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Uncovering cellular responses from heterogeneous genomic data is crucial for molecular

medicine in particular for drug safety. This can be realized by integrating the molecular

activities in networks of interacting proteins. As proof-of-concept we challenge network

modeling with time-resolved proteome, transcriptome and methylome measurements in

iPSC-derived human 3D cardiac microtissues to elucidate adverse mechanisms of anthra-

cycline cardiotoxicity measured with four different drugs (doxorubicin, epirubicin, idarubicin

and daunorubicin). Dynamic molecular analysis at in vivo drug exposure levels reveal a

network of 175 disease-associated proteins and identify common modules of anthracycline

cardiotoxicity in vitro, related to mitochondrial and sarcomere function as well as remodeling

of extracellular matrix. These in vitro-identified modules are transferable and are evaluated

with biopsies of cardiomyopathy patients. This to our knowledge most comprehensive study

on anthracycline cardiotoxicity demonstrates a reproducible workflow for molecular medicine

and serves as a template for detecting adverse drug responses from complex omics data.
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Personalized medicine targets an individual’s pathology
whilst simultaneously aiming to minimize therapy side
effects introduced by drug toxicities. Crucial for realizing

this goal is a comprehensive characterization of adverse pathways
across multiple regulatory systems. In this context the identifi-
cation of mechanisms through application of multiple-omics
technologies that enable capturing the full width of molecular
responses upon drug treatment combined with integrative data
analysis approaches has been defined as the key strategy for
solving the task1.

Such integrated approaches have impact on standard-of-care
therapies as well as on the development of novel drugs. In par-
ticular, adverse effects of anti-cancer drugs on the heart are a
growing clinical problem with the ever increasing number of
cancer patients2. Moreover, unforeseen cardiovascular toxicity is
among the most important reason for drug candidate failure3,4

and accounts for 14% of drug withdrawals upon market intro-
duction due to adverse reactions5–8. This is mainly due to pre-
clinical non-human test models for drug toxicity that translate
only poorly to the human conditions; in fact, across a range of
pharmaceuticals it has been demonstrated that to the best, only
63% of compounds show concordance of toxicity between animal
test results and human responses9,10. Overall, an understanding
of underlying mechanisms of toxicity has been recognized as one
of the most effective ways to improve drug safety. Against this
background, Collins et al.11 proposed to bypass animal-based
drug toxicity testing, by developing molecular response patterns
generated from human cell-based in vitro systems that are indi-
cative of human disease phenotypes, and by identifying pivotal
signaling pathways leading to toxicity. Here, the toxicogenomics
approach has been claimed to be capable of identifying new
genomic entities yielding innovative prediction models for
adverse drug reactions thereby improving risk assessment12. An
exemplar study already demonstrated the usefulness of global
gene expression-based in vitro modeling for predicting drug-
induced hepatic cytotoxicity13. But a true integrative under-
standing of molecular mechanisms of adverse drug reactions can
only be accomplished by interrogating different levels of mole-
cular activities in a dynamic fashion, and this approach requires
(i) capturing of the dynamic responses across time and dose in
the system under study enabling dynamic network inference and
quantitative modeling14,15, (ii) identification of mechanistic net-
works of interacting proteins that are responsible for the systemic
drug response16,17, and (iii) validation of these networks in
human patients.

Consequently, in a yet unmet endeavor, we obtained proof-of-
principle for such an integrated approach with respect to cardi-
ovascular drug toxicity. We generated dose-over-time cross-omics
data from an advanced iPSC-derived human cardiac 3D micro-
tissue model exposed to physiologically relevant doses of
anthracyclines (ACs) over a time period of 14 days18. ACs are
widely used chemotherapies despite the fact that they induce
cardiotoxicities in up to 23% of the patients. AC-induced cardi-
otoxicity (ACT) represents a cumulative systemic effect over time
and refers to changes in myocardial functions for example in
left-ventricular ejection fraction (LVEF), diastolic functions,
arrhythmias as well as cardiac stress responses. The major
molecular hallmarks of ACT include the generation of reactive
oxygen species (ROS) and changes in mitochondrial response
pathways that ultimately lead to mitochondrial damage, the
interference of ACs with topoisomerase 2 (TOP2B) and thus the
disruption of gene regulation and DNA damage repair mechan-
isms as well as changes in sarcomere function19,20.

We have generated dynamic quantitative proteomics (LC–MS),
transcriptomics (RNA-seq) and methylation (MeDIP-seq) land-
scapes from the cardiac cell model for four widely used

anthracyclines (doxorubicin (DOX), epirubicin (EPI), idarubicin
(IDA), and daunorubicin (DAU)) and conducted an integrated
computational approach using the results of longitudinal
expression analyses and network propagation based on insulated
heat diffusion21. We identified a network of 175 proteins repre-
senting the common signature of ACT. We then undertook the
challenge of acquiring cardiac biopsies taken from patients with
and without historic AC treatment and now suffering from
chronic cardiac failure and in a yet untried approach, compared
the in vitro results with proteome analysis of these target tissue
samples. We demonstrate that proteins of the ACT network were
(i) clinically transferable to patients suffering from drug-induced
cardiomyopathies and (ii) physiologically relevant as tested with a
previously defined model for predicting ACT of the cardiomyo-
cyte mitochondrion22 and thus that network-based data inte-
gration has major potential for advancing the field of molecular
medicine.

Results
Experimental design. A workflow of the analyses is shown in
Supplementary Fig. 1. We have challenged an iPSC-derived
human 3D cardiac microtissue cell model (see “Methods” section)
over a 14 days period with four anthracycline drugs (DOX; EPI;
IDA; DAU) that were dissolved in DMSO at two physiologically
relevant doses (therapeutic and toxic dose; Supplementary
Table 1) as calculated by means of reversed pharmacokinetic
modeling (Supplementary Fig. 2). We measured methylome,
transcriptome, and proteome responses at both doses at seven
time points over a 14 days period (2, 8, 24, 72, 168, 240, 336 h)
using three replicate measurements per time point. In order to
identify dynamically altered proteins and transcripts we com-
pared the AC treatment time profiles with control profiles derived
from time-matched DMSO-treated microtissues. The dynamic
changes in proteome and transcriptome (372 different experi-
ments in total; Supplementary Table 2) caused by the different
AC treatments were integrated in a large protein–protein inter-
action network (PPI), and network propagation modeling was
used to identify an ACT response network that reflects the major
changes of the interactome with respect to AC treatment (Sup-
plementary Methods). The ACT response network was subse-
quently evaluated in the context of cardiomyopathy patients as
well as with an established computational model of the human
cardiac mitochondrion.

Methylation changes induced by ACs in 3D cardiac micro-
tissues impact transcriptional regulation and gene expression.
Cardiac microtissues have been demonstrated to retain essential
contractile properties of the heart and viability for up to 4 weeks
and thus are suitable in vitro models for studying time-resolved
drug toxicity mechanisms23,24. Microtissues are composed of
iPSC-derived human cardiomyocyte and cardiac fibroblast
cells (proportion 4:1). They show spontaneous contractile activity,
Ca2+ responses, homogenous tissue without central necrosis, a
spherical shape and were filled with myofibrils, a tissue structure
characteristic for the mammalian heart. Essential functions such
as contractility, microtissue size, and ATP generation and con-
sumption are observable over the entire time period (Fig. 1a).

Methylation patterns are key characteristics of cellular identity.
Genome-wide methylation profiles were generated with MeDIP-
seq, and the enrichment signals were quantified as % methylation
with a Bayesian approach using the QSEA tool25 (see “Methods”
section). We examined whether the microtissues express
previously found in vivo epigenetic characteristics of adult
cardiomyocytes. In mouse as well as in human adult cardiomyo-
cytes it has been observed that gene body methylation is inversely
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correlated with gene expression26,27. This overall trend in vivo
indeed appears to be preserved in the iPSC-derived cardiac
microtissues: Lowly expressed genes show a higher level of
promoter and gene body methylation than highly expressed genes
(Fig. 1b). Additionally, tissue-specific methylation has been
charted previously among 30 human cell lines using whole-
genome bisulfite sequencing28. We have investigated the heart-
specific “dynamic” differentially methylated regions (DMRs) and

found good agreement of methylation levels between 3D cardiac
microtissues and human heart-specific cell lines (Supplementary
Fig. 3). Thus, the cellular identity of iPSC-derived cardiac
microtissues makes them a suitable model for the human heart
muscle.

We applied pooled time point analysis (Supplementary
Methods) with the longitudinal data to identify DMRs between
treated and control microtissues for each drug and dose using

Fig. 1 3D cardiac microtissues and genome-wide methylation. a Essential microtissue characteristics remain stable across a time period of 28 days.
Contractions per 15 s, microtissue sizes and ATP content. Bars indicate measurements per week. Red line is the average over all 4 weeks. b Inverse
correlation of gene body methylation and expression. Genes were classified into six classes of expression strengths based on the median fragments per
kilobase of transcript per million reads (FPKM) over all time points and treatments. Methylation values (Y-axes) were averaged for each class of genes
according to the following procedure: promoters and gene bodies were binned in 75 windows, 20 bins for the promoter (−5 kb), 1 bin for the transcription
start site (TSS), 4 bins for the starting exons/introns (+1 kb) and 50 bins for the rest of the gene body (TTS: transcription termination site); for each gene
% methylation in each bin was averaged over all seven time points for the specific treatment and then % methylation was averaged over all genes of the
respective expression strength classes. In the plots of the AC-treated experiments the respective curves for the control experiments (DMSO) are shown as
dotted lines. X-axes show the prototypical gene structure. TSS: transcription start site, TTS: transcription termination site. c Enrichment of TFBSs of cardiac
transcription factors in DMRs that fall into gene promoters. Odds ratios (red= higher than expected) represent the ratio of the observed number of TFBSs
that fall into DMRs versus the expected number. d Over-representation of transcription factor target sets in the list of 641 dynamic response proteins (next
section). X-axis represents the strength of enrichment, i.e. –log10 of the over-representation Q-value.
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QSEA25. Most DMRs are observable in intergenic (42–52%) and
intronic (41–43%) regions with only a small fraction (5–8%) in
promoter regions (Supplementary Figs. 4 and 5). In total, 2145
and 776 DMRs (q-value Q < 0.01) were found consistently
differentially methylated at therapeutic and toxic doses, respec-
tively, with all four ACs. At therapeutic dose 984 DMRs were
located in gene bodies (introns: 904, exons: 80) and 151 DMRs
were found in promoter sequences, corresponding to 758
different genes. At toxic dose 322 DMRs were located in gene
bodies (introns: 312, exons: 10) and 30 DMRs in promoter
sequences, corresponding to 250 different genes. These genes
enrich important pathways such as adrenergic signaling in
cardiomyocytes (Supplementary Data 1), which has been reported
to be compromised in iPSC-derived cardiomyocytes of patients
with dilated cardiomyopathy (DCM)29.

To examine the association of AC-induced methylation
patterns with transcriptional regulation, we contrasted DMRs
against transcription factor-binding sites (TFBSs) as measured by
ENCODE30. Enrichment of the number of TFBSs that overlap
with DMRs compared to the total number of TFBSs was observed
for transcription factors that are important in cardiac develop-
ment, function and pathology31,32 (Fig. 1c). In particular, YY1
(Ying Yang 1; odds ratios range between 2.67 and 7.74 across the
different treatments and doses), ETS1 (ETS Proto-Oncogene 1,
transcription factor; 2.11–13.18) and SRF (serum response factor;
1.87–8.56) binding sites showed strong enrichment of TFBSs in
hypermethylated DMRs, which indicates that gene regulation of
these factors is impaired by AC-induced methylation demon-
strating profound disturbance of regulatory pathways crucial for
cardiac physiology (cf. “Discussion” section).

Dynamic changes in the proteome and transcriptome reveal
consequences of AC treatment for sarcomere and mitochon-
drial functions. For each treatment and dose time-resolved
quantitative LC–MS analysis was performed and analyzed with
longitudinal data analysis (Supplementary Methods) using a
polynomial regression model (degree ≤ 2)33. This yielded for each
protein an estimation of its temporal response as well as the
significance of the deviation of the treatment temporal profile
from the respective control profile (Supplementary Fig. 6; see
“Methods” section). A total of 641 dynamic response proteins
showed significant changes of time profiles with the different
treatments and doses compared to DMSO control experiments
(Supplementary Data 2). These proteins were enriched in the
target sets of cardiac transcription factors YY1, SRF, and ETS1
identified from methylation analysis in the previous section
(Fig. 1d).

ACs induced heterogeneous dynamic responses in terms of
protein content with DOX (359 proteins at both doses) and EPI
(313) affecting higher numbers of proteins followed by IDA (230)
and DAU (200; Fig. 2a). Nonetheless enriched biological
functions and pathways are shared by all ACs, in particular
those related to sarcomere and mitochondrial function (Fig. 2b;
Supplementary Data 2). Prominent diagnostic markers and
related proteins of contractile units of cardiomyocytes were
identified in the AC-challenged microtissues, for example cardiac
muscle troponin T (TNNT2), which is dynamically altered with
respect to EPI, IDA, and DAU at therapeutic doses and with
DOX, EPI, and DAU at toxic doses. Time-point specific analysis
(Supplementary Methods) comparing differential protein and
gene expression of treated and control conditions shows up-
regulation of TNNT2 for most time points except for DAU
(Supplementary Fig. 7). Other sarcomere-related proteins include
further troponins (TNNI1, TNNC2), myosins (MYBPC3, MYH4,
MYH7, MYL2, MYL3, MYL4, MYL7), tropomyosins (TPM1,

TPM2, TPM4) among others. In total, 47 out of 199 sarcomere-
related proteins (GO:0030017; enrichment q-value Q= 1.28E
−25) showed a significantly altered time profile upon AC
treatment when compared to control microtissues. Further
largely enriched functional groups relate to mitochondrial
dysfunction and response pathways34 in particular electron
transport chain (GO:0022900; 39 out of 180 proteins, Q=
1.30E–19), respiratory chain complex (GO:0098803; 20 out of 85,
Q= 3.04E–11) and response to oxidative stress (GO:0006979; 44
out of 426, Q= 2.85E−10).

Dynamic AC responses at the proteome level were fairly
similar with respect to both dosages. 545 and 481 proteins were
found significant at therapeutic and toxic doses, respectively, with
385 proteins in common (Jaccard agreement 0.60; Fig. 2c). On the
level of pathways, similarity is even higher (Jaccard agreement
0.71) with a slight overall increase of pathway enrichment with
toxic compared to therapeutic dose. Clustering of protein
expression over all experiments shows that with every AC time
points are very well discriminated into earlier (2–72 h) and later
responses (168–336 h). Furthermore, groups of proteins can be
separated into functional hallmarks of cardiotoxicity (Fig. 2d).

On the transcriptome level, for each treatment and dose time-
resolved RNA-seq analysis was performed and analyzed with
longitudinal data analysis (Supplementary Methods) using a
similar polynomial regression model approach as with the
proteome data35. We found a total of 906 different dynamic
response genes at both doses (DAU: 652, IDA: 388, EPI: 285,
DOX: 204; Supplementary Data 3). The findings from the
proteome and transcriptome analysis are consistent on the level
of pathways (Supplementary Data 2 and 3). Pathway responses, in
particular mitochondrial-related responses include those that
were previously found with gene expression analysis in human
pluripotent stem cell-derived cardiomyocyctes treated with
substantially higher non-physiological DOX doses36. Functional
enrichment of dynamic transcriptome responses cover sarcomere
genes (TNNT2, TNNC1, TPM1, TPM2, TPM3, TTN, MYL2,
MYL3, MYH6, MYH7), mitochondrial membrane proteins
(NDUFS6, COX6B2, PRKAR2B, CKMT2) and electron transport
chain components (e.g. ATP5ME, COX6B1, NDUFA3, SLC25A5).
A summary of these transcriptome responses for all ACs is shown
in Fig. 3.

Integration of multi-omics data with network propagation
amplifies functional content. We observe that AC responses at
proteome, transcriptome and methylome levels enrich similar
biological functions and pathways despite the fact that the
molecular features driving this enrichment might be different. For
example, all three sets of molecules enrich the adrenergic signaling
pathway (Supplementary Fig. 9) although the molecular entities
that participate in the enrichment are different in each omics data
set. Thus, we conclude that different omics data deliver rather
complementary information of the cell’s response network to
drug treatment and that, in order to fully assess the integrated
information, the molecular responses should be functionally
interpreted on the level of networks. Since interacting proteins
likely share function37,38, this prompted us to analyze the
observed AC-induced dynamic responses in proteome and tran-
scriptome in the context of protein interaction networks (Sup-
plementary Fig. 10). We focused on these two layers because
proteome and transcriptome express direct cellular metabolic and
signaling responses to AC treatment that can be captured by PPI
networks whereas the methylome rather displays cell identity and
gene regulatory landscapes.

We have used 114,516 high-quality protein-protein interac-
tions connecting 10,707 proteins from the ConsensusPathDB
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resource39 and populated the nodes in the PPI network with p-
value scores that reflect the dynamic responses of the respective
proteins/genes (see “Methods” section; Supplementary Fig. 11).
Network propagation was computed by means of a random walk
with restart approach adjusted from Hotnet221, first for each
single omics data set separately and then jointly for the integrated
data sets (Supplementary Methods). For each AC and dosage

network propagation resulted in the computation of subnetworks
that agglomerate the major dynamic drug responses over time
(Supplementary Figs. 12 and 13). We observe that the subnet-
works computed from the integrated data contained the largest
number of proteins followed by those computed from the
proteome data. Subnetworks computed from the transcriptome
were typically smaller (Supplementary Data 4; Supplementary
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Fig. 2 Dynamic proteome changes upon AC treatment. a VENN diagrams (generated with Venny 2.1.0) of dynamically altered proteins after AC treatment
(DOX: blue, DAU: yellow, EPI: green, IDA: red) measured with LC–MS at therapeutic and toxic doses. b Examples of polynomial regression fit (degree≤ 2)
for significantly altered sarcomere genes (ACTN2, MYL4) and transcriptional regulators (TRIM28). The curves of the regression fit are plotted as dotted
lines, solid lines connect the median values of the three replicates per time point to visualize the trend over time. Dots: experimental values, red curves:
DMSO control experiments, green curves: AC treatment (DAU). Y-axes: normalized protein expression, X-axes: time. c VENN diagram showing overlap of
proteins dynamically altered upon AC treatment according to therapeutic (THE) and toxic (TOX) doses. Overlap is counted with respect to proteins and
enriched pathways. d Hierarchical clustering of protein expression over all experiments using the h.clust() method in R with Eucledian distance as distance
measure and Ward’s method (option “ward.d2”) as agglomeration method. Upper panels code for the different treatments and the different time points per
treatment. Right panel describes the major enriched functional pathways of the three main clusters of proteins.

Fig. 3 Dynamic transcriptome changes upon AC treatment in sarcomere and mitochondrion. Expression changes of mitochondrial response and
sarcomere genes upon AC treatment at therapeutic dose measured with RNA-seq (expression changes with respect to toxic doses in Supplementary
Fig. 8). Protein complexes are represented by purple, ovals with the genes encoding for subunits displayed next it in yellow rectangles. On top of each gene,
the boxes display the expression change over time, where each box corresponds to a specific time point. The fill level of these boxes display the log2 fold
change (completely filled boxes: log2 fold change≥ 5), upregulations are depicted in red and downregulations in blue. Fold-changes were computed from
the experimental replicates (n= 3) for each AC against the time-matched control samples. Color-codes refer to the average fold-change of the four ACs at
the specific time point. Significance of temporal changes is indicated by transparency, where the lightest genes were not differentially expressed genes
(DEGs) in any AC, medium transparent are DEGs with respect to only 1 AC treatment and not transparent are DEGs with respect to at least 2 AC
treatments (figure adapted from Verheijen et al. 87).
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Fig. 14). Furthermore, subnetworks derived from the integrated
approach, combining transcriptome and proteome data,
increased the functional content compared to the subnetworks
derived from single omics layers (Supplementary Fig. 15).

Because we were mainly interested in the common AC
responses at clinical conditions we continued with the four AC-
subnetworks computed from the integrated data at therapeutic
doses and combined these to an ACT response network that
consists of 175 proteins (Fig. 4; Supplementary Methods). The
ACT response network represents three major cellular compart-
ments (cf. “Discussion” section): extracellular space, mitochon-
drial part and sarcomere. The mitochondrial part reflects the role
of energy metabolism and ATP production (glycolysis, oxidative
phosphorylation, TCA cycle, electron transport chain, HIF-1
alpha signaling), the extracellular space the role of extracellular
matrix remodeling in heart diseases (ECM receptor interaction,
focal adhesion, and TNF receptor pathways), and the sarcomere
pinpoints cardiac disease pathways associated with contractility
ability (dilated/hypertrophic cardiomyopathy, adrenergic signal-
ing in cardiomyocytes, viral myocarditis).

In vitro-derived ACT response proteins are expressed in
patient biopsies and correlate with LVEF. We observed that
proteins of the in vitro-derived ACT response network have high
clinical relevance, for example TNNC1, TNNT2, TPM1, MYH7,
MYL2, FLNC, MYBPC3, and NEBL genetic variants have been

strongly associated with dilated cardiomyopathies as shown in a
recent review40 (Supplementary Fig. 17).

In order to evaluate the translational impact of the 175 ACT
response network proteins we have performed LC–MS protein
expression analysis of biopsies of 15 patients with cardiomyo-
pathies (Supplementary Data 5). In a subset of these patients (n
= 7) the cardiomyopathies were a consequence of prior anti-
cancer therapy. The remaining patients (n= 8) had developed
cardiomyopathies because of other reasons not related to drug
toxicity. The major clinical indication of cardiotoxicity is decrease
of the LVEF. We observed that on average the LVEF is not
different between the two patient groups (Fig. 5a). However, for
the patients suffering from cardiotoxicity the LVEF decreases
with the length of therapy and thus reflects that the risk for
cardiotoxicity can be caused by cumulative drug exposure41

(Fig. 5b).
121 (70%) proteins from the in vitro-derived ACT response

network (Fig. 4) were identified in patient biopsies. In order to
assess the clinical relevance of the in vivo-identified proteins we
correlated their expression in the biopsies with the respective LVEFs
of the chronic cardiotoxic patients. Highly correlating proteins
include sarcomere proteins ACTN2 (c= 0.61), MYOM1 (c= 0.78),
TNNI1 (c=−0.59), members of the electron transport chain
COX4I1 (c=−0.84), NDUFV1 (c= 0.61) and mitochondrial-
related proteins SUCLA2 (c= 0.72), DECR1 (c= 0.71), MDH2
(c= 0.57) (Fig. 5c). Among the highest correlation of protein
expression with LVEF was observed for LAMC1 (c= 0.81), a
protein not predominantly known in the context of cardiotoxicity
and thus representing a promising candidate for diagnosis. Laminin
Subunit Gamma 1 (LAMC1) is a member of the ECM-receptor
interactions and Focal adhesion pathways that have been associated
functionally with cardiomyopathy previously (cf. “Discussion”
section). Interestingly, the high correlation of the protein expression
of these genes with the LVEFs of the chronic cardiotoxic cancer
patients is in most cases accompanied by a low or even opposite
correlation with the LVEFs of the control group of cardiomyopathy
patients (Fig. 5d). This suggests a typical molecular response pattern
of ACT distinct from other pathological paths to cardiomyopathy
that can be captured by the in vitro microtissue model and which is
translatable to the human in vivo situation eventually for predicting
cardiopathological risks upon anti-cancer therapy. Such patterns
have been previously proposed for the pre-clinical practice, for
example to deliver cardiac safety indices for drug development and
clinical settings42.

Since the ACT response network was computed from the
complete longitudinal data, we additionally used time-point
specific analysis (Supplementary Methods) to inquire whether
early or late protein expression changes in microtissues were
mostly responsible for identifying the above listed molecular
markers of chronic cardiotoxicity. We have thus compared the
expression of the proteins across all time points in the
microtissues with the earliest time point (2 h) using Student’s t-
test and observed that rather the intermediate and late time
points contribute to the changes in protein expression of those
proteins in vitro which translate to protein markers of AC-
induced cardiotoxicity in cardiomyopathy patients. For example,
upon DOX treatment at therapeutic dose we observe, among
others, significant late responses (Q < 0.05) of ACTN2 (240 and
336 h) and LAMC1 (168, 240, and 336 h) in contrast to TNNI1
which has an intermediate peak response at 72 h (Fig. 5e).

Computational modeling of the physiological effect of ACT
response network proteins on the mitochondrion. To provide
physiological context for protein expression, we evaluated
the effect of measured changes in expression of predicted

Fig. 4 ACT response network. ACT response network computed from
integrated proteome and transcriptome data (network derived from toxic
doses is described in Supplementary Fig. 16). Nodes were initialized based
on the significance of the dynamic changes of respective AC treatment
compared to DMSO control longitudinal data and for each AC a drug
response network was computed (Supplementary Fig. 12). Nodes and their
interactions that appeared in at least two of the individual AC networks
were integrated. Node colors reflect the occurrence of the node in the
individual AC networks. The three major enriched cellular compartments
are shown in transparent brown (extracellular matrix), transparent orange
(mitochondrial part) and transparent blue (sarcomere). Red circles:
Proteins that are contained in the mitochondrial model (Fig. 6a). Blue
circles: Proteins genetically associated with dilated cardiomyopathy
according to Talay et al.40.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01302-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:573 | https://doi.org/10.1038/s42003-020-01302-8 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


mitochondrial function in a biophysical model. In vitro-derived
dynamic protein fold changes corresponding to mitochondrial
proteins were mapped onto a biophysical model encoding 181
proteins responsible for ROS scavenging, the electron transport
chain and the TCA cycle43,44 (Fig. 6a). The effect of the protein

fold changes on ATP homeostasis and membrane potential over
time for the four ACs at toxic and therapeutic doses and DMSO
controls were predicted (Fig. 6b, c). ATP loss increases with dose
which is consistent with repeat experimental measurements (see
“Methods” section; Fig. 6d, e).

Fig. 5 Clinical relevance of in vitro-derived proteins. a Patient characteristics. Histogram of LVEFs for the patients under study (n= 15). Chronic
cardiotoxic patients (dark blue) and control cardiomyopathy patients (light blue) are sorted after LVEF. b LVEF (X-axis) of chronic cardiotoxic patients
decreases with duration of chemotherapy in days (Y-axis); color of the nodes correspond to LVEF classification of the respective patient. c Examples of in
vitro-derived ACT response proteins whose expression in biopsies of cardiotoxic patients correlate with LVEF. X-axes shows LVEF, Y-axis shows
normalized protein expression. Color of the nodes correspond to LVEF status similar to b. d Discordant correlation values of biopsies protein expression
with the LVEFs of the two patient groups. Blue bars: correlation with respect to cardiotoxic patients, red bars: control group. X-axis: genes, Y-axis:
correlation values (range [−1,1]). e Pairwise comparison of protein expression fold-changes of measured time points (8, 24, 72, 168, 240, and 336 h)
against the earliest time point (2 h) in 3D cardiac microtissues using Student’s t-test on n= 3 experimental replicates. Y-axis: bars indicate log2-fold
change. Colors of the bars indicate significance of fold-change (dark blue: Q < 0.05; light blue: Q≥ 0.05).
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Fig. 6 Computational modeling of in vitro-derived mitochondrial protein expression. a Mitochondrial model schematic, with subsystems indicated with
the dashed boxes: electron transport chain (ETC), reactive oxygen species scavenging (ROS), and the tricarboxylic acid cycle (TCA). b, cModel predictions
for the steady-state mitochondrial ATP concentration and membrane potential, as functions of exposure time, normalized to their initial value, for each
drug under therapeutic (solid curves) and toxic doses (dashed curves). d, e Functional measurements of ATP concentration performed on spheroid
microtissues at discrete time points, following either therapeutic (solid lines) or toxic (dashed lines) drug exposure as implemented using a PBPK model.
MEAS measured, MODEL predicted by model.
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We contrasted the ACT response network proteins (Fig. 4)
with components in the mitochondrial model that have an impact
on ATP concentration as measured with sensitivity analysis. We
found that relevant model components are in fact covered by the
drug response network. For example, seven model components
have been identified to significantly impact ATP concentration
after DOX treatment by computational sensitivity analysis
(Supplementary Fig. 18). Five out of these seven model
components are covered by proteins of the drug response
network, in particular TCA cycle proteins (CS, MDH2, SUCLA2,
SUCLG1, SUCLG2) and electron transport chain proteins
(NDUFV2, UQCRC1, UQCRC2, UQCRFS1). For the other ACs,
we found six out of seven significant model components being
covered by network module proteins for EPI, seven out of nine
for IDA and three out of four for DAU. These covered
components relate mostly to the TCA cycle and the electron
transport chain (Supplementary Fig. 19). This demonstrates that
the integrated network propagation approach is able to identify
physiologically relevant proteins that have a significant impact
on ATP production and thus, mitochondrial function in
cardiomyocytes.

Discussion
Previous studies of anthracycline toxicity have characterized
organ-scale phenotypes45,46 or focused on specific individual
mechanisms. Broad ex vivo omics studies have identified poten-
tial candidate proteins and pathways but have not confirmed
these in patient studies47–50. Conversely, patient biopsy studies in
isolation of targeted ex vivo experiments are at risk of being
confounded by multiple drug exposures and co-morbidities51,52.
Our study is the first multi-omics network analysis to show that a
spectrum of anthracyclines do not target a single molecular
pathway but act across multiple critical cellular systems, including
mitochondrial, extracellular matrix and sarcomere proteins in a
human ex vivo system, and critically we confirm the importance
of these pathways in patient biopsy studies.

The dominant pathway changes may be attributable to direct
action of anthracyclines or may be a secondary change due to
anthracycline action on one or more of the other pathways.
Specifically, anthracyclines are known to act on the mitochondria
increasing ROS production, which can modulate downstream
protein expression. Increased ROS production alters the beta-
adrenergic signaling pathways, sarcomere proteins, and extra-
cellular matrix synthesis53. ROS is known to bind to DES (des-
min), MHC genes, TTN (titin), TNNC1, among others54 which
has a high level of overlap with the inferred proteome and
transcriptome changes. Changes in extracellular matrix/structure
organization protein regulation are consistent with observations
in patients55 and mice56 that find increased fibrosis following
anthracycline exposure. The fibrosis may be reparative in
response to apoptosis or interstitial in response to changes in
loading. Changes in extracellular matrix/structure organization
proteins may be due to direct effects of anthracyclines or sec-
ondary due to increased ROS57 or changes in mechanical load-
ing58. Of the proteins associated with LVEF in biopsies we
identified the extracellular matrix protein LAMC1, consistent
with either a dominant or integrating effect of the extracellular
matrix in determining LVEF in cardiotoxic patients.

While our primary focus was on extracting commonalities of
AC responses, we see also clear differences with different ACs. A
particular issue is whether the level of cardiotoxicity of the
individual ACs can be extrapolated from the proteome data. We
have several indications (based on the number of dynamically
changed proteins, the sizes of the computed integrated networks,
the enrichment of cardiovascular disease pathways) that the most

plausible order of toxicity is DOX > EPI > IDA >DAU. This is in
line with in vivo-derived phenotypic observations: for example,
Platel et al. 59 showed that, in rat at maximum tolerated doses,
IDA showed significantly lower cardiotoxicity than DOX. Fur-
thermore, the computer simulations predicted differences in
protein changes between different ACs. Despite similar predicted
changes in membrane potential and ATP for DOX, EPI, and IDA,
the cause was distinct between compounds. DOX increases ETC
and TCA fluxes; conversely IDA and EPI cause a decrease in TCA
and ETC fluxes (Supplementary Fig. 20a). The sensitivity of ATP
concentration to small perturbations in protein densities was
calculated for the therapeutic and toxic dosing regimens (Sup-
plementary Fig. 20b). This identified that all proteins had a
similar effect on ATP concentration for IDA, EPI, and DAU,
however, toxic DOX dosing caused a shift in the operational
space of the mitochondria with an increased dependence of ATP
concentration on TCA flux and ROS scavenging. Simulations
were then performed where the impact of each drug on each
protein was sequentially removed from the model to provide a
ranked list of the role of each protein in determining ATP con-
centration. This rank was compared with the fold change to show
that large changes in protein abundance do not always coincide
with an important functional role (Supplementary Fig. 20c).

This study has generated several novelties. Firstly, using inte-
grated network modeling we were able to identify potential bio-
markers that translate from in vitro microtissues to patient
biopsies and that are indicative of clinical parameters (Fig. 5b, c).
This is important for drug development and personalized medi-
cine since these biomarkers can be used to monitor cardiotoxicity
of drug effects before entering clinical phase on the one hand and
on the other hand soften or preventing cardiotoxicities of anti-
cancer drug therapies.

Secondly, this study is the first in-depth study of AC effects on
whole-genome methylation in human cardiomyocytes. We have
shown that in our human iPSC-derived microtissues, gene body
methylation is inversely correlated with gene expression, a result
that had been found previously in human and murine adult
cardiomyocytes26,27. Furthermore, it has been observed in murine
cardiomyocyctes that this gene body methylation of key sarco-
mere genes, such as troponin I isoforms (Tnni1 and Tnni3) is
highly dynamic26: While Tnni1 gene body was de novo methy-
lated in adult murine cardiomyocytes, Tnni3 was demethylated.
In our microtissues we observed that TNNI1 is methylated in
cardiac microtissues throughout the gene body while TNNI3 has a
significant reduction in methylation at exons 4 and 5 (Supple-
mentary Fig. 21).

Furthermore, we found binding sites of key regulators of car-
diac dysfunction such as YY1 and SRF enriched in hyper-
methylated promoters after AC treatment suggesting interference
of regular gene regulation (Fig. 1c). In addition, we found the
target sets of these regulators enriched among the dynamically
altered AC response proteins (Fig. 1d). It was shown previously
that YY1 functions as an anti-hypertrophic factor and up-
regulation of YY1 in human heart failure could be a protective
mechanism against pathological hypertrophy60. Furthermore,
Yy1 in rodents acts as a suppressor of DCM and cardiac fibrosis
through regulation of Bmp7 and Ctgf61, as well as a suppressor of
DCM caused by Ttn insufficiency62. In addition, SRF-dependent
gene expression was modulated during heart failure in human
patients as well as rodent models63.

A striking observation of the methylation analysis is that more
DMRs were identified with therapeutic than with toxic doses for
EPI, IDA, and DAU (Supplementary Figs. 4 and 5). This seems
counterintuitive, however, might be caused by a demethylation
mechanism in a fraction of the cells that is induced by increased
oxidation of 5mC sites. ACs are known to induce oxidative stress,
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and ROS may oxidize the 5mC sites leading to increased levels of
hydroxymethylated DNAs (5hmCs) at toxic doses what subse-
quently could lead to increased demethylation via the TET
pathway64.

Thirdly, dynamic network modeling identified proteins that are
typically not easy to identify with MS-approaches such as tran-
scription factors. Here, we showed evidence for a role of TRIM
proteins in AC cardiotoxicity, in particular TRIM55 and TRIM28
(Tripartite motif-containing proteins 55 and 28) that belong to the
superfamily of TRIM proteins that function as regulators for a
variety of human diseases65. TRIM55 is also known as Muscle-
specific Ring Finger protein 2 and has been shown to localize to
the sarcomere and to regulate muscle protein turnover66. TRIM55
has several connections to sarcomere genes (Fig. 4) and thus has
been predicted as ACT response protein through network pro-
pagation despite the fact that the MS profiles have many missing
values so that the protein has not been fully identified by LC–MS
analysis. TRIM28 profiles after DOX, DAU (Fig. 2b), and IDA
treatment were significantly altered compared to the DMSO
control experiments. Furthermore, the TRIM28 target set was
enriched by the entire set of 641 dynamic response proteins
(enrichment Q-value Q= 0.054).

In conclusion, our study proofs iPSC-derived 3D cardiac
microtissues as a suitable in vitro cell model for screening
dynamic drug responses at multiple molecular layers. We have
identified a set of 641 proteins and 904 transcripts that are
dynamically changed over time when compared to DMSO control
experiments. Although the overlap across these data sets is fairly
low, the biological pathways and functions that are enriched by
the different molecular layers are similar. This prompted us to
integrate molecular data in a PPI network with p-value scoring
and to perform network propagation analysis in order to compute
for each drug a subnetwork accumulating the major dynamic
responses from the integrated data sets. This approach is rather
generic and can be applied to various other data (such as muta-
tions, GWAS results, clinical data) as long as the results can be
quantified by p-values. It thus might serve as a template for
extracting common information from complex multi-omics data
sets, likely to be massively generated in future precision cardio-
oncology67. We combined the four individual drug subnetworks
at therapeutic doses to an ACT response network consisting of
175 proteins and showed that 70% of these proteins were in fact
expressed in cardiac biopsies of patients and that potential bio-
markers inferred from the network analysis correlate with
pathological parameters and mechanisms.

Methods
Experimental dosing scheme. A previously established workflow for model-based
assay design was used to reproduce in vivo patterns of drug-induced toxicity in
spheroids. For each of the four anthracyclines physiologically based pharmacoki-
netic (PBPK) models were developed. The models were built with the open source
PBPK modeling software PK-Sim and validated according to best practice guide-
lines for PBPK model qualification18,68.

Each PBPK model was used to simulate in vivo drug exposure in the interstitial
space of the heart following administration of either a therapeutic or toxic drug
dose over 2 weeks of a once daily administration schedule. Here, the therapeutic
dose was based on a standard clinical dosing regimen according to the specific drug
label. Toxic doses were estimated based on in vitro viability experiments in 3D
cardiac microtissues (IC20). A toxic dose for each drug was then calculated from
the IC20 values by reverse dosimetry. To this end it was assumed that the unbound
drug exposure in the interstitial heart compartment of the PBPK model was equal
to the in vitro drug. Finally, the continuous exposure profiles of the PBPK models
where translated into an experimental setting with three daily media changes
mimicking the estimated in vivo PK exposure profile (Supplementary Methods;
Supplementary Fig. 2).

Cardiac 3D microtissues treatment. Commercially available human iPSC-
derived cardiomyocytes were obtained from Cellular Dynamics International Inc.
(CDI, Madison, WI, USA). Shortly, these iCell cardiomyocytes were derived from

an engineered hiPSC clonal line reprogramming human fibroblasts from a female
Caucasian donor as described in Ma et al. 69. The iPSC-derived cardiomyocytes
were aggregated into 3D cardiac spheroids as originally described23. Human 3D
cardiac microtissues (InSphero, SWL) were used, containing ~4000 iPSC-derived
human cardiomyocytes (female Caucasian donor) and 1000 cardiac fibroblasts
(male Caucasian donor) per microtissue. The microtissues were cultured in 50 μl
per well 3D Insight™ Human Cardiac Microtissue Maintenance Medium (InSphero,
Cat #CS-07-010-01).

To accomplish the PBPK-based repetitive dosing profile, the medium of the
microtissues was changed three times daily on working days at intervals of 2, 6, and
16 h with the PBPK-determined concentrations (Supplementary Table 1). These
were administered using stock solutions of the compound dissolved in DMSO. At
the time of redosing 50 μl of media was aspirated from each well using an electronic
96-channel pipette and replaced with 50 μl fresh media with the adapted
anthracycline concentration. Final DMSO percentage did not exceed 0.1%. As
control, microtissues exposed to similar end concentrations of DMSO were used.
Seven time points (2, 8, 24, 72, 168, 240, and 336 h) were sampled in triplicates
during the 2-week treatment period. For each sample, 36 microtissues were
incubated separately, subsequently pooled, snap-frozen in liquid nitrogen and
stored at −80 °C. Genetic material was extracted manually with the Qiagen’s
AllPrep DNA/RNA/miRNA Universal Kit (Cat#80224) which was used according
to the manufacturer’s protocol.

Patient biospies. All patients that underwent endomyocardial biopsies (EMB),
first had a physical examination, blood sampling, 12-lead electrocardiogram, 24-h
Holter monitoring on indication, and a complete echocardiographic and Doppler
evaluation. Significant coronary artery disease as a cause of the decreased ejection
fraction was excluded by a coronary angiography (CAG) or a CT-angiography at
baseline. EMB were performed as part of routine diagnostic work-up in non-
ischemic, non-valvular cardiomyopathy, upon consent of the patient, as part of the
Maastricht Cardiomyopathy Registry with inclusion and exclusion criteria as
described previously70. The main indication for EMB was a LVEF < 45% after
6 months of optimal medical treatment, and the absence of other.

In short, both DCM and hypokinetic non-dilated cardiomyopathy (HNDC; also
called isolated LV dysfunction) according to the latest ESC proposal were included
(DCM defined as LVEF < 50% with an indexed left ventricular end diastolic
diameter (LVEDDi) >33 mm/m2 (men) or >32 mm/m2 (women) measured by
echocardiography; and HNDC defined as LVEF < 50% with an LVEDDi ≤ 33 mm/
m2 (men) or ≤32 mm/m2 (women) measured by echocardiography in the absence
of a (i) myocardial infarction and/or significant coronary artery disease; (ii)
primary valvular disease; (iii) hypertensive or congenital heart disease; (iv) acute
myocarditis; (v) arrhythmogenic right ventricular dysplasia; and (vi) hypertrophic,
restrictive or peripartum cardiomyopathy. For the present study, we included cases
with a previous history of cardiotoxic-anthracycline chemotherapy, and control
DCM/HNDC without. The study was performed according to the declaration of
Helsinki and was approved by the Medical Ethics Committee of Maastricht
University Medical Centre. All patients gave written informed consent.

Proteomics sample preparation. Cardiac spheroids and cardiomyocytes were
resuspended in 100 μl lysis buffer containing 8 M urea, 1 mM dithiothreitol, 0.1 M
ammonium bicarbonate, pH 7.8. After four freeze–thaw cycles, the samples were
centrifuged at 16,000×g for 15 min at 4 °C and protein concentrations were
assessed with the Qubit™ Protein Assay Kit (Invitrogen, Molecular Probes). Protein
isolates were then submitted to in-solution digestion71 or filter aided sample pre-
paration (FASP)72. Protein digestions were stopped by adding formic acid to a final
concentration of 1%. The peptides were cleaned up using Sep-Pak tC18 cartridges
(Waters) according to the manufacturer’s instructions, and eluted with 60% ACN
and 0.1% formic acid (Sigma-Aldrich, USA). Patient biopsies were prepared as
described in Guo et al. 73.

Proteomics mass spectrometry measurements. Samples were submitted to an
Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) coupled to a
NanoLC-2D HPLC system (Eksigent, Dublin, CA) or EASY-nLC 1000 system
(Thermo Fisher Scientific, Germany). Samples were loaded onto a self-made col-
umn (75 μm× 150 mm) packed with reverse-phase C18 material (ReproSil-Pur 120
C18-AQ, 1.9 μm, Dr. Maisch HPLC GmbH) when coupled with the EASY-nLC
1000 system and onto an Easy-Spray Column (75 μm× 500 mm) packed with
reverse-phase C18 material (Silica 100 Å, 2 μm) when coupled with the NanoLC-
2D HPLC system. Peptides were separated with a linear gradient of acetonitrile/
water, containing 0.1% formic acid, at a flow rate of 300 nl/min. A gradient from
5% to 30% acetonitrile in 60 min was used. The mass spectrometer was set to
acquire full-scan MS spectra (300–1500m/z) at 120,000 resolution at 200m/z;
precursor automated gain control (AGC) target was set to 400,000. Charge-state
screening was enabled, and precursors with +2 to +7 charge states and intensities
>5000 were selected for tandem mass spectrometry (MS/MS). Ions were isolated by
use of the quadrupole mass filter with a 1.6m/z isolation window. Wide quadrupole
isolation was used, and injection time was set to 50 ms. The AGC values for MS/MS
analysis were set to 5000 and the maximum injection time was 300 ms. HCD
fragmentations were performed at a normalized collision energy (NCE) of 30%.
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MS/MS were detected in the ion trap in centroid mode. Precursor masses pre-
viously selected for MS/MS measurement were excluded from further selection for
25 s, and the exclusion window was set at 10 ppm.

Proteomics data processing and normalization. Raw MS data were processed
using Genedata Expressionist® software v.11.0, consisting of two modules: Refiner
MS (data pre-processing) and Analyst (data post-processing and statistical analy-
sis). In short, after noise reduction and normalization, LC–MS peaks were detected
and their properties calculated (m/z and RT boundaries, m/z and RT center values,
intensity). Individual peaks where grouped into clusters and MS/MS data asso-
ciated to these clusters were annotated with MS/MS Ions Search (Mascot 2.6) using
peptide tolerance: 10.0 ppm, MS/MS tolerance: 0.50 Da, max missed cleavages: 2
and database: Uniprot Swiss-Prot 29062016, Taxonomy Homo sapiens (human).
Results are validated by applying a threshold of 5% normalized false discovery rate
(FDR). Protein interference was done based on peptide and protein annotations.
Redundant proteins were ignored according to the Occam’s razor principle, and at
least two peptides were required for a positive protein identification (shared pep-
tides were ignored). Protein intensities were computed using the Hi3 method. A
maximum of the top 3 peptides per protein (based on the average intensity across
samples) was used in the calculation. If a peptide was identified in multiple charges
(2+, 3+, 4+) and modification states (carbamidomethyl (C), deamidated (NQ) or
oxidation (M)), values were consolidated into a single peptide intensity. The
volume of a peak is computed as the area under the intensity curve inside the peak
region. The area under the intensity curve is subdivided into trapezoids at the data
points according to the trapezoidal rule. After the data pre-processing, the inten-
sities were log2 transformed. Normalization was performed as follows: (i) the
transformed data of the DMSO (control) samples were shifted to the median of the
medians determined by a reference group consisting of the proteins found in all
these control samples, (ii) for every treatment/dose combination and for each time-
point the common protein set between the controls and the treatment samples was
determined, (iii) the median of the medians of the (in general 3) normalized
control samples was determined using this common protein set between the
controls and the treatment samples, and (iv) the data from the samples of the
treatments were shifted to these medians. Two-sided Student’s t-tests were then
used for the determination of differentially expressed proteins (DEPs) comparing
the proteins of each time-point and dose against the corresponding time-matched
control. These normalized data sets were also used for the two-step regression
model in order to identify temporal protein expression changes.

RNA-seq data generation. Total RNA was isolated for each exposed microtissues
using Qiagen AllPrep DNA/RNA/miRNA Universal Kit (Cat #80224). Sample were
depleted of ribosomal RNA using the Illumina RiboZero Gold kit (Cat
#MRZG12324) and libraries were prepared for sequencing using Lexogen SENSE
total RNA library preparation kit (Cat #009.96). The samples were sequenced on
the HiSeq2500 (100 bp paired-end).

RNA-seq data analysis. Raw RNA-seq data were processed using Genedata
Profiler® software v.11.0. The first 12bases of the 5′end of all reads and adapter
sequences were removed using Trimmomatic version 0.3274. Data quality was
checked using FastQC before and after trimming. Sequencing reads were mapped
to the human genome version hg38 with the splice junction mapper STAR (version
2.5.3a)75 using as annotation the reference genome gencode version 26 (October
2016 freeze, GRCh38)—Ensembl 88. Quantification of genes or transcripts,
respectively, was performed with an algorithm based on Cufflinks76. Features used
for quantification were protein coding and non-protein coding sequences (e.g.
pseudo-genes missing a CDS of the transcripts). Differential expression analysis of
the RNA-seq experiments was performed with DESeq2 (version 1.14.1)77. The
quality of the samples was assessed according to the amount of (mapped) reads,
Cook’s distance, hierarchical clustering, principal component analysis, and sample
dispersion. Outliers were excluded from further analyses (Supplementary Meth-
ods). For the comparison of each time-point of a treatment with the corresponding
time-matched DMSO control input matrices for DESeq2 consisted of the samples
from DMSO and the samples from a treatment with either the therapeutic or the
toxic dose. Comparisons were finally done applying the ‘contrast’ argument in
DESeq2.

Dynamic longitudinal analysis of proteome and transcriptome data. We have
used MaSigPro (version 1.46.0) to calculate for each gene or protein, the fit of the
quadratic regression model (degree= 2):

yijr ¼ β0;C þ β0;TvsC

� �
þ β1;C þ β1;TvsC

� �
tijr þ β2;C þ β2;TvsC

� �
t2ijr þ εijr ð1Þ

Here i= 1,2 describes the treatment/control conditions, j= 1,..,7 the different time
points and r= 1,2,3 the replicate experiments. β0,TvsC, β1,TvsC, β2,TvsC describe the
regression coefficients for the constant, linear, and quadratic terms and the cor-
responding p-values, p0,TvsC, p1,TvsC, p2,TvsC, describe the deviation from the control
experiment33,35. Thresholds for the analyses were set to a Benjamini–Hochberg
(BH) q-value of ≤0.05, an R-square of the regression model of ≥0.7, and a minimal
observation number of 10. For the two-step regression model searching for

significant different time-dependent gene expression profiles across the analytical
groups, the input matrices for DESeq2 consisted of all samples from the controls
and the treatment/condition groups (therapeutic and toxic) and the DESeq2-
derived rlog-transformed data were then used for the analysis of the time-
dependent gene expression profiles. For the analysis of the time-dependent protein
expression profiles the previously described normalized data sets were used as
input. For each treatment and dose the analysis was carried out separately, the
resulting dynamic response genes/proteins are summarized in Supplementary
Data 2 and 3).

MeDIP-seq data generation. For preparation of microtissue MeDIP-Seq libraries,
a previously published low input MeDIP protocol78 was modified. DNA was
fragmented to 100–200 bp using the Covaris S2 system. Because of low DNA yield
for DOX and IDA samples, the triplicate samples were pooled before fragmenta-
tion. End repair and A tailing was performed using the NEBNext® Ultra™ library
prep kit for Illumina® (NEB), adapters were ligated with NEBNext® Ultra™ Ligation
Module (NEB) and samples were purified using Agencourt® AMPure® XP beads
(Beckman Coulter). Methylated fragments were captured using the MagMeDIP kit
(Diagenode). In short, denatured DNA was mixed with anti-5-meC-antibody and
captured using magnetic beads. Capture efficiency was determined by qPCR
against spiked-in Lambda-DNA fragments in precapture and postcapture library
samples. Libraries were amplified in a final PCR step using barcoded TruSeq pri-
mers. Quality was assessed on Agilent Bioanalyzer 2100 and library concentration
was determined by Qubit™ and qPCR.

MeDIP-seq data analysis. In order to gain exhaustive genome-wide coverage the
triplicate samples that have been sequenced individually were merged before
alignment. MeDIP sequencing reads were aligned to the GRCh38 reference genome
using bwa Version 0.7.15-r114079, and analyzed in 250 bp windows using the R/
bioconductor package QSEA25 with standard parameters. Within QSEA, the
MeDIP enrichment was calibrated with 450k methylation array measurements of
primary hepatocytes (GSM999339) and cardiac myocytes (HCM, GSM999381)
from ENCODE80, for the hepatic and cardiac micro-tissues, respectively. To this
end, beta values of the calibration samples were computed with the R/Bioconductor
package Minfi81, genomic locations of the array probes were mapped from
GRCh37 to GRCh38 using the UCSC liftOver command line tool82, and probes
within 250 base windows were averaged. DMRs obtained from QSEA were
annotated with gene, exon, and promoter (transcription start site ±2 kilobases)
information from RefSeq, ENCODE TFBS and model-based CpG islands, all
obtained via the UCSC table browser. Since ENCODE TFBS were not available for
GRCh38, genomic locations were mapped from GRCh37 using the liftOver tool.

Network propagation. Interaction network generation: We agglomerated a large
PPI from 19 different data resources83 which has been proven to be one of the most
effective networks for identifying disease genes in a recent comparison84. We have
performed quality assessment of the individual interactions using different
supervised and unsupervised methods85 in order to generate a high-quality PPI
network consisting of 10,707 proteins and 114,516 interactions.

Node scoring: In order to weight the proteins/genes according to their
information content with respect to time-sensitive AC treatment responses we used
scores that reflect the dynamic changes of the proteins after AC treatment: For each
protein i, the fit of the quadratic regression model (above section) is described by

the estimated regression parameters βðiÞ0;TvsC; β
ðiÞ
1;TvsC; β

ðiÞ
2;TvsC and the corresponding

p-values, pðiÞ0;TvsC; p
ðiÞ
1;TvsC; p

ðiÞ
2;TvsC that describe the deviation from the control time

course. The score for the protein is then computed as

Si ¼ �
X

j
log10p

ðiÞ
j;TvsC ð2Þ

if the fit was significant and set to zero elsewhere. This score is computed for (i)
proteome data only, (ii) transcriptome data only, and (iii) integrated data as the
sum of proteome and transcriptome scores (Supplementary Fig. 11).

Network propagation: Network propagation was done with Hotnet221 based on
a version of the random walk with restart method (insulated heat diffusion). This
method was developed initially for tracking the effect of mutations across a
network. We adapted this approach to analyze the effects of proteome/gene
expression data. For each longitudinal data series we initialized the nodes of the
networks as shown above so that these initialized networks per AC, dose and data
platform can be interpreted as the dynamically affected interactome. Network
propagation then delivers a final ranking of all proteins (final scores) along with a
subnetwork containing the major connected components of the drug response.
Hotnet2 offers four different subnetworks depending on a threshold parameter δ,
and in all cases we chose the subnetwork derived with the minimal threshold
parameter.

Computational modeling of mitochondrial functions. Numerical simulations: The
mitochondrial model, represented schematically in Fig. 6a, is described with a system
of coupled ordinary differential equations, following the principle of mass action, and
is used as described in earlier studies22,44. The reactions in the system were grouped
into three subsystems, relating to the electron transport chain (ETC), ROS scavenging,
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and the tricarboxylic acid cycle (TCA). The model solutions seek to emulate the
functional behavior of the mitochondrion subject to drug exposure by modifying the
kinetic parameters of the baseline model22 as deduced from the in vitro experiments
conducted on 3D cardiac microtissues. The solution of the differential equations then
yield the predicted flux through each reaction in the mitochondrial theoretical model,
and the procedure was repeated for each drug and dosage in order to map the
evolution of the steady state over up to 14 days, as per the in vitro experiments. The
effect of a given drug and dose level on individual reaction rates, at each time point,
was estimated experimentally by applying the drug to the microtissues, following a
PBPK-based protocol. The drug exposure was then implemented in the simulations by
scaling the appropriate reaction rates based on the predictions derived from the
experimental time-series data, fitted to a polynomial model.

For each such reaction rate configuration, the set of coupled differential
ordinary differential equations was solved using the ode15s numerical solver of
Matlab until a steady state was reached (achieved by running the simulations over
50,000 time steps of 60 s). Average fluxes through the ROS, ETC, and TCA
subsystems are plotted in Supplementary Fig. 20a for each drug and dose. Further
readouts of the simulation output, the ATP concentration and membrane potential,
are shown in Fig. 6b and c.

Functional measurements: The simulation results were compared with
intracellular ATP concentrations measured in the microtissues using a CellTiter-
Glo cell viability assay (Luxcel, Cork, Ireland). The amount of ATP detected in the
assay increases with the number of viable cells in the culture, as described in other
studies86. The assay is a luminescence test involving a detergent component that
dissociates the cells and disrupts the membrane. The released ATP then catalyzes
the luciferase reaction, making the luminescence intensity proportional to the
amount of ATP, as determined by comparison with a standard curve.

Sensitivity analyses: sensitivity analyses were performed to assess the relative
impact of the drug exposures to each reaction in the system (Supplementary
Fig. 18). In the first analysis, the magnitude of each reaction in the scheme (Fig. 6a)
was increased by 1% before allowing the system to settle to a steady state, for each
anthracycline and each dose level in turn. The impact on the mitochondrial ATP
concentration, expressed as a relative change per fractional increase in the reaction
activities, was calculated at the 7-day time point (where all the simulations
converged). The results are plotted in Supplementary Fig. 20b allowing a
comparison of the therapeutic and toxic dose levels. To further estimate the effect
of the drugs in this highly nonlinear system, we performed a complementary
sensitivity analysis, by considering macroscopic changes to the reaction activities.
By this approach, the sensitivity of the ATP concentration to each reaction in the
model was calculated, in turn, by scaling the rates for all the reactions according to
the toxic dose of each drug (at day 7), except for one reaction that was kept at its
reference activity level, and comparing these simulation outputs to the case where
all the reactions are altered. The results are plotted in Supplementary Fig. 20c, as
functions of the protein fold change for the corresponding reaction.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data have been submitted to the BioStudies repository (https://www.ebi.ac.uk/biostudies/)
and is available under the following accession numbers:
- Methylation data: S-HECA339, S-HECA340, S-HECA341, S-HECA343, S-HECA347,

S-HECA352, S-HECA353, S-HECA363, S-HECA431, S-HECA432, S-HECA433, S-
HECA434.
- Proteomics data: S-HECA2, S-HECA3, S-HECA19, S-HECA20, S-HECA21, S-

HECA22, S-HECA38, S-HECA39, S-HECA54. - RNA-seq data: S-HECA10, S-HECA11,
S-HECA12, S-HECA148, S-HECA151.

Code availability
The code for analyzing the methylome data is available through the R/Bioconductor
package QSEA (http://bioconductor.org/packages/release/bioc/html/qsea.html), and the
code for performing the longitudinal proteome and transcriptome data analysis through
the R/Bioconductor package masigpro (https://www.bioconductor.org/packages/release/
bioc/html/maSigPro.html). The code for processing and normalizing the proteomics and
transcriptomics data is proprietary (Genedata Profiler® software v.11.0). The code for
performing the network propagation is available from github (https://github.com/
raphael-group/hotnet2).
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