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Potential algebras with few generators

Natalia Iyudu and Stanislav Shkarin

Abstract

We give a complete description of quadratic potential and twisted potential algebras on 3 gen-
erators as well as cubic potential and twisted potential algebras on 2 generators up to graded
algebra isomorphisms under the assumption that the ground field is algebraically closed and has
characteristic different from 2 or 3.

We also prove that for two generated potential algebra necessary condition of finite-dimensionality
is that potential contains terms of degree three, this answers a question of Agata Smoktunowicz
and the first named author, formulated in [13]. We clarify situation in case of arbitrary number of
generators as well.
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1 Introduction

Throughout this paper K is an algebraically closed field of characteristic different from 2 or 3. If
B is a Z+-graded vector space, Bm always stands for the mth component of B. We only deal with
the situation when each Bm is finite dimensional, which allows to consider the polynomial generating
function of the sequence of dimensions of graded components, called

the Hilbert series of B: HB(t) =
∞

∑
j=0

dimBm tm.

The classical potential algebras are defined as K[x1, . . . , xn]/IL, where IL is the ideal generated by
all first order partial derivatives ∂L

∂xj
of L ∈ K[x1, . . . , xn], called the potential. Potential algebras have

been defined in the non-commutative setting by Kontsevich [14], see also [4] (an alternative equivalent
definition was suggested by Ginsburg [9]). An element F ∈ K⟨x1, . . . , xn⟩ is called cyclicly invariant if
it is invariant for the linear map C ∶ K⟨x1, . . . , xn⟩→ K⟨x1, . . . , xn⟩ defined on monomials by C(1) = 1
and C(xju) = uxj for all j and all monomials u. For example, x2y + xyx + yx2 and x3 are cyclicly
invariant, while xy − yx is not. The symbol Kcyc⟨x1, . . . , xn⟩ stands for the vector space of all cyclicly
invariant elements of K⟨x1, . . . , xn⟩. We define noncommutative left or right (respectively) derivatives
as linear maps δxj

∶ K⟨x1, . . . , xn⟩ → K⟨x1, . . . , xn⟩ and δRxj
∶ K⟨x1, . . . , xn⟩ → K⟨x1, . . . , xn⟩ by their

action on monomials:

δxj
u = { v if u = xjv;

0 otherwise,
δRxj

u = { v if u = vxj ;
0 otherwise.

Note that

F ∈ K⟨x1, . . . , xn⟩ is cyclicly invariant if and only if δxj
F = δRxj

F for 1 ⩽ j ⩽ n.

For F ∈ Kcyc⟨x1, . . . , xn⟩, the potential algebra AF is defined as K⟨x1, . . . , xn⟩/I, where I is the ideal
generated by δxj

F for 1 ⩽ j ⩽ n. We shall call F the potential for AF .
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Note that if the characteristic of K is either 0 or is greater than the top degree of non-zero homo-
geneous components of F ∈ Kcyc⟨x1, . . . , xn⟩, then F = G⟲ for some (non-unique) G ∈ K⟨x1, . . . , xn⟩,
where the linear map G ↦ G⟲ from K⟨x1, . . . , xn⟩ to K

cyc⟨x1, . . . , xn⟩ is defined by its action on
homogeneous elements by

u⟲ = u +Cu + . . . +Cd−1u, where d is the degree of u.

For example, x4
⟲ = 4x4 and x2y

⟲ = x2y+xyx+yx2. One easily sees that the usual partial derivatives
∂ Gab

∂ xj
of the abelianization Gab of G ∈ K⟨x1, . . . , xn⟩ (Gab is the image of G under the canonical

map from K⟨x1, . . . , xn⟩ onto K[x1, . . . , xn]) are the abelianizations of δxj
(G⟲). Thus commutative

potential algebras are exactly the abelianizations of the non-commutative ones. The above definitions
and observations immediately yield the following lemma.

Lemma 1.1. For every F ∈ K⟨x1, . . . , xn⟩ with trivial zero degree component (F0 = 0),
F =

n

∑
j=1

xj(δxj
F ) = n

∑
j=1

(δRxj
F )xj .

Thus F is cyclicly invariant if and only if F =
n

∑
j=1
(δxj

F )xj . In particular,

F =
n

∑
j=1

xj(δxj
F ) = n

∑
j=1

(δxj
F )xj for every F ∈ Kcyc⟨x1, . . . , xn⟩ with F0 = 0,

n

∑
j=1

[xj , δxj
F ] = 0 for every F ∈ Kcyc⟨x1, . . . , xn⟩. (1.1)

We consider a larger class of algebras. We call F ∈ K⟨x1, . . . , xn⟩ a twisted potential if the linear
span of δx1

F, . . . , δxnF coincides with the linear span of δRx1
F, . . . , δRxn

F . Just as for potentials, if F is a
twisted potential, the corresponding twisted potential algebra AF is given by generators x1, . . . , xn and
relations δx1

F, . . . , δxnF . Clearly, the same algebra is presented by the relations δRx1
F, . . . , δRxn

F . Note
that there is a number of other generalizations of the concept of a potential algebra. For instance, one
can replace the free algebra in the above definition by a (directed) graph algebra [4]. Our definition
then corresponds to the case of the n-petal rose (one vertex with n loops) graph.

There is a complex of right A-modules associated to each twisted potential algebra A = AF with
F0 = F1 = 0 (F starts in degree ⩾ 2). Namely, we consider the sequence of right A-modules:

0→ A
d3
Ð→An d2

Ð→An d1
Ð→A

d0
Ð→K → 0, where d2(u1, . . . , un)j = n

∑
k=1
(δxj

δRxk
F )uk,

d0 is the augmentation map, d1(u1, . . . , un) = x1u1 + . . . + xnun and d3(u) = (x1u, . . . , xnu). (1.2)

We say that the twisted potential algebra A = A is exact if (1.2) is an exact complex. For the sake of
completeness, we shall verify in Section 3 that (1.2) is indeed a complex and that it is always exact
at its three rightmost terms. Obviously, exactness of (1.2) is preserved under linear substitutions
and therefore is an isomorphism invariant as long as degree-graded twisted potential algebras are
concerned. Note also that the superpotential algebras [4] are also particular cases of twisted potential
algebras: for them δRxj

F = ±δxj
F .

Remark 1.2. It is an elementary linear algebra exercise to verify that if F ∈ K⟨x1, . . . , xn⟩ is a twisted
potential for which the dimension of the linear span of δx1

F, . . . , δxnF is m < n, then one can choose
an m-dimensional subspace M in V = span{x1, . . . , xn} such that F belongs to the tensor algebra of
M . In other words, there is a basis y1, . . . , yn in V such that only y1, . . . , ym feature in F when written
in terms of y1, . . . , yn. Thus we have the twisted potential algebra B with generators y1, . . . , ym and
twisted potential F , while the original AF is the free product of B and the free K-algebra on n −m
generators. One easily sees that such an AF is never exact. Moreover AF is Koszul or PBW or a
domain [16] if and only if B is of the same type. Finally, if F is homogeneous, the Hilbert series of
AF and B are related by HAF

(t) = (HB(t)−1 − (n −m)t)−1.
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We say that a twisted potential F ∈ K⟨x1, . . . , xn⟩ is non-degenerate if δx1
F, . . . , δxnF are linearly

independent. According to the above remark, in order to describe all twisted potential algebras with
n generators, it is enough to describe non-degenerate twisted potential algebras with ⩽ n generators.

Note that if F ∈ K⟨x1, . . . , xn⟩ is a non-degenerate twisted potential, then there is a unique matrix
M ∈ GLn(K) such that

⎛⎜⎝
δRx1

F

⋮

δRxn
F

⎞⎟⎠ =M
⎛⎜⎝

δx1
F

⋮
δxn F

⎞⎟⎠ . (1.3)

We say that M provides the twist or is the twist. By Lemma 1.1, cyclic invariance happens precisely
when (1.3) is satisfied with M being the identity matrix. That is, every non-degenerate potential
F ∈ Kcyc⟨x1, . . . , xn⟩ is a non-degenerate twisted potential with trivial twist. Note that the definition
of non-degenerate twisted potential algebras is very similar to that of algebras defined by multilinear
forms of Dubois-Violette [7, 8]. In fact, our definition generalizes the latter.

Remark 1.3. Assume that F is a non-degenerate twisted potential with the twist M ∈ GLn(K). If we
perform a non-degenerate linear substitution xj = ∑k cj,kyk, then in the new variables yj, F remains
a non-degenerate twisted potential. Furthermore, the corresponding twist changes in a very specific
way: the new twist is the conjugate of M by the transpose of the substitution matrix C. We leave
this elementary calculation for the reader to verify. One useful consequence of this observation is that
by means of a linear substitution, M can be replaced by a convenient conjugate matrix. For instance,
M can be transformed into its Jordan normal form.

We say that a twisted potential F ∈ K⟨x1, . . . , xn⟩ is proper if the equality

n

∑
j=1

xj(δxj
F ) = n

∑
j=1

(δRxj
F )xj (1.4)

of Lemma 1.1 provides the only linear dependence of the 2n2 elements xk(δxj
F ) and (δRxj

F )xk with
1 ⩽ j, k ⩽ n of K⟨x1, . . . , xn⟩ up to a scalar multiple. Note that in this case δxj

F are automatically
linearly independent and therefore F is non-degenerate.

Lemma 1.4. Let F ∈ K⟨x1, . . . , xn⟩ be a homogeneous twisted potential of degree k ⩾ 3 and A = AF be

the corresponding twisted potential algebra. Then dimAk ⩾ nk−2n2+1. Moreover, F is non-degenerate

if an only if dimAk−1 = nk−1 − n and F is proper if and only if dimAk = nk − 2n2 + 1. Furthermore, if

F is proper, then F is uniquely determined by AF up to a scalar multiple and any linear substitution

providing a graded algebra isomorhpism between AF and another twisted potential algebra AG must

transform F to G up to a scalar multiple.

Proof. Let V be the linear span of xj for 1 ⩽ j ⩽ n, RF be the linear span of δxj
F for 1 ⩽ j ⩽ n and

I be the ideal of relations for A: I is the ideal in K⟨x1, . . . , xn⟩ generated by RF . Obviously, F is
non-degenerate if and only if dimRF = n if and only if dimAk−1 = nk−1 − n. Clearly Ik is spanned by
2n2 elements xjδxmF and δxmFxj for 1 ⩽ j,m ⩽ n. The equation (1.4) provides a non-trivial linear
dependence of these elements. Hence dim Ik ⩽ 2n2 −1 and therefore dimAk ⩾ nk −2n2 +1. Clearly, the
equality dimAk = nk −2n2+1 holds if and only if there is no linear dependence of xjδxmF and δxmFxj
other than (1.4) (up to a scalar multiple). That is, F is proper if and only if dimAk = nk − 2n2 + 1.

Now let F be proper. Then dim Ik = dim (V RF +RFV ) = 2n2 − 1. By Lemma 1.1, F ∈ V RF ∩RFV .
Since δxj

F are linearly independent, dimV RF = dimRFV = n2. Hence dim (V RF ∩RFV ) = 1. Thus
V RF ∩ RFV is the one-dimensional space spanned by F . It follows that F is uniquely determined
by A up to a scalar multiple. If, additionally, a linear substitution provides an isomorphism between
A and another twisted potential algebra AG, then the said substitution must transform V RF ∩RFV

to V RG ∩ RGV . Since the first of these spaces is the one-dimensional space spanned by F and the
second contains G, it must also be one-dimensional and must be spanned by G. Hence our substitution
transforms F into G up to a scalar multiple.
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Remark 1.5. We stress that any homogeneous twisted potential, when proper, is uniquely (up to
a scalar multiple) determined by the corresponding twisted potential algebra. We dub such algebras
proper twisted potential algebras. By the above lemma, proper and non-proper degree-graded twisted
potential algebras can not be isomorphic. Similarly, we say that a twisted potential algebra is de-

generate if it is given by a degenerate twisted potential. Again, the concept is well-defined and a
non-degenerate degree-graded twisted potential algebra can not be isomorphic to a degenerate one.
Note that we are talking of isomorphisms in the category of graded algebras (=isomorphisms provided
by linear substitutions). As we have already mentioned, a proper degree-graded twisted potential
algebra is always non-degenerate. We shall see later that every exact degree-graded twisted potential
algebra is proper.

The main objective of this paper is to provide a complete classification up to graded algebra iso-
morphisms of twisted potential algebras in two cases: when the twisted potential is a homogeneous
(non-commutative) polynomial of degree 3 on three variables and when it is a homogenenous (non-
commutative) polynomial of degree 4 on two variables. This task resonates with the Artin–Schelter
classification result [1]: many algebras we deal with are indeed Artin–Schelter regular. However there
are two differences. For one, the classes are not exactly the same. The main difference though is that
Artin and Schelter have never provided a classification up to an isomorphism.

For the sake of convenience, we introduce the following notation. For integers n,k satisfying n ⩾ 2
and k ⩾ 3 and M ∈ GLn(K),

Pn,k(M) is the set of homogeneous degree k elements
F ∈ K⟨x1, . . . , xn⟩ for which (1.3) is satisfied.

(1.5)

Obviously, Pn,k(M) is a vector space. However, Pn,k(M) is often trivial. For instance, it is trivial if
the eigenvalues of M are algebraically independent over the subfield of K generated by 1. We denote

Pn,k = Pn,k(Id). (1.6)

In other words, Pn,k consists of homogeneous degree k elements of Kcyc⟨x1, . . . , xn⟩. Finally,
P∗n,k is the set of all homogeneous degree k twisted potentials in K⟨x1, . . . , xn⟩. (1.7)

In case of cubic twisted potentials, we deal with quadratic algebras and together with classification
we provide the information whether algebras in question are Koszul and/or PBW. The latter, as
defined in [16], is the property to have a Gröbner basis in the ideal of relations (with respect to
some compatible ordering and some choice of degree 1 generators) consisting exclusively of quadratic
elements. The results are presented in tables. The first column provides a label for further references.
The letter P in the label indicates that we have a potential algebra, while the letter T indicates that
the algebra is twisted potential and non-potential. The exceptions column says which values of the
parameters are excluded. The isomorphism column provides generators of a group action on the space
of parameters such that corresponding algebras are isomorphic precisely when the parameters are in
the same orbit. The Koszul/PBW/Exact column says whether algebras in question are Koszul or
PBW or exact. For instance, the Y/N/Y entry means that the algebra is Koszul, exact but not PBW.
We introduce some notation for the rest of the paper. Let

ξ8 and ξ9 be fixed elements of K∗ of multiplicative orders 8 and 9 respectively.

Note that such elements exist since K is algebraically closed and has characteristic different from 2 or
3. We also denote

θ = ξ39 and i = ξ28 .

Obviously,
θ3 = 1 ≠ θ and i2 = −1.
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Theorem 1.6. A is a potential algebra on three generators given by a homogeneous degree 3 potential

if and only if A is isomorphic (as a graded algebra) to an algebra from the following table. The algebras

from different rows of the table are non-isomorphic. Algebras from (P1–P9) are proper, algebras from

(P10–P14) are non-proper and non-degenerate, while algebras from (P15–P18) are degenerate.

The potential F
Defining
Relations of AF

Exceptions Isomorphisms Hilbert series

Koszul/
PBW/
Exact

P1 x3 + y3 + z3 + axyz⟲ + bxzy⟲
xx + ayz + bzy;
yy + azx + bxz;
zz + axy + byx

(a, b) ≠ (0,0)(a3, b3) ≠ (1,1)(a + b)3 + 1 ≠ 0
(a, b) ↦ (θa, θb)
(a, b) ↦ (θa+θ2b+1

a+b+1 , θ
2a+θb+1
a+b+1

) (1 − t)−3 Y/N/Y

P2 xyz⟲ + axzy⟲
yz + azy;
zx + axz;
xy + ayx

a ≠ 0 a↦ a−1 (1 − t)−3 Y/Y/Y

P3 (y + z)3 + xyz⟲ + axzy⟲ yz + azy;
axz + zx + (y + z)2;
xy + ayx + (y + z)2 a ≠ 0, a ≠ −1 a↦ a−1 (1 − t)−3 Y/Y/Y

P4 z3 + xyz⟲ + axzy⟲
yz + azy;
axz + zx;
xy + ayx + zz

a ≠ 0 a↦ a−1 (1 − t)−3 Y/Y/Y

P5 y3 + xz2
⟲
+ xyz⟲ − xzy⟲

yz − zy + zz;
−xz + zx + yy;
xy − yx + xz + zx

none trivial (1 − t)−3 Y/Y/Y

P6 xz2
⟲
+ y2z

⟲
+ xyz⟲ − xzy⟲

yz − zy + zz;
−xz + zx + yz + zy;
xy − yx + xz + zx + yy

none trivial (1 − t)−3 Y/Y/Y

P7 y3 + z3 + xyz⟲ − xzy⟲
yz − zy;
−xz + zx + yy;
xy − yx + zz

none trivial (1 − t)−3 Y/Y/Y

P8 yz2
⟲
+ xyz⟲ − xzy⟲

yz − zy;
−xz + zx + zz;
xy − yx + yz + zy

none trivial (1 − t)−3 Y/Y/Y

P9 (y + z)3 + xyz⟲ yz;
zx + (y + z)2;
xy + (y + z)2 none trivial (1+t)(1+t2)(1+t+t2)

1−t−t3−2t4
N/N/N

P10 xz2
⟲
+ y3

zz;
yy;
xz + zx

none trivial 1+t
1−2t Y/Y/N

P11 x3 + y3 + z3
xx;
yy;
zz

none trivial 1+t
1−2t Y/Y/N

P12 xyz⟲
yz;
zx;
xy

none trivial 1+t
1−2t Y/Y/N

P13 xz2
⟲
+ y2z

⟲
zz;
yz + zy;
xz + zx + yy

none trivial 1+t
1−2t Y/Y/N

P14 z3 + xyz⟲
yz;
zx;
xy + zz

none trivial 1+t+t2+t3+t4

1−2t+t2−t3−t4 N/N/N

P15 y3 + z3
yy;
zz

none trivial 1+t
1−2t−t2

Y/Y/N

P16 yz2
⟲ zz;

yz + zy
none trivial 1+t

1−2t−t2
Y/Y/N

P17 z3 z2 none trivial 1+t
1−2t−2t2

Y/Y/N

P18 0 none none trivial (1 − 3t)−1 Y/Y/N
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Theorem 1.7. A is a non-potential twisted potential algebra on three generators given by a homo-

geneous degree 3 twisted potential if and only if A is isomorphic (as a graded algebra) to an algebra

from the following table. The algebras from different rows of the table are non-isomorphic.

Twisted potential F Defining Relations of AF Exceptions Isomorphisms Hilbert series
Koszul/
PBW/
Exact

T1
bxyz + ayzx + czxy
−abyxz − bcxzy − aczyx

xy − ayx;
zx − bxz;
yz − czy

abc ≠ 0

(a−b
a−c
) ≠ ( 0

0
) (a, b, c) ↦ (b, c, a)(a, b, c) ↦ (a−1, c−1, b−1) (1 − t)−3 Y/Y/Y

T2
axyz + byzx + azxy
−abyxz − a2xzy − abzyx − az3

xy − byx − zz;
zx − axz;
yz − azy

ab ≠ 0
a ≠ b

(a, b) ↦ (a−1, b−1) (1 − t)−3 Y/Y/Y

T3
xzy⟲−xyz⟲+a(xz2+z2x+z2y)
+1−a

2
(y2z+zy2−2zxz−zyz)−1+a

2
yzy

yz − zy − azz;

xz − zx − azy +
a(1−a)

2
zz;

xy−yx+(1−2a)zx+a−1
2
yy

+(1+a)(1−2a)
4

zy+a
2(1−a)

2
zz

a ≠ 1
3

trivial (1 − t)−3 Y/Y/Y

T4

xzy⟲−xyz⟲+1
3
xz2+1

3
z2x

−2
3
zxz + 1

3
y2z+1

3
zy2−2

3
yzy

+1
3
z2z−1

3
zyz+ a

27
z3

yz − zy − 1
3
zz;

xz − zx − 1
3
zy − 1

9
zz;

xy − yx − 1
3
yy + 1

3
zx + 2

9
zy + 1−a

27
zz

none trivial (1 − t)−3 Y/Y/Y

T5
zyx + byxz + b2xzy
−bzxy − yzx − b2xyz
+(ab − 1)zxz + azzx + ab2xzz

bxy+(1−ab)xz−yx−azx;
bxz − zx;
yz − zy − azz

b ≠ 0 trivial (1 − t)−3 Y/Y/Y

T6
yxz − xzy + zyx + yzx
−xyz − zxy + (a − 1)yzy
+ayyz + azyy + zzz

−xy + yx + ayy + zz;
xz + zx + (a−1)zy + ayz;
yz + zy

none trivial (1 − t)−3 Y/Y/Y

T7
xzy⟲ − xyz⟲ − yzy

+ayyz⟲ + by3 + z3

−xy + yx + ayy + zz;
xz+byy+ayz−zx+(a−1)zy;
yz − zy

none (a, b) ↦ (a,−b) (1 − t)−3 Y/Y/Y

T8 xzy⟲ − xyz⟲ − yzy + yzz⟲ + ay3
−xy + yx + yz + zy;
xz + ayy − zx − zy + zz;
yz − zy

a ≠ 0 trivial (1 − t)−3 Y/Y/Y

T9
a2xyz + yzx + azxy
−a2xzy − zyx − ayxz
+a2xzz + zyz + azxz

axy − yx + 2zx;
axz − zx;
yz − zy + zz

a ≠ 0 trivial (1 − t)−3 Y/Y/Y

T10
xyz − yzx + zxy
−yxz + xzy − zyx + yyz
−yzy + zyy + zzz

xy − yx + yy + zz;
xz + zx + 2zy;
yz + zy

none trivial (1 − t)−3 Y/Y/Y

T11
xxz + axzx + a2zxx
+yyz − ayzy + a2zyy

xz + azx;
yz − azy;
xx + yy

a ≠ 0 a↦ −a (1 − t)−3 Y/Y/Y

T12
zzy + izyz − yzz + yyx
−yxy + xyy + x3

xx + yy;
xy − yx + zz;
zy + iyz

none trivial (1 − t)−3 Y/N/Y

T13
zzy − izyz − yzz + yyx
−yxy + xyy + x3

xx + yy;
xy − yx + zz;
zy − iyz

none trivial (1 − t)−3 Y/N/Y

T14
xyx + yxy + zyx + yzy + zyz
+θxzy + θzxz + θ2xzx + θ2yxz

yx + θzy + θ2zx;
xy + zy + θ2xz;
yx + yz + θxz

none trivial (1 − t)−3 Y/N/Y

T15
xyx + yxy + zyx + yzy + zyz
+θ2xzy + θ2zxz + θxzx + θyxz

yx + θ2zy + θzx;
xy + zy + θxz;
yx + yz + θ2xz

none trivial (1 − t)−3 Y/N/Y

T16 y2z
⟲
+ z3 + x2z − xzx + zx2

xx + yy + zz;
xz − zx;
yz + zy

none trivial (1 − t)−3 Y/Y/Y

T17 xy2
⟲
+ y3 + xz2 − zxz + z2x

xz − zx;
xy + yx + yy;
yy + zz

none trivial (1 − t)−3 Y/Y/Y

T18 y3 + yz2
⟲
+ az3 + x2z − xzx + zx2

xz − zx;
yz + zy + xx + azz;
yy + zz

a2 + 4 ≠ 0 a↦ −a (1 − t)−3 Y/N/Y

T19 x2y + axyx + a2yx2 + z3
xx;
xy + ayx;
zz

a ≠ 0
a ≠ 1

trivial 1+t
1−2t Y/Y/N

T20
xy2 + ayxy + a2y2x
+x2z + a2xzx + a4zx2

xx;
xy + ayx;
xz + a2zx + yy

a ≠ 0
a ≠ 1

trivial 1+t
1−2t Y/Y/N

T21 y3 + z3 + x2z − xzx + zx2
yy;
xx + zz;
xz − zx

a ≠ 0
a ≠ 1

trivial 1+t
1−2t Y/Y/N

T22 x2y + axyx + a2yx2
xy + ayx;
xx

a ≠ 0
a ≠ 1

trivial 1+t
1−2t−t2

Y/Y/N

T23 x2y − xyx + yx2 + y3
xy − yx;
xx + yy

none trivial 1+t
1−2t−t2

Y/Y/N
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Theorem 1.8. A is a potential algebra on two generators given by a homogeneous degree 4 potential if

and only if A is isomorphic (as a graded algebra) to an algebra from the following table. The algebras

from different rows of the table are non-isomorphic. Algebras from (P19–P23) are proper, algebras

from (P24–P26) are non-proper and non-degenerate, while algebras from (P27–P28) are degenerate.

Potential F Defining relations of AF Exceptions Isomorphisms Hilbert series Exact

P19 x4 + ax2y2
⟲
+ bxyxy⟲ + y4

x3 + axy2 + ay2x + 2byxy;
ax2y + ayx2 + 2bxyx + y3

4(a + b)2 ≠ 1(a, b) ≠ (0,0)(a, b) ≠ ±(1,1/2)
(a, b) ↦ (−a,−b)
(a, b) ↦ ( 1−2b

1+2a+2b ,
1−2a+2b

2(1+2a+2b)
) (1 + t)−1(1 − t)−3 Y

P20 x2y2
⟲
+ a

2
xyxy⟲

xy2 + y2x + ayxy;
x2y + yx2 + axyx

none trivial (1 + t)−1(1 − t)−3 Y

P21 x4 + x2y2
⟲
+ a

2
xyxy⟲

x3 + xy2 + y2x + ayxy;
x2y + yx2 + axyx

none trivial (1 + t)−1(1 − t)−3 Y

P22 x3y⟲ + x2y2
⟲
− xyxy⟲ x2y⟲ + xy2

⟲
− 3yxy;

x3 + x2y + yx2 − 2xyx
none trivial (1 + t)−1(1 − t)−3 Y

P23 x4 + 1
2
xyxy

x3 + yxy;
xyx

none trivial
(1+t2)(1−t5)

(1−t−t4−t5)(1−t) N

P24 x4 + y4
x3;
y3

none trivial 1+t+t2

1−t−t2
N

P25 x3y⟲
x2y + yx2 + xyx;
x3

none trivial 1+t+t2

1−t−t2
N

P26 xyxy⟲
yxy;
xyx

none trivial 1+t+t2

1−t−t2
N

P27 x4 x3 none trivial 1+t+t3

1−t−t2−t3
N

P28 0 none none trivial (1 − 2t)−1 N

Theorem 1.9. A is a non-potential twisted potential algebra on two generators given by a homogeneous

degree 4 potential if and only if A is isomorphic (as a graded algebra) to an algebra from the following

table. Distinct algebras anywhere in the table are non-isomorphic. Algebras from (T24–T33) are

proper, while the algebras in (T34) are non-proper and non-degenerate.

Twisted potential F Defining relations of AF Exceptions Hilbert series Exact

T24 x2y2 + a2y2x2 + axy2x + ayx2y + bxyxy + abyxyx
a2yx2 + ax2y + abxyx;
xy2 + ay2x + byxy

a ≠ 0
a ≠ 1

(1 + t)−1(1 − t)−3 Y

T25
x2y2 + y2x2 − xy2x − yx2y + (a − 1)x2yx
+(1 − a)xyx2 + ayx3 − ax3y + a

2
x4

xy2−y2x+(a−1)xyx+(1−a)yx2−ax2y+a
2
x3;

yx2 − x2y + ax3
none (1 + t)−1(1 − t)−3 Y

T26 x2y2
⟲
− xyxy⟲ + ayx3

+ax3y + (a − 1)xyx2 + (a + 1)x2yx
xy2+y2x−2yxy+ax2y+(a−1)yx2+(a+1)xyx;
ax3 + x2y + yx2 − 2xyx

none (1 + t)−1(1 − t)−3 Y

T27 x2y2
⟲
− xyxy⟲ − xyx2 + x2yx + ax4

x2y + yx2 − 2xyx;
xy2 + y2x − 2yxy − yx2 + xyx + ax3

none (1 + t)−1(1 − t)−3 Y

T28 x2y2 + a2y2x2 + axy2x − ayx2y
a2yx2 − ax2y;
xy2 + ay2x

a ≠ 0 (1 + t)−1(1 − t)−3 Y

T29 x3y + yx3 + θxyx2 + θ2x2yx + y4
x2y + θyx2 + θ2xyx;
x3 + y3

none (1 + t)−1(1 − t)−3 Y

T30 x3y + yx3 + θ2xyx2 + θx2yx + y4
x2y + θ2yx2 + θxyx;
x3 + y3

none (1 + t)−1(1 − t)−3 Y

T31 x4 − iyx3 − y2x2 + iy3x + y4 + xy3 + x2y2 + x3y
x3 + x2y + xy2 + y3;
−ix3 − yx2 + iy2x + y3

none (1 + t)−1(1 − t)−3 Y

T32 x4 + iyx3 − y2x2 − iy3x + y4 + xy3 + x2y2 + x3y
x3 + x2y + xy2 + y3;
ix3 − yx2 − iy2x + y3

none (1 + t)−1(1 − t)−3 Y

T33
x2y2 − yx2y + y2x2 − xy2x
+y3x − xy3 + yxy2 − y2xy

− x2y + yx2 + y2x + xy2 − yxy;
xy2 − y2x − y3

none (1 + t)−1(1 − t)−3 Y

T34 x3y + ax2yx + a2xyx2 + a3yx3
x2y + axyx + a2yx2;
x3

a ≠ 0
a ≠ 1

(1+t+t2)(1−t−t2)−1N
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Remark 1.10. Recall [9] that a K-algebra A is called n-Calabi–Yau if A admits a projective A-
bimodule resolution 0 → P0 → . . . → Pn → A → 0 such that the dual sequence 0 → Hom(Pn,A) →
. . . → Hom(P0,A) → 0 is quasi-isomorphic to 0 → P0 → . . . → Pn → 0 (this effect is known as Poincaré
duality). Now algebras from (P1–P8) and (P19–P27) are 3-Calabi–Yau with the required resolution
provided by tensoring the complex (1.2) by A (over K) on the left and interpreting the result as a
bimodule complex. Actually, this captures (up to an isomorphism) all 3-Calabi–Yau algebras which are
also potential with the potential from P3,3 or P2,4. This augments the coarse description of Bockland
[3] of graded 3-Calabi–Yau algebras. What Bockland provides is a description of directed graphs and
degrees such that there exists a homogeneous potential F of given degree with the quotient of the
graph path algebra by the relations δxj

F (F is assumed to be written in terms of generators of the
path algebra) being 3-Calabi–Yau and proves that (in the category of degree graded algebras) every
3-Calabi–Yau algebra emerges this way. On the other hand, we take two specific situations: 3-petal
rose and degree 3 and 2 petal rose and degree 4 and describe the corresponding 3-Calabi–Yau algebras
themselves up to an isomorphism.

Remark 1.11. Potential algebras find applications in complex geometry as well. Namely, for an
algebraic quasi-projective complex 3-fold X and a birational flop contraction f ∶ X → Y contracting a
single rational curve C ⊂X to a point p, Donovan and Wemyss [5] associated an invariant, they named
a contraction algebra and denoted Acon. It turns out that Acon is finite dimensional and is either the
quotient of C[x] by the ideal generated by xn for some n ∈ N or is a potential algebra on 2 generators
given by a potential F satisfying F0 = F1 = F2 = 0. This draws attention to finite dimensional potential
algebras. Furthermore, Toda [18] demonstrated that the dimensions of Acon and its abelianization Aab

con

are
l

∑
j=1

j2nj and n1 respectively, where the natural numbers n1, . . . , nl are the so-called Gopakumar–

Vafa invariants. Admittedly, it is not known whether every finite dimensional potential algebra AF

with F ∈ Kcyc⟨x, y⟩ satisfying F0 = F1 = F2 = 0 features as a contraction algebra. As suggested by
Wemyss, the first natural step to figuring this out is to determine whether for F ∈ Kcyc⟨x, y⟩ with
F0 = F1 = F2 = 0, the number dimAF − dimAab

F has the form
l

∑
j=2

j2nj with l, nj ∈ N (which it must if

AF is a contraction algebra). The complete list of positive integers which fail to have this form is 1,
2, 3, 5, 6, 7, 9, 10, 11, 14, 15, 18, 19, 23 and 27.

Smoktunowitz and the first named author [13] proved that for every F ∈ K
cyc⟨x, y⟩ with

F0 = F1 = F2 = F3 = F4 = 0, AF is infinite dimensional. This results prompted them to raise the
following question.

Question IS. Does there exist F ∈ Kcyc⟨x, y⟩ with F0 = F1 = F2 = F3 = 0 such that AF is finite

dimensional?

We answer this question negatively.

Theorem 1.12. Let n,k ∈ N be such that n ⩾ 2, k ⩾ 3 and (n,k) ≠ (2,3) and let F ∈ Kcyc⟨x1, . . . , xn⟩
be such that F0 = . . . = Fk−1 = 0. Then AF is infinite dimensional. Furthermore, AF has at least cubic

growth if (n,k) = (2,4) or (n,k) = (3,3) with cubic growth being possible in both cases and AF has

exponential growth otherwise.

Throughout the paper we perform linear substitutions. When describing a substitution, we keep
the same letters for both old and new variables. We introduce a substitution by showing by which
linear combination of (new) variables must the (old) variables be replaced. For example, if we write
x → x + y + z, y → z − y and z → 7z, this means that all occurrences of x (in the relations, potential
etc.) are replaced by x + y + z, all occurrences of y are replaced by z − y, while z is swapped for 7z.
A scaling is a linear substitution with a diagonal matrix. That is it swaps each variable with it own
scalar multiple. For example, the substitution x→ 2x, y → −3y and z → iz is a scaling.
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Section 2 is devoted to recalling relevant general information as well as to proving few auxiliary
results of general nature. In Section 3 we prove a number of general results on potential and twisted
potential algebras and provide examples. In particular, we prove Theorem 1.12 in Section 3. In
Sections 4–7 we prove Theorems 1.8, 1.6, 1.9 and 1.7 respectively. Section 8 is devoted to finite
dimensional potential algebras. We make extra comments and discuss some open questions in the
final Section 9.

2 General background

We shall always use the following partial order on power series with real coefficients. Namely, we write

∑ant
n ⩾ ∑ bnt

n if an ⩾ bn for all n ∈ Z+. If V is an n-dimensional vector space over K and R is a
subspace of the n2-dimensional space V 2 = V ⊗ V , then the quotient of the tensor algebra T (V ) by
the ideal I generated by R is called a quadratic algebra and denoted A(V,R). A quadratic algebra
A = A(V,R) is a PBW -algebra if there are bases x1, . . . , xn and g1, . . . , gm in V and R respectively
such that with respect to some compatible with multiplication well-ordering on the monomials in
x1, . . . , xn, g1, . . . , gm is a Gröbner basis of the ideal I of relations of A.

If we pick a basis x1, . . . , xn in V , we get a bilinear form b on the free algebra K⟨x1, . . . , xn⟩ (naturally
identified with the tensor algebra T (V )) defined by b(u, v) = δu,v for every monomials u and v in the
variables x1, . . . , xn. The algebra A! = A(V,R⊥), where R⊥ = {u ∈ V 2 ∶ b(r, u) = 0 for each r ∈ R}, is
known as the dual algebra of A. The algebra A is called Koszul if K as a graded right A-module has
a free resolution ⋅ ⋅ ⋅ →Mm → ⋅ ⋅ ⋅ →M1 → A → K→ 0, where the second last arrow is the augmentation
map and the matrices of the maps Mm →Mm−1 with respect to some free bases consist of homogeneous
elements of degree 1. Recall that there is a specific complex of free right A-modules, called the Koszul
complex, whose exactness is equivalent to the Koszulity of A:

⋯
dk+1
Ð→(A!

k)∗ ⊗A
dk
Ð→(A!

k−1)∗ ⊗A
dk−1
Ð→⋯

d1
Ð→(A!

0)∗ ⊗A = A Ð→ K→ 0, (2.1)

where the tensor products are over K, the second last arrow is the augmentation map and dk are given

by dk(ϕ⊗u) = n

∑
j=1

ϕj ⊗xju, where ϕj ∈ (A!
k−1)∗, ϕj(v) = ϕ(xjv). Although A! and the Koszul complex

seem to depend on the choice of a basis in V , it is not really the case up to the natural equivalence
[16]. Recall that

every PBW-algebra is Koszul;

A is Koszul ⇐⇒ A! is Koszul;
if A is Koszul, then HA(−t)HA!(t) = 1.

Note that if F ∈ P∗n,3, the corresponding twisted potential algebra AF is quadratic. One can easily
verify that the complex (1.2) is always a subcomplex of the Koszul complex for AF . Furthermore, the
two complexes coincide precisely when AF is a proper twisted potential algebra. Thus we have the
following curious fact:

if F ∈ P∗n,3 is proper, then

AF is Koszul ⇐⇒ AF is exact.
(2.2)

2.1 Minimal series and maximal ranks

Recall that a finitely presented algebra is an associative algebra A given by generators x1, . . . , xn and
relations r1, . . . , rm ∈ K⟨x1, . . . , xn⟩. That is, A = K⟨x1, . . . , xn⟩/I, where I, known as the ideal of
relations for A, is the ideal in K⟨x1, . . . , xn⟩ generated by r1, . . . , rm. The Poincaré series of A is

P ∗A(t) = ∞

∑
n=0

akt
k with ak being the dimension of the subspace of A spanned by non-commutative

polynomials in xj of degree up to k. This series encodes the growth of A. A is said to have polynomial
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growth of degree m if m = lim
k→∞

lnak
lnk
<∞ and A is said to have exponential growth if ak ⩾ ck for all k for

some c > 1. However this is not the right series for our purposes. We shall define a different version of
Poincaré series.

For each k ∈ Z+, let J(k) be the ideal in K⟨x1, . . . , xn⟩ generated by all monomials of degree k + 1.
Clearly, A(k) = K⟨x1, . . . , xn⟩/(I + J(k)) is a finite dimensional algebra. Let

dk = dk(A) = dimA(k) for k ∈ Z+ with d−1 = 0.

Obviously, (dk) is an increasing sequence of non-negative integers. We call PA =
∞

∑
j=0

djt
j , the P-series

of A. First, it is easy to see that if rj are homogeneous, the Hilbert series of A is HA =
∞

∑
j=0
(dj −dj−1)tj.

Note that P ∗A ⩾ PA. As a result, A is infinite dimensional if (dk) is unbounded and A has exponential
growth if the sequence (dk) grows exponentially. The reason for our choice is that unlike the classical
Poincaré series P ∗A, the series PA enjoys certain stability under deformations. Note that the same
series, although defined in a different manner, was introduced by Zelmanov [19].

First, we describe what we mean by a variety of finitely presented algebras over a ground field
K. Let m,n,d ∈ N and Pd = K[t1, . . . , td]. For r ∈ Pd⟨x1, . . . , xn⟩ and a ∈ Kd, r(a) ∈ K⟨x1, . . . , xn⟩ is
obtained from r by specifying tj = aj for 1 ⩽ j ⩽ d.

Let rj ∈ Pd⟨x1, . . . , xn⟩ for 1 ⩽ j ⩽m and for a ∈ Kd, let Aa be the K-algebra presented by
generators x1, . . . , xn and relations r1(a), . . . , rm(a). We call {Aa}a∈Kd a variety of algebras.
If, additionally, each rj is homogeneous, {Aa}a∈Kd is called a variety of graded algebras

(2.3)

If W = {Aa}a∈Kd is a variety of algebras, we denote

dk(W ) =min{dk(A) ∶ A ∈W} for k ∈ Z+ and PW =
∞

∑
k=0

dk(W )tk.
If W = {Aa}a∈Kd is a variety of graded algebras, we denote

hk(W ) =min{dimAk ∶ A ∈W} for k ∈ Z+ and HW =
∞

∑
k=0

hk(W )tk.
If K is uncountable, we say that a property P of points in K

d holds for generic a ∈ Kd if the set of
points violating P is contained in the union of countably many affine algebraic varieties in K

d (each
different from the entire K

d).

Lemma 2.1. Assume that W = {Aa}a∈Kd is a variety of finitely presented algebras (as in (2.3)). Then

for every k ∈ Z+, the set Uk = {a ∈ Kd
∶ dk(Aa) = dk(W )} is Zarisski open in K

d. In particular, if K is

uncountable, then PAa = PW for generic a ∈ Kd.

Proof. Let a0 ∈ Uk and Φk be the linear span of monomials of degree ⩽ k in K⟨x1, . . . , xn⟩. Then
the dimension of Φk ∩ (Ia0 + J(k)) is N = dimΦk − dk(W ). Thus we can pick a basis g1, . . . , gN in
Φk ∩ (Ia0 + J(k)). Pick monomials m1, . . . ,mN of degree ⩽ k such that the matrix of mj-coefficeints
of gs is non-degenerate. Then modulo J(k) each gs can be written as ∑t utrjt(a0)vt for some ut, vt ∈
K⟨x1, . . . , xn⟩. For a ∈ Kd consider the matrix M(a) of mj-coefficeints of ∑t utrjt(a)vt. Then M(a0) =
M and the entries of M(a) depend on a polynomially. Since M is non-degenerate, the set U of a
for which M(a) is non-degenerate is Zarisski open in K

d and contains a0. By definition of M(a),
dim (Φk ∩ (Ia + J(k))) ⩾ N for a ∈ U , which in turn means that dk(Aa) ⩽ dk(W ). By minimality of
dk(W ), we have dk(Aa) = dk(W ) for a ∈ U and therefore U ⊆ Uk. Since a0 ∈ U and a0 was an arbitrary
element of Uk to begin with, Uk is Zarisski open.

The following statement, apart from being well-known, follows easily (and can be proven in exactly
the same way) from Lemma 2.1. It was probably Ufnarovskii, who first made this observation [20].
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Lemma 2.2. Assume that W = {Aa}a∈Kd is a variety of graded algebras (as in (2.3)). Then for every

k ∈ Z+, the non-empty set Uk = {a ∈ Kd
∶ dimAa

k = hk(W )} is Zarisski open in K
d. As a consequence,

HAa =HW for generic a ∈ Kd provided K is uncountable.

Lemma 2.3. Assume that W = {Aa}a∈Kd is a variety of graded algebras (as in (2.3)). Let also Λ be

a p × q matrix, whose entries are degree r (the degree is with respect to xj) homogeneous elements of

Pd⟨x1, . . . , xn⟩, where Pd = K[t1, . . . , td]. For every fixed a ∈ Kd, we can interpret Λ as a map from(Aa)q to (Aa)p (treated as free right Aa-modules) acting by multiplication of the matrix Λ by a column

vector from (Aa)q.
Fix a non-negative integer k and let U be a non-empty Zarisski open subset of Kd such that dimAa

k

and dimAa
k+r do not depend on a provided a ∈ U . For a ∈ Kd let ρ(k, a) be the rank of Λ as a linear

map from (Aa
k)q to (Aa

k+r)p and ρmax(k) = max{ρ(k, a) ∶ a ∈ U}. Then the set Wk = {a ∈ U ∶ ρ(k, a) =
ρmax(k)} is Zarisski open in K

d.

Proof. Let a ∈Wk. Then ρ(k, a) = g, where g = ρmax(k). Pick linear bases of monomials e1, . . . , eu and
f1, . . . , fv is Aa

k and Aa
k+r respectively. Obviously, the same sets of monomials serve as linear bases

for As
k and As

k+d respectively for s from a Zarisski open set V ⊆ U . Then Λ as a linear map from(As
k)q to (As

k+r)p for s ∈ V has an uq × vp matrix Ms with respect to the said bases. The entries of
this matrix depend on the parameters polynomially. Since the rank of this matrix for s = a equals g,
there is a square g × g submatrix whose determinant is non-zero when s = a. The same determinant
is non-zero for a Zarisski open subset of V . Thus for s from the last set the rank of Ms is at least g.
By maximality of g, the said rank equals g. Thus a is contained in a Zarisski open set, for all s from
which ρ(k, s) = g. That is, Wk is Zarisski open.

Lemma 2.4. Let W = {Aa}a∈Kd be a variety of graded algebras (as in (2.3)). Assume that K is

uncountable and that we have a complex

0→ (Aa)k1 d1
Ð→(Aa)k2 d2

Ð→ . . .
dm−1
Ð→(Aa)km → K→ 0, (2.4)

of right Aa-modules, where the second last arrow vanishes on all homogeneous elements of degree ⩾ 1
and the maps dj are given by matrices Λj satisfying conditions of Lemma 2.3 composed of homogeneous

elements of degree rj. Assume also that U is a non-empty Zarisski open subset of Kd such that dimAa
j

does not depend on a ∈ U for 0 ⩽ j ⩽ r = r1 + . . . + rm−1. Then the following dichotomy holds∶ either(2.4) is non-exact for all a ∈ U or (2.4) is exact for generic a ∈ Kd.

Proof. Assume that there is a0 ∈ U for which (2.4) is exact. The proof will be complete if we show
that (2.4) is exact for generic a ∈ Kd. By Lemma 2.2, V = {a ∈ Kd

∶ dimAa
j = hj(W ) for 0 ⩽ j ⩽ r} is

non-empty and Zarisski open in K
d. Obviously, U ⊆ V . Denote B = Aa0 . First, we shall verify that

HB = HW . Assume the contrary. Since HW is the minimal Hilbert series for the variety W , there is
s ∈ Z+ such that dimBj = hj(W ) for j < s + r and dimBs+r > hs+r(W ). Consider the graded ’slice’

0→ (Aa
s)k1 d1
Ð→(Aa

s+r1)k2 d2
Ð→ . . .

dm−1
Ð→(Aa

s+r)km → 0

of (2.4). For a = a0 this complex of finite dimensional vector spaces is exact. By Lemma 2.2, HAa =HW

for generic a. Applying Lemma 2.3 to each arrow in the above display (working from left to right),
we then see that for generic a ∈ U , the dimension of dm−1((Aa

s+r−rm−1)km−1) equals
km−1hs+r−rm−1(W ) − km−2hs+r−rm−1−rm−2(W ) + . . . + (−1)mk1hs(W ).

The same is true for a = a0 because of the exactness, which also implies that the same expression equals
kmdimBs+r. Thus dimBs+r ⩽ dimAa

s+r for generic a. By minimality of HW , dimBs+r = hs+r(W ),
which is a contradiction. Thus HB =HW .
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Now we restrict ourselves to a for which HAa = HW (happens for generic a), which we now know
includes a = a0 for which (2.4) is exact. We repeat the argument with applying Lemma 2.3 to the
arrows in degree ’slices’ of (2.4): for generic a satisfying HAa = HW (this makes the dimensions of
the spaces independent on a) the rank of each arrow is maximal. Comparing the ranks with that for
a = a0 and using the exactness for a = a0, we see that this simultaneous maximality of the ranks is
actually equivalent to the exactness of (2.4). Thus (2.4) is exact for generic a.

2.2 The module of syzigies

Assume A is a finitely presented algebra given by generators x1, . . . , xn and relations r1, . . . , rm ∈
K⟨x1, . . . , xn⟩ (not necessarily homogeneous) and I is the ideal of relations of A.

The module of (two-sided) syzigies S(A) for A (1-syzigies to be precise) is defined in the following
way. First, we consider the free K⟨x1, . . . , xn⟩-bimodule M with generators r̂1, . . . , r̂m being just m

symbols. The map r̂j ↦ rj naturally extends to a bimodule morphism from M to K⟨x1, . . . , xn⟩. The
module S(A) is by definition the kernel of this morphism. That is, it consists of sums ∑uj r̂sjvj with
uj, vj ∈ K⟨x1, . . . , xn⟩, which vanish when symbols r̂s are replaces by rs. The members of S(A) are
called syzigies.

Some syzigies are always there. For example, for 1 ⩽ j, k ⩽ m and u ∈ K⟨x1, . . . , xn⟩, r̂jurk − rjur̂k
is a syzigy. We call a syzigie of this form, a trivial syzigy. Note that S(A) depends not just on the
algebra A but on the choice of a presentation of A, so S(A) constitutes an abuse of notation. If we
consider a set M of monomials in x1, . . . , xn, none of which contains another as a submonomial, an
overlap of monomials in M is a monomial m, which starts with m1 ∈M , ends with m2 ∈M and has
degree strictly less than degm1m2. Naturally, the degree of m is called the degree of the overlap.

Remark 2.5. Note that syzigies are implicitly computed, when a reduced Gröbner basis of the ideal
of relations is constructed. Namely, each time an ambiguity (=an overlap of leading monomials of
members of the basis constructed so far) is resolved (=produces no new element of the basis) the
computation leading to the resolution can be written as a syzigy. However, there is more. If we
collect all syzigies obtained while constructing a reduced Gröbner basis (the process could be infinite
resulting in infinitely many syzigies) and throw in the trivial syzigies, we obtain a generating set for
the module S(A). It is nothing new: this statement can be viewed as just another way of stating the
diamond lemma.

2.3 A remark on PBW algebras

Note that if A = A(V,R) is a quadratic algebra, x1, . . . , xn is a fixed basis in V and the monomials in
xj are equipped with an order compatible with multiplication, then we can choose a basis g1, . . . , gm
in R such that the leading monomials gj of gj are pairwise distinct. We then call S = {g1, . . . , gm}
the set of leading monomials of R. Note that although there are multiple bases in R with pairwise
distinct leading monomials of the members, the set S is uniquely determined by R (provided xj and
the order are fixed). The following result is an improved version of a lemma from [11].

Lemma 2.6. Let A = A(V,R) be a quadratic algebra. Then the following statements are equivalent∶

(2.6.1) A is PBW, dimA1 = 3, dimA2 = 6 and dimA3 = 10;
(2.6.2) A is PBW and HA = (1 − t)−3;
(2.6.3) dimA3 = 10 and there is a basis x, y, z in V and a well-ordering on x, y, z monomials compatible

with multiplication, with respect to which the set of leading monomials of R is {xy,xz, yz}.
Proof. The implication (2.6.2)Ô⇒(2.6.1) is obvious. Next, assume that (2.6.1) is satisfied. Then
dimV = dimR = 3 and dimA3 = 10. Let a, b, c be a PBW-basis for A, while f, g, h be corresponding
PBW-generators. Since f , g and h form a Gröbner basis of the ideal of relations of A, it is easy
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to see that dimA3 is 9 plus the number of overlaps of the leading monomials f , g and h of f , g
and h. Since dimA3 = 10, the monomials f , g and h must produce exactly one overlap. Now it is
a straightforward routine check that if at least one of three degree 2 monomials in 3 variables is a
square, these monomials overlap at least twice. The same happens, if the three monomials contain
uv and vu for some distinct u, v ∈ {a, b, c}. Finally, the triples (ab, bc, ca) and (ba, cb, ac) produce 3
overlaps apiece. The only option left, is for (f, g, h) to be {xy,xz, yz}, where (x, y, z) is a permutation
of (a, b, c). This completes the proof of implication (2.6.1)Ô⇒(2.6.3).

Finally, assume that (2.6.3) is satisfied. Then the leading monomials of defining relations have
exactly one overlap. If this overlap produces a non-trivial degree 3 element of the Gröbner basis of
the ideal of relations of A, then dimA3 = 9, which contradicts the assumptions. Hence, the overlap
resolves. That is, a linear basis in R is actually a Gröbner basis of the ideal of relations of A. Then A

is PBW. Furthermore, the leading monomials of the defining relations are the same as for K[x, y, z]
with respect to the left-to-right lexicographical ordering with x > y > z. Hence A and K[x, y, z] have
the same Hilbert series: HA = (1− t)−3. This completes the proof of implication (2.6.3)Ô⇒(2.6.2).

2.4 Some canonical forms

The following lemma is a well-known fact. We provide a proof for the sake of completeness.

Lemma 2.7. Let K be an arbitrary algebraically closed field (characteristics 2 and 3 are allowed here),
M be a 2-dimensional vector space over K and S be a 1-dimensional subspace of M2 =M ⊗M . Then

S satisfies exactly one of the following conditions∶

(I1) there is a basis x, y in M such that S = span{yy};
(I2) there is a basis x, y in M such that S = span{yx};
(I3) there is a basis x, y in M such that S = span{xy − αyx} with α ∈ K∗;
(I4) there is a basis x, y in M such that S = span{xy − yx − yy}.
Furthermore, if S = span{xy −αyx} = span{x′y′ − βy′x′} with αβ ≠ 0 for two different bases x, y and

x′, y′ in M , then either α = β or αβ = 1.

Proof. If M is spanned by a rank one element, then S = span{uv}, where u, v are non-zero elements
of M uniquely determined by S up to non-zero scalar multiples. If u and v are linearly independent,
we set y = u and x = v to see that (I2) is satisfied. If u and v are linearly dependent, we set y = u

and pick an arbitrary x ∈M such that y and x are linearly independent. In this case (I1) is satisfied.
Obviously, (I1) and (I2) can not happen simultaneously. Since S in (I3) and (I4) are spanned by rank
2 elements, neither of them can happen together with either (I1) or (I2).

Now let u, v be an arbitrary basis inM and S be spanned by a rank 2 element f = auu+buv+cvu+dvv
with a, b, c, d ∈ K. A linear substitution u→ u, v → v+su with an appropriate s ∈ K turns a into 0 (one
must use the fact that f has rank 2 and that K is algebraically closed: s is a solution of a quadratic
equation). Thus we can assume that a = 0. Since f has rank 2, it follows that bc ≠ 0. If b + c ≠ 0,
we set x = u + dv

b+c and y = bv to see that (I3) is satisfied with α = c
b
≠ 1. Note also that the only

linear substitutions which send xy − αyx to xy − βyx (up to a scalar multiple) with αβ ∈ K∗, α ≠ 1
are scalings and scalings composed with swapping x and y. In the first case α = β. In the second case
αβ = 1. Finally, if b + c = 0, then we have two options. If, additionally, d = 0, S is spanned by xy − yx

with x = u and y = v, which falls into (I3) with α = 1. Note that any linear substitution keeps the
shape of xy − yx up to a scalar multiple. If d ≠ 0, we set x = u and y = dv

b
to see that S is spanned by

xy − yx − yy yielding (I4). The remarks on linear substitutions, we have thrown on the way complete
the proof.

One of the instruments we use is the following canonical form result on ternary cubics, which goes
all the way back to Weierstrass. Note that if K is not algebraically closed or if the characteristic of K
is 2 or 3, the result does not hold.
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Lemma 2.8. Every homogeneous degree 3 polynomial L ∈ K[x, y, z] by means of a non-degenerate

linear change of variables can be brought to one of the following forms∶

(Z1) L = La,b = a(x3 + y3 + z3) + bxyz with a, b ∈ K; (Z5) L = xz2 + y2z;
(Z2) L = xyz + (y + z)3; (Z6) L = y3 + z3;
(Z3) L = xyz + z3; (Z7) L = yz2;
(Z4) L = xz2 + y3; (Z8) L = z3.

Furthermore, L with different labels in the above list are non-equivalent (=can not be transformed

into one another by a linear substitution).
Proof. It is a straightforward rephrasing of a well-known canonical form result for ternary cubics, see,
for instance, [10, 15]. For the sake of completeness, we outline the idea of the proof. Consider the
projective curve C given by L = 0. If C is regular, L can be transformed into La,b with 27a3+b3 ≠ 0 with
the coefficients of the corresponding substitution written explicitly via coordinates of the inflection
points of C. The rest is just going through various types of irregular C.

This result is not entirely final. For instance, the GL3(K)-orbit of a generic L ∈ K[x, y, z] contains
L1,b for more than one b (12, actually). However, Lemma 2.8 is sufficient for our purposes.

Lemma 2.9. Let G ∈ K[x, y] be a homogeneous degree 4 polynomial. Then by means of a linear

substitution (=natural action of GL2(K)) G can be turned into one of the following forms∶

(C1) G = 0; (C4) G = x2y2;
(C2) G = x4; (C5) G = x4 + x2y2;
(C3) G = x3y; (C6) G = x4 + ax2y2 + y4 with a2 ≠ 4.

Moreover, to which of the above six forms G can be transformed is uniquely determined by G. As for

the last option, the parameter a is not determined by G uniquely. However, the level of non-uniqueness

is clear from the following fact.

For a ∈ K, a2 ≠ 4, the set of S ∈ GL2(K), the substitution by which turns x4 + ax2y2 + y4 into

λ(x4 + bx2y2 + y4) for some λ ∈ K∗ and b ∈ K with b2 ≠ 4 does not depend on a, forms a subgroup H

of GL2(K) and consists of non-zero scalar multiples of the matrices of the form

( 1 0
0 p

) , ( 0 1
p 0

) , ( 1 p

−1 p
) , ( 1 p

1 −p
) , ( qp 1

p q
) , where p, q ∈ K, p4 = 1 and q2 = −1.

Proof. If G = 0 to begin with, it stays this way after any linear sub. Thus we can assume that G ≠ 0.
Since G is homogeneous of degree 4 and K is algebraically closed, G is the product of 4 non-zero
homogeneous degree 1 polynomials G = u1u2u3u4. Analyzing possible linear dependencies of uj , we
see that unless uj are pairwise linearly independent, a linear substitution turns G into a unique form
from (C2–C5). Indeed, all uj being proportional leads to (C2), three being proportional with one
outside their one-dimensional linear span gives (C3), two pairs of proportional uj generating distinct
one-dimensional spaces corresponds to (C4), while only one pair of proportional uj leads to (C5).

This leaves the case of uj being pairwise linearly independent. Note that for a ∈ K satisfying a2 ≠ 4,
this is the case with G = x4 + ax2y2 + y4. Our next step is to see that an arbitrary G with this
property can be turned into a G from (C6) by means of a linear substitution. We achieve this in
three steps. First, making a substitution which turns u1 into x and u2 into y, we make G divisible by
xy: G = xy(px2 + qxy + ry2) with p, q, r ∈ K. Note that pr ≠ 0 (otherwise there is a linear dependent
pair of degree 1 divisors of G). Thus (recall that K is algebraically independent) a scaling turns G

into G = xy(x2 + qxy + y2) with q ∈ K. The substitution x → x + y, y → x − y together with a scaling
transforms G into x4 + ax2y2 + y4. Finally, pairwise linear independence of degree 1 factors translates
into a2 ≠ 4 and we are done with the first part of the lemma.
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It is easy to see that H consisting of non-zero scalar multiples of the matrices in the above display
is a subgroup of GL2(K) and that substitutions provided by matrices from H preserve the class (C6)
up to scalar multiples. Assume now that a ∈ K, a2 ≠ 4 and the linear substitution provided by

S = ( α β

p q
) ∈ GL2(K)

turns x4 + ax2y2 + y4 into λ(x4 + bx2y2 + y4) for some λ ∈ K∗ and b ∈ K with b2 ≠ 4. The proof will be
complete if we show that S ∈ H. The condition that x4 + ax2y2 + y4 is mapped to λ(x4 + bx2y2 + y4)
yields the following system:

α4
+ p4 + aα2p2 = β4

+ q4 + aβ2q2 ≠ 0;
2α3β + aα2pq + aαβp2 + 2p3q = 0;
2αβ3

+ aαβq2 + aβ2pq + 2pq3 = 0.
(2.5)

Indeed, the first equation ensures that after the sub the x4 and y4 coefficients of G are equal and
non-zero, while the remaining two equations are responsible for the absence of x3y and xy3 in G.

If qα = 0, the above system immediately gives α = q = 0 and β4 = p4 ≠ 0 and therefore S ∈ H. If
pβ = 0, we similarly have β = p = 0 and α4 = q4 ≠ 0 ensuring the membership of S in H. Thus it
remains to consider the case pqαβ ≠ 0. Set s = α/β and t = q/p. The last two equations in the above
display now read

2s3 + as2t + as + 2t = 0, 2s + ast2 + at + 2t3 = 0.

Multiplying the first equation by t, the second by s and subtracing (after an obvious rearrangement)
yields (s2 − t2)(st − 1) = 0. S being non-degenerate implies st ≠ 1. Hence s2 = t2. Thus t = s or t = −s.

If t = s, we plug the definitions of s and t back into the first equation of (2.5). This gives s2 = −1. If
t = −s, the same procedure yields s2 = 1. Thus we have the following options for (s, t): (i, i), (−i,−i),(1,−1) and (−1,1). The inclusion S ∈H becomes straightforward.

Remark 2.10. For the group H of Lemma 2.9, the group H0 = H/K∗I is finite. Moreover, it is
isomorphic to S4. Indeed, it is easy to check that H0 has 24 elements and trivial centre. Since there
is only one such group up to an isomorphism, namely S4, H0 ≃ S4.

Lemma 2.11. For a, b ∈ K satisfying 4(a + b)2 ≠ 1, let
Fa,b = x

4
+ ax2y2

⟲
+ bxyxy⟲ + y4 ∈ Kcyc⟨x, y⟩.

Then Fa,b and Fa′,b′ are equivalent (=can be obtained from one another by a linear substitution) if

and only if (a, b) and (a′, b′) belong to the same orbit of the group action generated by two involutions

(a, b) ↦ (−a,−b) and (a, b) ↦ ( 1−2b
1+2a+2b ,

1−2a+2b
2(1+2a+2b)). This group has 6 elements and is isomorphic to

S3.

Proof. Note that the abelianization F ab
a,b ∈ K[x, y] of Fa,b is given by F ab

a,b = x4 + 4(a + b)x2y2 + y4.
According to the assumption 4(a + b)2 ≠ 1, each F ab

a,b is of the form (C6) of Lemma 2.9. Since

every linear substitution transforming Fa,b into Fa′,b′ must also transform F ab
a,b into F ab

a′,b′ , the relevant
substitutions can only be provided by matrices from the group H of Lemma 2.9. Factoring out the
scalar multiples, we are left with the group H/K∗I, which happens to be finite (of order 24) and whose
elements are listed in Lemma 2.9. Note also that the substitutions x → −x, y → y and x → y, y → x

transform each Fa,b to itself. After factoring these out from H/K∗I, we are left with a group of order
6, which is easily seen to be isomorphic to S3 and to act essentially freely on Fa,b. Two involutions
generating S3 correspond to substitutions x → x, y → iy and x → x + iy, y → x − iy, which act by

(a, b) ↦ (−a,−b) and (a, b) ↦ ( 1−2b
1+2a+2b ,

1−2a+2b
2(1+2a+2b)) on the parameters (a, b).
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3 General results on twisted potential algebras

Lemma 3.1. Let F ∈ K⟨x1, . . . , xn⟩ be a twisted potential with F0 = F1 = 0 and let A = AF . Then the

sequence (1.2) is a complex, which is exact at its three rightmost terms.

Proof. Since no constants feature in the defining relations of A, the augmentation map d0 ∶ A → K is
well-defined. By definition of d1, d0 ○ d1 = 0. Using the definition of d2, we see that

d1 ○ d2(u1, . . . , un) = n

∑
k,j=1

xj(δxj
δRxk

F )uk = n

∑
k=1

(δRxk
F )uk = 0 in A,

where the second equality is due to Lemma 1.1. Thus d1 ○ d2 = 0. Finally, by definition of d3,

d2 ○ d3(u)j = n

∑
k=1

(δxj
δRxk

F )xku = δxj
Fu = 0 in A,

where the second equality follows from Lemma 1.1. Thus (1.2) is indeed a complex. Its exactness at
K and at the rightmost A is trivial. It remains to check that (1.2) is exact at the third term from the
right. In order to do this, we have to show that if u = (u1, . . . , un) ∈ An and x1u1 + . . .+xnun = 0, then
u = d2(v) for some v ∈ An. Let I be the ideal of relations of A. Pick a1, . . . , an ∈ K⟨x1, . . . , xn⟩ such
that uj = aj + I for all j. Since x1u1 + . . . + xnun = 0 in A, we have x1a1 + . . . + xnan ∈ I. Hence,

x1a1 + . . . + xnan = δRx1
Fs1 + . . . + δ

R
xn
Fsn + x1p1 + . . . + xnpn, in K⟨x1, . . . , xn⟩, where pj ∈ I

and sj ∈ K⟨x1, . . . , xn⟩. By Lemma 1.1, δRxj
F =

n

∑
k=1

xkδxk
δRxj

F . Plugging this into the above display, we

get
n

∑
k=1

xk(ak − pk − n

∑
j=1

δxk
δRxj

Fsj) = 0 in K⟨x1, . . . , xn⟩.
Hence

ak − pk −
n

∑
j=1

δxk
δRxj

Fsj = 0 in K⟨x1, . . . , xn⟩ for 1 ⩽ k ⩽ n.
Factoring out I, we obtain u = d2(v) with vj = sj + I ∈ A.

3.1 Minimal series of graded twisted potential algebras

Recall that a twisted potential algebra AF is called exact if the corresponding sequence (1.2) is an
exact complex. For an algebra A generated by x1, . . . , xn, we say that u ∈ A is a right annihilator if
xju = 0 for 1 ⩽ j ⩽ n. A right annihilator u is non-trivial if u ≠ 0.

Lemma 3.2. Let F ∈ P∗n,k with n ⩾ 2, k ⩾ 3 and let A = AF . Then the following statements are

equivalent∶

(1) A is an exact twisted potential algebra;

(2) A has no non-trivial right annihilators and HA = (1 − nt + ntk−1 − tk)−1.
Moreover, if A is exact, then A is proper. Finally,

if k = 3, then { A is exact Ô⇒ A is Koszul,

A proper and Koszul Ô⇒ A is exact.
(3.1)
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Proof. Assume that A is exact. Denote aj = dimAj and set aj = 0 for j = −1. Since both defining
relations of A are of degree k−1, aj = nj for 0 ⩽ j < k−1, exactness of (1.2) yields the recurrent equality
am+k − nam+k−1 + nam+1 − am = 0 for m ⩾ −1. Together with the initial data aj = nj for 0 ⩽ j < k − 1
and a−1 = 0, this determines an for n ⩾ 0 uniquely, yielding HA = (1 − nt + ntk−1 − tk)−1. Since (1.2) is
exact, d3 is injective and therefore A has no non-trivial right annihilators.

Now assume that HA = (1−nt+ntk−1− tk)−1 and that A has no non-trivial right annihilators. Then
the map d3 in (1.2) is injective and therefore the complex is exact at the leftmost A. By Lemma 3.1,
the only place, where the exactness may fail is the leftmost An. Considering the graded slices of the
complex and using the exactness of the complex everywhere after the left An, we can compute the
dimension of the intersection of the kernel of d2 with An

m+1, which is am+k − nam+k−1 + nam+1. On
the other hand, dimd3(Am) = am. Since am are the Taylor coefficients of (1 − nt + ntk−1 − tk)−1, they
satisfy am+k −nam+k−1 +nam+1 − am = 0, which proves that the above image and kernel have the same
dimension and therefore coincide. Thus the exactness extends to the missing term. The fact that A
is proper when exact now follows from Lemma 1.4 (just look at dimAk). The Koszulity statement is
a consequence of (2.2).

Lemma 3.3. Let n ⩾ 2, k ⩾ 3, d ∈ N, Pd = K[t1, . . . , td] and F ∈ Pd⟨x1, . . . , xn⟩ be homogeneous of degree

k and such that for every a ∈ Kd, specification tj = aj for 1 ⩽ j ⩽ d makes F into a twisted potential.

We denote by Aa the corresponding twisted potential algebra. Assume also that K is uncountable and

that there is a0 ∈ Kd such that Aa0 is an exact twisted potential algebra. Then Aa is exact for generic

a ∈ Kd and the variety W = {Aa
∶ a ∈ Kd} of graded algebras satisfies HW = (1 − nt + ntk−1 − tk)−1.

Proof. Applying Lemma 2.4 to the sequence (1.2), we see that Aa is exact for generic a. By Lemma 3.2,
HAa = (1 − nt + ntk−1 − tk)−1 for generic a. By Lemma 2.2, HW = (1 − nt + ntk−1 − tk)−1.
3.2 Examples of exact potential algebras

We start with an observation, which saves us the trouble of doing some computations.

Lemma 3.4. Let F ∈ P∗n,k with n ⩾ 2 and k ⩾ 3 and assume that monomials in xj are equipped with

a well-ordering compatible with multiplication. Then the leading monomials of the defining relations

rj = δxj
F of A = AF exhibit at least one overlap of degree k. Furthermore, if they have exactly one

overlap, then this overlap has degree k and it resolves. The latter means that the defining relations

themselves form a reduced Gröbner basis in the ideal of relations of A.

Proof. The equation (1.4) provides a non-trivial linear dependence of xjrm and rmxj for 1 ⩽ j,m ⩽ n.
Since the degree of each rm is k−1 > 1, this dependence produces a non-trivial syzigy (a syzigy outside
the submodule generated by trivial ones). By Remark 2.5, there must be at least one overlap of degree
k, which resolves. Since the defining relations have degree k−1 and all other members of the Gröbner
basis must have higher degrees, there should be at least one degree k overlap of the leading monomials
of the defining relations, which resolves. The result follows.

Example 3.5. Let n and k be integers such that k ⩾ n ⩾ 2, k ⩾ 3 and (n,k) ≠ (2,3). Consider the

potential F ∈ Pn,k given by

F = ∑
σ∈Sn−1

xk−n+1n xσ(1) . . . x
⟲

σ(n−1)
,

where the sum is taken over all bijections from the set {1, . . . , n−1} to itself. Then the potential algebra

A = AF is exact. Furthermore, x1u ≠ 0 for every non-zero u ∈ A.

Proof. We order the generators by xn > xn−1 > . . . > x1 and equip monomials with the left-to-right
degree-lexicographical ordering. The leading monomials of the defining relations of A are easily seen
to be mn = xk−nn xn−1 . . . x1, and mj = xk−n+1n xn−1 . . . xj+1xj−1 . . . x1 with 1 ⩽ j ⩽ n − 1 (after xk−n+1n we
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have all other xk in descending order with xj missing). There is just one overlap of these monomials
xk−n+1n xn−1 . . . x1 = xnmn = m1x1. By Lemma 3.4, it happily resolves and the defining relations
themselves form a (finite) reduced Gröbner basis in the ideal of relations of A. This allows to confirm
that HA = (1−nt+ntk−1−tk)−1. Since no leading monomial of the elements of the Gröbner basis starts
with x1, the map u↦ x1u from A to A is injective. Hence A has no non-trivial right annihilators and
therefore A is exact according to Lemma 3.2.

Example 3.6. Let n and k be integers such that n > k ⩾ 3. Order the generators by xn > xn−1 > . . . > x1
and consider the left-to-right degree-lexicographical ordering on the monomials. Consider the set M of

degree k−2 monomials in x1, . . . , xn−1 in which each letter xj features at most once. Let m1, . . . ,mn−1

be the top n − 1 monomials in M enumerated in such a way that mn−k+1 = xn−1 . . . xn−k+2 (the biggest

one). Now define the potential F ∈ Pn,k by

F = xnxn−1 . . . x
⟲

n−k+1 + ∑
1⩽j⩽n−1

j≠n−k+1

xjxnm
⟲

j .

Then the potential algebra A = AF is exact. Furthermore, x1u ≠ 0 for every non-zero u ∈ A.

Proof. We use the same order as above. The leading monomials of the defining relations of A are
easily seen to be xn−1 . . . xn−k+1 and xnmj for 1 ⩽ j ⩽ n − 1. Again, there is just one overlap of
these monomials xnxn−1 . . . xn−k+1 = xn(xn−1 . . . xn−k+1) = (xnxn−1 . . . xn−k+2)xn−k+1, which happens to
resolve according to Lemma 3.4. The rest of the proof is the same as for the previous example.

Combining Examples 3.5 and 3.6 with Lemma 3.3, we get the following result.

Lemma 3.7. Let n ⩾ 2, k ⩾ 3 and (n,k) ≠ (2,3). Then HW = (1 − nt + ntk−1 − tk)−1 for the variety

W = {AF ∶ F ∈ Pn,k}. Furthermore, if K is uncountable, then for a generic F ∈ Pn,k, A = AF is an

exact potential algebra and satisfies HA = (1 − nt + ntk−1 − tk)−1.
3.3 Algebras AF with F ∈ P∗2,3

Note that the case (n,k) = (2,3) is indeed an odd one out. It turns out that in this case there are
no exact twisted potential algebras at all and the formula for the minimal series fails to follow the
pattern as well. For aesthetic reasons, we use x and y instead of x1 and x2.

Proposition 3.8. There are just four pairwise non-isomorphic algebras in the variety W = {AF ∶ F ∈

P2,3}. These are the algebras corresponding to the potentials F = 0, F = x3, F = xy2⟲ and F = x3+y3.
Their Hilbert series are (1 − 2t)−1, 1+t

1−t−t2
and 1+t

1−t for the last two algebras. All algebras in W are

PBW, Koszul, infinite dimensional and non-exact.

Proof. An F ∈ P2,3 has the form F = ax3 + bxy2
⟲
+ cx2y⟲ + dy3 with a, b, c, d ∈ K. Then the

abelianization of F is F ab = ax3 + 3bxy2 + 3cx2y + dy3 ∈ K[x, y]. Since K is not of characteristic 3,
F recovers uniquely from its abelianization. Now since a degree 3 cubic form on two variables is a
product of three linear forms (provided K is algebraically closed), we see that by a linear substitution
F ab can be turned into one of the following forms x3, xy2 or x3 + y3 unless it was zero to begin with.
This corresponds to F turning into one of the four potentials listed in the statement of the lemma by
means of a linear substitution. If F = 0, AF is the free algebra on two generators and HA = (1− 2t)−1.
If F = x3, AF is defined by one relation x2, which forms a one-element Gröbner basis. In this case

HAF
= 1+t

1−t−t2
. If F = xy2⟲ or F = x3 + y3, the defining relations of AF are xy + yx and y2 or x2 and

y2 respectively. Again, they form a Gröbner basis, yielding HAF
= 1+t

1−t . Since the last two algebras
are easily seen to be non-isomorphic and the Hilbert series of the first three are pairwise distinct, the
four algebras are pairwise non-isomorphic. As all four algebras have quadratic Gröbner basis, they
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are PBW and therefore Koszul. Obviously, they are infinite dimensional. If any of these algebras were
exact, Lemma 3.2 would imply that its Hilbert series is (1 − 2t + 2t2 − t3)−1 = (1 − t)−1(1 − t + t2)−1,
which does not match any of the above series. Thus they are all non-exact.

We extend the above proposition to include twisted potential algebras.

Proposition 3.9. Any non-potential twisted potential algebra A on two generators given by a ho-

mogeneous degree 3 twisted potential is isomorphic to either AG or AGα with α ∈ K ∖ {0,1}, where

G = x2y − xyx + yx2 + y3 and Gα = x2y + αxyx + α2yx2. AG is non-isomorphic to any of AGα and

AGα is non-isomorphic to AGβ
if α ≠ β. Furthermore all these algebras are non-degenerate, infinite

dimensional, non-exact, PBW, Koszul and have the Hilbert series 1+t
1−t .

Proof. We know that A = AF , where F is the corresponding twisted potential. If δxF and δyF are
linearly dependent, one easily sees that either F = 0 or F is the cube of a degree one homogeneous
element. In either case A is potential, which contradicts the assumptions. Thus δxF and δyF are
linearly independent and therefore F is non-degenerate. Let M ∈ GL2(K) be the matrix providing
the twist. By Remark 1.3, we can assume that M is in Jordan normal form. Note that M is not
the identity matrix (otherwise A is potential). Let α and β be the eigenvalues of M and T (M) be
the set of all homogeneous degree 3 non-degenerate twisted potentials on two generators, whose twist
is provided by M . One easily sees that this set is empty unless 1 ∈ {α2β,αβ2}. Without loss of
generality, we can assume that α2β = 1. If M is one Jordan block, we must have α = β and α3 = 1. If
in this case α = 1, we again easily see that T (M) is empty. Thus it remains to consider the following
options for M :

M = Nα = ( α 1
0 α

) with α3 = 1 ≠ α and M =Mα = ( α 0
0 α−2

) with α ≠ 1.

In the case M = Mα, T (M) contains x2y + αxyx + α2yx2 and consists only of its scalar multiples
unless α3 = 1 or α = −1. In the case α3 = 1 ≠ α, T (M) sits in the two-dimensional space spanned by
x2y + αxyx + α2yx2 and xy2 + α2yxy + αy2x. If α = −1, T (M) is contained in the two-dimensional
space spanned by x2y−xyx+yx2 and y3. In the case M = Nα with α3 = 1 ≠ α, T (M) consists of scalar
multiples of x3

1−α + yx
2
+αx2y +α2xyx. All this is obtained by translating (1.3) into a system of linear

equations on coefficients of F and solving it.
When F = x2y + αxyx + α2yx2 = Gα, the defining relations of A = AF are xx and xy + αyx with

α ∈ K∗, α ≠ 1. It is easy to see that different α correspond to non-isomorphic algebras. Indeed, a
linear substitution providing an isomorphism must map x to its scalar multiple (xx is the only square
among quadratic relations) and taking this into account, it is easy to see that y also must be mapped
to its own scalar multiple. Such a substitution preserves the space of defining relations and therefore
α is an isomorphism invariant. It is easy to see that the defining relations form a Gröbner basis in the
ideal of relations. Hence A is PBW and Koszul. It is easy to see that HA = 1+t

1−t .
If F = s(x2y + αxyx + α2yx2) + t(xy2 + α2yxy + αy2x) with s, t ∈ K, (s, t) ≠ (0,0) and α3 = 1 ≠ α,

we have options. If st = 0, then by means of a scaling combined with the swap of x and y in the case
s = 0, we can transform F into Gα. If st ≠ 0, a scaling reduces considerations to the case t = s = 1.
Then F = x2y + αxyx + α2yx2 + xy2 + α2yxy + αy2x. The substitution x → x + αy, y → y, provides an
isomorphism of A = AF and AGα . It remains to consider F = s(x2y − xyx + yx2) + ty3 with s, t ∈ K. If
s = 0, A is potential. Thus s ≠ 0. If t = 0 and s ≠ 0, then up to a scalar multiple, F = G−1. Thus we can
assume that st ≠ 0. By a scaling, we can turn both s and t into 1, which transforms F into G. The
defining relations of A = AF are now xy−yx and x2+y2. This time the space of quadratic relations fails
to contain a square of a degree one element and therefore the corresponding algebra is not isomorphic
to any of AGα . Again, the defining relations form a Gröbner basis in the ideal of relations. Hence A

is PBW and Koszul and HA = 1+t
1−t . This series fails to coincide with (1 − 2t + 2t2 − t3)−1 and therefore

none of these algebras is exact according to Lemma 3.2.
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Proposition 3.9 and Remark 1.2 provide a complete description of degenerate twisted potential
non-potential algebras on three generators with homogeneous degree 3 twisted potentials. Indeed,
the latter are free products of algebras from Proposition 3.9 with the algebra of polynomials on one
variable. This observation is recorded as follows.

Lemma 3.10. A is a non-potential twisted potential algebra on three generators given by a homoge-

neous degree 3 degenerate twisted potential if and only if A is isomorphic to an algebra from (T22) or
(T23) of Theorem 1.7. The algebras with different labels are non-isomorphic and the information in

the table from Theorem 1.7 concerning (T22) and (T23) holds true.

3.4 Lower estimate for PA, A being a potential algebra

The methods we develop and apply in this section work for many varieties of twisted potential algebras.
We restrict ourselves to potential algebras for the sake of clarity. The main objective of this section
is to prove Theorem 1.12. For n,k,m ∈ N such that n ⩾ 2 and m ⩾ k ⩾ 3, denote

P
(m)
n,k
= {F ∈ Kcyc⟨x1, . . . , xn⟩ ∶ Fj = 0 for j < k and for j >m}.

Clearly, P
(m)
n,k

is a vector space and P
(k)
n,k
= Pn,k. Recall that for j ∈ Z+ and F ∈ P(m)

n,k
, A

(j)
F is the

quotient of AF by the ideal generated by the monomials of degree j + 1.

Lemma 3.11. Let n,k ∈ N, n ⩾ 2, m ⩾ k ⩾ 3 and (n,k) ≠ (2,3) and F ∈ P(m)
n,k

. Assume also

that x1a ≠ 0 in AFk
for every non-zero a ∈ AFk

. Then for each j ∈ Z+, x1b ≠ 0 in A
(j+1)
F

for every

b ∈ K⟨x1, . . . , xn⟩ such that b ≠ 0 in A
(j)
F

.

Proof. Assume the contrary. Then there exist j ∈ Z+ and a ∈ K⟨x1, . . . , xn⟩ such that a ≠ 0 in A
(j)
F and

x1a = 0 in A
(j+1)
F

. The latter means that

x1a = ∑
j∈N

ujrs(j)vj (mod J(j+1)),
where rj = δxj

F , N is a finite set, s is a map from N to {1, . . . n}, uj, vj are non-zero homogeneous
elements of K⟨x1, . . . , xn⟩ such that the degree of each ujvj does not exceed j − k + 2 and the equality
f = g (mod J) means f − g ∈ J . Let m be the smallest degree of ujvj and N ′ = {j ∈ N ∶ degujvj =m}.
Then the smallest degree part of the above display reads

x1am+k−2 = ∑
j∈N ′

ujρs(j)vj in K⟨x1, . . . , xn⟩,
where ρj = δxj

Fk. Note that automatically aq = 0 for q <m + k − 2. The condition imposed upon AFk

means that the ideal K generated by ρ1, . . . , ρn satisfies x1b ∈ K Ô⇒ b ∈ K. Hence, by the above
display,

am+k−2 = ∑
p∈M

fpρt(p)gp,

where M is a finite set t is a map from M to {1, . . . n}, fp, gp are non-zero homogeneous elements of
K⟨x1, . . . , xn⟩ such that the degree of each fpgp is m − 1. Now we replace a by

a′ = a − ∑
p∈M

fprt(p)gp.

Note that a = a′ in AF and therefore a = a′ in A
(j)
F

and x1a = x1a′ in A
(j+1)
F

. So a′ satisfies the same
properties as a with the only essential difference being that a′m+k−2 = 0. Now we can repeat the process
chipping off the homogeneous degree-components of a from bottom up one by one until at the final

step we arrive to a contradiction with a ≠ 0 in A
(j)
F

.
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Lemma 3.12. Let K be uncountable, n,k ∈ N, n ⩾ 2, k ⩾ 3 and (n,k) ≠ (2,3). Then for a generic

F ∈ Pn,k, x1a ≠ 0 in AF for every non-zero a ∈ AF .

Proof. Let F0 be the potential provided by the appropriate (depending on whether k ⩾ n or k < n)
Example 3.5 or Example 3.6. Then x1a ≠ 0 in AF0

for every non-zero a ∈ AF0
and HAF0

= (1 − nt +
ntk−1 − tk)−1. Lemma 3.7 guarantees that HAF

= (1 −nt+ntk−1 − tk)−1 for generic F ∈ Pn,k. Applying
Lemma 2.3 to the map a ↦ x1a from AF to AF , we now see that dimx1(AF )j ⩾ dimx1(AF0

)j for all
j for generic F ∈ Pn,k. Since dimx1(AF0

)j = dim (AF0
)j = dim (AF )j for generic F , the map a ↦ x1a

from AF to itself is injective for generic F .

Lemma 3.13. Let n,k ∈ N, n ⩾ 2, m ⩾ k ⩾ 3 and (n,k) ≠ (2,3), F ∈ P(m)
n,k

and A = AF . Then

PA ⩾ (1 − t)−1(1 − nt + ntk−1 − tk)−1.
Proof. First, observe that exchanging the ground field K for a field extension does not affect the series
PA. Thus we can without loss of generality assume that K is uncountable. For j ∈ Z+, let bj be
Taylor coefficients of the rational function Q(t) = (1− t)−1(1−nt+ntk−1 − tk)−1 (that is, Q(t) = ∑ bjt

j)

and aj = min{dimA
(j)
G
∶ G ∈ P(m)

n,k
}. The proof will be complete if we show that aj = bj for all

j ∈ Z+. Denote P = ∑ajt
j. First, note that Examples 3.5 and 3.6, provide G ∈ Pn,k ⊆ P

(m)
n,k

for which

HG = (1 − nt + ntk−1 − tk)−1. It immediately follows that PG = Q. By definition of P (minimality of
aj), we then have P ⩽ Q, that is, aj ⩽ bj for all j ∈ Z+.

By Lemmas 2.1 and 3.12, for a generic G ∈ P(m)
n,k

, we have that PAG
= P and x1a ≠ 0 in AGk

for

every non-zero a ∈ AGk
. In particular, we can pick a single G ∈ P(m)

n,k
such that for B = AG, PB = P

and x1a ≠ 0 in AGk
for every non-zero a ∈ AGk

. According to Lemma 3.11, we then have that for each
j ∈ Z+, x1b ≠ 0 in B(j+1) for every b ∈ K⟨x1, . . . , xn⟩ such that b ≠ 0 in B(j). This property allows us
to pick inductively (starting with M0 = {1}) sets Mj of monomials of degree j such that Mj+1 ⊇ x1Mj

and Nj =M0 ∪ . . . ∪Mj is a linear basis in B(j) for each j ∈ Z+. For every j, let B+j be the linear span

of Nj and B++j be the linear span of Nj ∖ x1Nj−1 in K⟨x1, . . . , xn⟩. Clearly PB = ∑(dimB+j )tj and

therefore aj = dimB+j for all j ∈ Z+. Let also π(j) be the natural projection of K⟨x1, . . . , xn⟩ onto the

linear span of monomials of length ⩽ j along J(j). As usual, let V be the linear span of x1, . . . , xn,
rj = δxj

G, R be the linear span of r1, . . . , rn and I be the ideal generated by r1, . . . , rn (=the ideal
of relations of B). For the sake of brevity denote Φ = K⟨x1, . . . , xn⟩. Obviously, I = V I +RΦ. Then
π(j+1)(I) = V π(j)(I) + π(j+1)(RΦ) for every j ∈ Z+. Using the definition of B+j and the fact that each
rj starts at degree ⩾ k − 1, we obtain

π(j+1)(I) = V π(j)(I) + π(j+1)(RB+j+2−k).
Since by Lemma 1.1, ∑[xj , rj] = 0 in Φ, we can get rid of r1x1:

V π(j)(I) + π(j+1)(RB+j+2−k) = V π(j)(I) + π(j+1)(R′B+j+2−k + r1B++j+2−k)
where R′ is the linear span of r2, . . . , rn. Thus

π(j+1)(I) = V π(j)(I) + π(j+1)(R′B+j+2−k + r1B++j+2−k).
Hence

dimπ(j+1)(I) ⩽ dimV π(j)(I) + dimR′B+j+2−k + dim r1B
++
j+2−k

= ndimπ(j)(I) + (n − 1)dimB+j+2−k + dimB++j+2−k.

Plugging the equalities dimB+j = aj , dimB++j = aj − aj−1 (assume as = 0 for s < 0) and dimπ(j)(I) =
1 + n + . . . + nj

− aj into the inequality in the above display, we get

1 + . . . + nj+1
− aj+1 ⩽ n + . . . + nj+1

− naj + naj+2−k − aj+1−k.
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Hence aj+1 ⩾ naj −naj+2−k + aj+1−k − 1 for j ∈ Z+. On the other hand, it is easy to see that the Taylor
coefficients bj of Q satisfy bj+1 = nbj − nbj+2−k + bj+1−k − 1 for j ⩾ k − 1. It is also elementary to verify
that aj = bj for 0 ⩽ j ⩽ k − 1. Now for cj = bj − aj , we have cj = 0 for 0 ⩽ j ⩽ k − 1, cj ⩾ 0 for j ⩾ k and
cj+1 ⩽ ncj − ncj+2−k + cj+1−k for j ⩾ k − 1. The only sequence satisfying these conditions is easily seen
to be the zero sequence. Hence aj = bj for all j ∈ Z+, which completes the proof.

Now Theorem 1.12 is a direct consequence of Lemma 3.13. Indeed, every potential F on n variables

starting in degree ⩾ k belongs to P
(m)
n,k

for m large enough and Lemma 3.11 kicks in providing at least

cubic growth of AF in the case (n,k) = (3,3) or (n,k) = (2,4) and exponential growth otherwise. We
end this section with another observation concerning the growth of potential algebras. We say that
F ∈ Kcyc⟨x1, . . . , xn⟩ is S-trivial if the module of syzigies of AF presented by generators x1, . . . , xn and
relations r1, . . . , rn with rj = δxj

F is generated by trivial syzigies and the syzigy ∑[xj , r̂j] provided by
Lemma 1.1.

Lemma 3.14. Let K, n,k,m ∈ N be such that n ⩾ 2, m ⩾ k ⩾ 3, (n,m) ≠ (2,3), F ∈ P(m)
n,k

and A = AF .

Assume also that HAFm
= (1 − nt + ntm−1 − tm)−1. Then P ∗A = (1 − t)−1(1 − nt + ntm−1 − tm)−1.

Proof. First, we observe that if G ∈ Pn,m and HAG
= (1 − nt + ntm−1 − tm)−1, then G is S-trivial.

Indeed, otherwise an ’extra’ syzigy will ’drop’ the dimension of the corresponding component of the
ideal of relations thus increasing the dimension of the component of the algebra compared to the
minimal Hilbert series (1 − nt + ntm−1 − tm)−1. Now we equip monomials in x1, . . . , xn with a well-
ordering compatible with multiplication such that monomials of greater degree are always greater (for
instance, we can use a degree-lexicographical ordering). We proceed to compare the corresponding
reduced Gröbner basis in the ideals of relations for AF and AFm . Since AFm is S-trivial (by the
above observation) and ∑[xj , r̂j] is a syzigy for AF anyway, it is easy to see that the elements of the
reduced Gröbner basis in the ideal of relations for AFm are exactly the highest degree components
of the elements of the reduced Gröbner basis in the ideal of relations for AF . In particular, the
leading monomials are the same and the exact same overlaps resolve. Hence normal words for AF

and AFm are the same and therefore P ∗A = P ∗AFm
. Since HAFm

= (1 − nt + ntm−1 − tm)−1, we have

P ∗AFm
= (1 − t)−1(1 − nt + ntm−1 − tm)−1 and the result follows.

4 Potential algebras AF for F ∈ P2,4

Throughout this section we equip the monomials in x, y with the left-to-right degree-lexicographical
ordering assuming x > y. The following statement is elementary.

Lemma 4.1. The kernel of the canonical homomorphism from K⟨x, y⟩ onto K[x, y] (=abelianization)
intersects P2,4 by the one-dimensional space spanned by x2y2

⟲
− xyxy⟲.

We shall use the following observation on a number of occasions.

Lemma 4.2. Let F ∈ P∗2,4 be such that x2y2 and yx2y are in F with non-zero coefficients, while the

monomials x4, x3y, x2yx and yx3 do not occur in F . Then A = AF is exact and HA = (1+t)−1(1−t)−3.
Similarly, if F ∈ P∗2,4 contains y2x2 and xy2x with non-zero coefficients, while y4, y3x, y2xy and xy3

do not feature in F , then A = AF is exact and HA = (1 + t)−1(1 − t)−3.
Proof. The two statements are clearly equivalent (just swap x and y). Thus we may assume that
x2y2 and yx2y are in F with non-zero coefficients and F , while the monomials x4, x3y, x2yx and
yx3 do not occur in F . Then xy2 is the leading monomial of δxF , while x2y is the leading monomial
of δyF . Since these monomials exhibit just one overlap x2y2 = (x2y)y = x(xy2), Lemma 3.4 implies
that δxF and δyF form a Gröbner basis in the ideal of relations of A. It immediately follows that
HA = (1+ t)−1(1− t)−3 (the corresponding normal words are yn(xy)mxk with n,m,k ∈ Z+) and that A
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has no non-trivial right annihilators (there is no leading monomials of a Gröbner basis starting with
y and therefore the map u ↦ yu from A to A is injective). By Lemma 3.2, A is exact.

Lemma 4.3. Let F ∈ P2,4. Then by means of a linear substitution F can be turned into one of the

following forms∶

(H1) F = 0; (H2) F = x4; (H6) F = x4 + y4;

(H3) F = x4 + 1
2
xyxy⟲; (H7) F = x3y⟲ + x2y2⟲ − xyxy⟲;

(H4) F = 1
2
xyxy⟲; (H8) Fa = x4 + x2y2

⟲
+

a
2
xyxy⟲ with a ∈ K;

(H5) F = x3y⟲; (H9) Fa = x2y2
⟲
+

a
2
xyxy⟲ with a ∈ K;

(H10) Fa,b = x4 + ax2y2
⟲
+ bxyxy⟲+ y4 with a, b ∈ K, 4(a + b)2 ≠ 1, (a, b) ∉ {(0,0), (1, 1

2
), (−1,−1

2
)}.

Moreover, to which of the above 10 forms F can be turned into is uniquely determined by F .

Similarly, the parameter a in (H8) and (H9) is uniquely determined by F . As for the last option,

Fa,b and Fa′,b′ can be obtained from one another by a linear substitution if and only if they belong

to the same orbit of the group action generated by two involutions (a, b) ↦ (−a,−b) and (a, b) ↦
( 1−2b
1+2a+2b ,

1−2a+2b
2(1+2a+2b)). This group has 6 elements and is isomorphic to S3.

Proof. Let F ∈ P2,4. First, we show that F can be turned into exactly one of (H1–H10) by a linear
sub. Let G ∈ K[x, y] be the abelianization of F . By Lemma 2.9 by means of a linear substitution G

can be turned into exactly one of the forms (C1–C6). Thus we can assume from the start that G is in
one of the forms (C1–C6).

Case 1: G = 0. By Lemma 4.1, F = s(x2y2⟲ − xyxy⟲) with s ∈ K. If s = 0, F is given by (H1). If
s ≠ 0, a scaling brings F to the form (H9) with a = −2.

Case 2: G = x4. By Lemma 4.1, F = x4 + s(x2y2⟲ − xyxy⟲) with s ∈ K. If s = 0, F is given by
(H2). If s ≠ 0, a scaling brings F to the form (H8) with a = −2.

Case 3: G = x3y. By Lemma 4.1, F = 1
4
x3y⟲ + s(x2y2⟲ − xyxy⟲) with s ∈ K. If s = 0, F acquires

the form (H5) after scaling. If s ≠ 0, a scaling brings F to the form (H7).

Case 4: G = x2y2. By Lemma 4.1, F = 1
4
x2y2

⟲
+ s(x2y2⟲ − xyxy⟲) with s ∈ K. If 1 + 4s = 0, F

acquires the form (H4) after scaling. Otherwise, a scaling brings F to the form (H9) with a ≠ −2.

Case 5: G = x4+x2y2. By Lemma 4.1, F = x4+ 1
4
x2y2

⟲
+s(x2y2⟲−xyxy⟲) with s ∈ K. If 4s+1 = 0,

F acquires the form (H3) after scaling. Otherwise, a scaling brings F to the form (H8) with a ≠ −2.

Case 6: G = x4 + cx2y2 + y4 with c2 ≠ 4. By Lemma 4.1, F = x4 + c
4
x2y2

⟲
+ y4 + s(x2y2⟲ − xyxy⟲)

with s ∈ K. That is, F = Fa,b = x4 + ax2y2
⟲
+ bxyxy⟲+ y4 with a = s + c

4
and b = −s. The condition

c2 ≠ 4 translates into 4(a + b)2 ≠ 1. By Lemma 2.11 F0,0, F1,1/2 and F−1,−1/2 are all equivalent and

are non-equivalent to any other Fa,b. Thus if (a, b) ∈ {(0,0), (1, 1
2
), (−1,−1

2
)}, F is equivalent to the

potential from (H5). Otherwise, F is in (H10).
The fact that F with different labels from the list (H1–H10) are non-equivalent (can not be ob-

tained from one another by a linear sub) follows from the above observations, the non-equivalence of
polynomials with the different labels from the list (C1–C6) as well as the trivial observation that a
symmetric (not just cyclicly) element of P2,4 can not be equivalent to a non-symmetric one. It remains
to prove the statements about equivalence within each of (H8), (H9) and (H10). The latter follows
directly from Lemma 2.11. It remains to deal with (H7) and (H8). We may remove the exceptional
cases a = −2 from consideration. One easily sees that the only subs that transform an Fa with a ≠ −2
from (H7) (respectively, (H8)) to another Fa′ from (H7) (respectively, (H8)) up to scalar multiples
are scalings combined with a possible swap of x and y in the (H8) case. Since none of the latter
has any effect on the parameter, we have a = a′. It follows that distinct Fa from (H7) or (H8) are
non-equivalent.
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Lemma 4.4. Let F ∈ P2,4 be a potential from (Hj) of Lemma 4.3 for 1 ⩽ j ⩽ 6. Then the potential

algebra A = AF is non-exact. Its Hilbert series is HA = 1+t+t2

1−t−t2
for j ∈ {4,5,6}, HA =

(1+t2)(1−t5)
(1−t)(1−t−t4−t5)

for

j = 3, HA = 1+t+t2

1−t−t2−t3
for j = 2 and HA = 1

1−2t for j = 1. If j = 3, A is proper, while A is non-proper in

all other cases.

Proof. It is straightforward to verify that the defining relations themselves form a Gröbner basis in
the ideal of relations for all F under consideration except for F from (H3). In the case j = 3, we swap
x and y to begin with. After this the reduced Gröbner basis in the ideal of relations comprises yxy,
xyx + y3 and y4. In each case, knowing a finite Gröbner basis (more specifically, knowing the leading
monomials of its members), it is a routine calculation to find HA in the form of a rational function
to confirm the required formulae. Since none of the resulting series coincides with (1 + t)−1(1 − t)−3,
Lemma 4.5 implies that A is non-exact. By Lemma 1.4, A is proper if and only if dimA4 = 9. Knowing
the Hilbert series, we see that this happens precisely when A = AF with F given by (H3).

The following lemma is a special case of Lemmas 3.2 and 3.7.

Lemma 4.5. Let F ∈ P2,4 and A = AF . Then HA ⩾ (1 + t)−1(1 − t)−3. Furthermore, A is exact if and

only if HA = (1 + t)−1(1 − t)−3 and A has no non-trivial right annihilators.

Lemma 4.6. Let F ∈ P2,4 be either from (H7–H9) or from (H10) of Lemma 4.3 with (a, b) such

that ab(a2 − 1)(4b2 − a2)(4b2 − 1)(4b2 − a4)(4b2 − 2a2 + 1) = 0. Then A = AF is exact and satisfies

HA = (1 + t)−1(1 − t)−3.
Proof. If F is from (H7–H9), the result follows directly from Lemma 4.2. It remains to deal with the
case of F given by (H10).

Case 1: a = 0. Since (a, b) ≠ (0,0), we have b ≠ 0. Then F = x4+y4+ bxyxy⟲. Scaling x and y, we
can turn F into F = x4 − 1

2
xyxy⟲ + qy4 with q ∈ K∗. The defining relations of A now are x3 = yxy and

xyx = qy3. It is now straightforward to compute the reduced Gröbner basis of the ideal of relations
of A, which comprises x3 − yxy, xyx − qy3, xy4 − y4x, x2y3 − 1

q
yxy2x and xy2xy − qy3x2. Knowing the

leading monomials of this basis it is routine to verify that HA = (1 + t)−1(1 − t)−3. Since none of the
leading monomials of the members of the Gröbner basis starts with y, there are no non-trivial right
annihilators in A. By Lemma 4.5, A is exact.

Case 2: b = 0. Since (a, b) ≠ (0,0), we have a ≠ 0. Then F = x4 +y4 +ax2y2⟲. Scaling x and y, we

can turn F into F = x4 + x2y2⟲ + qy4 with q ∈ K∗. The defining relations of A now are x3 + xy2 + y2x

and x2y + yx2 + qy3. First, computing the Gröbner basis up to degree 5, it is easy to verify that

g = xy2x + (1 − q)y2x2 − qy4
commutes with both x and y and therefore is central in A. Consider the algebra B = A/I, where I

is the ideal generated by g. The algebra B can be presented by the generators x, y and the relations
x3+xy2+y2x = 0, x2y+yx2+qy3 and xy2x+(1−q)y2x2−qy4. It is now straightforward to compute the
reduced Gröbner basis of the ideal of relations of B, which comprises the defining relations together
with xyx2 − (1 − q)xy3 − y2xy, xy4 + y4x + (2 − q)y2xy2, xyxy2 + (2 − q)xy3x + y2xyx, xy3x2 + (q2 −
3q + 1)y2xy3 + (1 − q)y4xy and xy3xy2 − (q2 − 4q + 3)y2xy3x − (2 − q)y4xyx. Knowing the leading

monomials of this basis it is routine to verify that HB = 1 +
∞

∑
j=1

2jtj = 1+t2

(1−t)2
. Since none of the leading

monomials of the members of the Gröbner basis starts with y, we have yu ≠ 0 for every non-zero
u ∈ B. Since g is central, we have dimAn = dimBn + dim gAn−4 for every n ⩾ 4. In particular,
dimAn ⩽ dimAn−4 + 2n for n ⩾ 5 and all these inequalities turn into equalities precisely when g is not
a zero divisor. The inequalities dimAn ⩽ dimAn−4 + 2n together with easily verifiable dimA4 = 12
imply that HA ⩽ (1 + t)−1(1 − t)−3 and the equality is only possible if dimAn ⩽ dimAn−4 + 2n for all
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n ⩾ 5. By Lemma 4.5, HA ⩾ (1+ t)−1(1− t)−3. Hence HA = (1+ t)−1(1− t)−3 and g is not a zero divisor.
Now we check that yu ≠ 0 for every non-zero u ∈ A. Assume the contrary. Then pick a non-zero
homogeneous u ∈ A of smallest possible degree such that yu = 0 in A. Since B is a quotient of A,
yu = 0 in B. Hence u = 0 in B. Then u = gv in A for some v ∈ A. The equality yu = 0 yields gyv = 0
and therefore yv = 0 in A. Since the degree of v is smaller (by 4) than the degree of u, we have arrived
to a contradiction. Thus yu ≠ 0 for every non-zero u ∈ A and therefore A has no non-trivial right
annihilators. By Lemma 4.5, A is exact.

Case 3: a = 1. Since (a, b) ≠ (1,1/2), we have b ≠ 1/2. Since 4(a + b)2 ≠ 1, we have b ≠ −1/2.
Denoting b = q

2
, we have F = x4 + x2y2

⟲
+

q
2
xyxy⟲ + y4 with q2 ≠ 1. The defining relations of A

now are x3 + xy2 + qyxy + y2x and x2y + qxyx + yx2 + y3. First, computing the Gröbner basis up to
degree 5, it is easy to verify that g = xy2x − y4 commutes with both x and y and therefore is central
in A. Consider the algebra B = A/I, where I is the ideal generated by g. The algebra B can be
presented by the generators x, y and the relations x3 + xy2 + qyxy + y2x, x2y + qxyx + yx2 + y3 and
xy2x− y4. It is now straightforward to compute the reduced Gröbner basis of the ideal of relations of
B, which comprises the defining relations together with xyx2 − y2xy, xyxyx + 1

q
xy4 + 1

q
y2xy2 + 1

q
y4x,

xyxy2 + xy3x + y2xyx + qy5, xy3x2 + xy5 + y4xy + qy5x, xy3xy + 1
q
xy4x + 1

q
y4x2 + 1

q
y6 and xy6 − y6x.

Knowing the leading monomials of this basis it is routine to verify that HB = 1+t2

(1−t)2
. The rest of the

proof is the same as in Case 2.

Case 4: a = −1 or a = −2b or b = ±1
2
. These cases follow from the already considered ones due to

the isomorphism conditions in (H10). Indeed, one easily sees that our algebras in the case b = ±1
2
are

isomorphic to those with a = 0. The cases a = 1, a = −1 and a = −2b are linked in a similar way.

Case 5: 2b = a. Since (a, b) ≠ (0,0), we have a ≠ 0 and b ≠ 0. Scaling x and y, we can turn F into

F = x4 +x2y2⟲+ 1
2
xyxy⟲+ qy4 with q = a−2 ∈ K∗. Since (a, b) ≠ ±(1,1/2), we have q ≠ 1. The defining

relations of A now are x3 + xy2 − yxy + y2x and x2y − xyx + yx2 + qy3. First, computing the Gröbner
basis up to degree 5, it is easy to verify that g = xyxy−y2x2 commutes with both x and y and therefore
is central in A. Consider the algebra B = A/I, where I is the ideal generated by g. The algebra B can
be presented by the generators x, y and the relations x3 + xy2 − yxy + y2x, x2y − xyx + yx2 + qy3 and
xyxy − y2x2. It is now straightforward to compute the reduced Gröbner basis of the ideal of relations
of B, which comprises the defining relations together with xy3 − y3x. Knowing the leading monomials
of this basis it is routine to verify that HB = 1+t2

(1−t)2
. The rest of the proof is the same as in Case 2.

Case 6: 2b = a2. Since (a, b) ≠ (0,0), we have a ≠ 0 and b ≠ 0. Scaling x and y, we can turn F

into F = x4 + x2y2
⟲
+

a
2
xyxy⟲ + 1

a2
y4. Since the case b = ±1

2
is already considered, we can assume

that a2 ≠ 1. The defining relations of A now are x3 + xy2 + ayxy + y2x and x2y + axyx + yx2 + 1
a2
y3.

Computing the Gröbner basis up to degree 5, it is easy to verify that g = xyxy + axy2x − 1
a
y2x2 − 1

a
y4

commutes with both x and y and therefore is central in A. Consider the algebra B = A/I, where I

is the ideal generated by g. The algebra B can be presented by the generators x, y and the relations
x3+xy2+ayxy+y2x, x2y+axyx+yx2+ 1

a2
y3 and xyxy+axy2x− 1

a
y2x2− 1

a
y4. It is now straightforward to

compute the reduced Gröbner basis of the ideal of relations of B, which comprises the defining relations
together with xyx2+ 1

a2
xy3−y2xy− 1

a
y3x, xy2x2+ 1

a
y3xy, xy3x+ 1

a
y5, xy2xyx+ 1

a3
xy5− 1

a2
y3xy2− 1

a2
y5x,

xy2xy2 + xy4x − 1
a
y3xyx − y6, xy4xy + 1

a
xy5x − 1

a2
y5x2 − 1

a2
y7, xy4x2 + 1

a2
xy6 − 1

a
y5xy − y6x, xy5xy +

1
a
xy6x + 1

a
y6x2 + 1

a3
y8, xy5x2 + xy7 + y6xy + ay7x, xy6xy − y7x and xy8 − y8x. Knowing the leading

monomials of this basis it is routine to verify that HB = 1+t2

(1−t)2
. The rest of the proof is the same as in

Case 2.

Case 7: 4b2 − 2a2 + 1 = 0 or 2b = −a2. As in Case 4, these cases follow from the already considered
ones due to the isomorphism conditions in (H10). Indeed, one easily sees that our algebras in the case
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2b = −a2 are isomorphic to those with 2b = a2 as well as to those with 4b2 − 2a2 + 1 = 0. It remains to
notice that Cases 1–7 exhaust all possibilities.

Lemma 4.7. Let F ∈ P2,4 be given by (H10) of Lemma 4.3 with parameters α,β (we want to reserve

letters a and b) such that

αβ(α2
− 1)(4β2

− α2)(4β2
− 1)(4β2

− α4)(4β2
− 2α2

+ 1) ≠ 0.
Then A = AF is exact and therefore HA = (1 + t)−1(1 − t)−3.
Proof. A scaling turns F into

F = x4 + x2y2⟲ + a
2
xyxy⟲ + by4

with a, b ∈ K given by a = 2β
α

and b = 1
α2 . In terms of a and b the assumption about α and β reads as

follows: a ≠ 0, b ≠ 1, a2 ≠ 1, b + a2 ≠ 2, a2b ≠ 1 and b ≠ a2.
Computing δxF and δyF , we see that A is given by generators x and y and relations

x3 = −xy2 − ayxy − y2x, x2y = −axyx − yx2 − by3. (4.1)

A direct computation allows to find all elements of the reduced Gröbner basis of the ideal of relations
up to degree 5. They correspond to the relations

xyx2 = 1−b
1−a2

xy3 + y2xy −
a(1−b)
1−a2

y3x;

xyxyx = − 1
a
xy2x2 − 1−a2b

a(1−a2)
xy4 − 1

a
y2xy2 + 1−b

1−a2
y3xy;

xy2xy = −a(1−b)(2−b−a2)
(1−a2)(1−a2b)

xy3x −
a(1−b)
1−a2b

yxyxy + 1−a2

1−a2b
yxy2x +

(1−b)(2−a2b−a2)
(1−a2)(1−a2b)

y3x2 +
b(1−b)
1−a2b

y5;

xyxy2 = −2−b−a2

1−a2b
xy3x +

a2(1−b)
1−a2b

yxyxy −
a(1−a2)
1−a2b

yxy2x − y2xyx −
a(1−b)
1−a2b

y3x2 −
ab(1−b)
1−a2b

y5.

This provides us with a multiplication table in A for degrees up to 5. Given this, it is routine to
verify that

g = −a(1 − b)xyxy + (1 − a2)xy2x + (1 − b)y2x2 − b(1 − a2)y4
commutes with both x and y and therefore is central in A. Now we consider the algebra

B = A/I, where I is the ideal in A, generated by g

as well as the degree-graded right B-module

M = B/yB.

Note that using the above Gröbner basis elements for A, one easily sees that Hilbert series of M starts
as HM = 1 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + . . . By the same token,

HA = 1 + 2t + 4t2 + 6t3 + 9t4 + 12t5 + . . . (4.2)

According to Lemma 4.5,
HA ⩾ (1 + t)−1(1 − t)−3. (4.3)

By the same lemma, the proof will be complete if we show that

HA = (1 + t)−1(1 − t)−3 and A has no non-trivial right annihilators. (4.4)

We start by proving the following two statements:

HM(t) = 1 + ∞∑
n=1

2tn Ô⇒ (4.4) is satisfied, (4.5)

if k ∈ N and dimMj ⩽ 2 for 1 ⩽ j ⩽ k, then dimMj = 2 for 1 ⩽ j ⩽ k. (4.6)
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Assume that k ∈ N and dimMj ⩽ 2 for 1 ⩽ j ⩽ k. Clearly, dimBj = dimyBj−1 + dimMj for j ∈ N. It
follows that dimBj ⩽ 2j for 1 ⩽ j ⩽ k and the inequalities turn into equalities if and only if dimMj = 2
for 1 ⩽ j ⩽ k and yu ≠ 0 for every degree < k homogeneous u ∈ B. Next, dimAj = dim gAj−4 + dimBj

for all j ⩾ 4. Using this recurrent inequality and the initial data (4.2), we see that for j ⩽ k, dimAj

does not exceed the jth coefficient of (1 + t)−1(1 − t)−3 and the inequalities turn into equalities if and
only if dimBj = 2j for 1 ⩽ j ⩽ k and gu ≠ 0 for every degree ⩽ k − 4 homogeneous u ∈ A. However,
by (4.3), turn into equalities they must. In particular, we must have dimMj = 2 for 1 ⩽ j ⩽ k, which
proves (4.6). In order to prove (4.5), we apply the above argument with arbitrarily large k. It follows

that the equality HM(t) = 1 +
∞

∑
n=1

2tn not only yields HA = (1 + t)−1(1 − t)−3, but also ensures that

yu ≠ 0 for every non-zero u ∈ B and gu ≠ 0 for every non-zero u ∈ A. In order to complete the proof,
it suffices to show that yu ≠ 0 for every non-zero u ∈ A. Assume the contrary. Then pick a non-zero
homogeneous u ∈ A of smallest possible degree such that yu = 0 in A. Since B is a quotient of A,
yu = 0 in B. Hence u = 0 in B. Then u = gv in A for some v ∈ A. The equality yu = 0 yields gyv = 0
and therefore yv = 0 in A. Since the degree of v is smaller (by 4) than the degree of u, we have arrived
to a contradiction. This concludes the proof of (4.5).

According to (4.5), the proof will be complete if we verify that HM(t) = 1 + ∞∑
n=1

2tn. By definition

of B and the above formulas for the low degree elements of the Gröbner basis for A, we see that the
following relations are satisfied in B:

x3 = −xy2 − ayxy − y2x, (4.7)

x2y = −axyx − yx2 − by3, (4.8)

xyx2 = 1−b
1−a2

xy3 + y2xy −
a(1−b)
1−a2

y3x; (4.9)

xyxy = 1−a2

a(1−b)xy
2x + 1

a
y2x2 −

b(1−a2)
a(1−b) y

4. (4.10)

Actually, the first two and the last of these are the defining relations, while (4.9) is the only other
member of the degree ⩽ 4 of the Gröbner basis.

For each k ∈ Z+, consider the following property:

(Ωk) dimMj = 2 for 1 ⩽ j ⩽ k + 3, Mk+3 is spanned by xyk+2 and xyk+1x and there exist ak, bk ∈ K
such that the equalities xykx2 = akxyk+2 and xykxy = bkxyk+1x hold in M .

Note that if (Ωk) is satisfied, then ak and bk are uniquely determined. Indeed, otherwise xyk+2 and
xyk+1x would be linearly dependent in M . Note also that according to (4.7–4.10),

Ω0 and Ω1 are satisfied with a0 = −1, b0 = −a, a1 = 1−b
1−a2

and b1 = 1−a2

a(1−b) . (4.11)

Note also that

if k ∈ Z+, dimMj = 2 for 1 ⩽ j ⩽ k + 1, Mk+2 is spanned by xyk+1 and xykx and

xykx2 = akxyk+2, xykxy = bkxyk+1x in M for some ak, bk ∈ K, then (Ωk) holds. (4.12)

Indeed, by (4.6), dimMk+2 = 2. Since Mk+2 is spanned by xyk+1 and xykx, Mk+3 is spanned by xyk+2,
xykxy, xyk+1x and xykx2. By the equations in (4.12), Mk+3 is spanned by xyk+2, and xyk+1x and
dimMk+3 = 2 by (4.6). Thus (Ωk) holds.

Reducing the overlaps xykx2y = (xykx2)y = xyk(x2y) and xykx3 = (xykx2)x = xyk(x3) by means of
(4.8), (4.7) and the equations from (Ωk), we obtain

if k ∈ Z+ and Ωk is satisfied, then(abk + 1)xyk+1x2 + (ak + b)xyk+3 = (bk + a)xyk+1xy + (ak + 1)xyk+2x = 0 in M.
(4.13)
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Reducing xyk−1xyxy = (xyk−1xy)xy = xyk−1(xyxy) and xyk−1xyx2 = (xyk−1xy)x2 = xyk−1(xyx2) by
means of (4.7–4.10) and the equations from (Ωk) and (Ωk−1), we get

if k ∈ N and both Ωk−1 and Ωk are satisfied, then

( 1
a
+ bk−1 +

1−a2b
a(1−b)bk−1bk)xyk+1x2 + (bbk−1 − b(1−a2)

a(1−b) )xyk+3 = 0,
(1 + abk−1 + 2−b−a2

1−a2
bk−1bk)xyk+1xy + (bk−1 − a(1−b)

1−a2
)xyk+2x = 0 in M.

(4.14)

Assume now that k ∈ N and both Ωk−1 and Ωk are satisfied. We consider the following three options:

(O1) (abk + 1, 1a + bk−1 + 1−a2b
a(1−b)bk−1bk) = (0,0);

(O2) (bk + a,1 + abk−1 + 2−b−a2

1−a2 bk−1bk) = (0,0);
(O3) (abk + 1, 1a + bk−1 + 1−a2b

a(1−b)bk−1bk) ≠ (0,0) and (bk + a,1 + abk−1 + 2−b−a2

1−a2
bk−1bk) ≠ (0,0),

which cover all possibilities.
First observe that according to (4.13), (4.14) and (4.12) ,

if (O3) holds, then (Ωk+1) is satisfied. (4.15)

Assume now that (O2) holds. By the equalities in (O2), bk = −a and bk−1 = 1−a2

a(1−b) . The conditions

a2b ≠ 1 and a2 + b ≠ 2 allow to check that bk−1 ≠ −a and bk−1 ≠ − 1
a
. Then (4.13) applied with k − 1

instead of k yields
bk = −

ak−1+1
bk−1+a

and ak = −
ak−1+b
abk−1−1

. (4.16)

Plugging the above expressions for bk−1 and bk into the first equation in (4.16), we get ak−1 =
b(1−a2)

1−b .

Plugging this together with bk−1 = 1−a2

a(1−b) into the second equation in (4.16), we get (after cancellations

to perform which we need the assumptions about a and b) ak = −b. Now plugging bk = −a, ak = −b,
ak−1 =

b(1−a2)
1−b and bk−1 = 1−a2

a(1−b) into the equalities in (4.13) and (4.14), we see that

xyk+1x2 = xyk+2x = 0 in M.

Then Mk+4 is spanned by xyk+1xy and xyk+3. Using the above display, (4.8) and (4.7) we reduce the
overlaps xyk+1x3 = (xyk+1x2)x = xyk+1(x3) and xyk+1x2y = (xyk+1x2)y = xyk+1(x2y) to get

xyk+1xy2 + xyk+3x = xyk+1xyx + b
a
xyk+4 = 0 in M.

Then Mk+5 is spanned by xyk+3x and xyk+4. Using the equalities in the above display together with
(4.9) and (4.10), we reduce the overlaps xyk+1xyx2 = (xyk+1xyx)x = xyk+1(xyx2) and xyk+1xyxy =(xyk+1xyx)y = xyk+1(xyxy) to get

xyk+3x2 + bxyk+5 = xyk+3xy + 1
a
xyk+4x = 0 in M.

By (4.12), we see that Ωk+3 is satisfied with ak+3 = −b and bk+3 = − 1
a
. Dealing in a similar way with

the overlaps xyk+3x3 = (xyk+3x2)x = xyk+3(x3) and xyk+2xyxy = (xyk+2xyx)y = xyk+2(xyxy), we get

xyk+4xy = a(1−b)
1−a2

xyk+5x and xyk+4x2 = b(1−a2)
1−b xyk+6 in M,

The last display together with (4.12) shows that Ωk+4 is satisfied. Hence

if (O2) holds, then (Ωk+3) and (Ωk+4) are satisfied. (4.17)

Finally, assume that (O1) holds. By the equalities in (O1), bk = − 1
a

and bk−1 =
a(1−b)
1−a2

. The

conditions a2b ≠ 1 and a2+ b ≠ 2 yield bk−1 ≠ −a and bk−1 ≠ − 1
a
. As above, this means that (4.16) holds.
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Plugging the expressions for bk−1 and bk into the first equation in (4.16), we get ak−1 = 1−b
1−a2

. Plugging

this together with bk−1 =
a(1−b)
1−a2

into the second equation in (4.16), we obtain ak = −1. Plugging

ak−1 = 1−b
1−a2

, bk−1 =
a(1−b)
1−a2

, bk = − 1
a
and ak = −1 into the equalities from (4.13) and (4.14), we get

xyk+1xy = xyk+3 = 0 in M

Now Mk+4 is spanned by xyk+1x2 and xyk+2x. From this and (4.7) and (4.8) it follows that Mk+5 is
spanned by xyk+2x2 and xyk+2xy. Now an elementary inductive procedure (use (4.6)) shows that Mj

is 2-dimensional for every j. That is,

if (O1) holds, then Mj is 2-dimensional for every j ∈ N. (4.18)

Note that if (Ωk) holds for infinitely many k, then Mj is 2-dimensional for every j ∈ N as well.
Applying (4.17) and (4.15) inductively ((4.11) serves as the basis of induction) and using (4.18), we
see that no matter the case, Mj is 2-dimensional for every j ∈ N. This completes the proof.

4.1 Proof of Theorem 1.8

Combining Lemmas 4.3, 4.4, 4.6 and 4.7, we see that all statements of Theorem 1.8 hold with iso-
morphism of AF and AG condition replaced by equivalence of F and G (with respect to the GL2(K)
action by linear substitutions).

By Lemma 1.4, these two equivalences are the same for proper potentials. Thus all that remains is
to show that algebras from (P24–P28) are pairwise non-isomorphic. Since isomorphic graded algebras
have the same Hilbert series, it remains to verify that three algebras from (P24–P26) are pairwise non-
isomorphic. Now (P25) is singled out by being non-monomial (it is easy to see that it is not isomorphic
as a graded algebra to a monomial one), while algebras from (P24) and (P26) are monomial. Algebras
in (P24) and (P26) are non-isomorphic since the first one has cubes in the space of degree 3 relations,
while the second one has no such thing.

5 Potential algebras AF for F ∈ P3,3

Throughout this section we equip the monomials in x, y, z with the left-to-right degree-lexicographical
ordering assuming x > y > z. The following statement is elementary.

Lemma 5.1. The kernel of the canonical homomorphism from K⟨x, y, z⟩ onto K[x, y, z] (=abelianization)
intersects P3,3 by the one-dimensional space spanned by xyz⟲ − xzy⟲.

Lemma 5.2. Let F ∈ P3,3. Then by means of a linear substitution F can be turned into one of the

following forms∶

(G1) F = 0; (G9) F = z3 + xyz⟲;

(G2) F = z3; (G10) F = (y + z)3 + xyz⟲;

(G3) F = yz2⟲; (G11) F = yz2⟲ + xyz⟲ − xzy⟲;

(G4) F = y3 + z3; (G12) F = y3 + z3 + xyz⟲ − xzy⟲;

(G5) F = xyz⟲; (G13) F = y3 + xz2⟲ + xyz⟲ − xzy⟲;

(G6) F = x3 + y3 + z3; (G14) F = xz2⟲ + y2z⟲ + xyz⟲ − xzy⟲;

(G7) F = xz2⟲ + y3; (G15) Fa = xyz⟲ − axzy⟲ with a ∈ K∗;

(G8) F = xz2⟲ + y2z⟲; (G16) Fa = z3 + xyz⟲ + axzy⟲ with a ∈ K∗;
(G17) Fa = (y + z)3 + xyz⟲ + axzy⟲ with a ∉ {0,−1};
(G18) Fa,b=x3+y3+z3+axyz⟲+bxzy⟲ with a, b ∈ K, (a+b)3+1≠0, (a, b)≠(0,0) and (a3−1, b3−1)≠(0,0).

29



Moreover, to which of the above 18 forms F can be turned into is uniquely determined by F . For

F = Fa from (G15–G17) Fa can be obtained from Fb by a linear substitution if and only if a = b or

ab = 1. Finally, for F = Fa,b from (G17), Fa,b and Fa′,b′ can be obtained from one another by a linear

substitution if and only if they belong to the same orbit of the group action generated by two maps(a, b) ↦ (θa, θb) and (a, b) ↦ (1+θa+θ2b
1+a+b , 1+θ

2a+θb
1+a+b

). This group has 24 elements and is isomorphic to

SL2(Z3).
Proof. Let F ∈ P3,3. First, we show that F can be turned into exactly one of (G1–G18) by a linear
sub. Let G ∈ K[x, y, z] be the abelianization of F . By Lemma 2.8 by means of a linear substitution G

can be turned into exactly one of the forms (Z1–Z8). Thus we can assume from the start that G is in
one of the forms (Z1–Z8).

Case 1: G = a(x3+y3+z3)+bxyz with a, b ∈ K. By Lemma 5.1, F = r(x3+y3+z3)+qxyz⟲+qxzy⟲
with p, q, r ∈ K. Note that the substitution x → x, y → y, z → θz preserves this shape of F and
transforms the parameters according to the rule (p, q, r) ↦ (θp, θq, r), while the sub x → x + y + z,
y → x+θ2y+θz, z → x+θy+θ2z also preserves the shape of F and transforms the parameters according
to the rule (p, q, r) ↦ (θp + θ2q + r, θ2p + θq + r, p + q + r). If p = q = r = 0, we fall into (G1). Using the
above subs and a scaling, we see that F can be turned into the form (G5) if either q = r = 0, p ≠ 0 or
p = r = 0, q ≠ 0 or p3 = q3 = r3 ≠ 0, p ≠ q and F can be turned into the form (G6) if either p = q = 0,
r ≠ 0 or p = q ≠ 0, p3 = r3. As shown in [12], F can be turned into the form (G15) precisely when either
r = 0 and pq ≠ 0 or (p+ q)3 = −r3 ≠ 0. Now assume that none of the above assumptions on p, q, r holds.
Then r ≠ 0. By a scaling, we can turn r into 1. The rest of the assumptions now read (p + q)3 + 1 ≠ 0,(p, q) ≠ (0,0) and (p3 − 1, q3 − 1) ≠ (0,0). That is, we end up in (G18). The fact that F from (G1),
(G5), (G6), (G14) and (G18) with different labels are non-equivalent follows from the fact [12] that
even the corresponding potential algebras are non-isomorphic.

Case 2: G = z3. By Lemma 5.1, F = z3 + s(xyz⟲ − xzy⟲) with s ∈ K. If s = 0, F is given by (G2).
If s ≠ 0, a scaling brings F to the form (G16) with a = −1.

Case 3: G = yz2. By Lemma 5.1, F = 1
3
yz2

⟲
+ s(xyz⟲ − xzy⟲) with s ∈ K. If s = 0, F acquires

form (G3) after scaling. If s ≠ 0, a scaling brings F to the form (G11).
Case 4: G = y3 + z3. By Lemma 5.1, F = y3 + z3 + s(xyz⟲ − xzy⟲) with s ∈ K. If s = 0, F is given

by (G4). If s ≠ 0, a scaling brings F to the form (G12).

Case 5: G = xz2 + y3. By Lemma 5.1, F = y3 + 1
3
xz2

⟲
+ s(xyz⟲ − xzy⟲) with s ∈ K. If s = 0, F

acquires form (G7) after scaling. If s ≠ 0, a scaling brings F to the form (G13).

Case 6: G = xz2 + y2z. By Lemma 5.1, F = 1
3
xz2

⟲
+

1
3
y2z

⟲
+ s(xyz⟲ −xzy⟲) with s ∈ K. If s = 0,

F acquires form (G8) after scaling. If s ≠ 0, a scaling brings F to the form (G14).
Case 7: G = xyz + z3. By Lemma 5.1, F = z3 + (s + 1

3
)xyz⟲ − sxzy⟲ with s ∈ K. If s = 0, a scaling

brings F to the form (G9). If s = −1
3
, swapping x and y and a scaling brings F to the form (G9) again.

If s ≠ 0 and s ≠ −1
3
, a scaling turns F into the form (G16) with a ≠ −1.

Case 8: G = xyz + (y + z)3. By Lemma 5.1, F = (y + z)3 + (s+ 1
3
)xyz⟲ − sxzy⟲ with s ∈ K. Same as

in the previous case, if s = 0 or s = −1
3
a scaling or the same together with swapping of y and z turns

F into the form (G10). If s ≠ 0 and s ≠ −1
3
, a scaling turns F into the form (G17) (automatically,

a ≠ −1).
The fact that F from the list (G1–G18) with different labels are non-equivalent (can not be obtained

from one another by a linear sub) follows from the non-equivalence of polynomials with different labels
from the list (Z1–Z8), the equivalence statements in Case 1 as well as the trivial observation that a
symmetric (not just cyclicly) element of P3,3 can not be equivalent to a non-symmetric one.

It remains to prove the statements about equivalence within each of (G15–G18). The (G15) and
(G18) cases are done in [12]. It remains to deal with (G16) and (G17). Let Fa, Fb be two potentials
both from (G16). Their abelianizations are Ga = z3 + (1 + a)xyz and Gb = z3 + (1 + b)xyz. A linear
sub turning Fa to Fb must transform Ga into Gb. If a = −1, such a thing can obviously exist only if
b = −1. Thus we can assume that a ≠ −1 and b ≠ −1. Now it is straightforward to check that that
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such subs are among the scalings x → px, y → qy and z → rz or scalings composed with the swap of x
and y: x → py, y → qx and z → rz with p, q, r ∈ K∗, r3 = 1. In order for an Fa to be transformed to
any Fa′ , we need additionally pqr = 1 in the first case and pqra = 1 in the second. Analyzing the way
how these subs act on Fa, we see that Fa is transformed to itself if no swap is involved and to Fa−1

otherwise. The situation with Fa from (G17) can be analyzed in a similar way.

Lemma 5.3. Let F ∈ P3,3 and A = AF . Then HA ⩾ (1 − t)−3. Furthermore, the following statements

are equivalent∶

(K1) A is exact;

(K2) HA = (1 − t)−3 and A has no non-trivial right annihilators;

(K3) HA = (1 − t)−3 and A is Koszul.

Proof. The inequality HA ⩾ (1 − t)−3 and the equivalence of (K1) and (K2) follow from Lemmas 3.2
and 3.7 with n = k = 3. The equivalence of (K1) and (K3) follows from the already mentioned fact
that the complex (1.2) coincides with the Koszul complex if the potential F is proper, while the latter
happens if and only if dimA3 = 10 (see Lemma 1.4).

Lemma 5.4. Let F ∈ P3,3 be given by (G18) of Lemma 5.2. Then the potential algebra A = AF is

Koszul, exact, non-PBW and satisfies HA = (1 − t)−3.
Proof. The fact that A, known also as a Sklyanin algebra, is Koszul and satisfies HA = (1 − t)−3 is
proved in [2]. Different proofs are presented in [11] and [12]. In [11] it is shown that these algebras
are non-PBW. Now, by Lemma 5.3, Koszulity of A yields its exactness.

Lemma 5.5. Let F ∈ P∗3,3 be such that xyz, yxz and zxy are present in F with non-zero coefficients,

while xxx, xxy, xxz, xyx, xyy, yxx, yxy and zxx do not feature in F . Then A = AF is PBW, Koszul,

exact and satisfies HA = (1 − t)−3.
Proof. By assumptions, the leading monomials of δzF , δyF and δxF are xy, xz and yz respectively.
Since the said monomials exhibit just one overlap, it must resolve by Lemma 3.4, turning the defining
relations into a quadratic Gröbner basis and {xy,xz, yz} into the set of leading monomials of members
of the said basis. The equality HA = (1−t)−3 immediately follows. Since A admits a quadratic Gröbner
basis in the ideal of relations, A is PBW and therefore Koszul. By Lemma 5.3, A is exact.

Lemma 5.6. Let F ∈ P3,3 be given by one of (G11–G17) of Lemma 5.2. Then the potential algebra

A = AF is PBW, Koszul, exact and satisfies HA = (1 − t)−3.
Proof. Just apply Lemma 5.5: the potentials F from each of (G11–G17) satisfy the assumptions.

Lemma 5.7. Let F ∈ P3,3 be given by one of (Gj) of Lemma 5.2 with 1 ⩽ j ⩽ 8. Then the potential

algebra A = AF is PBW, Koszul and non-exact. The Hilbert series of A is given by HA = (1 − 3t)−1 if

j = 1, HA = 1+t
1−2t−2t2

if j = 2, HA = 1+t
1−2t−t2

if j ∈ {3,4} and HA = 1+t
1−2t if 5 ⩽ j ⩽ 8.

Proof. An easy computation shows that the defining relations δxF , δyF and δzF form a Gröbner basis
in the ideal of relations of A. Hence A is PBW and therefore Koszul. The computation of the Hilbert
series is now easy and routine.

Lemma 5.8. Let F ∈ P3,3 be given by (G9) and A = AF . Then A is non-Koszul, non-PBW, non-exact,

non-proper and satisfies HA = 1+t+t2+t3+t4

1−2t+t2−t3−t4
.
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Proof. Since F = z3 + xyz⟲, the defining relations of A are yz, zx and xy + zz. The ideal of relations
of A turns out to have a finite Gröbner basis comprising yz, zx, xy + zz and zzz. This allows us
to find an explicit expression for the Hilbert series of A: HA = 1+t+t2+t3+t4

1−2t+t2−t3−t4
. Next, one easily checks

that the Koszul dual A! has the Hilbert series HA! = 1 + 3t + 3t2 + 2t3. Then the duality formula
HA(t)HA!(−t) = 1 fails. Hence A is non-Koszul and therefore non-PBW. By Lemma 5.3, A is non-
exact. The above formula for HA yields dimA3 = 11 and therefore A is non-proper by Lemma 1.4.

Lemma 5.9. Let F ∈ P3,3 be given by (G10) and A = AF . Then A is proper, non-Koszul, non-PBW,

non-exact and satisfies HA = 1+2t+3t2+3t3+2t4+t5

1−t−t3−2t4
.

Proof. Since F = (y+z)3+xyz⟲, the defining relations of A are xy+(y+z)2, zx+(y+z)2 and yz. The
ideal of relations of B turns out to have a finite Gröbner basis comprising xy − zx, yy + zx + zy + zz,
yz, xzx + xzy + xzz + zzx, zxz and zzz. This allows us to find an explicit expression for the Hilbert
series of A: HA = 1+2t+3t2+3t3+2t4+t5

1−t−t3−2t4
. Next, the dual algebra A! is easily seen to have the Hilbert

series HA! = 1 + 3t + 3t2 + t3. Clearly, the duality formula HA(t)HA!(−t) = 1 fails and therefore A is
non-Koszul. Hence A is non-PBW. By Lemma 5.3, A is non-exact. The above formula for HA yields
dimA3 = 10 and therefore A is proper by Lemma 1.4.

5.1 Proof of Theorem 1.6

Combining Lemmas 5.2, 5.4, 5.6, 5.7, 5.8 and 5.9, we see that all statements of Theorem 1.6 hold
with isomorphism of AF and AG condition replaced by equivalence of F and G (with respect to the
GL3(K) action by linear substitutions). By Remark 1.5, it remains to show that algebras (P10–P14)
are pairwise non-isomorphic and algebras (P15–P18) are pairwise non-isomorphic. Since isomorphic
graded algebras have the same Hilbert series, it remains to verify that four algebras from (P10–P13)
are pairwise non-isomorphic and that the algebras from (P15) and (P16) are non-isomorphic. The
latter holds because the algebra in (P15) is monomial, while the algebra in (P16) is not isomorphic to
a monomial one. It remains to show that four algebras from (P10–P13) are pairwise non-isomorphic.
The same argument on monomial algebras reduces the task to showing that the algebras in (P11)
and (P12) are non-isomorphic and the algebras in (P10) and (P13) are non-isomorphic. The algebras
in (P11) and (P12) are non-isomorphic since the (3-dimensional) space of quadratic relations for the
first one is spanned by squares (of degree 1 elements) while the same space for the second algebra
contains no squares at all. As for the algebras in (P10) and (P13), the second one sports just one (up
to a scalar multiple) square in the space of quadratic relations, while the first one obviously has two
linearly independent ones: x2 and z2.

6 Twisted potential algebras AF with F ∈ P∗2,4

We shall occasionally switch back and forth between denoting the generators x, y or x1, x2 meaning
x = x1 and y = x2. The reasons are aesthetic.

Lemma 6.1. For a ∈ K∗, a ≠ 1, let Fa = x3y +ax2yx+a2xyx2 +a3yx3 be the twisted potential of (T34)
of Theorem 1.9 and Aa = AFa . Then the twisted potential algebras Aa are pairwise non-isomorphic,

non-potential, non-proper and satisfy HAa = 1+t+t2

1−t−t2
.

Proof. Clearly, Aa is presented by generators x, y and relations x2y + axyx + a2yx2 and x3. It is easy
to check that the defining relations of Aa form a Gröbner basis in the ideal of relations. Knowing the
leading monomials x3 and x2y of the members of a Gröbner basis, we easily confirm that HAa = 1+t+t2

1−t−t2
.

Next, we show that algebras Aa are pairwise non-isomorphic. Indeed, assume that a linear substitution
facilitates an isomorphism between Aa and Ab. As x3 is the only cube (up to a scalar multiple) in
the space of cubic relations for both Aa and Ab, our sub must map x to its own scalar multiple. Now
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it is elementary to check that that any such substitution leaves invariant each space Ra spanned by
x2y+axyx+a2yx2 and x3. Since Ra are pairwise distinct, an isomorphism between Aa and Ab does exist
only if b = a. Same type argument shows that each Aa is not isomorphic to any of three algebras from
(P24–P26) of the already proven Theorem 1.8. Since these three algebras are the only cubic potential

algebras on two generators with the Hilbert series 1+t+t2

1−t−t2
, it follows that Aa are non-potential.

Lemma 6.2. Each F ∈ K⟨x, y⟩ listed in (T24–T33) of Theorem 1.9 is a proper twisted potential such

that the Jordan normal form of the corresponding twist is one block with eigenvalue −1 for F from

(T25), one block with eigenvalue 1 for F from (T26–27), diagonalizable in all other cases with the two

eigenvalues being a, a−1 for F from (T24), a,−a−1 for F from (T28), θ,1 for F from (T29), θ2,1 for

F from (T30), ξ8,−ξ8 for F from (T31), iξ8,−iξ8 for F from (T32), −1,−1 for F from from (T33).
Moreover AF is exact, non-potential and has the Hilbert series (1 + t)−1(1 − t)−3 for every F from

(T24–T33).

Proof. It is straightforward and elementary to check that each F is a twisted potential with the Jordan
normal form of the twist being as specified. For F from (T24–T28) and (T33), a direct application
of Lemma 4.2 shows that AF is exact and has the Hilbert series (1 + t)−1(1 − t)−3. Assume now that
F = x3y + yx3 + axyx2 + a2x2yx + y4 with a3 = 1 ≠ a. This covers (T29) and (T30). Then A = AF is
presented by generators x, y and relations x3+y3 and x2y+a2xyx+ayx2. A direct computation shows
that the defining relations together with xy3−y3x and xyxy2−ayxyxy+a2y2xyx+2ay3x2 form a Gröbner
basis in the ideal of relations of A. This allows to compute the Hilbert series HA = (1 + t)−1(1 − t)−3
and to observe in the usual way that there are no non-trivial right annihilators in A. By Lemma 3.2,
A is exact. Next, assume that F = x4 − ayx3 − y2x2 + ay3x + y4 + xy3 + x2y2 + x3y with a2 = −1. This
covers (T31) and (T32). Again, the ideal of relations of A = AF has a finite Gröbner basis with the
leading monomials of its members being x3, x2y, xyx2, xy4, xy2x2, xyxy2 and xy2xy2 (7 members in
total). We skip spelling out the exact formulas for the members of the basis this once since some of
them turn out to be rather long. For instance, the last one is the sum of 9 terms. Anyway, knowing
the above leading terms allows to compute the Hilbert series HA = (1+ t)−1(1− t)−3 and to observe in
the usual way that there are no non-trivial right annihilators in A. By Lemma 3.2, AF is exact for F
from (T29–T32). By Lemma 1.4, each AF for F from (T24–T33) is proper. Since the corresponding
twist (it is uniquely determined by AF ) is non-trivial, none of AF is potential.

Lemma 6.3. Let G ∈ P∗2,4 be non-degenerate, M ∈ GL2(K) be the unique matrix providing the twist for

G and assume that A = AG is non-potential. Assume also that the normal Jordan form of M consists

of one block. If A is non-proper, then A is isomorphic to an AF with F from (T34) of Theorem 1.9.
If A is proper, then A is isomorphic to AF for F from (T25–T27) of Theorem 1.9. Moreover, algebras

AF for F from (T24–T27) are pairwise non-isomorphic.

Proof. By Remark 1.3, we can without loss of generality assume that

M = ( α 1
0 α

) .

If F =
2

∑
j,k,m,n=1

aj,k,m,nxjxkxmxn, then the inclusion F ∈ P2,4(M) is equivalent to the following system

of linear equations on the coefficients of F :

aj,k,m,2 = αa2,j,k,m and aj,k,m,1 = αa1,j,k,m + a2,j,k,m for 1 ⩽ j, k,m ⩽ 2. (6.1)

One easily sees that (6.1) has only zero solution unless α4 = 1. This leaves three cases to consider:
α2 = −1, α = −1 and α = 1.
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If α2 = −1, the space of solutions of (6.1) is one-dimensional, corresponding to P2,4(M) being
spanned by G = yx3 + αx3y − αxyx2 − x2yx + 1+α

2
x4. One easily sees that AG is isomorphic to the

algebra from (T34) with a = α. By Lemma 6.1, it is non-proper.
If α = −1, solving (6.1), we see that

P2,4(M) = {Fs,t = s(12x4+yx3−x3y−xyx2+x2yx)+t(xyx2−x2yx−yx2y−xy2x+x2y2+y2x2) ∶ s, t ∈ K}.
If t = 0, AF with F = Fs,t is easily seen to be isomorphic to the algebra from (T34) with a = −1. Thus
we can assume that t ≠ 0. A scaling turns t into 1, leaving us to deal with Fa,1 for a ∈ K. These
are twisted potentials from (T25). By Lemma 6.2, the corresponding algebras are proper. Using
Remark 1.3 and Lemma 1.4, we see that only substitutions of the form y → py+qx, x→ px with p ∈ K∗

and q ∈ K can provide an isomorphism between algebras in (T25). However none of these substitutions
changes the parameter a. Hence algebras in (T25) are pairwise non-isomorphic.

If α = 1, solving (6.1), we see that

P2,4(M) = {Fs,t,r = s(x2y2⟲ − xyxy⟲ − xyx2 + x2yx) + tx3y⟲ + rx4 ∶ s, t, r ∈ K}.
If s = 0, Fs,t,r is a potential. Thus we can assume that s ≠ 0. A substitution x → x, y → y + bx with an
appropriate b ∈ K kills r. Now a scaling turns F into one of the twisted potentials from (T26) if t ≠ 0
or to the twisted potential from (T27) if t = 0. By Lemma 6.2, the corresponding algebras are proper.
Same argument as above shows that they are pairwise non-isomorphic.

Algebras from (T25) and (T26–T27) can not be isomorphic since they are proper and the Jordan
normal forms of the twists do not match.

Lemma 6.4. Let G ∈ P∗2,4 be non-degenerate, M ∈ GL2(K) be the unique matrix providing the twist

for G and assume that A = AG is non-potential. Assume also that M is diagonalizable. If A is non-

proper, then A is isomorphic to an AF with F from (T34) of Theorem 1.9. If A is proper, then A

is isomorphic to AF for F from (T24) or (T28–T33) of Theorem 1.9. Moreover, the corresponding

algebras AF are pairwise non-isomorphic.

Proof. By Remark 1.3, we can without loss of generality assume that

M = ( α 0
0 β

) .

If F =
2

∑
j,k,m,n=1

aj,k,m,nxjxkxmxn, then the inclusion F ∈ P2,4(M) is equivalent to the following system

of linear equations on the coefficients of F :

aj,k,m,2 = βa2,j,k,m and aj,k,m,1 = αa1,j,k,m for 1 ⩽ j, k,m ⩽ 2. (6.2)

One easily sees that (6.2) has only zero solution unless 1 ∈ {α,β,α3β,α2β2, αβ3}. Moreover, the case
α = β = 1 is excluded since F ∉ P2,4. Now if 1 ∉ {α3β,α2β2, αβ3}, then F is both degenerate and a
potential. Indeed, F is either zero or is the fourth power of a degree 1 element. The cases α3β = 1 and
αβ3 = 1 transform to one another when we swap x and y. Thus we have just two options to consider:
α3β = 1 or α2β2 = 1.

First, assume that α3β = 1. Then x3y+αx2yx+α2xyx2 +α3yx3 is in P2,4(M). Moreover, analyzing
(6.2), we see that P2,4(M) is spanned by this one element unless α3 = 1 ≠ α, or α8 = 1 ≠ α. If F is a
scalar multiple of x3y + αx2yx + α2xyx2 + α3yx3, we fall into (T34) after scaling. The corresponding
algebra is non-proper by Lemma 6.1.

Next, assume that αβ = −1. By (6.2), x2y2 + α2y2x2 + αxy2x − αyx2y ∈ P2,4(M) and P2,4(M) is
spanned by this one element unless α4 = 1. If F is a scalar multiple of x2y2 +α2y2x2 +αxy2x−αyx2y,
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a scaling sends F to (T28). By Lemma 6.2, the corresponding algebras are proper. Using Remark 1.3
and Lemma 1.4, we see that only scalings can provide an isomorphism between algebras in (T28)
(unless α = ±i in which case a separate easy argument is needed; we skip it now since we study this
case below in detail anyway). Now one sees that algebras in (T28) are pairwise non-isomorphic.

Next, assume that αβ = 1. By (6.2), x2y2+α2y2x2+αxy2x + αyx2y,xyxy + ayxyx ∈ P2,4(M) and
P2,4(M) is spanned by these two elements unless α = −1. That is,

F = s(x2y2 + α2y2x2 + αxy2x +αyx2y) + t(xyxy + αyxyx) with s, t ∈ K.

If s = 0, AF coincides with the potential algebra from (P26), which contradicts the assumptions. Thus
s ≠ 0. Now a scaling turns F into the form (T24). By Lemma 6.2, the corresponding algebras are
proper. Using Remark 1.3 and Lemma 1.4, we see that only scalings can provide an isomorphism
between algebras in (T28) (unless α = ±1 in which case a separate easy argument is needed; we skip
it now since we study this case below in detail anyway). Now one sees that algebras in (T24) are
pairwise non-isomorphic.

It remains to consider the following finite set of options for (α,β): (1,−1), (−1,−1), (a,1) with
a3 = 1 ≠ a, (a, a) with a2 = −1 and (a,−a) with a4 = −1.

If (α,β) = (a,1) with a3 = 1 ≠ a, then solving (6.2), we see that

P2,4(M) = {Fs,t = s(x3y + yx3 + axyx2 + a2x2yx) + ty4 ∶ s, t ∈ K}.
If s = 0, Fs,t is a potential. If t = 0, Fs,t falls into (T34). Thus we can assume that st ≠ 0. Now a
scaling transforms Fs,t into F1,1, which is the twisted potential from (T29) if a = θ and (T30) if a = θ2.
In both cases, the corresponding algebra is proper by Lemma 6.2.

Now assume that (α,β) = (b,−b) with b4 = −1. Since changing b by −b corresponds to swapping x

and y, we can assume that b ∈ {ξ8, iξ8}. Solving (6.2), we see that

P2,4(M) = {Gs,t = s(x2yx − b3x3y + b2yx3 + bxyx2) + t(y3x − b3xy3 + b2yxy2 − by2xy) ∶ s, t ∈ K}
If st = 0, the corresponding algebra is easily seen to fall into (T34): just scale or swap x and y and
scale. By Lemma 6.1, the corresponding algebra is non-proper if st = 0. If st ≠ 0, a scaling turns both
s and t into 1. That is, if st ≠ 0, Fs,t is equivalent to F1,1, which is easily seen to be proper. That is,
Fs,t, if proper, is isomorphic to one of two algebras F1,1 for b = ξ8 or F1,1 for b = iξ8. Denote a = b2.
That is, a = i if b = ξ8 and a = −i if b = iξ8. In both cases a2 = −1. Note that the matrix

N = ( 0 a

1 0
)

is conjugate to M . It is easy to see that G = x4 − ayx3 − y2x2 + ay3x + y4 + xy3 + x2y2 + x3y belongs
to P2,4(N) and therefore G is equivalent to a member of P2,4(M). This produces two algebras from
(T31) and (T32). By Lemma 6.2, they are proper and therefore they must be isomorphic to algebras
given by F1,1 for b = ξ8 or F1,1 for b = iξ8.

If (α,β) = (1,−1), then solving (6.2), we see that

P2,4(M) = {Fs,t = s(x2y2 + y2x2 − xy2x + yx2y) + tx4 ∶ s, t ∈ K}
If s = 0, Fs,t is a potential. If s ≠ 0, a substitution given by x → px, y → py + qx with appropriate
p ∈ K∗ and q ∈ K turns (s, t) into (1,0). Then F falls into (T28) with a = 1.

Assume now that (α,β) = (a, a) with a2 = −1. Solving (6.2), we see that P2,4(M) consists of
Gs,t,r = s(x3y+ayx3−xyx2−ax2yx) + t(x2y2+ayx2−y2x2−axy2x) + r(y3x+axy3−yxy2−ay2xy)
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with s, t, r ∈ K. If we perform a (non-degenerate) linear substitution x → λx + µy, y → γx + δy with
D = λδ − µγ ∈ K∗, Gs,t,r transforms into Gs′,t′,r′ with

s′ =D(λ2s−γ2r+(1+a)λγt), r′ =D(−µ2s+δ2r−(1+a)µδt), t′ =D((1−a)λµs−(1−a)γδr+(λδ+µγ)t).
Now it is routine to show that if at2 + 2sr ≠ 0, the substitution can be chosen in such a way that
s′ = r′ = 0 and t′ = 1 (note that F is non-degenerate and therefore (s, t, r) ≠ (0,0,0)). Otherwise, a
substitution can be chosen in such a way that r′ = t′ = 0 and r′ = 1. In the first case F falls to (T24)
with b = 0, while in the second case it falls into (T34).

Finally, assume that (α,β) = (−1,−1). Solving (6.2), we see that P2,4(M) consists of
Gs,t,r,u = s(x3y−yx3+xyx2−x2yx)+t(x2y2−yx2+y2x2−xy2x)+r(y3x−xy3+yxy2−y2xy)+u(xyxy−yxyx).
with s, t, r, u ∈ K. If we perform a (non-degenerate) linear substitution x → λx + µy, y → γx + δy with
D = λδ − µγ ∈ K∗, Gs,t,r,u transforms into Gs′,t′,r′,u′ with

s′ =D(λ2s − γ2r + λγu), r′ =D(−µ2s + δ2r − µδu), t′ =D2t, u′ =D(2λµs − 2γδr + (λδ + µγ)u).
It is routine to show that if u2 + 4sr ≠ 0, the substitution can be chosen in such a way that s′ = r′ = 0
and F transforms into the form (D8) or (D9) after an appropriate scaling. It remains to consider the
case u2 + 4sr = 0. Note that this property is invariant under linear substitutions (one easily sees that
u′

2
+4s′r′ = 0). Clearly a substitution can be chosen in such a way that s′ = 0. If it happens that t′ = 0,

then F falls into (T34) after swapping x and y and scaling. Thus we can assume that t′ ≠ 0. The
equation u′

2
+ 4s′r′ = 0 yields u′ = 0. Then a scaling turns F into the twisted potential from (T33),

which is proper by Lemma 6.2.
As for algebras from (T24) and (T28–T33) being pairwise non-isomorphic it is a consequence of

the following observations. By Lemma 1.4 the question reduces to pairwise non-equivalence of corre-
sponding twisted potentials, which certainly holds when the twists have different Jordan normal form.
As for two F ’s from the same P2,4(M), M being in Jordan form, they are equivalent precisely when a
linear substitution with a matrix whose transpose commutes with M transforms one F to the other.
In the case of one Jordan block this leaves us to consider substitutions of the form x→ px, y → py+ qx

with p ∈ K∗ and q ∈ K. If M is diagonal but not scalar, we are left only with scalings. Finally,
if M is scalar, we have to deal with the entire GL2(K). Fortunately, this only concerns the cases(α,β) = (a, a) with a2 = −1 or a = −1 in which we gave the explicit formulae for how the substitutions
act on P2,4(M). Now the stated non-equivalence is a matter for a direct verification.

6.1 Proof of Theorem 1.9

Recall that any two proper (degree-graded) twisted potential algebras with non-equivalent twisted
potentials are non-isomorphic and a proper twisted potential algebra can not be isomorphic to a non-
proper one. Next, if F ∈ P∗2,4 is degenerate, then it is easily seen that F is either 0 or is a fourth
power of a degree 1 element. In particular, F is a potential and therefore AF does not satisfy the
assumptions. Taking this into account, we see that Lemmas 6.1, 6.2, 6.3 and 6.4 imply Theorem 1.9.

7 Twisted potential algebras AF with F ∈ P∗3,3

This section is devoted to the proof of Theorem 1.7. We shall occasionally switch back and forth
between denoting them x, y, z or x1, x2, x3 meaning x = x1, y = x2 and z = x3. The reasons are
aesthetic. In this section we always use the left-to-right degree-lexicographical order on monomials in
x, y, z assuming x > y > z.
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Lemma 7.1. The algebras A given by (T19–T21) of Theorem 1.7 are non-proper non-degenerate non-

potential twisted potential algebras. They are pairwise non-isomorphic, PBW, Koszul and have Hilbert

series HA = 1+t
1−2t as specified in (T19–T21).

Proof. Algebras Aa from (T20) are presented by the defining relations xx, xy+ayx and xz+a2zx+yy

with a ≠ 0 and a ≠ 1. Algebras Ba from (T19) are presented by xx, zz and xy + ayx with a ≠ 0
and a ≠ 1. Finally the defining relations of the algebra C from (T21) are xx + zz, xz − zx and yy.
For all these algebras, the defining relations form a Gröbner basis in the ideal of relations. Hence all
algebras in question are PBW and therefore Koszul. Knowing the leading monomials for elements of
a Gröbner basis, we can easily compute the Hilbert series: HA = 1+t

1−2t in all cases. By Lemma 1.4
all these algebras are non-proper. By Theorem 1.6, in order to show that none of these algebras is
potential, it is enough to verify that none of them is isomorphic to any of the four algebras (P10–P13)
(the only potential algebras with the Hilbert series 1+t

1−2t), which is an elementary exercise.
Since each Ba has two linearly independent squares in the space of quadratic relations, while none

of Aa or C has such a thing, Ba is non-isomorphic to any Ab or C. The latter is singled out by
the existence of a decomposition V = V1 ⊕ V2 with 1-dimensional V1 for which the space of quadratic
relations lies in V 2

1 + V
2
2 . It remains to verify that Aa are pairwise non-isomorphic and that Ba are

pairwise non-isomorphic. Assume that Aa is isomorphic to Ab. Since x2 is the only square (up to a
scalar multiple) in in the space of quadratic relations for both algebras, a linear substitution providing
an isomorphism must map x to its scalar multiple. Without loss of generality, x is mapped to x. For
both algebras, the quotient by the ideal generated by x is presented by generators y, z and one relation
y2. Hence our substitution must map y to αy +βx with α,β ∈ K, α ≠ 0. It easily follows that xy +ayx
is mapped to a scalar multiple of itself plus a scalar multiple of xx. Thus xy + ayx must be a relation
of AFb

, which yields a = b. Finally, assume that Ba is isomorphic to Bb. Since x2 and z2 are the
only squares (up to scalar multiples) in in the space of quadratic relations for both algebras, a linear
substitution providing an isomorphism must either map x and z to their own scalar multiples or map
x to a scalar multiple of z and z to a scalar multiple of x. In the second case, Bb has a relation of the
form zu+auz for some homogeneous degree one u non-proportional to z, which is obviously nonsense
(u is the image of y under our substitution). Hence x and z are mapped to their own scalar multiples.
Now Bb has a relation of the form xu + aux with u = y + αz with α ∈ K. This is only possible if b = a
(and α = 0).

Lemma 7.2. Each F ∈ K⟨x, y, z⟩ listed in (T1–T18) of Theorem 1.7 is a proper twisted potential such

that the Jordan normal form of the corresponding twist is one block with eigenvalue 1 for F from (T3–
T4), two blocks of sizes 2 and 1 with eigenvalues b and b−2 respectively for F from (T5), two blocks of

sizes 2 and 1 with eigenvalues −1 and 1 respectively for F from (T6), two blocks of sizes 2 and 1 with

both eigenvalues 1 for F from (T7), diagonalizable in all other cases with the three eigenvalues being
a
b
, b
c
, c
a
for F from (T1), a

b
, b
a
,1 for F from (T2), a, a, a−2 for F from (T9), 1,−1,−1 for F from (T10),

a,−a, a−2 for F from (T11), −1,1,1 for F from (T16–T18), i,−1,1 for F from from (T12), −i,−1,1
for F from from (T13), ξ9, ξ

4
9 , ξ

7
9 for F from from (T14) and ξ29 , ξ

5
9 , ξ

8
9 for F from from (T15).

Moreover AF is Koszul, exact, non-potential and has the Hilbert series (1 − t)−3 for every F from

(T1–T18) and AF is PBW for F from (T1–T11) and (T16–T17).

Proof. It is straightforward and elementary to check that each F is a twisted potential with the Jordan
normal form of the twist being as specified. For F from (T1–T10), the defining relations as given in
Theorem 1.7 are easily seen to form a Gröbner basis in the ideal of relations. Thus for such F , AF are
PBW and therefore Koszul and we immediately get HA = (1− t)−3. For F from (T11), we perform the
substitution x → x, y → y + ix, z → z, which turns the defining relations into xz +azx, yz −azy −2aizx
and xy + yx− iyy. Now they form a Gröbner basis in the ideal of relations, showing that AF is PBW,
Koszul and has the Hilbert series (1−t)−3. For F from (T16), we perform the same substitution x→ x,
y → y + ix, z → z, which turns the defining relations into xz − zx, yz + zy −2izx and xy +yx− iyy − izz,
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which now form a Gröbner basis in the ideal of relations. Thus AF is PBW, Koszul and has the
Hilbert series (1 − t)−3. For F from (T17), we first swap y and z turning the defining relations into
yy+zz, xy−yx and xz+zx+zz. Next, we follow up with the substitution x→ x, y → y and z → z+ iy,
turning the defining relations into xy − yx, yz + zy − izz and xz + zx + 2iyx − yy. Now they form a
Gröbner basis in the ideal of relations, showing that AF is PBW, Koszul and has the Hilbert series(1− t)−3. Note also that for F from (T1–T11) and (T16–T17) AF has no non-trivial right annihilators
as no leading monomial of an element of the above quadratic Greöbner bases starts with z.

Now we shall show that for F from (T12–T15) and (T18), AF has the Hilbert series (1 − t)−3
and has no non-trivial right annihilators. For F from (T12–T13), we swap x and y to bring the
defining relations to the form xx+ yy, xy − yx+ zz and xz ± izx. A direct computation shows that the
defining relations together with yyz + zyy and yzz + zzy form a Gröbner basis in the ideal of relations
of AF . This allows to confirm that the Hilbert series of AF is indeed (1 − t)−3. Since none of the
leading monomials of elements of the above Gröbner basis starts with z, AF has non non-trivial right
annihilators. The cases of F from (T14) and (T15) are identical (just swap θ and θ2). The substitution
x → x, y → y − αx, z → z turns the defining relations of AF for F from (T14) into xx − θ2yx − zy,
xy+θ2xz−yx−θzx+(1−θ)zy and yz−θzy. Again, we are in a finite Gröbner basis situation. Namely,
the defining relations together with xzy+θxzz−θ2yxz−zxz+(1−θ)zzy, xzx+xzz−θyxz−θ2zxz−zzy,
xzzz − θyxzz − θ2zxzz + θ2zzyx + (1 − θ)zzzy and xzzy − θ2zzyx form a Gröbner basis in the ideal of
relations of AF . As above this allows to conclude that (1− t)−3 is the Hilbert series of AF and that AF

has non non-trivial right annihilators. It remains to consider AF with F from (T18). After swapping
y and z, the defining relations of AF for F from (T18) take shape xy − yx, xx + ayy + yz + zy and
yy + zz. A direct computation shows that the defining relations together with yzz − zzy, xzz − zzx
and xzy + yxz − yzx − zyx form a Gröbner basis in the ideal of relations of AF . As above, (1 − t)−3 is
the Hilbert series of AF and that AF has non non-trivial right annihilators. Now Lemma 3.2 implies
that AF for F from (T1–T18) is exact and Koszul, while Lemma 1.4 says that it is proper. As each
AF is proper and the corresponding twist (it is uniquely determined by AF ) is non-trivial, none of AF

is potential.

On few occasions we need to show that certain quadratic algebras are non-PBW.

Lemma 7.3. Let F be the twisted potential from (T12–T15) or (T18) of Theorem 1.7 and A = AF .

Then A is non-PBW.

Proof. Since the PBW property is preserved when one passes to the opposite multiplication and the
algebras from (T12) and (T13) as well as the algebras from (T14) and (T15) are isomorphic to each
other’s opposites, it is enough to deal with F from (T12), (T14) and (T18). That is, A is presented
by the generators x, y, z and three quadratic relations r1, r2 and r3 from the following list:

(1) r1 = xx + yy, r2 = xy − yx + zz and r3 = xz + izx;
(2) r1 = xz − zx, r2 = xx + yz + zy + azz and r3 = yy + zz, where a ∈ K, a2 + 4 ≠ 0;
(3) r1 = yx + θzy + θ2zx, r2 = xy + zy + θ2xz and r3 = yx + yz + θxz.

Assume the contrary: A is PBW. By Lemma 7.2, HA = (1−t)−3 and therefore dimA1 = 3, dimA2 = 6
and dimA3 = 10. By Lemma 2.6, there exists a well-ordering ⩽ on the x, y, z monomials compatible
with multiplication and satisfying x > y > z (this we can acquire by permuting the variables) and a
non-degenerate linear substitution x ↦ ux + α1y + β1z, y ↦ vx + α2y + β2z, z ↦ wx + α3y + β3z such
that the leading monomials m1,m2,m3 of the new space of defining relations satisfy

{m1,m2,m3}∈{{xy,xz, yz},{xy,xz, zy}, {xy, zx, zy}, {yx, yz, xz}, {yx, yz, zx}, {yx, zy, zx}}. (7.1)

Note that we do not assume that m1 >m2 >m3 here. Since xx is the biggest degree 2 monomial,

xx is absent in each of rj after the substitution. (7.2)
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Since the order satisfies x > y > z and is compatible with multiplication,

four biggest degree 2 monomials are either xx,xy, yx,xz or xx,xy, yx, zx (7.3)

(not necessarily in this order).
Case 1: rj are given by (1). In this case (7.2) reads 0 = uw = w2 = u2 + v2. Since our substitution

is non-degenerate (u, v,w) ≠ (0,0,0). By scaling x (this does not effect the leading monomials), we
can assume that u = 1. Then w = 0 and v2 = −1. The following table gives the coefficients in rj in
front of certain monomials:

xx xy yx xz zx yy

r1 0 α1 + vα2 α1 + vα2 β1 + vβ2 β1 + vβ2 α2
1 + α

2
2

r2 0 α2 − vα1 −vα1 −α2 β2 − vβ1 −vβ1 − β2 α2
3

r3 0 α3 iα3 β3 iβ3 α1α3(1 + i)
Using the fact that our sub is non-degenerate, we easily see that if α1 + vα2 ≠ 0, then the both 3× 3

matrices of coefficients of xy, yx and xz and of xy, yx and zx are non-degenerate. By (7.3), in the
case α1 + vα2 ≠ 0, the set of leading monomials of the relations is either {xy, yx,xz} or {xy, yx, zx},
contradicting (7.1). Hence we must have α1 + vα2 = 0. Using the fact that v = ±i, we see that the
above table takes the following form:

xx xy yx xz zx yy

r1 0 0 0 β1 + vβ2 β1 + vβ2 0

r2 0 0 0 β2 − vβ1 −vβ1 − β2 α2
3

r3 0 α3 iα3 β3 iβ3 α1α3(1 + i)
Then α3 ≠ 0 (otherwise both xy and yx are not among the leading monomials, contradicting (7.1))

and β1+vβ2 ≠ 0 (otherwise both xz and zx are not among the leading monomials, contradicting (7.1)).
Now, one easily sees that the yy-column of the above matrix is not in the linear span of any of the
following pair of columns: xy and xz, xy and zx, yx and xz or yx and zx. Since yy > yz, yy > zy and
yy > zz, it follows that yy is among the leading monomials of the relations, which contradicts (7.1).
This contradiction completes the proof in Case 1.

Case 2 rj are given by (2). In this case (7.2) reads

0 = uv + θvw + θ2uw = uv + vw + θ2uw = uv + vw + θuw,

which is equivalent to uv = vw = uw = 0. Hence exactly two of u, v and w are zero and we can normalize
to make the third equal 1. Since cyclic permutations of the variables composed with appropriate
scalings provide automorphisms of our algebra, we can without loss of generality assume that u = 1
and v = w = 0. The following table gives the coefficients in rj in front of certain monomials:

xx xy yx xz zx yy

r1 0 0 α2 + θ
2α3 0 β2 + θ

2β3 α1α2 + θα2α3 + θ
2α1α3

r2 0 α2 + θ
2α3 0 β2 + θ

2β3 0 α1α2 +α2α3 + θ
2α1α3

r3 0 θα3 α2 θβ3 β2 α1α2 +α2α3 + θα1α3

Using the fact that our sub is non-degenerate, we easily see that if α2+θ
2α3 ≠ 0, then the both 3×3

matrices of coefficients of xy, yx and xz and of xy, yx and zx are non-degenerate. By (7.3), in the
case α2 + θ

2α3 ≠ 0, the set of leading monomials of the relations is either {xy, yx,xz} or {xy, yx, zx},
contradicting (7.1). Hence we must have α2 + θ

2α3 = 0. The above table takes the following form.

xx xy yx xz zx yy

r1 0 0 0 0 β2 + θ
2β3 −θα2

3

r2 0 0 0 β2 + θ
2β3 0 −θ2α2

3

r3 0 θα3 α2 θβ3 β2 ∗
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Now unless α3(β2 + θ2β3) = 0, all six 3 × 3 matrices of coefficients of xy, xz and yy; yx, xz and yy;
xy, zx and yy; yx, zx and yy; xy, xz and zx; yx, xz and yy are non-degenerate. The latter means that
either xz and zx or yy are among the leading monomials of the defining relations, which contradicts
(7.1). Thus we must have α3(β2 + θ2β3) = 0 and α2 + θ

2α3 = 0, which contradicts the fact that our
substitution is non-degenerate. This contradiction completes the proof in Case 2.

Case 3: rj are given by (3).
Since this class of algebras is closed (up to an isomorphism) with respect to passing to the op-

posite multiplication and the two options in (7.3) reduce to one another via passing to the opposite
multiplication, for the rest of the proof we can assume that

four biggest degree 2 monomials are xx,xy, yx,xz. (7.4)

In the current case (7.2) reads 0 = u2 +2vw +aw2 = v2 +w2. Since (u, v,w) ≠ (0,0,0), we have v ≠ 0,
which allows to normalize: v = 1. Then w ∈ {i,−i} and a = 2w − u2. Since a2 + 4 ≠ 0 and w2 = −1, we
have u ≠ 0. It is easy to see that we can split our substitution into two consecutive substitutions: first,
x↦ ux, y ↦ x+y, z ↦ wx+z and, second, x ↦ x+α1y+β1z, y ↦ α2y+β2z, z ↦ α3y+β3z (αj and βj are
not the same as before). After the first substitution, the defining relations are spanned by r1 = xz−zx,
r2 = u2(xz+zx)+w(yz +zy)+yy−(1+wu2)zz and r3 = u2(xy+yx)+(u2−w)yy+(yz+zy)+wzz. The
following table gives the coefficients in rj in front of certain monomials after the second substitution:

xx xy yx xz zx

r1 0 α3 −α3 β3 −β3
r2 0 u2α3 u2α3 u2β3 u2β3
r3 0 u2α2 u2α2 u2β2 u2β2

Using the fact that our sub is non-degenerate, we easily see that if α3 ≠ 0, then the 3 × 3 matrix
of coefficients of xy, yx and xz is non-degenerate. By (7.4), both xy and yx are among the leading
monomials, contradicting (7.1). Hence we must have α3 = 0. The above table with the extra yy-column
takes the following form:

xx xy yx xz zx yy

r1 0 0 0 β3 −β3 0

r2 0 0 0 u2β3 u2β3 α2
2

r3 0 u2α2 u2α2 u2β2 u2β2 (u2 −w)α2
2

Same way as in Case 2, it follows that unless α2β3 = 0, either xz and zx or yy feature among
the leading monomials. Thus α2β3 = α3 = 0, which contradicts the fact that our substitution is
non-degenerate. This contradiction completes the proof in the final Case 3.

Now we deal with the possibilities for the Jordan normal form of the twist for F ∈ P∗3,3 one by one.

Lemma 7.4. Let G ∈ P∗3,3 be non-degenerate, M ∈ GL3(K) be the unique matrix providing the twist for

G and assume that A = AG is non-potential. Assume also that the normal Jordan form of M consists

of one block. If A is non-proper, then A is isomorphic to AF with F from (T20) of Theorem 1.7 with

a3 = 1 ≠ a. If A is proper, then A is isomorphic to AF for F from (T3) or (T4) of Theorem 1.7.
Moreover, algebras AF for F from (T3) and (T4) are pairwise non-isomorphic.

Proof. By Remark 1.3, we can without loss of generality assume that

M =
⎛⎜⎝

α 1 0
0 α 1
0 0 α

⎞⎟⎠ with α ∈ K∗.
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If G =
3

∑
j,k,m=1

aj,k,mxjxkxm, then the inclusion G ∈ P3,3(M) is equivalent to the following system of

linear equations on the coefficients of G:

aj,k,3 = αa3,j,k, aj,k,2 = αa2,j,k + a3,j,k and aj,k,1 = αa1,j,k + a2,j,k for 1 ⩽ j, k ⩽ 3. (7.5)

One easily sees that (7.5) has only zero solution unless α3 = 1. This leaves two cases to consider:
α3 = 1 ≠ α and α = 1.

If α3 = 1 ≠ α, solving (7.5), we see that G belongs to P3,3(M) precisely when

G = sx2z + α2szx2 +αsxzx −α2sxy2 − sy2x − αsyxy + tx2y + α(αt − s)yx2 +α(t − s)xyx + αt−s
α2−1

x3

with s, t ∈ K. Since G is non-degenerate, s ≠ 0. By scaling, we can turn s into 1. Now the space
of quadratic relations of A = AG is spanned by xx, xy + α2yx and xz + αzx − α2yy + pyx, where
p = (α − α2)t − α. Now the substitution x → x, y → y and z → vz + uy with appropriate u ∈ K and
v ∈ K∗ turns the defining relations of A into xx, xy + α2yx and xz + αzx + yy. Thus A is isomorphic
to AF with F from (T20) of Theorem 1.7 with a = α2. By Lemma 7.1, it is non-proper.

It remains to consider the case α = 1. Solving (7.5), we see that

P3,3(M) = {Gs,t,r = sxyz⟲−sxzy⟲+tx2z⟲−sxzx+s−t2 xy2
⟲
−syxy+tx2y+ t−s

2
xyx+rx3 ∶ s, t, r ∈ K}

Clearly, Gs,t,r is non-degenerate precisely when (s, t) ≠ (0,0). By Remark 1.3, two such twisted
potentials are equivalent if and only if they are obtained from one another by a linear substitution
with the matrix, whose transpose commutes with M . That is, we have to look only at substitutions
x → ux, y → u(vx + y), z → u(wx + vy + z) with u ∈ K∗, v,w ∈ K. A direct computation shows that
this sub transforms Gs,t,r to Gs′,t′,r′ with s′ = u3s, t′ = u3t and r′ = u3(r + (3t − s)(w + 1

2
v − 1

2
v2)). If

s = 0, Gs,t,r is cyclicly invariant and therefore A is potential. Since this contradicts the assumptions,
s ≠ 0. Now the above observation shows that Gs,t,r is equivalent to precisely one of the following:
G1,t,0 for t ≠ 1

3
or G1,1/3,r for r ∈ K. Swapping of x and z brings the latter to the forms (T3) or

(T4) of Theorem 1.7. By Lemma 7.2, these algebras are proper. Since we already know that these
twisted potentials are pairwise non-equivalent, Lemma 1.4 implies that the corresponding algebras are
pairwise non-isomorphic.

Lemma 7.5. Let G ∈ P∗3,3 be non-degenerate, M ∈ GL3(K) be the unique matrix providing the twist

for G and assume that A = AG is non-potential and the normal Jordan form of M consists of two

blocks. If A is non-proper, then A is isomorphic to AF with F from (T20) of Theorem 1.7. If A is

proper, then A is isomorphic to AF for F from (T5–T8) of Theorem 1.7. Moreover, algebras AF for F

with different labels from (T5–T8) are non-isomorphic and the isomorphism conditions of Theorem 1.7
concerning each of (T5–T8) are satisfied.

Proof. By Remark 1.3, we can without loss of generality assume that

M =
⎛⎜⎝

α 1 0
0 α 0
0 0 β

⎞⎟⎠ with α,β ∈ K∗.

If G =
3

∑
j,k,m=1

aj,k,mxjxkxm, then the inclusion F ∈ P3,3(M) is equivalent to the following system of

linear equations on the coefficients of G:

aj,k,3 = βa3,j,k, aj,k,2 = αa2,j,k and aj,k,1 = αa1,j,k + a2,j,k for 1 ⩽ j, k ⩽ 3. (7.6)
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One easily sees that (7.6) has only zero solution if 1 ∉ {α,β,α2β,αβ2}. Furthermore, P3,3(M) contains
no non-degenerate elements unless α2β = 1. Indeed, if α2β ≠ 1, y does not feature at all in members
of P3,3(M). Thus for the rest of the proof, we can assume that α2β = 1. That is, β = α−2. By (7.6),

Fs,t = s(xyz+αyzx+α2zxy−αxzy−yxz−α2zyx−xzx) + t(xxz+α2zxx+αxzx) ∈ P3,3(M) for s, t ∈ K.

Furthermore, there are no other elements in P3,3(M) unless α3 = 1 or α2 = 1. If s = 0, Fs,t is degenerate.
Thus, we can assume that s ≠ 0. By scaling, we can make s = 1. By Remark 1.3, two twisted potentials
F1,t and F1,t′ are equivalent precisely when they are obtained from one another by a linear substitution
with the matrix, whose transpose commutes with M . That is, in the case α ≠ β (equivalently, α3 ≠ 1),
we have to look only at substitutions x → ux, y → u(vx + y), z → wz with u,w ∈ K∗, v ∈ K. A direct
computation shows that this sub transforms F1,t to F1,t′ if and only if t = t′. That is, in the case
α3 ≠ 1, F1,t are pairwise non-equivalent. Swapping of x and z turns F1,a into

Ga,b = zyx + byxz + b
2xzy − bzxy − yzx − b2xyz + (ab − 1)zxz + azzx + ab2xzz with a, b ∈ K, b3 ≠ 1,

where b = α and a = t, which is precisely the twisted potential from (T5) with b3 ≠ 1. By Lemma 7.2,
these algebras are proper. Since we already know that the corresponding twisted potentials are non-
equivalent, Lemma 1.4 implies that the algebras themselves are pairwise non-isomorphic.

It remains to consider the cases α = −1, α = 1 and α3 = 1 ≠ α. If α = −1, then β = 1. By (7.6),

P3,3(M) = {Fs,t,r = s(xyz−yzx+zxy+xzy−yxz−zyx−xzx) + t(xxz+zxx+xzx) + rzzz ∶ s, t, r ∈ K}.
Since Fs,t,r is degenerate for s = 0, we can assume that s ≠ 0. If r = 0, we are back to the previous
considerations (with α = −1). Thus we can assume that r ≠ 0. By scaling, we can make s = r = 1,
which leaves us with F1,t,1. Same argument as above shows that F1,t,1 are pairwise non-equivalent.
Swapping of x and y turns F1,a,1 into

Ga = yxz − xzy + zyx + yzx − xyz − zxy + (a − 1)yzy + ayyz + azyy + zzz with a ∈ K,

which is precisely the twisted potential from (T6). By Lemma 7.2, the corresponding algebras are
proper. Since we already know that these twisted potentials are pairwise non-equivalent, Lemma 1.4
implies that the corresponding algebras are pairwise non-isomorphic.

Next, consider the case α3 = 1 ≠ α. Then β = α. Solving (7.6), we see that P3,3(M) consists of
Fs,t,p,q = s(xyz +αyzx + α2zxy −αxzy − yxz − α2zyx − xzx) + p(xxz +α2zxx + αxzx)
+t(xzz + α2zxz + αzzx) + q(xxy +α2yxx + αxyx + α2

1−αxxx) with s, t, p, q ∈ K.

The only linear substitutions with the matrix, whose transpose commutes with M have the form
x→ ux, y → vx+uy+wz, z → cz+dx with u, c ∈ K∗ and v,w, d ∈ K. A direct computation shows that this
substitution transforms Fs,t,p,q to Fs′,t′,p′,q′ with s′ = su2c, t′ = tuc2+s(1−α)ucw, q′ = qu3+s(α2

−α)u2d
and p′ = pu2c + qu2w − tαudc + s(α2

− α)udw. If s = 0 to begin with, a substitution of the above form
allows to kill p (make p′ = 0) unless q = t = 0. In the latter case Fs,t,p,q = F0,0,p,0 is degenerate. This
leaves F0,t,0,q. If tq = 0, then again F is degenerate. Thus tq ≠ 0. A sub of the above form then allows
to turn t and q into 1. For G = F0,1,0,1, the space of defining relations is spanned by xx, xz +α2zx and
xy + αyx + zz. Swapping y and z now provides an isomorphism of A and an algebra from (T20) with
a = α2. It remains to consider the case s ≠ 0. A substitution of the above form now can be chosen in
such a way that s′ = 1 and q′ = t′ = 0. Thus it remains to consider the case G = F1,0,a,0 with a ∈ K. It
is easy to see that the above substitutions can not transform F1,0,a,0 into F1,0,a′,0 with a ≠ a′: F1,0,a,0

are pairwise non-equivalent. Swapping x and z turns F1,0,a,0 into

G = zyx +αyxz + α2xzy −αzxy − yzx − α2xyz + (αa − 1)zxz + azzx + α2axzz,
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which are exactly the twisted potentials from (T5) with b3 = 1 ≠ b.
It remains to consider the case α = β = 1. By (7.6),

P3,3(M) = {Fs,t,p,q,r = s(xyz⟲−xzy⟲−xzx) + pxxz⟲ + txzz⟲ + qxxx + rzzz ∶ s, t, p, q, r ∈ K}.
As above, the only linear substitutions with the matrix, whose transpose commutes with M have the
form x → ux, y → vx + uy + wz, z → cz + dx with u, c ∈ K∗ and v,w, d ∈ K. A direct computation
shows that this substitution transforms Fs,t,p,q,r to Fs′,t′,p′,q′,r′ with s′ = su2c, t′ = tuc2 + rc2d, q′ =
qu3 + rd3 + (3p − s)u2d + 3tud2, p′ = pu2c + 2tudc + rcd2 and r′ = rc3. If s = 0, Fs,t,p,q,r is cyclicly
invariant and therefore the corresponding algebra is potential. Thus we can assume s ≠ 0. If r ≠ 0, we
can find a substitution of the above shape such that t′ = 0 and s′ = r′ = 1. Thus we have to consider
F1,0,p,q,1. Analyzing the action of the above substitutions on these, wee see that F1,0,p,q,1 and F1,0,p′,q′,1

are equivalent if and only if p′ = p and q′ = ±q. After swapping x and y, we arrive to twisted potentials

Ga,b = xzy
⟲
− xyz⟲ − yzy + ayyz⟲ + by3 + z3

with a, b ∈ K, which are precisely the twisted potentials from (T7). By Lemma 7.2, the corresponding
twisted potential algebras are proper. Since we already know when their twisted potentials are equiv-
alent, Lemma 1.4 implies the isomorphism condition for (T7). It remains to consider the case s ≠ 0
and r = 0. The case t = 0 yields algebras from (T5) (with b = 1, a ≠ 0) (after a scaling and swapping
x with z). Thus we can assume that t ≠ 0. Now we can easily find a substitution of the above form
for which s′ = t′ = 1 and r′ = p′ = 0. Thus we have to consider F1,1,0,q,0. Analyzing the action of the
above substitutions on these, wee see that F1,1,0,q,0 and F1,1,0,q′,0 are pairwise non-equivalent. After
swapping x and y, we arrive to twisted potentials

Ga = xzy⟲ − xyz⟲ − yzy + yzz⟲ + ay3

with a ∈ K. If a = 0, we are back to (T5). Thus we can assume that a ≠ 0. Now we have precisely the
twisted potentials from (T8). By Lemma 7.2, the corresponding algebras are proper. Since we already
know that their twisted potentials are pairwise non-equivalent, Lemma 1.4 implies these algebras are
pairwise non-isomorphic.

Lemma 7.6. Let G ∈ P∗3,3 be non-degenerate, M ∈ GL3(K) be the unique matrix providing the twist

for G and assume that A = AG is non-potential. Assume also that M is diagonalizable and has

determinant 1. If A is non-proper, then A is isomorphic to AF with F from (T20) of Theorem 1.7. If

A is proper, then A is isomorphic to AF for F from (T1–T2) or (T9–T10) of Theorem 1.7 with different

labels corresponding to non-isomorphic algebras. Furthermore, the relevant isomorphism statements

of Theorem 1.7 hold.

Proof. By Remark 1.3, we can without loss of generality assume that

M =
⎛⎜⎝

α 0 0
0 β 0
0 0 γ

⎞⎟⎠
with α,β, γ ∈ K∗. If G =

3

∑
j,k,m=1

aj,k,mxjxkxm, then the inclusion F ∈ P3,3(M) is equivalent to the

following system of linear equations on the coefficients of G:

aj,k,3 = γa3,j,k, aj,k,2 = βa2,j,k and aj,k,1 = αa1,j,k for 1 ⩽ j, k ⩽ 3. (7.7)

Since M has determinant 1, we have αβγ = 1. Since we are not interested in potentials, (α,β) ≠ (1,1).
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Analyzing (7.7), we see that

Fs,t = s(xyz +αyzx +αβzxy) + t(yxz + βxzy + αβzyx) ∈ P3,3(M) for s, t ∈ K.

Furthermore, there are no other elements in P3,3(M) unless either 1 is among the eigenvalues or at
least two of the eigenvalues are equal.

If s = t = 0, then Fs,t is degenerate. If st = 0 and (s, t) ≠ (0,0), then the corresponding twisted
potential algebra is easily seen to be isomorphic to the algebra from (P12) and therefore is potential.
Thus we can assume that st ≠ 0. By scaling, we can make s = 1. Then G = F1,t acquires the form
(T1) with a = t, b = t

α
and c = βt. Since (α,β) ≠ (1,1), we have the condition (a − b, a − c) ≠ (0,0) of

(T1). By Lemma 7.2, the algebras from (T1) are proper. By Lemma 1.4, two algebras from (T1) are
isomorphic precisely when their twisted potentials are equivalent. Using Remark 1.3, we see that if
the eigenvalues of M are pairwise distinct, then the only substitutions transforming a corresponding
F from (T1) to another F from (T1) are scalings composed with permutations of the variables. The
isomorphism condition in (T1) is now easily verified. The case when some of the eigenvalues coincide
leads to a bigger group of eligible substitutions, however the result in terms of isomorphic members
of (T1) is easily seen to be the same.

It remains to consider two options for the triple (α,β, γ) of the eigenvalues of M to which all the
remaining options are reduced by a permutation of the variables: (α,α−1,1) and (α−2, α,α) with
α ∈ K∗, α ≠ 1.

Consider the case when the eigenvalues of M are (α,α−1,1). Solving (7.7), we see that

Fs,t,r = s(xyz + αyzx + zxy) + t(yxz + α−1xzy + zyx) + rz3 ∈ P3,3(M) for s, t, r ∈ K.

Furthermore, there are no other elements in P3,3(M) unless α = −1 (the case α = 1 is already off the
table). If r = 0, we fall back into the previous case. Thus we can assume r ≠ 0. If s = t = 0, Fs,t,r

is degenerate (and potential to boot). Thus (s, t) ≠ (0,0). If st = 0, a scaling (if t = 0) or a scaling
composed with the swap of x and y turns Fs,t,r into xyz + αyzx + zxy + z3. Now the corresponding
twisted potential algebra is easily seen to be isomorphic to the potential algebra from (P14). Hence
str ≠ 0 and by a scaling we can turn s and r into 1, leaving us with F1,t,1, which is a scalar multiple
of the twisted potential from (T2) with a = t

α
and b = t. By Lemma 7.2, the algebras from (T2) are

proper. By Lemma 1.4, algebras from (T2) are isomorphic if and only if their twisted potentials are
equivalent. By Remark 1.3, this happens precisely when they can be transformed into one another by
a linear substitution with the matrix whose transpose commutes with M . Now it is easy to verify the
isomorphism condition from (T2).

Next, consider the case when the eigenvalues of M are (α−2, α,α). Solving (7.7), we see that

Fs,t,p,q = s(xyz + α−2yzx + α−1zxy) + t(xzy +α−2zyx + α−1yxz)
+p(xyy +α−2yyx + α−1yxy) + q(xzz +α−2zzx + α−1zxz) ∈ P3,3(M) for s, t, p, q ∈ K.

Furthermore, there are no other elements in P3,3(M) unless α = −1 or α3 = 1 ≠ α (again, the case
α = 1 is off). Applying Lemma 2.7 to syz + tzy + pyy + qzz, we see that by a linear substitution, which
leaves both x and the linear span of y, z invariant, (s, t, p, q) can be transformed into exactly one of
the following forms: (0,0,0,0), (0,0,0,1), (1, t,0,0) with t ∈ K or (1,−1,0,1). All cases except for the
last one either give a degenerate twisted potential or one that has been already dealt with earlier in
this proof. This leaves us with (s, t, p, q) = (1,−1,0,1):

G = xyz + α−2yzx +α−1zxy − xzy −α−2zyx − α−1yxz + xzz + α−2zzx + α−1zxz,

which is the twisted potential from (T9) with a = α. By Lemma 7.2, these twisted potentials are
proper. Using Lemma 1.4, as above on a number of occasions, we see that the corresponding twisted
potential algebras are pairwise non-isomorphic.
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At this points it remains to deal with three specific triples of eigenvalues of M : (−1,−1,1) and(α,α,α) with α3 = 1 ≠ α. We start with the case when the eigenvalues of M are (−1,−1,1). Solving
(7.7), we see that P3,3(M) is the space of

Fs,t,p,q,r = s(xyz − yzx + zxy) + t(yxz − xzy + zyx) + p(xxz − xzx + zxx) + q(yyz − yzy + zyy) + rzzz
with s, t, p, q, r ∈ K. Applying Lemma 2.7 to sxy+ tyx+pxx+ qyy, we see that by a linear substitution,
which leaves both z and the linear span of x, y invariant, (s, t, p, q) can be transformed into exactly one
of the following forms: (0,0,0,0), (0,0,0,1), (1, t,0,0) with t ∈ K or (1,−1,0,1). If either r = 0 or any
of the first three of the last four cases occurs, then either our F is degenerate or it is a twisted potential
that has been already dealt with earlier in this proof (up to a possible permutation of variables). An
additional scaling allows to turn r into 1 leaving us with

G = xyz − yzx + zxy − yxz + xzy − zyx + yyz − yzy + zyy + zzz,

which is the twisted potential from (T10). By Lemmas 7.2, the corresponding twisted potential algebra
is proper.

This leaves us with the final case when the eigenvalues of M are (α,α,α) with α3 = 1 ≠ α. For the
sake of convenience, we use the following notation: uvw⟲α = uvw + αvwu + α2wuv. Note that u3⟲α = 0
since 1 + α + α2 = 0. Solving (7.7), we see that

Fu = u1x
2y⟲α + u2x

2z⟲α + u3y
2x⟲α + u4y

2z⟲α + u5z
2x⟲α + u6z

2y⟲α + u7xyz
⟲α
+ u8xzy

⟲α

for u = (u1, . . . , u8) ∈ K8 comprise P3,3(M). Since M is central in GL3(K), every linear substitution
preserves this general form of a twisted potential, changing the coefficients however. First, we shall
verify that there always is a linear substitution, which kills u1 and u2 (=turns both of them into 0). If
u5 = u6 = 0, then swapping x and z achieves the objective. Thus we can assume that (u5, u6) ≠ (0,0).
If u5 = 0, the substitution x → x, y → y + x, z → z makes both u5 and u6 non-zero. If u6 = 0, the
substitution x → x + y, y → y, z → z makes both u5 and u6 non-zero. Thus we can assume u5u6 ≠ 0.
Now the substitution x → x, y → y, z → z + u2

u5
x + u4

u6
y is easily seen to kill both u2 and u4, while

leaving u5 and u6 unchanged. Thus we can assume that u2 = u4 = 0 and u5u6 ≠ 0. If u1 = 0, the job
is already done. Thus we can assume u1 ≠ 0. If u3 = 0, then swapping x and y we turn both u1 and
u2 into zero. Thus we can assume that u3 ≠ 0. Performing a scaling, we can turn both u1 and u3
into 1, while the conditions u2 = u4 = 0 and u5u6 ≠ 0 remain unaffected. Thus we have u1 = u3 = 1,
u2 = u4 = 0 and u5u6 ≠ 0. Using the fact that K is algebraically closed, we can find s, t ∈ K such that
w1 = 1 −α2s + (u8 +α2u7)t + u6t2 = 0 and w2 = −u6st− u5t+ (u7 +α2u8) = 0. Indeed, the first equation
amounts to expressing s in terms of t. Plugging this into the second equation yields a genuinely
cubic equation on t: the t3-coefficient is −α2u6 ≠ 0. Now the substitution x → x, y + sx, z → z + tx

transforms (u1, u2) into (w1,w2) thus killing both u1 and u2. That is, no matter the case, a linear
substitution kills both u1 and u2. By Lemma 2.7 applied to f = u3yy + u5zz + u7αyz + u8αzy, there
is a linear substitution on the variables y, z turning f into (exactly) one of the following four forms:
0, zz, yz − azy with a ∈ K or yz − zy + zz. The same substitution augmented by x → x transforms Fu

into one of the following forms:

G1 = py2z⟲α + qz2y⟲α;
G2 = z2x⟲α + py2z⟲α + qz2y⟲α;
G3 = yzx⟲α − azyx⟲α + py2z⟲α + qz2y⟲α;
G4 = yzx⟲α − zyx⟲α + z2x⟲α + py2z⟲α + qz2y⟲α

with a, p, q ∈ K.

We can disregard G1, since it is degenerate. The twisted potential G2 is degenerate if p = 0. Thus we
can assume that p ≠ 0. The substitution x → x − qy, y → y, z → z kills q in G2. A scaling turns p into
1 yielding the twisted potential z2x⟲α + y2z⟲α, which falls into (T20) after a permutation of variables.
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As for G3, if a ≠ α, a substitution x → x + sy, y → y, z → z with an appropriate s ∈ K kills p, while if
a ≠ α2, a substitution x → x + sz, y → y, z → z with an appropriate s ∈ K kills q. In any case, we can
assume that pq = 0, which lands us (up to a permutation of variables) into cases already considered
above in this very proof. Finally, a substitution x → x + sy + tz, y → y, z → z with an appropriate
s, t ∈ K, applied to G4, kills both p and q and again we arrive to a situation already dealt with earlier.
Annoyingly, the last case required quite a bit of work while producing no extra twisted potentials.

Lemma 7.7. Let G ∈ P∗3,3 be non-degenerate, M ∈ GL3(K) be the unique matrix providing the twist

for G and assume that A = AG is non-potential. Assume also that M is diagonalizable and has

determinant different from 1. If A is non-proper, then A is isomorphic to AF with F from (T19–T21)
of Theorem 1.7. If A is proper, then A is isomorphic to AF for F from (T11–T18) of Theorem 1.7
with different labels corresponding to non-isomorphic algebras. Furthermore, the relevant isomorphism

statements of Theorem 1.7 hold.

Proof. Applying Remark 1.3 in the same way as in the last proof, we can assume that M is diagonal
with α,β, γ ∈ K∗ on the main diagonal. Since the determinant of M is different from 1, we have
αβγ ≠ 1. Analyzing (7.7), we see that P3,3(M) contains only degenerate twisted potentials unless the
eigenvalues of M in some order are (α,α−2,1) with α ≠ 1, or (α,−α,α−2), or (α,α−2, α4) with α3 ≠ 1
(everywhere α ∈ K∗).

First, assume that the eigenvalues of M are (α,α−2,1) with α ≠ 1. Solving (7.7), we see that

Fs,t = s(xxy + αxyx +α2yxx) + tz3 ∈ P3,3(M) for s, t ∈ K.

Furthermore, there are no other elements in P3,3(M) unless α4 = 1 or α3 = 1. If st = 0, then Fs,t

is degenerate. Thus we can assume that st ≠ 0. By scaling, we can make s = t = 1. That is, G is
equivalent to F1,1, which falls into (T19) and is non-proper according to Lemma 7.1.

Assume now that the eigenvalues of M are (α,−α,α−2). According to (7.7),

Fs,t = s(xxz +αxzx +α2zxx) + t(yyz −αyzy + α2zyy) ∈ P3,3(M) for s, t ∈ K.

Furthermore, there are no other elements in P3,3(M) unless α6 = 1. If st = 0, then Fs,t is degenerate
and we can assume that st ≠ 0. By scaling, we can make s = t = 1. That is, G is equivalent to
F1,1, which falls into (T11) with a = α. By Lemma 7.2, the corresponding algebras are proper. Since
the isomorphic proper twisted potential algebras must have conjugate twists, the isomorphism of two
algebras from (T11) corresponding to parameters a and a′ is only possible if a′ = a or a′ = −a. In the
latter case the swap of x and y provides a required isomorphism.

Next, assume that the eigenvalues of M are (α,α−2, α4) with α3 ≠ 1. Solving (7.7), we see that

Fs,t = s(xxy + αxyx +α2yxx) + t(α4yyz + α2yzy + zyy) ∈ P3,3(M) for s, t ∈ K.

Furthermore, there are no other elements in P3,3(M) unless α6 = 1 or α4 = 1 or α9 = 1. If st = 0,
then Fs,t is degenerate and we can assume that st ≠ 0. By scaling, we can make s = t = 1. That is,
G is equivalent to F1,1, which falls into (T20) after a permutation of variables. By Lemma 7.1, the
corresponding algebra is non-proper.

It remains to deal with few specific triples of eigenvalues of M : (−1,1,1), (α,α,−α) with α3 = 1 ≠ α,(α,α,1) with α3 = 1 ≠ α, (α,−1,1) with α2 = −1 and (α,α4, α7) with α9 = 1 ≠ α3. This are the triples
for which there are more solutions than in the generic cases considered above.

First, assume that the eigenvalues of M are (α,α,1) with α3 = 1 ≠ α. By (7.7),

P3,3(M) = {Fs,t,r = s(xxy + αxyx +α2yxx) + t(yyx +αyxy + α2xyy) + rz3 ∶ s, t, r ∈ K}.
One easily sees that a linear substitution leaving both z and the space spanned by x and y invariant
can be chosen to kill t. This places the twisted potential within the framework of the very first case
considered in this proof.
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Next, assume that the eigenvalues of M are (α,α,−α) with α3 = 1 ≠ α. Solving (7.7), we see that

Fs,t,p,q = s(xxy+αxyx+α2yxx)+t(yyx+αyxy+α2xyy)+p(zzx−αzxz+α2xzz)+q(zzy−αzyz+α2yzz)
with s, t, p, q ∈ K comprise the space P3,3(M). One can easily verify that a linear substitution leaving
both z and the space spanned by x and y invariant can be chosen to kill either t and p or s and p. In
both cases we fall into situations already dealt with in this proof.

Now assume that the eigenvalues of M are (α,−1,1) with α2 = −1. According to (7.7),

P3,3(M) = {Fs,t,r = s(xxy +αxyx − yxx) + t(yyz − yzy + zyy) + rz3 ∶ s, t, r ∈ K}.
If rt = 0, we are back to the already considered cases. If s = 0, our twisted potential is degenerate.
Thus we can assume str ≠ 0. By a scaling we can make s = t = r = 1. That is, G is equivalent to F1,1,1.
By swapping x and z, we see that G is equivalent to the twisted potential

F = zzy + αzyz − yzz + yyx − yxy + xyy + x3 with α = ±i,

which are the two twisted potentials from (T12) and (T13). By Lemma 7.2, they are proper.
Next, assume that the eigenvalues of M are (α,α4, α7) with α9 = 1 ≠ α3. By (7.7),

P3,3(M) = {Fs,t,r = s(xxz+αxzx+α2zxx) + t(yyx+α4yxy+α8xyy) + r(zzy+α7zyz+α5yzz) ∶ s, t, r ∈ K}.
If str = 0, we are back to the already considered cases and we know that the corresponding twisted
potential algebra is non-proper. If str ≠ 0, by a scaling we can make s = t = r = 1. Thus G in this case
is equivalent to F1,1,1. An easy computation shows that this time the corresponding twisted potential
algebra is proper. Note that the assumption α9 = 1 ≠ α3 is the same as α ∈ {ξ9, ξ29 , ξ49 , ξ59 , ξ79 , ξ89}.
Since cyclic permutations of x, y and z provide equivalence of F1,1,1 for α ∈ {ξ9, ξ49 , ξ79} as well as for
α ∈ {ξ29 , ξ59 , ξ89}, we have just two twisted potentials to deal with in this case: F1,1,1 for α = ξ9 and
F1,1,1 for α = ξ29 . By Lemma 7.2, the algebras in (T14) and (T15) are proper and their respective
twists have eigenvalues ξ9, ξ

4
9 , ξ

7
9 and ξ29 , ξ

5
9 , ξ

8
9 . Thus they are isomorphic to F1,1,1 for α = ξ9 and α = ξ29

respectively.
It remains to deal with the final case when the eigenvalues of M are (−1,1,1). By (7.7),

P3,3(M) = {Gw = w1y
3
+w2y

2z
⟲
+w3yz

2⟲
+w4z

3
+w5(x2y−xyx+yx2) +w6(x2z−xzx+zx2) ∶ w ∈ K6}.

If w5 = w6 = 0, Gw is degenerate. Thus we can assume that (w5,w6) ≠ (0,0). Now it is easy to see that
a substitution leaving both x and the linear span of y, z intact preserves the form of Gw and turns(w5,w6) into (0,1). Now we have only to consider

Fu = u1y3 + u2y2z
⟲
+ u3yz

2⟲
+ u4z

3
+ x2z − xzx + zx2 with u = (u1, . . . , u4) ∈ K4.

The only substitutions which preserve this general shape of a twisted potential are given by x → sx,
z → s−2z, y → py + qz with s, p ∈ K∗, q ∈ K. This substitution transforms Fu into Fu′ with u′1 = p

3u1,
u′2 = p

2s−2u2 + p
2qu1, u

′
3 = ps

−4u3 + 2pqs
−2u2 + pq

2u1 and u′4 = s
−6u4 + 3s

−4qu3 + 3s
−2q2u2 + q

3u1. Now
it is easy to see that a general Fu can be transformed into one of the following forms F1,0,1,a with
a ∈ K, F1,0,0,1, F1,0,0,0, F0,1,0,1, F0,1,0,0, F0,0,1,0, F0,0,0,1 and F0,0,0,0 among which there are no equivalent
ones except for F1,0,1,a being equivalent to F1,0,1,−a for a ∈ K. Among these F0,0,0,1 and F0,0,0,0 are
degenerate, while F0,1,0,0, F0,0,1,0 and F1,0,0,0 fall into the cases already considered in this proof. This
leaves us to deal with F1,0,1,a with a ∈ K, F1,0,0,1 and F0,1,0,1. First, F1,0,0,1 = y3 + z3 + x2z − xzx + zx2

is non-proper and features as (T21). Next,

G = F0,1,0,1 = y2z
⟲
+ z3 + x2z − xzx + zx2
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features as (T16) and is proper by Lemma 7.2. Since F1,0,1,a and F1,0,1,−a are equivalent, the case of

G = F1,0,1,a with a2+4 = 0 reduces to G = F1,0,1,2i = y3+yz2
⟲
+2iz3 +x2z−xzx+zx2. The substitution

x→ z, z → ix, y → x + y followed by an appropriate scaling turns the latter into the twisted potential

y3 +xy2
⟲
+ z2x− zxz +xz2 of (T17), which is proper by Lemma 7.2. This leaves only G = F1,0,1,a with

a2 + 4 ≠ 0:
G = F1,0,1,a = y3 + yz2

⟲
+ az3 + x2z − xzx + zx2 with a ∈ K, a2 + 4 ≠ 0.

The latter are twisted potentials from (T18). By Lemmas 7.2 they are proper. Knowing which of
them are equivalent justifies the isomorphism condition in (T18).

Finally, the absence of isomorphism for algebras with different labels follows from the fact that
proper twisted potential algebras with non-conjugate twist can not be isomorphic.

7.1 Proof of Theorem 1.7

Theorem 1.7 is just an amalgamation of Lemmas 3.10, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7.

8 Concluding remarks

Remark 8.1. Note that according to Theorem 1.6, there is only one (up to an isomorphism) proper
quadratic potential algebra on three generators, which fails to be exact. Namely, it is the algebra
given by (P9). Furthermore, there are exactly two non-Koszul (up to an isomorphism) quadratic
potential algebras on three generators: (P9) and (P14). By Theorem 1.8, there is only one (up to an
isomorphism) proper cubic potential algebra on two generators, which fails to be exact: it features
with the label (P23). However, we do not expect this pattern to extend to higher degrees or higher
numbers of generators.

Remark 8.2. By Theorems 1.6 and 1.8, both sets {HAF
∶ F ∈ P3,3} and {HAF

∶ F ∈ P2,4} are
finite. Indeed, the first set has 7 elements, while the second has 5 elements. By Proposition 3.8,{HAF

∶ F ∈ P2,3} is a 3-element set. This leads to the following question (we expect an affirmative
answer).

Question 8.3. Let n ⩾ 2 and k ⩾ 3. Is it true that the set {HAF
∶ F ∈ Pn,k} is finite?

Remark 8.4. By Theorems 1.6 and 1.8, HAF
is rational for every F ∈ P3,3 as well as for every F ∈ P2,4.

Proposition 3.8, the same holds for F ∈ P2,3. This prompts the following question (again, we believe
the answer to be affirmative).

Question 8.5. Is it true that the Hilbert series of every degree-graded potential algebra is rational?

The above question resonates with the following issue. It was believed at some point that graded
finitely presented algebras must have rational Hilbert series. This conjecture was disproved by Shearer
[17], who produced an example of a quadratic algebra with non-rational Hilbert series. However his
algebra as well as any of the later examples fail to be potential or Koszul. Note that the question
whether the Hilbert series of a Koszul algebra must be rational is a long-standing open problem, see,
for instance, [16].

Remark 8.6. By Theorems 1.7 and 1.9, every non-potential proper twisted potential algebra AF with
F ∈ P∗3,3 ∪P

∗
2,4 is exact. Furthermore, every non-potential twisted potential algebra AF with F ∈ P∗3,3

is Koszul.
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