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ENVELOPING ALGEBRAS WITH JUST INFINITE

GELFAND-KIRILLOV DIMENSION

NATALIA K. IYUDU, SUSAN J. SIERRA

Abstract. Let g be the Witt algebra or the positive Witt algebra. It is well known that the
enveloping algebra U(g) has intermediate growth and thus infinite Gelfand-Kirillov (GK-)
dimension. We prove that the GK-dimension of U(g) is just infinite in the sense that any
proper quotient of U(g) has polynomial growth. This proves a conjecture of Petukhov and
the second named author for the positive Witt algebra. We also establish the corresponding
results for quotients of the symmetric algebra S(g) by proper Poisson ideals.

In fact, we prove more generally that any central quotient of the universal enveloping
algebra of the Virasoro algebra has just infinite GK-dimension. We give several applica-
tions. In particular, we easily compute the annihilators of Verma modules over the Virasoro
algebra.

1. Introduction

Let K be a field of characteristic zero, and let W be the Witt algebra, which has K-basis

{en : n ∈ Z},

with the Lie bracket

[ei, ej] = (j − i)ei+j .

We let W+, the positive Witt algebra, be the Lie subalgebra of W spanned by {en : n > 1}.
The Witt algebra is a central quotient of the Virasoro algebra, Vir, which has K-basis

{en : n ∈ Z} ∪ {c},

and Lie bracket

[ei, ej ] = (j − i)ei+j +
i3 − i

12
δi+j,0c, c central.

The Virasoro algebra and its representations are ubiquitous in conformal field theory.
These algebras were testing examples for the fundamental and important question of

whether there is an infinite-dimensional Lie algebra with a (left and right) noetherian en-
veloping algebra. This question has been asked by many people, including Ralph Amayo and
Ian Stewart [AS74, Question 27, p. 396], Ken Brown [Bro07, Question B], Jacques Dixmier,
and Victor Latyshev, and conjecturally has a negative answer; see [SW14, Conjecture 0.1].
Recently it was shown by the second named author and Chelsea Walton [SW14] that the
conjecture holds for the Lie algebras above: that is, U(W+), U(W ), and U(Vir) are not left
or right Noetherian. The question is still unsolved in full generality.

However, the two-sided ideal structure of these enveloping algebras is extremely sparse,
and it seems possible that they satisfy the ascending chain condition for two-sided ideals, a
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property sometimes known as being weakly Noetherian. Further, two-sided ideals of W and
W+ are known to be large, and Petukhov and the second named author have conjectured:

Conjecture 1.1. ([PS17, Conjecture 1.2]) The universal enveloping algebra U(W+) has
just infinite GK-dimension; that is, if I is a non-zero ideal of U(W+), then U(W+)/I has
polynomial growth.

(In this paper, we use polynomial growth as a synonym for finite GK-dimension.)
This conjecture was proved in [PS17] in the particular case that the ideal I is generated

by quadratic expressions in the ei. In this paper we establish the conjecture in full, and
generalise our arguments to prove that U(W ) and indeed any central factor of U(Vir) has
just infinite GK-dimension in the sense above. Our main result is:

Theorem 1.2. (See Theorems 3.4, 4.1 and 5.3.) The algebras U(W+), U(W ), and
U(Vir)/(c − κ), for any κ ∈ K, have just infinite GK-dimension. In particular, Conjec-
ture 1.1 holds.

We note that these algebras are all finitely generated and as many authors have noticed
[Smi76, Ufn78, KKM83] have intermediate growth (and thus infinite GK-dimension). The
natural set of normal words is monomials of the form ei1 , . . . , eik , i1 6 i2 . . . 6 ik. Here
the number of monomials with i1 + i2 + · · ·+ ik = n is in fact the number of partitions of n,
which was shown by Hardy to be bounded by ec

√
n, an estimate later dramatically improved

by Ramanujan.
We also consider the induced Poisson structures on the symmetric algebras S(W+), S(W ),

and S(Vir), and prove:

Theorem 1.3. (See Theorems 2.1 and 5.6.) Let I be a proper Poisson ideal of S(W+). Then
S(W )/I has polynomial growth. Similar statements hold for S(W ) and for S(Vir)/(c− κ),
for any κ ∈ K.

The Lie algebra Vir has a triangular decomposition, and so the classical notion of a Verma
module makes sense. As an application of Theorem 1.2, we easily compute annihilators of
Verma modules for Vir:

Theorem 1.4. (see Corollary 6.2) Let M be a Verma module over Vir with central charge
κ. Then the annihilator of M in U(Vir) is the ideal (c− κ). As a result, for any κ ∈ K the
algebra U(Vir)/(c− κ) is primitive.

Theorem 1.4 is an unpublished result of Wallach [WS13].
We also obtain:

Proposition 1.5. (See Proposition 6.4.) The algebras U(W ), U(W+), and U(Vir) all satisfy
the ascending chain condition for completely prime ideals.

Proposition 1.6. (See Proposition 6.5.) Let U(W) be either U(W+), U(Vir), or U(Vir)/(c−
κ) for some κ ∈ K. Then any epimorphism of U(W) is an isomorphism.

This answers a question of Rowen and Small [RS17, Section 4].
The Witt algebra W is a simple, graded, Lie algebra of polynomial growth. Such algebras

were famously classified by Mathieu [Mat92]. It is interesting to ask which of these Lie
algebras have enveloping algebras with just infinite GK-dimension. This is the subject of
ongoing research.
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Methods: As notation, we will write the symmetric algebra S(W+) = K[x1, x2, . . . ], where
xi corresponds to ei ∈ W+. Likewise,

S(W ) = K[. . . , x−1, x0, x1, . . . ] and S(Vir) = K[. . . , x−1, x0, x1, . . . , c].

The main idea in the proofs of both Theorems 1.2 and 1.3 is to show that if g is a nonzero
element of S(W+) or S(W ), then for ‘almost all’ monomials m in the xi (more precisely, for
long enough monomials on big enough letters), the Poisson ideal generated by g contains an
element with leading term m. (See Lemma 2.2.) In the same way, we show that if g is a
nonzero element of U(W+) or U(W ), then for almost all monomials m in the variables ei, the
two-sided ideal generated by g contains an element with leading term m. (See Lemmata 3.1
and 4.4.)

We summarise the argument for S(W+). Let I be the Poisson ideal generated by 0 6=
g ∈ S(W+). We introduce the following ordering on monomials in the xi. Denote by
deg (m) = i1 + . . . + ik the degree of a monomial m = xi1 . . . xik , and let the length of m be
|m| = |xi1 . . . xik | = k.

Then the ordering on the set of commutative monomials in the xi is defined as follows.
For two monomials m1 and m2, we write m1 < m2 if

• |m1| < |m2| or
• |m1| = |m2| and deg (m1) < deg (m2) or
• |m1| = |m2|, deg (m1) = deg (m2) and m1 is less than m2 with respect to the left-
to-right lexicographical order when both m1 and m2 are written in increasing order:
m1 = xi1 . . . xik , m2 = xj1 . . . xjk with i1 6 i2 6 . . . 6 ik, j1 6 j2 6 . . . 6 jk.

We show in Lemma 2.2 that all sufficiently long monomials on sufficiently ‘big’ letters
can be written, modulo I, as a sum of smaller monomials. Here a letter is called big if it is
bigger than n = {max(2i + 1) | xi occurs in g}. By this means we are able to introduce a
‘normal form’ for monomials from S(W+). Namely, any element of S(W+) can be written,
modulo I, as a linear combination of monomials of the form m = uv, where u is a monomial
on the finite set of letters x1, . . . xn−1, and v is a monomial of restricted length on the set of
big letters. A similar normal form works for U(W+).

In the case of W (more generally, central quotients of Vir) the normal form is slightly
different. Let 0 6= J ⊳ U(W ). Any element of U(W ) can be written, modulo J , as a linear
combination of monomials m = u1vu2, where v is a monomial on the finite set of letters
e1−n, . . . en−1, u1 is a monomial of bounded length on letters smaller than e−n, and u2 is a
monomial of bounded length on letters larger than en.

Counting the growth of these normal monomials gives us a polynomial estimate which
bounds the growth of the quotient algebra. In the case of the full Witt algebra the growth
counting is somewhat more involved, since the usual degree function deg(u) = i1 + · · ·+ ik
will not supply us a finite filtration on U(W )/J . See Section 4.2 for the details of how this
issue is resolved.

Notation: Throughout we fix the following notation. We denote the set of non-negative
integers by N. If R is a ring and g ∈ R, the two-sided ideal generated by g is denoted (g).
If R is a Poisson algebra, the Poisson ideal generated by g is denoted {(g)}.

Let S(W) denote either S(W+) , S(Vir), or S(Vir)/(c− κ) for some κ ∈ K. Likewise, let
U(W) be either U(W+), U(Vir), or U(Vir)/(c−κ). Our convention is that e1, e2, . . . denote
elements of U(W), and that x1, x2, . . . are the corresponding elements of S(W). Monomials
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xi1xi2 . . . xik ∈ S(W) are usually written in increasing order (if not specified otherwise), that
is i1 6 i2 6 . . . 6 ik. The same shape ei1ei2 . . . eik , where i1 6 i2 6 . . . 6 ik, of a monomial
is considered normal in U(W), and such a monomial is called standard.

2. The symmetric algebra of the positive Witt algebra

Our main goal in this section is to prove the following theorem, which gives the first
statement of Theorem 1.3:

Theorem 2.1. Let I be a nonzero Poisson ideal of S(W+). Then A = S(W+)/I has poly-
nomial growth.

Let X = {x1, x2, . . . }, so S(W+) = K[X ], with Poisson bracket induced by defining
{xi, xj} = (j−i)xi+j . We equip S(W+) with the degree grading given by setting deg (xj) = j.
Thus the degree of a monomial m = xi1 . . . xik is deg (m) = i1 + . . .+ ik. Of course, we have
the natural grading by the length of monomials as well, which we write as |xi1 . . . xik | = k.

The key technique in the proof is the following reduction formula for elements of A =
S(W+)/I in the case that I = {(g)} is the Poisson ideal generated by a single, nonzero,
degree-homogeneous polynomial g.

Lemma 2.2. Let I = {(g)} be the Poisson ideal in K[X ] = S(W+) generated by a nonzero
degree-homogeneous polynomial g ∈ K[X ]. There exist positive integers k and n such that
every monomial m = xj1 . . . xjk such that jℓ > n for 1 6 ℓ 6 k satisfies

(2.3) m = h+
∑

csms,

where h ∈ I is degree-homogeneous with deg (h) = deg (m), the sum is finite, cs ∈ K, and
the ms are monomials of degree deg (m) such that for each s, either |ms| < k or |ms| = k
and i < n for at least one of the letters xi featuring in ms.

To prove Lemma 2.2, we introduce the following two orderings on the set [X ] of commu-
tative monomials in X . For two monomials m1 and m2, we write m1 < m2 if

• |m1| < |m2| or
• |m1| = |m2| and deg (m1) < deg (m2) or
• |m1| = |m2|, deg (m1) = deg (m2) and m1 is less than m2 with respect to the left-
to-right lexicographic order when both m1 and m2 are written in increasing order:
m1 = xi1 . . . xik , m2 = xj1 . . . xjk with i1 6 i2 6 . . . 6 ik, j1 6 j2 6 . . . 6 jk.

Similarly, we write m1 ≺ m2 if

• |m1| < |m2| or
• |m1| = |m2| and deg (m1) < deg (m2) or
• |m1| = |m2|, deg (m1) = deg (m2) and m1 is less than m2 with respect to the left-
to-right lexicographical order when both m1 and m2 are written in decreasing order:
m1 = xi1 . . . xik , m2 = xj1 . . . xjk with ik 6 ik−1 6 . . . 6 i1, jk 6 jk−1 6 . . . 6 j1.
(Equivalently, we may write m1 and m2 in increasing order and compare them with
the right-to-left lexicographic order.)

Note, that in the ordering < we compare the smallest letters first, and in the ordering ≺ we
compare the biggest letters first. It is easy to see that both orderings are well-orderings on
[X ] compatible with multiplication.
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Proof of Lemma 2.2. Our ordering < satisfies the descending chain condition, and thus
Lemma 2.2 can easily be obtained by repeated application of the following sublemma:

Sublemma: There exist positive integers k and n such that every monomial m ∈ [X ] of
length k with m > xk

n satisfies

m = h+
∑

csms,

where h ∈ I is degree-homogeneous with deg (h) = deg (m), the sum is finite, cs ∈ K, and
the ms are monomials of degree deg (m) such that ms < m for each s.

To prove the sublemma, let g be the leading monomial of g with respect to ≺, and let
k = |g| = |g|. Without loss of generality we can assume that g features in g with coefficient
1. We write g in an increasing way: g = xi1 . . . xik with i1 6 i2 6 . . . 6 ik. Pick any positive
integer n such that n > 2ik + 1. We shall show that these n and k satisfy the required
conditions.

Let m ∈ [X ] of length k be such that m > xk
n. Then m = xj1 . . . xjk with n 6 j1 6 . . . 6

jk. If a ∈ Z>1, let da : K[X ] → K[X ] be the derivation defined by da(u) = {u, xa}, extending
via the Leibniz rule. Note that da is a graded derivation: if applied to a degree-homogeneous
polynomial f , then da(f) is degree-homogeneous of degree deg (da(f)) = deg (f) + a.

Consider

h = dj1−ikdj2−ik−1
. . . djk−i1(g).

Since g ∈ I and I is a Poisson ideal, h ∈ I. Further, as the da are graded and g is degree-
homogenous, so is h. The proof will be complete if we verify that

h = cm+
∑

csms,

where c 6= 0, cs ∈ K, and the ms are monomials such that ms < m for each s.
Let us apply the sequence of derivations dj1−ikdj2−ik−1

. . . djk−i1 to a monomial u occurring
in g. By the Leibniz rule we get a sum of monomials with coefficients obtained by prescribing
which of the derivations acts on each letter of u.

Note (assuming that da(u) 6= 0) that da(u) has the same length as u. Thus monomials in
h obtained from monomials in g of length < k are themselves of length < k and therefore
are smaller than m with respect to <.

Suppose now that u has length k. Then there are two options: either different differentials
act on letters in different places in the monomial u or this is not the case. We call the first of
these ways permutational and the second non-permutational. Monomials in h obtained from
u in a non-permutational way will have at least one letter unchanged and therefore will have
at least one letter xi with i 6 ik < n. Hence such monomials of h are again smaller than m
with respect to <.

It remains to consider monomials of h obtained from monomials in g of length k in a
permutational way. For each monomial u = xp1 . . . xpk with p1 6 . . . 6 pk occurring in g and
each permutation σ ∈ Sk, we obtain a monomial w of h given by

w = xj1−ik+pσ(k)
. . . xjk−i1+pσ(1)

,

occurring with coefficient
k
∏

ℓ=1

(jℓ − ik−ℓ+1 − pσ(k−ℓ+1)).
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Since u � g, thus pσ(k) 6 pk 6 ik. Hence j1−ik+pσ(k) 6 j1 and the equality j1−ik+pσ(k) = j1
holds if and only if pσ(k) = pk = ik. If j1 − ik + pσ(k) < j1, then w < m and we are done.
If j1 − ik + pσ(k) = j1, we have pσ(k) = pk = ik. Since u � g and pσ(k) = pk = ik, we have
pσ(k−1) 6 pk−1 6 ik−1. Hence j2− ik−1+ pσ(k−1) 6 j2 and the equality j2− ik−1+ pσ(k−1) = j2
holds if and only if pσ(k−1) = pk−1 = ik−1. Repeating the procedure, we see that w 6 m and
that w = m only if u = g and the permutation σ satisfies iσ(s) = is for 1 6 s 6 k.

Now, for each such σ, since n > 2ik + 1, we claim that the coefficient of the monomial m
is a positive integer. Indeed, the coefficient is a product of factors of the form jℓ − ik−ℓ+1 −
pσ(k−ℓ+1), which are positive since ik−ℓ+1 + pσ(k−ℓ+1) 6 2ik < n 6 jℓ. Thus the coefficient
with which m occurs in h is nonzero. The other monomials in h are < m. This completes
the proof of the sublemma and thus of the lemma. �

Note that we used in this proof only that I is a module over K defined by the bracket
multiplication (in other words a submodule of S(W+) under the adjoint action of W+).

We now prove Theorem 2.1. The key point of the proof is that, thanks to Lemma 2.2,
A = S(W+)/I is spanned by the set of monomials m in [X ] which admit a factorisation
m = m1m2, where m1 is a monomial in x1, x2, . . . , xn−1 and |m2| < k. Thus to estimate the
growth of A it suffices to count such monomials.

Proof of Theorem 2.1. As S(W+) is finitely graded by degree, it is standard (see [KL00,
Proposition 6.6]) that it suffices to show that S(W+)/I has polynomial growth if I is a
nonzero degree-graded Poisson ideal, and it clearly suffices to consider the case that I is the
Poisson ideal generated by a single nonzero degree-homogenous element g. Let k and n be
the numbers produced by applying Lemma 2.2 to g, and let S be the set of all monomials m
in [X ] which admit a factorisation m = m1m2, where m1 is a monomial in x1, x2, . . . , xn−1

and |m2| < k.
By Lemma 2.2, each monomial m ∈ [X ] \ S can be written, modulo I, as a linear

combination of monomials of degree deg (m), each of which either has length strictly less
than |m| or has length |m| and features strictly fewer xi with i > n. Applying this observation
repeatedly, we see that every monomial m ∈ [X ] \ S can be written, modulo I, as a linear
combination of monomials from S of the same degree as m. We will call such presentation
a normal form of m. Hence the image of S in A = K[X ]/I spans A, and for fixed N ∈ N,
the number of monomials in S of degree not exceeding N provides an upper bound for
dim {u ∈ A | deg u 6 N}. As A is finitely N-graded by degree, it is standard that the
growth of this dimension bounds GKdimA.

It remains to estimate the number p(N) of elements of S of degree at most N . Clearly
p(N) 6 q(N)r(N), where q(N) is the number of monomials in x1, . . . , xn−1 of degree at most
N and r(N) is the number of monomials in x1, x2, . . . of degree at most N and length at
most k − 1. First, q(N) does not exceed the number of monomials in x1, . . . , xn−1 of length
at most N , which is

(

N+n

N

)

. Thus there is a positive constant c so that q(N) 6 cNn for
all N . On the other hand, in a degree at most N monomial of length at most k − 1 in
xn, xn+1, . . . there are no more than N options for each letter and therefore r(N) 6 Nk−1

for all N . Hence p(N) 6 cNk+n−1.
Hence GKdim(A) 6 k + n− 1, and A has polynomial growth, as required. �

We note that Theorem 2.1 is also proved in [PS17] (see Corollary 2.13), with a much less
constructive proof.
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To end the section, we fix a positive integer k and consider the symmetric power Sk(W+).
Let g ∈ Sk(W+) be a nonzero degree-homogeneous element, and let I be the W+-submodule
of Sk(W+) generated by g. As noted after the proof of Lemma 2.2, the reduction formula
in Lemma 2.2 still applies to Sk(W+)/I, and the argument in the proof of Theorem 2.1 now
gives that GKdimSk(W+)/I 6 k − 1. As Sk(W+) clearly has GK-dimension k, we obtain:

Proposition 2.4. As a W+-module, Sk(W+) is GK k-critical. �

For k = 2, this was shown in [PS17, Corollary 4.15].

3. The universal enveloping algebra of the positive Witt algebra

That U(W+) has just infinite GK-dimension follows from Theorem 2.1 using the Poisson
GK-dimension defined in [PS17] and [PS17, Theorem 3.19]. However, a direct proof, which
we give here, is also straightforward; the techniques of Section 2 apply also to U(W+).

We begin by giving a noncommutative version of the reduction formula of Lemma 2.2.
Our result is more general than needed here, for later use when considering quotients of
U(W ).

By the Poincaré-Birkhoff-Witt theorem, U(W ) has a basis of monomials ei1ei2 . . . eik with
i1 6 i2 6 . . . 6 ik. We call such monomials standard.

Lemma 3.1. Let 0 6= g ∈ U(W ), and let I = U(W+)gU(W+) be the U(W+)-sub-bimodule
of U(W ) generated by g. Then there exist positive integers k and n and an integer ℓ so that
every standard monomial m = ej1 . . . ejk with n 6 j1 6 . . . 6 jk satisfies

(3.2) m = h+
∑

ctmt,

where h ∈ I, the sum is finite, ct ∈ K, and the mt are standard monomials so that for each
t, we have i > ℓ for all letters ei featuring in mt, and either |mt| < k or |mt| = k and
i < n for at least one of the letters featuring in mt. Further, if h is degree-homogeneous,
then deg (m) = deg (h) = deg (mt) for all t.

Proof. Let k = |g|. Writing g as a sum of standard monomials, let eℓ be the smallest letter
occurring in g and define n′ so that en′ is the largest letter in g. Let n = 2|n′|+ 1.

There are well-defined monomial orderings < and ≺ on standard monomials in U(W ),
defined just as the corresponding orderings on commutative monomials xi1 . . . xik in the
previous section. Note that < does not satisfy the descending chain condition because W
has no least element, but the induced order on standard monomials in letters > ℓ does satisfy
d.c.c. Thus, as in the proof of Lemma 2.2, it suffices to show that we can rewrite m, modulo
I, as a linear combination of standard monomials in letters > ℓ, each of which are < m.

For any a ∈ Z, let ∂a = [ , ea] as a linear operator from U(W ) → U(W ). Recall that
length defines a filtration on U(W ) whose associated graded ring is S(W ); for f ∈ U(W ) let
gr(f) be the element of S(W ) associated to f , so xi = gr(ei). For any p ∈ U(W ) and any
a ∈ Z, we have

(3.3) gr ∂a(p) = da(gr(p)) if da(gr(p)) 6= 0,

where da = { , xa} as in the proof of Lemma 2.2.
Let g be the ≺-leading standard monomial in g and write g = ei1 . . . eik with i1 6 . . . 6 ik.

Let
h = ∂j1−ik∂j2−ik−1

. . . ∂jk−i1(g).
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Since for any letter xp featuring in gr(g), and for any da which is applied to xp, by our choice
of n we have a > p, as in the proof of Lemma 2.2. Thus, just as in that proof, and using
(3.3),

gr(h) = dj1−ikdj2−ik−1
. . . djk−i1(gr(g)) = c gr(m) +

∑

ct gr(m
′
t),

where c 6= 0, the sum is finite, ct ∈ K, and the m′
t are standard monomials so that m′

t < m
for all t. Thus the length of h−m−

∑

ctm
′
t is strictly smaller than k, so h−m is a linear

combination of standard monomials which are all strictly < m.
Since a > 0 for all ∂a we have applied, only letters > ℓ occur in h. Finally, as the ∂a are

graded linear maps, if g is degree-homogenous so is h. �

Theorem 3.4. Let I be a nonzero two-sided ideal in U(W+). Then A = U(W+)/I has
polynomial growth.

Proof. All essential points of the proof occur the proof of Theorem 2.1.
As before, since U(W+) is finitely graded by degree, we may assume that I = (g) is the

ideal generated by a single nonzero degree-homogenous element g. Let k = |g|.
Let S be the set of standard monomials m which admit a factorization m = m1m2, where

m1 is a standard monomial in e1, . . . , en−1 and |m2| < k. It follows from the reduction
formula in Lemma 3.1 that U(W+)/I is spanned by the image of S. The same counting
argument as in the proof of Theorem 2.1 shows that U(W+)/I has polynomial growth. �

Theorem 3.4 gives the first part of Theorem 1.2, dealing with U(W+).

4. The enveloping algebra of the full Witt algebra

In this section, we consider the enveloping algebra of the full Witt algebra, and show that
it has just infinite GK-dimension. It clearly suffices to show:

Theorem 4.1. Let I = (g) be a two-sided ideal in U(W ) generated by one nonzero element
g ∈ U(W ). Then A = U(W )/I has polynomial growth.

Throughout the section, we fix the meanings of g, I, and A as in the statement of
Theorem 4.1. Let π : U(W ) → A be the natural map.

Now, U(W ) is finitely generated, say by {e−2, e−1, e1, e2}, and thus so is A. Since the
growth of A is controlled by the growth of any finite filtration, we are free to choose one that
is convenient, but it will be a little bit more complicated this time to choose the right one.
The problem is that unlike the situation for W+, the usual degree function deg (ei) = i does
not give us a finite grading on U(W ); note that in the proofs of Theorems 2.1 and 3.4, the
finiteness of the degree grading played a crucial role. Moreover, although of course there are
many finite filtrations on U(W ), it is not necessarily clear how to choose one which induces
a filtration on the quotient with polynomial growth.

Thus we will need to find an appropriate degree function which will give us a well-
controlled finite filtration on A. We will see that a degree function of the form δC , defined
by δC(ei1 . . . eik) = |i1|+ · · ·+ |ik|+ C, where C is a constant, does the job.

4.1. A spanning set for A. Our first step is to construct a set of standard monomials in
U(W ) whose images span A.

Symmetrically to Lemma 3.1, we have:
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Lemma 4.2. There exist positive integers k and n and an integer ℓ such that every standard
monomial m = ej1 . . . ejk with j1 6 . . . 6 jk 6 −n satisfies

m = h+
∑

ctmt,

where h ∈ I, the sum is finite, ct ∈ K, and the mt are standard monomials so that for each
t, we have i 6 ℓ for all letters ei featuring in mt, and either |mt| < k or |mt| = k and i > −n
for at least one of the letters featuring in mt.

Proof. Consider the automorphism Φ of U(W ) defined by Φ(xi) = −x−i for i ∈ Z. If we apply
Lemma 3.1 to the ideal Φ(I) and the monomial ±Φ(m), we obtain that Φ(m) = h+

∑

ctmt,
where h ∈ I, the sum is finite, ct ∈ K, and the mt are standard monomials so that for each
t, we have i > ℓ for all letters ei featuring in mt, and either |mt| < k or |mt| = k and i < n
for at least one of the letters featuring in mt. Applying Φ to both sides once again, we arrive
at the result. �

Lemmata 3.1 and 4.2 allow us to construct our spanning set, which we define here.

Definition 4.3. For positive integers k, n, let NS(k, n) be the set of standard monomials
m which admit a factorisation m = aub, where a is a standard monomial of length < k in
e−n and smaller letters, u is a standard monomial in e1−n, . . . e0, e1, e2, . . . , en−1, and b is a
standard monomial of length < k in en and bigger letters.

Lemma 4.4. There exist positive integers k and n such that A is spanned by the image of
NS(k, n).

Proof. As before, let k be the maximal length of monomials in g; that is k = |g|.
By Lemmata 3.1 and 4.2, there exist n1, n2 ∈ Z>1 and ℓ1, ℓ2 ∈ Z such that for every

standard monomial m = ej1 . . . ejk , with j1 6 . . . 6 jk, if j1 > n1, then

m =
∑

csms + h,

where h ∈ I, the sum is finite, cs ∈ K, and the ms are standard monomials such that i > ℓ1
for each ei occurring in ms, and i < n1 for some ei occurring in ms; and if jk 6 −n2, then

m =
∑

csms + h,

where h ∈ I, the sum is finite, cs ∈ K, and the ms are standard monomials such that i 6 ℓ2
for each ei occurring in ms, and i > −n2 for some ei occurring in ms.

Let n = max{n1, n2, |ℓ1|, |ℓ2|}. Repeatedly using the observations above to rewrite m
modulo I, we obtain the result. �

For the rest of the section, let k, n be as given by Lemma 4.4, and let NS = NS(k, n). We
call the elements of NS normal words, and a representation ofm ∈ A as a linear combination
of (images of) normal words a normal form for m, bearing in mind that this normal form
may not be unique.

The growth of NS is polynomial, as we next show.

Lemma 4.5. For any positive integer C, define a function

δC : { standard monomials in U(W ) } → N

by δC(ei1 . . . eik) = |i1|+ . . .+ |ik|+ C. For any N ∈ N, let

pC(N) = #{w ∈ NS | δC(w) 6 N}.
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Then the function pC has polynomial growth.

Proof. The growth of pC does not depend on C, so without loss of generality let C = 1 and
let p = p1 and δ = δ1. For a standard monomial m, we refer to δ(m) as the absolute degree
of m. Note that U(W ) is not graded with respect to absolute degree.

Clearly p(N) 6 q(N)r(N)2, where q(N) is the number of standard monomials in

e1−n, . . . , e0, e1, . . . , en−1

of absolute degree at most N , while r(N) is the number of standard monomials in en, en+1, . . .
of degree at most N and of length at most k − 1.

Now, absolute degree, as a function on standard monomials, is always greater than
or equal to length. Thus q(N) does not exceed the number of standard monomials in
e1−n, . . . , en−1 of length at most N , which is equal to

(

N+2n−1
N

)

6 cN2n−1, for some positive
constant c which depends only on n and not on N .

On the other hand, in a monomial in en, en+1, . . . of absolute degree at most N and
of length at most k − 1, there are no more than N options for each letter and therefore
r(N) 6 Nk−1 for all N . Hence p(N) 6 cN2n+2k−3 and has polynomial growth. �

4.2. Choice of filtration. It remains to estimate the growth of A from the spanning set
constructed in the previous subsection.

Since A is finitely generated, the growth of any finite filtration bounds the growth of A.
The main result of this subsection is that there is a constant C such that the function δC
induces a finite filtration of A, which by Lemma 4.5 will have polynomial growth.

To have a filtration A1 ⊆ A2 ⊆ A3 ⊆ . . . on A =
⋃

Ai means to choose a map ρ : A → N,
satisfying

(4.6) ρ(uv) 6 ρ(u) + ρ(v), ρ(u+ v) 6 max{ρ(u), ρ(v)} and ρ(αu) = ρ(u),

for any u, v ∈ A and α ∈ K∗. Suppose that for some C, the map δC : NS → N has the
property that for any two normal words m1, m2 ∈ NS, we can find a normal form

π(m1m2) =
∑

ciπ(wi),

where the ci ∈ K and the wi are normal words so that

(4.7) δC(wi) 6 δC(m1) + δC(m2) for all i.

We claim that this is enough to construct the required ρ. For, define

ρ(u) = min
normal forms
u=

∑
cjπ(wj)

{

max
j

δC(wj)
}

.

Then ρ is easily seen to satisfy the required conditions (4.6).
So our goal is to show that there is some constant C so that δC satisfies (4.7).

Proposition 4.8. Let ℓ = max{|i| : ei features in g}. Then (4.7) holds for C = 4k2ℓ,
where we recall that k = |g|.

Proof. It suffices to show that for any normal words m1, m2 ∈ NS, and for any normal form
π(m1m2) =

∑

ciπ(wi) for π(m1m2), where wi ∈ NS and ci ∈ K∗, that

(4.9) δ0(wi) 6 δ0(m1) + δ0(m2) + C for all i.

So we need to understand how δ0 behaves on the words appearing in a normal form for
π(m1m2).



ENVELOPING ALGEBRAS WITH JUST INFINITE GELFAND-KIRILLOV DIMENSION 11

Recall the definition of n from Lemma 4.4. Write

m1 = a1u1b1 and m2 = a2u2b2,

where u1 and u2 are standard monomials of any length on variables with indices strictly
between −n and n, a1 and a2 are standard monomials of length < k on letters with indices
6 −n, while b1, b2 are standard monomials of length < k on letters with indices > n.
Now, normal words are standard monomials, and we first use the commutation relations
eiej = ejei + (j − i)ei+j to write m1m2 as a linear combination of standard monomials, that
is as a linear combination of words of the form

m3 = a3u3b3,

where a3 is a standard monomial on letters with indices 6 −n, u3 is a standard monomial
on letters with indices strictly between −n and n, and b3 is a standard monomial on letters
with indices > n. Let us call those letters with indexes |i| > n, big letters. Note that in
the course of applying the commutation relations, the total number of big letters does not
increase. Thus a3 and b3 have length 6 2k − 2, while u3 may have any length.

Now we will use the reduction procedure from Lemma 3.1 to see how δ0 changes when
we get rid of big letters in b3. If the length of b3 is less than k we do not have to do
anything. Otherwise let m be the monomial composed of the last k letters of b3. According
to Lemma 3.1, to get rid of one of the (big) letters in m, we find a sequence of derivations
D = ∂a1 . . . ∂ak , with all the ai > 1, and some c ∈ K∗ such that

(4.10) cD(g) = m+
∑

csm
′
s.

Let m′ be some m′
s. Now m′ is a standard monomial which falls into one of three cases:

I. |m′| < |m|, and m′ is obtained from some monomial g̃ in g by applying D and then
the commutation relations;

II. |m′| = |m| and m′ is obtained from some monomial g̃ in g (which necessarily has
length k) by a non-permutational action of D;

III. |m′| = |m| and m′ is obtained from some monomial g̃ in g by a permutational action
of D.

First, we note what happens to the number of big letters in each case. In case I, since m′

is shorter than m, and all letters in m are big, m′ contains fewer big letters than m. In case
II, since the action is non-permutational, there is a letter in m′ which was present in g̃. But
monomials of g consist of letters which are not big, by definition of n. Thus the number of
big letters in m′ is smaller than in m. In case III, it may be that the number of big letters
in m′ is still equal to k, which is the number of (big) letters in m, but certainly there are no
more than k = |m′| big letters in m′. Further, by our choice of n, in case III all ei occurring
in m′ have i > 1.

We now consider how δ0 changes throughout this process. In situation III, as m′ 6 m
and m′ and m are made of letters > e1, we have δ0(m

′) = deg (m′) 6 deg (m) = δ0(m). In
cases I and II, δ0(m

′) may be bigger than δ0(m). Since applying the commutation relations
does not increase δ0, we may assume that the monomial m′ is a (possibly non standard)
monomial obtained from applying D to a monomial g̃ of g.

Recall that ḡ is the ≺-leading monomial of g, and m is obtained from the monomial ḡ by
applying D. Set deg (D) = a1+ · · ·+ak, so applying D increases the degrees of homogenous
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elements by deg (D). As δ0(ea+b) 6 δ0(ea) + δ0(eb) and all the ai are > 1, we have

δ0(m
′) 6 δ0(g̃) + degD.

So

δ0(m
′)− δ0(m) 6 δ0(g̃) + degD − δ0(m)

= δ0(g̃) + degD − degm as letters in m are big

6 δ0(g̃) + |degm− degD|

= δ0(g̃) + |deg ḡ|

6 2kℓ,

by choice of ℓ, as g̃ and ḡ have no more than k letters.
To summarize the discussion above: in cases I and II, we remove at least one big letter

and increase δ0 by no more than 2kℓ. In case III, we do not remove big letters and do not
increase δ0. As proved in Lemma 3.1, after repeating this procedure finitely many times, we
may write m1m2, modulo I, as a linear combination of normal words. However many times
we repeat the procedure we remove a maximum of k−1 big letters from b3, and thus we add
a maximum of 2k(k − 1)ℓ to δ0. Note that in applying this process to b3, we never add any
letters with indices < −n.

After we apply the procedure from Lemma 4.2 to a3 at the other end of the word, we
have found a normal form for m1m2 and have added maximum of another 2k(k − 1)ℓ to δ0.
In other words, we have written

π(m1m2) =
∑

ciπ(wi)

where the wi satisfy (4.9), as required. �

The proof of Theorem 4.1 is now an easy combination of other results in this section.

Proof of Theorem 4.1. Let C be the constant given by Proposition 4.8. The discussion before
that proposition shows that setting

A(N) = span{π(w) : w ∈ NS, πC(w) 6 N}

defines a finite filtration on A. By Lemma 4.5, this filtration has polynomial growth, and so
GKdim(A) < ∞. �

Theorem 4.1 gives the second part of Theorem 1.2, dealing with U(W ).

Remark 4.11. Let W1 be the first Cartan algebra, which is isomorphic to the subalgebra
of W spanned by {en : n > −1}. This is a simple graded Lie algebra of polynomial growth.
Similar methods to those used in Theorem 4.1 show that U(W1) has just infinite GK-
dimension. To show this for all simple graded Lie algebras of polynomial growth is the
subject of ongoing work.

5. Central quotients of the enveloping and symmetric algebras of Vir

In this section we first prove that all the central quotients U(Vir)/(c−κ) have just infinite
GK-dimension, completing the proof of Theorem 1.2, and then consider the related Poisson
algebras S(Vir)/(c − κ). Because the ideas of the proofs are similar to those in previous
sections, we leave some details to the reader.
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5.1. Central quotients of the enveloping algebra of Vir. Fix κ ∈ K and let R =
U(Vir)/(c − κ). Essentially the same argument as for the full Witt algebra works to show
that R has just infinite GK-dimension; we give a sketch of the proof.

Note that R, like U(W ), has a basis of standard monomials in the ei.

Definition 5.1. For positive integers k, n, let NS(k, n) ⊂ R be the set of standard mono-
mials m in the ei which admit a factorisation m = aub, where a is a standard monomial of
length < k in e−n and smaller letters, u is a standard monomial in e1−n, . . . e0, e1, e2, . . . , en−1,
and b is a standard monomial of length < k in en and bigger letters.

Lemma 5.2. Let g be a nonzero element of R, let I = (g), and let A = R/I. There exist
positive integers k and n such that A is spanned by the image of NS(k, n).

Proof. The key point is that the reduction formulae in Lemmata 3.1 and 4.2 still hold. As
before, let ∂a = [ , ea] as a linear operator on R and consider the effect of applying some
∂a1 · · ·∂ak to a standard monomial of length k. If κ 6= 0 and some expression of the form
[e−aj , eaj ] has been computed, we may obtain some standard monomials of length < k in
the result; but the leading term will have length k and will be given by the procedures in
the previous section. Thus the proof of Lemma 4.4 goes through in this situation, almost
without change. �

Theorem 5.3. Let I = (g) be a two-sided ideal in R generated by one nonzero element
g ∈ R. Then A = R/I has polynomial growth.

Proof. We may define the functions δC just as with U(W ). The only part of the argument
which is different for R is the proof of Proposition 4.8. When we compute

(5.4) c∂a1 . . . ∂ak(g) = m+
∑

s

csm
′
s,

as in (4.10), consider some m′ = m′
s as before. In addition to cases I, II, III as in the proof

of Proposition 4.8, we may have

I’. |m′| < |m|, and m′ is obtained from some monomial g̃ in g by applying ∂a1 . . . ∂ak
and then applying the relation

[e−i, ei] = 2ie0 +
i− i3

12
δi+j,0κ.

As before, applying this relation does not increase δ0, so we may assume thatm′ is a (possibly
non standard) monomial obtained from applying D to a monomial g̃ of g. The argument of
Proposition 4.8 goes through with only minor changes, and the result follows just as in the
proof of Theorem 4.1. �

Theorem 5.3 completes the proof of Theorem 1.2 by establishing the part dealing with
U(Vir).

Remark 5.5. By the same method as in the proof of Theorem 5.3, one may show that
the localised enveloping algebra U(Vir) ⊗K[c] K(c), considered as an algebra over K(c), has
just infinite GK-dimension. It follows, using a similar argument to the proof of [KL00,
Lemma 3.10], that U(Vir) ⊗K[c] K(c) has just infinite GK-dimension considered as a K-
algebra. We leave the details to the reader.
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5.2. Central quotients of the symmetric algebra of Vir. In this subsection, let κ ∈ K
and let R = S(W )/(c − κ). Since c − κ is Poisson central, R is a Poisson algebra; in fact
if we filter U(Vir) by setting |ei| = 1 and |c| = 0, then R is the associated graded ring of
U(Vir)/(c − κ). Note that if we define da = { , xa} and ∂a = [ , ea] as before, then (3.3)
still holds.

Similar arguments to those that have gone before prove:

Theorem 5.6. Let g be a nonzero element of R and let I = {(g)} be the Poisson ideal
generated by g. Then A = R/I has polynomial growth.

Proof. The reduction process works as before: writing g = gr(g′) and computing

h = c∂a1 . . . ∂ak(g
′) = m+

∑

s

csm
′
s

as in (5.4), by (3.3)

gr(h) = gr(m) +
∑

t

ct gr(m
′
t),

where the only m′
t surviving have length k. Thus as in Lemma 5.2 there are k and n so that

A is spanned by the image of gr(NS(k, n)).
Comparing δ0(gr(m

′)) with δ0(gr(m)) as in the proof of Proposition 4.8 we see that only
cases II and III occur. The conclusion of Proposition 4.8 still holds, and so as in the proof
of Theorem 4.1 GKdim(A) < ∞. �

Remark 5.7. Similarly, one may show that S(W1) has just infinite GK-dimension. We
omit the proof.

6. Applications

In this section we give several applications of Theorem 1.2. We first give a short proof
that Verma modules for Vir are faithful over the appropriate central factor of U(Vir). (A
more direct proof is an unpublished result of Nolan Wallach [WS13].) We next prove that
U(W+), U(W ), and U(Vir) all satisfy the ascending chain condition on completely prime
ideals. As a consequence, these algebras are Hopfian: they are not isomorphic to any proper
quotient.

6.1. Annihilators of induced modules. Fix λ, κ ∈ K. Note that the Virasoro algebra
Vir has a triangular decomposition: define n+ := K(en : n > 1), h := K(c, e0), and n− :=
K(en : n 6 −1). Let b+ := n+ ⊕ h. Let Kκ,λ be the one-dimensional representation of b+
where n+ acts trivially, c acts as κ, and e0 acts as λ. Then define the Verma module Mκ,λ

to be U(Vir)⊗U(b+) Kκ,λ. It is immediate that

Mκ,λ
∼= U(Vir)/U(Vir)(c− κ, e0 − λ, en : n > 1)

and that Mκ,λ is non-positively graded, with dim (Mκ,λ)−n = P(n), the n’th partition num-
ber.

Verma modules are examples of the larger class we call, slightly imprecisely, induced
modules. These are modules of the form M = U(Vir) ⊗U(b+) M

′, where M ′ is a represen-
tation of b+. Besides Verma modules, examples include logarithmic representations, where
dim KM

′ < ∞ and where n+ acts trivially on M ′, c acts as a scalar, and e0 acts as a
non-semisimple matrix. These representations are important in logarithmic conformal field
theory, see [GK96].
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Whittaker modules [OW09] form another class of examples. Here let n′ = n⊕Kc and let
M ′′ be the one-dimensional n′ module where c acts as a scalar, and the en act trivially for
n > 3. The module

M = U(Vir)⊗U(n′) M
′′ ∼= U(Vir)⊗U(b+) U(b+)⊗U(n′) M

′′

is a Whittaker module. If e1, e2 act nontrivially on M ′′, then M is simple by [OW09, Corol-
lary 4.5]. All of these examples are annihilated by some c − κ, where κ ∈ K, and so have
central character κ.

Using Theorem 1.2, we may immediately compute the annihilator of an induced module.

Theorem 6.1. Let M ′ be a representation of b+ with central character κ ∈ K. Let M =
U(Vir)⊗U(b+) M

′. Then AnnU(Vir) M = (c− κ).

Proof. Clearly (c− κ)M = 0.
Let P be the set of negative partitions λ = (λ1, . . . , λk) where the λi are negative integers

with λ1 6 λ2 6 . . . 6 λk. If λ = (λ1, . . . , λk) ∈ P, let eλ = eλ1 . . . eλk
. If 0 6= m ∈ M ′, it

follows from the Poincaré-Birkhoff-Witt theorem that the elements {eλ ⊗ m : λ ∈ P} are
linearly independent in M , and thus, as these elements are in bijection with partitions, that
M has subexponential growth and infinite Gelfand-Kirillov dimension.

Let K = AnnU(Vir)M . If K % (c − κ) then by Theorem 1.2 U(Vir)/K has polynomial
growth and thus, by [KL00, Proposition 5.1(d)], so does M . This contradiction shows that
K = (c− κ). �

Corollary 6.2. For any κ, λ ∈ K, the Verma module Mκ,λ is a faithful U(Vir)/(c − κ)-
module. �

Corollary 6.2 is an unpublished result of Nolan Wallach [WS13], and is independently due
to Olivier Mathieu in unpublished work; see [CM07, footnote 2, p. 496]. We thank Rupert
Wei Tze Yu for pointing out this reference to us.

It is known [FF84, Theorem 1.2] that for any κ, the module Mκ,λ is simple for generic λ.
Thus it follows immediately that U(Vir)/(c− κ) is primitive.

Corollary 6.3. Let N be a logarithmic representation or a Whittaker module over Vir. Then
AnnU(Vir)(N) = (c− κ) for some κ ∈ K. �

6.2. Completely prime ideals. In [PS17, Conjecture 1.3], it is conjectured that U(W+)
satisfies the ascending chain condition on two-sided ideals. We cannot prove this, but we do
show

Proposition 6.4. The algebras U(W+) and U(Vir) satisfy the ascending chain condition
(ACC) on completely prime ideals.

Proof. We first note that any ring R of finite or just infinite GK-dimension satisfies ACC
on completely prime ideals. Letting P0 be the first ideal in the chain, it is sufficient to
show that R/P0 has ACC on completely prime ideals. Thus we may replace R by R/P0 and
assume that R is a domain with GKdimR < ∞. Now if I is a nonzero ideal of R, then
by [KL00, Proposition 3.15], GKdimR/I 6 GKdimR − 1, so by induction the length of a
chain of completely prime ideals is bounded by GKdimR. Thus by Theorem 1.2, U(W+)
and U(Vir)/(c− κ) (for any κ ∈ K) have ACC on completely prime ideals.

In fact, note that if f [x] ∈ K[x] is irreducible, then U(Vir)/(f(c)) has just infinite GK-
dimension and thus ACC on completely prime ideals. To see this, let K′ be the extension
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field K[x]/f(x) of K, and note that

U(Vir)/(f(c)) = UK(Vir)/(f(c)) ∼= UK′(Vir)/(c− x).

This last has just infinite GK-dimension by Theorem 1.2.
We now consider an ascending chain P1 ⊆ P2 ⊆ · · · of completely prime ideals of U(Vir).

If
⋃

Pn contains a nonzero element of K[c], then as the Pn are prime and c is central, some
Pn contains an irreducible polynomial f(c) ∈ K[c]. By the first part of the proof, therefore,
the chain stabilizes.

So we may assume that each Pn ∩ K[c] = 0. As Pn is prime, each U(Vir)/Pn is K[c]-
torsionfree. Thus if Pn 6= Pn+1, then (Pn+1/Pn)⊗K[c] K(c) 6= 0 and so

Pn ⊗K[c] K(c) 6= Pn+1 ⊗K[c] K(c).

Further, these ideals are completely prime as

U(Vir)⊗K[c] K(c)/Pn ⊗K[c] K(c) ∼= (U(Vir)/Pn)⊗K[c] K(c)

is a domain.
Thus it suffices to show that U(Vir)⊗K[c] K(c) has ACC on completely prime ideals. By

Remark 5.5, U(Vir)⊗K[c] K(c) has just infinite GK-dimension. Thus by the first part of the
proof, U(Vir)⊗K[c] K(c) satisfies the ACC on completely prime ideals. �

6.3. The Hopfian and Bassian properties. To end the paper, we consider two ring-
theoretic properties which are related to noetherianity. A ring R is Hopfian if R is not
isomorphic to any proper quotient R/J (equivalently, any epimorphism from R → R is an
isomorphism). More strongly, R is Bassian if there is no injection of R into any proper
quotient R/J . We thank Lance Small for introducing us to these concepts.

Proposition 6.5. The algebras U(W+), U(W ), U(W1), and U(Vir)/(c − κ) are Bassian
and Hopfian, and U(Vir) is Hopfian.

That U(W+) is Hopfian is proved in [RS17, Remarks 2.2], and [RS17, Section 4] asks
whether U(W ) is Bassian or Hopfian.

Proof. If R has just infinite GK-dimension, then GKdimR/J < GKdimR for any proper
ideal J of R, so R cannot inject in R/J . Thus the Bassian (and thus Hopfian) property for
U(W+), U(W ), and U(Vir)/(c − κ) follows from Theorem 1.2. For U(W1) it follows from
Remark 4.11.

To show that U(Vir) is Hopfian, let R = U(Vir) and let f be a surjective endomorphism
of R, with kernel J . As R/J ∼= Im(f) is torsionfree as a module over K[c], the complex

0 → J ⊗K[c] K(c) → R⊗K[c] K(c) → (R/J)⊗K[c] K(c) → 0

is exact. Now by Remark 5.5, we must have J ⊗K[c] K(c) = 0. As R is K[c]-torsionfree,
J = 0. �

That U(Vir) is Hopfian also follows from [RS17, Corollary 2.6] and Proposition 6.4. We
do not know whether U(Vir) is Bassian.
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We thank José Figueroa-O’Farrill, Tom Lenagan, and Lance Small for useful comments
and discussions.



ENVELOPING ALGEBRAS WITH JUST INFINITE GELFAND-KIRILLOV DIMENSION 17

References

[AS74] R. K. Amayo and I. Stewart, Infinite-dimensional lie algebras, revised ed., Noordhoff International
Publishing, Leyden, 1974.

[Bro07] K. A. Brown, Noetherian Hopf algebras, Turkish J. Math. 31 (2007), no. suppl., 7–23.
[CM07] C. H. Conley and C. Martin, Annihilators of tensor density modules, J. Algebra 312 (2007), no. 1,

495–526.
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