥ K

Tr(λλT ) + 1
λTλ

+ 2K√
λTλTr(

√
λλT )

.

(4.22)

where θ̂ is the averaged parameters over its indexes. The inequality (4.22) shows that
when the Lyapunov exponent is minimum or λ → 0, then the generalization capability
is at its maximum. This is shown as when the system shows limit cycles with λ → 0
in phase space, the generalization capability reaches maximum. Interestingly, the work
by [24] also argued that these oscillations in phase space are a crucial part of the stability
of continuous memories in the human brain. The inequality (4.22) gives a theoretical
perspective to this argument. Moreover, inequality (4.22) also shows that with an increase
in inverse temperature β, the generalization capability increases. Correlating with the
phase diagram [48, 49], this corresponds to many-body localization or non-equilibrium
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states as the work [21] showed for an artificial neural network. Along with oscillations, [24]
argued coherent phases like many-body localization also play a pivotal role in the stability
of continuous memories. But on the other hand, increasing the inverse temperature also
corresponds to a slower convergence rate as shown in the equation (2.9). Thus there is a
trade-off between convergence rate and generalization capability as previously intuitively
mentioned.

The change in the nature of the Lyapunov exponent is due to the matrix G−1. For
p→ 0, the matrix G → ∞ and the system can be unstable or stable limit cycles depending
on gradient p′ with no significant chaos with maximum generalization capability. But for
p→∞, using the Lyapunov exponent, the complexity C [58] can be given as:

∂ log(C)
∂θ

= 1
θss − θ0

=⇒ C = k
∏
µ

exp
(

θµ
θssµ − θ0µ

)
(4.23)

where θss,µ is the µ-index of the steady state parameter θss, which in this case is taken to
be and k is the constant to integration.

The out-of-order correlator OTOC [39, 42, 43, 59–61, 66, 67] is given by OTOC =
exp(−C) which shows that out-of-order correlator can be represented as:

OTOC = exp
[
− k

∏
µ

exp
(

θµ
θss,µ − θ0,µ

)]
. (4.24)

The scrambling time t∗ as shown in [37, 41–43, 61, 68] is given by:

t∗ =
(
θss − θ0

)
log(N) . (4.25)

The entropy S as shown in [37, 44, 58, 61] can be expressed as:

S = β

(
∂C
∂t

)
= 2k|B|

Γ
∑
µ

(
θ̇µ

θss,µ − θ0,µ

)
exp

(
θµ

θss,µ − θ0,µ

) ∏
ν 6=µ

exp
(

θν
θss,ν − θ0,ν

)
. (4.26)

where β is the inverse temperature as expressed previously in the classical machining
learning context [14, 21]. The inverse temperature is given by β = 2|B|

Γ , where Γ is the
learning rate and |B| is the batch size.

4.3 Results and discussions

A 2-dimensional independent parameter system has been studied numerically for a dataset
of N = 103. The evolution of parameters is governed by the equation (4.1) while ignoring
the order O(ε) terms. The independent parameter system has the jacobian matrix G = I.
The observation matrix B and 2-rank matrix A∞ are chosen. As the dimension of the
parameter system is K = 2, the architecture or mathematically φ set runs upto K = 2.The
original 4-rank tensor A∞ijkl is symmetric under permutation which leads to 2-rank matrix
A∞ij = A∞ijij . The observation matrix is chosen to be identity B = I and the eigenvalues of
the reduced matrix A∞ are taken as {ε̂, ε̂}, which is varied in the results in figures 2, 3, and 4.
The evolution of parameters are evaluated using these inputs and then the Complexity is
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Figure 2. Evolution of logarithm of Complexity for a K = 2 parameter system with a variation of
eigenvalue of Encoder-Dataset tensor A∞.
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Figure 3. Evolution of out-of-order correlator (OTOC) for a K = 2 parameter system with a
variation of eigenvalue of Encoder-Dataset tensor A∞.

evaluated using equation (4.23) with k = 2. The evolution of Complexity is shown in
figure 2. The Lyapunov exponent is calculated by considering the change of y-axis value
over the range of the x-axis value i.e. between the point of rising and point of saturation of
figure 2. The time of point of rising is shown as t1 = 0 and the time of saturation is shown
as t2 = 5. So, mathematically, the Lyapunov exponent is given by:

λ =
log C(t)

∣∣∣
t=t2
− log C(t)

∣∣∣
t=t1

t2 − t1
. (4.27)

Further the quantities OTOC and Entropy are plotted versus time t using equations (4.24)
and (4.26) in figures 3 and 4 respectively. The scrambling time t∗ has been evaluated using
equation (4.25).

From figure 2, it is important to observe that as the eigenvalues of Encoder-Dataset
tensor increases, the maximum complexity of the system also increases. Thus, the role
of Encoder-Dataset matrix A∞ can be interpreted. But there can be other eigenvalue
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Figure 4. Evolution of entropy for a K = 2 parameter system with a variation of eigenvalue of
Encoder-Dataset tensor A∞.
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Figure 5. Evolution of Complexity for a K = 2 parameter system with a variation of eigenvalue
of Encoder-Dataset tensor A∞ in a non-chaotic regime.

choices of matrix A∞ where the desired exponential growth and then saturation bound like
behavior cannot be observed. Keeping everything unchanged, we varied the eigenvalues of
the matrix eig(A∞) = {ε̂1, ε̂2} as shown in figure 5–9. In these cases or parameter space,
the relation (4.23) and (4.24) doesn’t hold.

From the table 1 and figures 2–4, it is evident that as the eigenvalue of the architecture
increases the QNN system becomes more chaotic. The eigenvalues of the encoder-dataset
matrix A∞ thus can be viewed as an essential parameter to predict the chaotic nature of
the QNN even before its training. As one changes the eigenvalues of the encoder-dataset
matrix, the behavior of the complexity changes.

• When the eigenvalues of A∞ are all positive then the complexity shows a typical ex-
ponential growth then saturates as shown in figure 2. In this case, all the parameters
like OTOC, Lyapunov exponent can be evaluated as shown in equation (4.11).

• If atleast one of the eigenvalue of the encoder-dataset matrix is negative, then there is
no such exponential growth as shown in figures 5 and 9, and the relation used above
i.e. (4.11) is not valid.
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Figure 6. Evolution of Complexity for a K = 2 parameter system with a variation of eigenvalue of
Encoder-Dataset tensor A∞ in a non-chaotic regime. The non-zero complex part of the eigenvalues
of A∞ gives rise to the oscillatory behavior of the Complexity.
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Figure 7. Evolution of Complexity for a K = 2 parameter system with a variation of eigenvalue of
Encoder-Dataset tensor A∞ in a non-chaotic regime. The non-zero complex part of the eigenvalues
of A∞ gives rise to the oscillatory behavior of the Complexity.
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Figure 8. Evolution of Complexity for a K = 2 parameter system with a variation of eigenvalue of
Encoder-Dataset tensor A∞ in a non-chaotic regime. The non-zero complex part of the eigenvalues
of A∞ gives rise to the oscillatory behavior of the Complexity.
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Figure 9. Evolution of Complexity for a K = 2 parameter system with a variation of eigenvalue
of Encoder-Dataset tensor A∞ in a non-chaotic regime.

Chaos parameters Details across Eigenvalues
ε̂ λ t∗

0.85 1.296 2.3148
1.1 1.632 1.8382
1.35 1.950 1.5385
1.6 2.286 1.3123
1.85 2.738 1.0957

Table 1. Table showing Hyper parameter Details used in Neural Network for three different number
of sampling.

• On the other hand, the complexity can also have an oscillatory behavior as shown in
figure 6–8, if there is atleast one complex eigenvalue, for which also the relation (4.11)
doesn’t hold.

It is important to note that the encoder-dataset matrix is a constant given the dataset and
the architecture of the encoder circuit. So, one can always come up with an architecture
for a given dataset for which the complexity of the QNN will have a typical exponential
growth. The dataset for QNN is given by {xi, B̄i}, so one must choose the architecture or
mathematically φ set so that the matrix A∞ij is positive definite. Numerically, we computed
the encoder-dataset matrix A∞ for K = 2, based on the φ set given by

φ1 = 1
1− exp(x) + i sin x, φ2 = tanh x+ i cosx (4.28)

We choose a random dataset {xi}, and evaluated the encoder-dataset matrix A∞ using
the equation (2.12) for the tensor A∞ijij . For the φ set as shown in (4.28), the eigenvalue of
the encoder-dataset A∞ turns out to be 0.21 and 2.53. The higher eigenvalue dominates
to show that the system will show a typical chaotic behavior with exponential growth then
saturation. As one chooses the φ set such that the eigenvalue of the encoder-dataset matrix
is largely positive, the scrambling time decreases as shown in table 1. On the other hand,
the Lyapunov exponent increases. This increase in the Lyapunov exponent increases the
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learning rate of QNN [15]. Thus as one increases the eigenvalue of the architecture matrix,
the learning rate of the system increases but also makes the system more chaotic. It can be
intuitively argued and also known in the classical learning theory community [14, 15, 21],
that increasing the learning rate will also decrease the probability of finding better critical
points in the loss function space and thus decreases the generalization capability of the
QNN. So there needs to be an optimal range of eigenvalue of the encoder-dataset matrix
for which both the generalization capability of QNN and the learning rate will be optimized
i.e. the QNN can find the best critical value solution in the fastest time interval possible.
Finding this optimal range of the eigenvalue of the encoder-dataset matrix is beyond the
scope of this paper but is an important topic that can be further looked up to.

5 Conclusion

The paper uses Parameterized Quantum Circuits (PQCs) in the hybrid quantum-classical
framework to perform optimization of quantum data with a classical gradient-based learn-
ing algorithm like stochastic gradient descent. The optimization is executed by updates
the parameters in the unitary operators of quantum circuits. The trajectory of unitaries in
the unitary space is correlated with the trajectory of parameters in a Riemannian manifold
called Diffusion metric [35]. A statistical learning theory framework is introduced as a
quantum analog of [45]. In doing so, the relation between the learning dynamics and the
neural architecture of QNN is established. The relation is used to also establish the depen-
dency of the noise in SGD on the neural architecture of QNN using the Diffusion metric.
Using the definition of complexity [36, 37, 51–57, 69–81], the paper established dependency
of the parameters on complexity. The parameterized Lyapunov exponent has been derived
which estimates the stability of the system. The paper also proves that when the system
executes limit cycles or oscillations in the phase space, the generalization capability of QNN
is maximized. This is consistent with the biological notion argued by [24] that oscillations
in phase space are important in the stability of the formation of continuous memories. The
important contributions or results of the paper can be listed as follows:

• Correlation between the evolution of unitary operators in the unitary space with the
trajectory of parameters in the Diffusion metric.

• Establishing Complexity, Lyapunov exponent, OTOC, and Entropy as a function of
parameters of QNN.

• Estimating the stability of QNN using Lyapunov exponent.

• Proving that QNN with limit cycles or oscillations in phase space will have maximum
generalization capability.

• Role of Encoder-dataset matrix in determining the chaotic nature of QNN before its
training is established.

Moreover, as neuroscience holds the fundamental architecture of neural networks, de-
spite the proposal of quantum processing in neurons by Fisher [30] not much progress has
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been made to understand learning systems like human cognition from the perspective of
quantum chaos and learning manifolds. Thus it not only becomes important to appreci-
ate the application capability of QNN but also to analyze the quantum learning systems
through the lens of statistical learning of QNN. A possible way of connecting the human
brain with the models of neuroscience is correlating the famous Hodgkin-Huxley model [25]
with the parameters’ trajectory. Reverse engineering the QNN model that would corre-
spond to the Quantum Hodgkin-Huxley model, can give much insight into the mechanism
of the human brain.
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A Detailed computation

For each datapoint i, the QNN produces a loss function fi at every iteration, which de-
termines the distance between the corresponding output observation datapoint Bi and the
actual training datapoint B̄i. The loss function of the dataset {i} is given by the average
of the loss functions fi generated by the QNN across every datapoints of the dataset. We
assume that the average is independent of the length of the dataset N or in other words
the operation will reach a thermodynamic limit with N → ∞. In our approach here, we
assume that the convergence of the loss function to a thermodynamic limit holds.

fi =(B̄i − Tr(BU†θρ
i
inUθ))2

[
from equation (2.7)

]
⇒ f = 1

N

N∑
i=1

(B̄i − Tr(BU†θρ
i
inUθ))2

= 1
N

N∑
i=1

(Tr(BU†
θ̄
ρiinUθ̄) + η − Tr(BU†θρ

i
inUθ))2

[
using equation (2.8)

]
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= 1
N

N∑
i=1

{
Tr
(
BU†

θ̄
ρiinUθ̄ −BU

†
θρ
i
inUθ

)
+ ηi

}2

= 1
N

N∑
i=1

{
Tr
(
B
∑
µ

θ̄∗µσ
µρiin

∑
ν

θ̄νσ
ν −B

∑
µ

θ∗µσ
µρiin

∑
ν

θνσ
ν
)

+ ηi

}2

[
using equation (2.1) and (2.5)

]
= 1
N

N∑
i=1

{
− Tr

(∑
µ,ν

(θ∗µθν − θ̄∗µθ̄ν)Bσµρiinσν
)

+ ηi

}2
(A.1)

= 1
N

N∑
i=1

{
−

K∑
µ,ν

(θ∗µθν − θ̄∗µθ̄ν)Tr
(
Bσµρiinσ

ν
)

+ ηi

}2

[
using the Trace property: Tr(

∑
.) =

∑
(Tr.)

]
=σ2

η + 1
N

N∑
i=1

K∑
µ,ν,δ,γ

(θ∗µθν − θ̄∗µθ̄ν)(θ∗δθγ − θ̄∗δ θ̄γ)Tr
(
Bσµρiinσ

ν ⊗Bσδρiinσγ
)

[∑
i

η2
i = Nσ2

η;
∑
i

ηi = 0 which leads the term with Gaussian noise η equal to zero
]

=σ2
η +

K∑
µ,ν,δ,γ

(θ∗µθν − θ̄∗µθ̄ν)(θ∗δθγ − θ̄∗δ θ̄γ)Tr
( 1
N

N∑
i=1

(Bσµρiinσν ⊗Bσδρiinσγ︸ ︷︷ ︸
(a)

)
)

where (a) plays the central role in determining the condition for which the loss function
will reach the thermodynamic limit. The value (a) is given by

(a) = 1
N

N∑
i=1

(Bσµρiinσν ⊗Bσδρiinσγ)

= 1
N

N∑
i=1

(
Bσµ

K∑
j,k

φ∗j (xi)φk(xi)σj |0〉 〈0|σkσν ⊗Bσδ
K∑
p,q

φ∗p(xi)φq(xi)σp |0〉 〈0|σqσγ
)

[
using equations (2.1)–(2.2)

]
(A.2)

= 1
N

N∑
i=1

( K∑
j,k,p,q

φ∗j (xi)φ∗p(xi)φq(xi)φk(xi)Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ
)

=
K∑

j,k,p,q

[ 1
N

N∑
i=1

φ∗j (xi)φ∗p(xi)φq(xi)φk(xi)
]
(Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ)

=
K∑

j,k,p,q

A∞j′kp′q

(
Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ

) [
for large N →∞

]
Using equations (A.1) and (A.2), the loss function thus can be shown as

f = σ2
η +

K∑
µ,ν,δ,γ,j,k,p,q

A∞j′kp′q(θ∗µθν − θ̄∗µθ̄ν)(θ∗δθγ − θ̄∗δ θ̄γ)

×Tr
(
Bσµσj |0〉 〈0|σkσν ⊗Bσδσp |0〉 〈0|σqσγ

)
(A.3)
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Here we have introduced an encoder-dataset tensor A∞ whose elements are given by

A∞j′kp′q = lim
N→∞

1
N

N∑
i=1

φ∗j (xi)φ∗p(xi)φq(xi)φk(xi) (A.4)

In equation (A.4), we have assumed that the right hand side of the equation reaches
a thermodynamic limit and an asymptotic analysis is carried out. The encoder-dataset
tensor A∞ is independent of the length of the dataset and only depends on the dataset
and architecture of the encoder circuit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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