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Supplementary Methods 
 

 

1. Dosing scheme 

 

3D cardiac microtissues were treated with four anthracyclines (DOX: doxorubicin, EPI: 

epirubicin, IDA: idarubicin, DAU: daunorubicin) at two different doses (THE: therapeutic 

dose, TOX: toxic dose). The dosing scheme is described in Supplementary Table 1. 

 

Supplementary Table 1. Dosing scheme overview. 

 

  DOX EPI IDA DAU 

Time_range 
THE  
[uM] 

TOX  
[uM] 

THE  
[uM] 

TOX  
[uM] 

THE  
[uM] 

TOX  
[uM] 

THE 
 [uM] 

TOX  
[uM] 

0 - 2 h 0,210948 0,601646 0,220762 0,900051 0,004796 0,087217 0,033797 1,074738 

2 - 8 h 0,016106 0,045939 0,012507 0,050995 0,001429 0,022968 0,003623 0,115513 

8 - 24 h 0,008439 0,024081 0,004445 0,018124 0,000941 0,009668 0,000521 0,016609 

24 - 26 h 0,217426 0,620128 0,223587 0,911572 0,005744 0,105634 0,034137 1,085622 

26 - 32 h 0,022025 0,06284 0,01494 0,060921 0,002198 0,037454 0,00393 0,125334 

32 - 48 h 0,013171 0,037611 0,006153 0,025087 0,001527 0,016465 0,000762 0,024283 

48 - 50 h 0,221385 0,631448 0,224894 0,916941 0,006329 0,115424 0,034336 1,091998 

50 - 56 h 0,025699 0,073365 0,016115 0,065701 0,002674 0,045688 0,004115 0,13123 

56 - 72 h 0,016188 0,046262 0,007055 0,028763 0,001886 0,020168 0,000915 0,029173 

72 - 144 h * 0,039025 0,111473 0,028365 0,115649 0,002835 0,037997 0,004697 0,149528 

144 - 146 h 0,227455 0,648925 0,226499 0,923458 0,00712 0,123474 0,034704 1,103816 

146 - 152 h 0,031366 0,089689 0,017592 0,071738 0,00332 0,052668 0,004467 0,142489 

152 - 168 h 0,020879 0,059793 0,00824 0,033595 0,002372 0,023324 0,001228 0,039173 

168 - 170 h 0,22794 0,650331 0,226603 0,923868 0,00717 0,123695 0,034754 1,10543 

170 - 176 h 0,031819 0,091003 0,017689 0,072131 0,00336 0,052869 0,004516 0,144042 

176 - 192 h 0,021255 0,06089 0,008318 0,033915 0,002403 0,023418 0,001273 0,040596 

192 - 194 h 0,22826 0,651272 0,226675 0,92413 0,0072 0,123808 0,034796 1,10676 

194 - 200 h 0,032122 0,09188 0,017752 0,072374 0,003386 0,05297 0,004556 0,145327 

200 - 216 h 0,021506 0,061619 0,008367 0,034113 0,002422 0,023468 0,00131 0,041772 

216 - 218 h 0,228477 0,651882 0,226713 0,924313 0,007219 0,123867 0,03483 1,107861 

218 - 224 h 0,032321 0,092462 0,01779 0,072521 0,003401 0,053025 0,004589 0,14639 

224 - 240 h 0,021673 0,062106 0,008398 0,034238 0,002434 0,023495 0,00134 0,042747 

240 - 312 h * 0,041756 0,119399 0,02897 0,118114 0,003087 0,039272 0,00499 0,158908 

312 - 314 h 0,228813 0,652888 0,226767 0,924539 0,007245 0,123939 0,034918 1,110684 

314 - 320 h 0,032639 0,093402 0,017843 0,07275 0,003422 0,053089 0,004674 0,149117 

320 - 336 h 0,021937 0,062885 0,008441 0,034417 0,00245 0,023527 0,001419 0,045249 

 

*dose determined by averaging over exposure profile for the respective time range 

 

For each treatment, physiologically-based pharmacokinetic models were developed and in 

vivo drug exposure was simulated in the interstitial space of the heart over two weeks of a 

once daily administration. Therapeutic doses were estimated from clinical dosing, whereas 
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toxic concentrations were computed based on in vitro viability experiments (IC20) in the 

microtissues by reverse dosimetry. From the continuous exposure profiles (Supplementary 

Fig. 2) an experimental setting was derived with three daily media changes for a period of 14 

days (except weekends) mimicking the estimated in vivo PK exposure profiles. Over the 

weekend, spheroids were treated with an average concentration calculated from the PK 

exposure profile. Drugs were administered at the respective concentrations at the beginning 

of the each time range and material for molecular analyses was extracted at the respective 

end of the time range (in bold). 

 

 

2. Experiments and data analyses  

 

Effects of treatments were measured at three different molecular levels (methylome, 

transcriptome and proteome) and at seven time points (2h, 8h, 24h, 72h, 168h, 240h, 336h) 

using three replicate measurements per time point (A, B and C). Additionally, time-matched 

control experiments were performed (DMSO). Supplementary Table 2 lists the different 

experiments. 

 

Supplementary Table 2. Overview of the molecular experiments. In red, outlier experiments 

are marked that didn’t pass the QC procedures and were discarder in further analysis. 

 

A. Methylation experiments* 

Treatment Dose 2h 8h 24h 72h 168h 240h 336h 

DMSO  A B C A B C A B C A B C A B C A B C A B C 

DOX Therapeutic ABC ABC ABC ABC ABC ABC ABC 

DOX Toxic ABC ABC ABC ABC ABC ABC ABC 

EPI Therapeutic A B C A B C A B C A B C A B C A B C A B C 

EPI Toxic A B C A B C A B C A B C A B C A B C A B C 

IDA Therapeutic ABC ABC ABC ABC ABC ABC ABC 

IDA Toxic ABC ABC ABC ABC ABC ABC ABC 

DAU Therapeutic A B C A B C A B C A B C A B C A B C A B C 

DAU Toxic A B C A B C A B C A B C A B C A B C - - - 

* In the case of DOX and IDA treatments the replicate DNA samples were pooled prior to the methylation 

enrichment and sequencing experiments  

B. Transcriptome experiments 

Treatment Dose 2h 8h 24h 72h 168h 240h 336h 

DMSO  A B C A B C A B C A B C A B C A B C A B C 

DOX Therapeutic A B C A B C A B C A B C A B C A B C A B C 

DOX Toxic A B C A B C A B C A B C A B C A B C A B C 

EPI Therapeutic A B C A B C A B C A B C A B C A B C A B C 

EPI Toxic A B C A B C A B C A B C A B C A B C A B C 

IDA Therapeutic A B C A B C A B C A B C A B C A B C A B C 

IDA Toxic A B C A B C A B C A B C A B C A B C A B C 

DAU Therapeutic A B C A B C A B C A B C A B C A B C A B C 

DAU Toxic A B C A B C A B C A B C A B C A B C - - - 
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C. Proteome experiments 

Treatment Dose 2h 8h 24h 72h 168h 240h 336h 

DMSO  A B C A B C A B C A B C A B C A B C A B C 

DOX Therapeutic A B C A B C A B C A B C A B C A B C A B C 

DOX Toxic A B C A B C A B C A B C A B C A B C A B C 

EPI Therapeutic A B C A B C A B C A B C A B C A B C A B C 

EPI Toxic A B C A B C A B C A B C A B C A B C A B C 

IDA Therapeutic A B C A B C A B C A B C A B C A B C A B C 

IDA Toxic A B C A B C A B C A B C A B C A B C A B C 

DAU Therapeutic A B C A B C A B C A B C A B C A B C A B C 

DAU Toxic A B C A B C A B C A B C A B C A B C - - - 

 

Different kinds of analysis were performed with the molecular data: 

 

Longitudinal data analysis: This analysis was performed with the transcriptome and 

proteome data with the goal to identify response genes/proteins that have an expression 

profile over time that is different from the control experiments. This analysis was done using 

the R/Bioconductor package MaSigPro and applying a two-step polynomial regression model 

with maximal degree of 2 [1]. For each treatment and dose the respective 21 experiments (7 

time points x 3 replicates) along with the 21 control experiments were summarized into the 

polynomial model and significant deviations were identified according to the respective P-

values (Supplementary Fig. 6 and Methods).  

 

Time-point specific data analysis: This analysis was performed with the transcriptome and 

proteome data with the goal to identify differentially expressed genes/proteins at single time 

points comparing the replicates per time point (3x treatment vs 3x controls) with a statistical 

test (in the case of transcriptome data with DESeq2, in the case of proteome data with 

Student’s t-test; cf. Methods). 

 

Pooled time point analysis: This analysis was performed with the methylation data in order 

to identify differentially methylated regions (DMRs) between AC treatment and controls 

across the seven time points, with prior averaging of the replicates per time point, using the 

QSEA tool (7x treatment vs 7x controls). QSEA transforms the MeDIP-seq enrichment 

counts for each genomic region into a bisulfite-like % methylation value using a Bayesian 

model. The statistical analysis for identifying DMRs is then based on a generalized linear 

model [2]. 
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3. Basic data statistics 

 

3.1 Methylome analysis 

QC was performed based on the number of paired-end reads mapped to the reference 

genome, the coverage of the genome sequence and follow-up visual inspection of all 

experiments per treatment group using PCA. This excluded 2 out of 130 (1.5%) experiments 

(IDA, toxic dose, 240h, and IDA, toxic dose, 336h; Supplementary Table 2A). In both cases 

less than 5 Mio reads were available and the experiments were discarded from further 

analysis. 

 

For each treatment and dose differentially methylated regions (DMRs) were identified using 

pooled time point analysis comparing the treatment samples (7; for IDA, toxic only 5) against 

the control samples (7) using QSEA [2]. This led to the following results: 

 

Comparison 
Number of regions 
tested 

Number of 
DMRs 

DOX vs DMSO therapeutic dose 6,965,162 45,440 

DOX vs DMSO toxic dose 6,646,623 96,365 

EPI vs DMSO therapeutic dose 8,018,940 158,762 

EPI vs DMSO toxic dose 7,824,113 55,141 

IDA vs DMSO therapeutic dose 6,808,151 61,453 

IDA vs DMSO toxic dose 6,492,202 36,060 

DAU vs DMSO therapeutic dose 9,416,171 174,893 
DAU vs DMSO toxic dose 8,999,573 36,349 

 

 

 

3.2 Transcriptome analysis 

First, experiments with an insufficient number of mapped paired reads were discarded. 

Additionally, we applied visual inspection using PCA, heatmaps based on expressed genes 

and Cook’s distance measures. Where these measures gave consistent negative results we 

flagged the experiments as ‘outliers’ and excluded them from further analyses. In total 5 out 

of 186 (2.7%) experiments were discarded (Supplementary Table 2B). 

 

Sequences were mapped to the following genomic features: 

 

Total number of genes: 58,219 

Protein-coding genes: 19,817 

Long non-coding RNAs: 15,787 

Small non-coding RNAs: 7,568 

Pseudogenes:   14,637 

Immunoglobulin/T-cell 

receptor gene segments: 410 

 

After mapping, quantification and normalization of the gene expression (Methods) we 

performed longitudinal data analysis using the polynomial regression model in order to 

identify dynamic response genes. The number of dynamic response genes identified by the 

polynomial regression model are: 
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Comparison Number of dynamic response genes 

DOX vs DMSO therapeutic dose 88 

DOX vs DMSO toxic dose 116 

EPI vs DMSO therapeutic dose 127 

EPI vs DMSO toxic dose 158 

IDA vs DMSO therapeutic dose 138 

IDA vs DMSO toxic dose 250 

DAU vs DMSO therapeutic dose 366 
DAU vs DMSO toxic dose 116 

 

Additionally, we performed time-point specific data analysis comparing for each treatment, 

dose and time-point the gene expression measured on the three replicate samples against 

the three replicates of the time-matched control samples. We used DESeq2 for identifying 

differentially expressed genes and corrected the p-values with the Benjamini-Hochberg 

method using a threshold of q < 0.05. This led to the following number of differentially 

expressed genes: 

 

 

Experiment 
(Treatment_Dose_TimePoint) 

DEseq2 
Treatment vs. DMSO (BH q < 0.05) 

DAU_Ther_002 934 
DAU_Ther_008 1292 
DAU_Ther_024 745 
DAU_Ther_072 970 
DAU_Ther_168 1108 
DAU_Ther_240 987 
DAU_Ther_336 593 
DAU_Tox_002 113 
DAU_Tox_008 242 
DAU_Tox_024 271 
DAU_Tox_072 532 
DAU_Tox_168 1362 
DAU_Tox_240 1242 
DAU_Tox_336 not performed 
DOX_Ther_002 639 
DOX_Ther_008 667 
DOX_Ther_024 455 
DOX_Ther_072 747 
DOX_Ther_168 2166 
DOX_Ther_240 1004 
DOX_Ther_336 1819 
DOX_Tox_002 726 
DOX_Tox_008 601 
DOX_Tox_024 520 
DOX_Tox_072 1067 
DOX_Tox_168 2394 
DOX_Tox_240 2535 
DOX_Tox_336 2748 
EPI_Ther_002 1584 
EPI_Ther_008 1293 
EPI_Ther_024 1196 
EPI_Ther_072 1567 
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EPI_Ther_168 1759 
EPI_Ther_240 966 
EPI_Ther_336 1886 
EPI_Tox_002 862 
EPI_Tox_008 551 
EPI_Tox_024 2345 
EPI_Tox_072 1165 
EPI_Tox_168 1705 
EPI_Tox_240 3056 
EPI_Tox_336 2111 
IDA_Ther_002 1850 
IDA_Ther_008 1687 
IDA_Ther_024 1518 
IDA_Ther_072 1485 
IDA_Ther_168 1802 
IDA_Ther_240 1127 
IDA_Ther_336 1347 
IDA_Tox_002 960 
IDA_Tox_008 1442 
IDA_Tox_024 844 
IDA_Tox_072 687 
IDA_Tox_168 1250 
IDA_Tox_240 3883 
IDA_Tox_336 2422 

 

 

 

3.3. Proteome analysis 

QC was performed on visual inspection using PCA. This excluded 6 out of 186 (3.2%) 

experiments (Supplementary Table 2C). 

Proteins were detected after m/z alignment, RT alignment, peak detection, isotope clustering 

and identification and validation of peptides (Methods). 

 

The following numbers of proteins were detected in the samples and were identified as 

dynamic response proteins with the polynomial regression model: 

 

Experiment 
(Treatment_Dose_TimePoint) Quantified proteins 

Number of dynamic 
response proteins 

DOX_THE_002 1238 

270 

DOX_THE_008 1226 

DOX_THE_024 1205 

DOX_THE_072 1249 

DOX_THE_168 1154 

DOX_THE_240 1136 

DOX_THE_336 1167 

DOX_TOX_002 980 

242 

DOX_TOX_008 972 

DOX_TOX_024 959 

DOX_TOX_072 924 

DOX_TOX_168 819 

DOX_TOX_240 791 

DOX_TOX_336 690 

EPI_THE_002 932 210 
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EPI_THE_008 923 

EPI_THE_024 924 

EPI_THE_072 906 

EPI_THE_168 943 

EPI_THE_240 883 

EPI_THE_336 931 

EPI_TOX_002 942 

226 

EPI_TOX_008 857 

EPI_TOX_024 796 

EPI_TOX_072 773 

EPI_TOX_168 795 

EPI_TOX_240 510 

EPI_TOX_336 559 

IDA_THE_002 648 

176 

IDA_THE_008 607 

IDA_THE_024 649 

IDA_THE_072 678 

IDA_THE_168 588 

IDA_THE_240 635 

IDA_THE_336 625 

IDA_TOX_002 681 

157 

IDA_TOX_008 591 

IDA_TOX_024 641 

IDA_TOX_072 669 

IDA_TOX_168 473 

IDA_TOX_240 discarded 

IDA_TOX_336 discarded 

DAU_THE_002 790 

158 

DAU_THE_008 864 

DAU_THE_024 871 

DAU_THE_072 875 

DAU_THE_168 863 

DAU_THE_240 891 

DAU_THE_336 949 

DAU_TOX_002 813 

120 

DAU_TOX_008 699 

DAU_TOX_024 752 

DAU_TOX_072 737 

DAU_TOX_168 690 

DAU_TOX_240 314 

DAU_TOX_336 not performed 

DMSO_002 1317  
DMSO_008 1390  
DMSO_024 1340  
DMSO_072 1207  
DMSO_168 1344  
DMSO_240 1340  
DMSO_336 1304  
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4. ACT response network construction 

 

We used the PPI network provided by ConsensusPathDB [3,4] as a scaffold and performed 

network propagation with the weights derived from the proteome and transcriptome 

experimental data. The purpose of this analysis was to derive an ACT response network 

describing the most common in vitro responses to the four anthracyclines. This ACT 

response network (Fig. 4) was generated by the following procedure: 

 

1. For each treatment and dose map the dynamic response proteins (Supplementary Data 2) 

to the PPI network and initialize the corresponding nodes with the P-value scores that 

describe the significance of the deviation of the treatment temporal profile from the control 

temporal profile according to Supplementary Fig. 11. Numbers of initialized proteins and 

score densities are shown in the figure. Perform network propagation of the initialized 

weights using random walk with restart [5] and extract the final computed network module 

(genes for the respective modules are shown in Supplementary Data 4). This yields 8 

different computed network modules for the proteome data (4 treatments x 2 doses). 

2. For each treatment and dose map the dynamic response genes (Supplementary Data 3) 

to the PPI network and initialize the corresponding nodes with the P-value scores that 

describe the significance of the deviation of the treatment temporal profile from the control 

temporal profile according to Supplementary Fig. 11. Numbers of initialized genes and score 

densities are shown in the figure. Perform network propagation of the initialized weights 

using random walk with restart [5] and extract the final computed network module (genes for 

the respective modules are shown in Supplementary Data 4). This yields 8 different 

computed network modules for the transcriptome data (4 treatments x 2 doses). 

3. For each treatment and dose map the dynamic response proteins and transcripts to the 

PPI network and initialize the corresponding nodes with the joined P-value scores according 

to Supplementary Fig. 11. Numbers of initialized proteins/genes and score densities are 

shown in the figure. Perform network propagation and extract the final computed network 

module (genes for the respective modules are shown in Supplementary Data 4). This yields 

8 different computed network modules for the integrated data (4 treatments x 2 doses). 

 

As an intermediate result we observed that the final modules derived from the integrated 

data (Supplementary Fig. 12-13) are larger in size (Supplementary Fig. 14) and contain more 

functional information (Supplementary Fig. 15) than the modules derived from proteome data 

only and transcriptome data only. Thus, this approach demonstrates an efficient data 

integration strategy that can easily be extrapolated with further data sets. 

 

We thus continued with the four network modules derived from integrated data 

(Supplementary Data 4), and we constructed the ACT response networks for therapeutic and 

toxic doses respectively from the four individual AC networks computed in step 3 above for 

the respective dose. Since we were interested in common responses at the two doses we 

overlaid the modules for the four treatments and kept only those proteins and their 

interactions that were present in at least 2 of the 4 treatments. We were then particularly 

interested in the effects of the lower therapeutic dose because it is pharmacologically 

relevant and adapted to the clinical dosing in patients. At therapeutic dose this left us with 

175 proteins and their interactions and this network is displayed and discussed in Fig. 4 and 

further evaluated for disease content with biopsies and physiological modelling. 
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Supplementary Figures 
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Supplementary Figure 1 Study schema. 3D cardiac microtissues are grown and treated over a time 
period of 14 days with four anthracycline drugs. PBPK modelling is used to infer in vivo drug exposure 
levels at two doses (therapeutic and toxic doses). Omics measurements were done at seven different 
time points (2h, 8h, 24h, 72h, 168h, 240h, 336h). Methylome measurements were used to 
characterize cell identity of cardiac microtissues and to infer effects of AC treatment on 
transcriptional regulation. Proteome and transcriptome measurements were used to characterize 
dynamic cellular responses. Time series data was mapped to a large PPI network in order to integrate 
the data and to identify a common ACT response network across the treatments. The in vitro inferred 
ACT response network was then tested for clinical relevance in cardiomyopathy patient biopsies and 
for physiological relevance on ATP production with sensitivity analysis using an established 
computational model of the human mitochondrion. 
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b

c

 

 

Supplementary Figure 2 In vitro assay dosing. Assay set up with PBPK models and reverse dosimetry. 
The in vitro assay design aims to mimic organ-specific in vivo drug exposure. (a) Dose-response 
experiments for the in vitro cell system are conducted to identify a toxic exposure resulting in a 
reduction of 20 % cell viability. (b) PBPK models are used to estimate the anticipated in vivo dose that 
is needed in a once daily dosing regimen to result in the same exposure via reverse dosimetry. (c) The 
continuous drug exposure profiles are translated into an experimental setting with three daily media 
changes mimicking the estimated in vivo PK exposure profiles (cf. Supplementary Methods). 
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Supplementary Figure 3 Heart-specific dynamic differentially methylated regions (dDMRs) in 3D 
cardiac microtissues. Ziller et al. [6] have performed whole-genome bisulfite sequencing of 30 
human cell lines of different cell types and developmental stages and identified tissue-specific 
dynamic methylated regions (dDMRs). The dynamic methylome leads to the identification of 
genomic regions that are differentially methylated between fetal heart and other cell lines. We 
selected the lowly (<20%: 16,705 dDMRs) and highly (>80%: 627,864 dDMRs) methylated dDMRs 
from that study and compared their methylation status in the IPSC-derived cardiac microtissues 
(control samples). Blue curve: distribution of lowly methylated dDMRs in cardiac microtissues; red 
curve: distribution of highly methylated dDMRs in cardiac microtissues. 

 
 
 

  



13 
 

8% 9%

41%

42%

5% 2%

41%52%

8% 9%

41%

42%

7% 7%

43%

43%

Intergenic

Intron

Exon

Promoter (-2kb)

EPI DOX

DAUIDA

TOX

THE

0

50000

100000

150000

200000

DOX EPI IDA DAU

TOX THE

 

 

Supplementary Figure 4 Differentially methylated regions in cardiac microtissues. Genomic 
annotation of differentially methylated regions and overall statistics for the different experimental 
conditions. AC-induced methylation values were compared against DMSO controls in order to 
identify differentially methylated regions (DMRs) using the QSEA tool (Lienhard et al., 2017): 42-52% 
of the DMRs fall in intergenic regions. Genic DMRs are mostly in introns (41-43%) with only a 
minority of 2-9% of the DMRs corresponding to exon and 5-8% corresponding to promoter 
sequences (-2kb upstream of the transcription start site). ACs show large differences in methylation 
effects: DAU and EPI induced 3-5 times more changes in methylation than IDA and DOX at 
therapeutic dose whereas overall effects are generally lower (except for DOX) at toxic doses.  
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Supplementary Figure 5 Differentially methylated regions in cardiac microtissues. VENN diagrams 
of DMRs from the different treatments. Top: therapeutic dose. Bottom: toxic dose. 

 
 

  



15 
 

Time Replicate Control Treatment

C_2h_1 2 1 1 0

C_2h_2 2 1 1 0

C_2h_3 2 1 1 0

C_8h_1 8 2 1 0

C_8h_2 8 2 1 0

C_8h_3 8 2 1 0

C_24h_1 24 3 1 0

C_24h_2 24 3 1 0

C_24h_3 24 3 1 0

C_72h_1 72 4 1 0

C_72h_2 72 4 1 0

C_72h_3 72 4 1 0

C_168h_1 168 5 1 0

C_168h_2 168 5 1 0

C_168h_3 168 5 1 0

C_240h_1 240 6 1 0

C_240h_2 240 6 1 0

C_240h_3 240 6 1 0

C_336h_1 336 7 1 0

C_336h_2 336 7 1 0

C_336h_3 336 7 1 0

Treatment_2h_1 2 8 0 1

Treatment_2h_2 2 8 0 1

Treatment_2h_3 2 8 0 1

Treatment_8h_1 8 9 0 1

Treatment_8h_2 8 9 0 1

Treatment_8h_3 8 9 0 1

Treatment_24h_1 24 10 0 1

Treatment_24h_2 24 10 0 1

Treatment_24h_3 24 10 0 1

Treatment_72h_1 72 11 0 1

Treatment_72h_2 72 11 0 1

Treatment_72h_3 72 11 0 1

Treatment_168h_1 168 12 0 1

Treatment_168h_2 168 12 0 1

Treatment_168h_3 168 12 0 1

Treatment_240h_1 240 13 0 1

Treatment_240h_2 240 13 0 1

Treatment_240h_3 240 13 0 1

Treatment_336h_1 336 14 0 1

Treatment_336h_2 336 14 0 1

Treatment_336h_3 336 14 0 1

AC vs Control design matrix

                                                      
      

Polynomial regression model (degree  2) 

Regression coefficients for
the control group

Regression coefficients for the
specific differences between the
treatment and the control groups

                                 

Beta 10.55 1.01 0.00 0.03 0.00 -0.01

P-value 1.25E-45 3.02E-05 NA 1.68E-05 NA 6.63E-07

                                 

Beta 10.50 4.98 0.00 0.00 0.00 0.00

P-value 4.95E-56 3.70E-37 NA NA NA NA

                                 

Beta 10.45 0.00 0.00 -0.03 0.00 0.00

P-value 3.12E-59 NA NA 3.89E-31 NA NA

Linear treatment effect

Constant (batch) effect

Linear and quadratic treatment effect

a b

c

i: treatment or control (i=1,2) 
j: time point (j=1,…,7)
r: replicate (r=1,2,3)

 

 

Supplementary Figure 6 Longitudinal data analysis using polynomial regression. (a) Design of 
experiments. Every AC treatment at a given dose is measured at seven time points with time-
matched controls with three replicates giving rise to 42 different experiments. (b) Polynomial 
regression model (degree ≤ 2). A two-step procedure is carried out using MaSigPro [1]. (c) Output. 
Fitted regression coefficients and corresponding P-values. Dynamic response proteins/genes are then 
selected based on the regression coefficients 𝛽0 𝑇𝑣𝑠𝐶  𝛽1 𝑇𝑣𝑠𝐶  𝛽2 𝑇𝑣𝑠𝐶  that describe the differences 
between control and the treatment group with respect to the constant, linear and quadratic terms 
respectively (upper and middle panel). Proteins/genes with only constant effects (lower panel) are 
discarded since they likely are influenced by batch effects. Plots show the fitted regression curves for 
the treatment (green) and control (red) with dotted lines and additionally a solid line connecting the 
median values of the three replicates per time point.  
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Supplementary Figure 7 Protein and gene expression of cardiac troponin T. Time-point specific 
ratios of TNNT2 protein and gene expression compared to controls. Y-axes show log2 fold-changes of 
AC treated and control experiments. X-axes show time points. Replicate values per time point were 
averaged. Large circles correspond to individual time points with significant deviation of treatment 
vs. Controls (Q<0.05). For proteome data Student‘s t-test was used comparing the time-point specific 
replicates, for transcriptome data DEseq2 was used. 
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Supplementary Figure 8 Visualization of mitochondrial and sarcomeric gene expression changes 
after AC exposure. Exposure to the AC toxic dosing profile. Protein complexes are represented by 
purple ovals with the genes encoding for subunits displayed next it in yellow rectangles. On top of 
each gene, the boxes display the expression change over time, where each box corresponds to a 
specific time point. The fill level of these boxes display the log2 fold change (completely filled boxes: 
log2 fold change < 3), upregulations are depicted in red and downregulations in blue. Significance, 
determined by MagSigPro analysis, is indicated by transparency, where the lightest genes were not 
DEG in any AC, medium transparent are DEG in only 1 AC and not transparent are DEG in at least 2 
ACs (figure adapted from [7]). 
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Proteome (red): 14 genes
Transcriptome (green): 24 genes
Methylome (blue): 13 genes

 

 

Supplementary Figure 9. Common pathway response of response DMRs, proteins and genes with 
respect to the KEGG pathway „adrenergic signalling in cardiomyocytes“. Pathway components that 
were responding to one or more platforms are highlighted by colored boxes next to the component 
name. Multiple boxes indicate assignment of different genes to the model components. Red: 
proteins, green: genes, blue: DMRs. 
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Supplementary Figure 10 Principle of network propagation concept. A large protein-protein 
interaction network (PPI) from 19 different data resources was agglomerated from the 
ConsensusPathDB molecular interaction resource consisting of 10,707 proteins and 114,516 
interactions. In order to weight the proteins according to their information content with respect to 
time-sensitive AC treatment responses we used scores that reflect the dynamic changes of the 
proteins after AC treatment (Supplementary Fig. 11). If the proteins in the network show no 
significant dynamic response they are scored with zero. These initial weights for all proteins in the 
network are summarized to the initial node weight vector, p0. Network propagation then diffuses 
these weights using a random walk with restart procedure and computes a final weight vector p 
which then allows a final reranking of all proteins along with the computation of a subnetwork 
containing the major connected components of the drug response. Network propagation was 
performed with Hotnet2 [5]. 
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Supplementary Figure 11 Scoring of network nodes. Left panel: Initial node score distribution for the 
ACs at the different doses for transcriptome data. For each gene/protein, k, the score is computed as 
the sum of the negative log-values of the p-values for the regression coefficients in the respective 
polynomial model. Middle panel: Initial node score distribution for the ACs at the different doses for 
proteome data. Right panel: Initial node scoring distribution for the integrated approach. The 
integrated score is derived by summing over the scores derived from the individual experimental 
platforms. 
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Supplementary Figure 12 AC-network modules at therapeutic doses. Largest network 
modules computed from integrated proteome and transcriptome data with insulated heat diffusion 
for ACs at therapeutic dose. Nodes were initialized based on the significance of the dynamic changes 
of respective AC treatment compared to DMSO control time series. Node color reflects the 
agglomerated heat (score) after the propagation process.  
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Supplementary Figure 13 AC-network modules at toxic doses. Largest network modules computed 
from integrated proteome and transcriptome data with insulated heat diffusion for ACs at toxic dose. 
Nodes were initialized based on the significance of the dynamic changes of respective AC treatment 
compared to DMSO control time series. Node color reflects the agglomerated heat (score) after the 
propagation process.  
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Supplementary Figure 14 Network module sizes. Sizes of all drug response networks computed from 
protein data (blue) and transcriptome data (red) alone and from integrated data (green).  
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Supplementary Figure 15 Functional content of computed network modules. Enrichment of 
functional information for GO categories that are commonly enriched with network modules 
computed from protein data (blue), transcriptome data (red) and integrated data (green). X-axis 
displays the GO terms, Y-axis shows the enrichment score, 𝐸𝑖    log10𝑄𝑖, for each GO term i, 
where Qi  is the Q-value of the enrichment computed with Fisher’s exact test. The upper right plot 
summarizes the enrichment scores for each data set over all GO terms.  
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Supplementary Figure 16 Integrated ACT response network module at toxic dose. Integrated drug 
response network from all ACs computed from proteome and transcriptome data with insulated heat 
diffusion at toxic dose from a large protein-protein interaction network. Nodes were initialized based 
on the significance of the dynamic changes of respective AC treatment compared to DMSO control 
time series and for each AC a drug response network was computed (Suppl. Figs. 10,13). Nodes and 
their interactions that appeared in at least 2 of the individual AC networks were integrated. Node 
colors reflect the occurrence of the node in the individual AC networks.  
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Supplementary Figure 17. 48 genes with rare and common variants in DCM and systolic heart failure 
identified by a recent review survey [8] overlap with the integrated response network with 8 genes 
(TNNT2, FLNC, MYBPC3, MYH7, MYL2, TNNC1, TPM1, NEBL) resulting in an odds ratio of 10.20. 
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Supplementary Figure 18 Sensitivity analysis of mitochondrial model. (a) Simulated relative change 
in ATP concentration following a macroscopic change in the drug-induced (toxic dose) protein change 
after 7-day exposure. (b) Corresponding protein fold change. (c-f) Absolute values of the ATP 
sensitivities, sorted according to magnitude for doxorubicin, epirubicin, idarubicin, and daunorubicin. 
The numbers on the horizontal axes refer to the reactions labelled in Fig. 6a and Supplementary Fig. 
19. 
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Supplementary Figure 19 ACT response network proteins cover model components that mostly 
influence ATP concentration. Mitochondrion reaction system with labelled transitions. Colored lines 
indicate model components that have been identified by network modules computed from 
integrated (transcriptome and proteome) in vitro microtissue data and that have significant impact 
on ATP concentration as computed by model sensitivity analysis in Supplementary Fig. 18. 
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Supplementary Figure 20. (a) Simulated fluxes through the subsystems at steady state, as functions 
of time over the course of drug exposure. (ETC flux: mean flux through complexes CI-CIV; TCA flux: 
mean flux through the TCA cycle transitions; ROS flux: total flux of superoxide production given by 
the sum of the fluxes from ETC Complexes I and III.) (b) Comparison of sensitivities of ATP 
concentration with respect to each reaction in the model, following exposure to either the toxic dose 
(vertical axis) or the therapeutic dose (horizontal axis). Sensitivities were calculated by introducing a 
1% change to the reaction activities. The dashed line has unit gradient. Symbols refer to the reactions 
marked in Figure 6a. (c) Sensitivity of ATP concentration to macroscopic changes in reaction activity 
(see Methods), plotted as a function of the fold change in protein density. Symbols refer to the 
reactions marked in Fig. 6a and Supplementary Fig. 19. 
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Supplementary Figure 21. TNNI1/TNNI3 gene body methylation in control microtissues. 
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