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Abstract 

Background 

Introns are generally removed from primary transcripts to form mature RNA molecules in a 

post-transcriptional process called splicing. An efficient splicing of primary transcripts is an 

essential step in gene expression and its misregulation is related to numerous human diseases. 

Thus, to better understand the dynamics of this process and the perturbations that might be 

caused by aberrant transcript processing it is important to quantify splicing efficiency. 

Results 

Here, we introduce SPLICE-q, a fast and user-friendly Python tool for genome-wide 

SPLICing Efficiency quantification. It supports studies focusing on the implications of 

splicing efficiency in transcript processing dynamics. SPLICE-q uses aligned reads from 

strand-specific RNA-seq to quantify splicing efficiency for each intron individually and 

allows the user to select different levels of restrictiveness concerning the introns’ overlap 

with other genomic elements such as exons of other genes. We applied SPLICE-q to globally 

assess the dynamics of intron excision in yeast and human nascent RNA-seq. We also show 

its application using total RNA-seq from a patient-matched prostate cancer sample.  

Conclusions 

Our analyses illustrate that SPLICE-q is suitable to detect a progressive increase of splicing 

efficiency throughout a time course of nascent RNA-seq and it might be useful when it comes 

to understanding cancer progression beyond mere gene expression levels. SPLICE-q is 

available at: https://github.com/vrmelo/SPLICE-q 
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1. Background 

Eukaryotic genes are mostly composed of a series of exons intercalated by sequences 

with no coding potential called introns. These sequences are generally removed from primary 

transcripts by a post-transcriptional process called splicing to form mature RNA molecules. 

This highly regulated process consists basically of a series of hydrolysis and ligation 

reactions led by the spliceosome [1]. The exon-intron boundaries, i.e., the splice junctions, 

together with the branch point, a short sequence located 18-40 nucleotides upstream of the 

intron's 3' splice junction [2] and the polypyrimidine tract [3], are recognized by the 

spliceosome. These events promote the correct folding necessary for the intron’s excision and 

are followed by the correct pairing of the exon-exon boundaries. In metazoans, further 

sequences are required for recruiting different trans-acting regulatory factors. These will act 

as spliceosome regulators as well as splice site choice modulators and are particularly 

important for efficient transcript processing [4].  

Splicing is dynamic and occurs mostly during or immediately after the transcription of 

a complete intron. Co-transcriptional splicing was first suggested in D. melanogaster chorion 

genes using electron microscopy to observe the assembly of spliceosomes at the splice 

junctions in nascent transcripts [5]. More recently, genome-wide studies in different cell lines 

and organisms using nascent RNA showed introns being spliced shortly after their 

transcription is finished: in S. cerevisiae, data revealed polymerase pausing within the 

terminal exon, permitting enough time for splicing to happen before release of the mature 

RNA [6]; and nascent RNA also indicated that most introns in D. melanogaster are co-

transcriptionally spliced [7], as well as in mouse [8] and many human cells and tissues [9–

11]. 

Splicing is an essential step in gene expression and its misregulation is related to 

numerous human diseases [12–15]. Up to 15% of mutations that cause genetic disease have 
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been suggested to affect pre-mRNA splicing [16]. Thus, to better understand the dynamics of 

splicing and the perturbations that might be caused by aberrant transcript processing, it is 

important to quantify splicing efficiency. The efficiency of splicing is commonly quantified 

by means of RT-qPCR with primers that span exon-exon and exon-intron boundaries [17]. 

Yet, this methodology can only investigate a limited number of genes. By contrast, 

transcriptomics technologies, such as RNA-Seq, allow these analyses from a genome-wide 

point of view. One interesting approach to globally determine splicing efficiencies is to assess 

nascent transcripts within short intervals after the transcription has started. Experimentally, 

this can be achieved through metabolic labeling or purification of chromatin-associated 

nascent RNAs.  

For intron-containing transcripts, splicing efficiency can be determined with different 

frameworks that use read counts on intronic and exonic regions. Short-read RNA-Seq is 

currently the main approach using either nascent or total RNA. Conceptually, splicing 

efficiency can be observed either from an intron-centric point of view—to investigate 

whether an intron has been spliced out—or from an exon-centric point of view—to investigate 

whether an exon has been correctly spliced within the context of its transcript.  

Khodor et al. [7] used an intron-centric method to estimate the unspliced fraction of 

introns in D. melanogaster by taking the ratio of the read coverage of the last 25 bp of an 

intron and the first 25 bp of the following exon. In this way, introns where the RNA 

polymerase has not yet reached the acceptor splice site are not included but the metric is not 

guaranteed to take values between 0 and 1 and does hence not constitute an efficiency metric 

in the strict sense. Tilgner et al. [10] used deep-sequencing of human subcellular fractions 

and developed an exon-centric “completed splicing index” (coSI) which takes reads spanning 

the 5’ and the 3’ splice junctions of an exon and computes the fraction of reads indicating 

completed splicing, i.e., which span from exon to exon, to study co-transcriptional splicing. 
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By explicitly considering also reads which span from the upstream exon directly to the 

downstream exon, this approach includes exon skipping events, but coSI values for the first 

and last exon of a transcript cannot be determined. More recently, Převorovský et al. [18] 

presented a workflow for genome-wide determination of intron-centric splicing efficiency in 

yeast. The efficiencies are quantified for the 5’ and 3’ splice junctions separately as the 

number of “transreads” (split reads spanning from exon to exon) divided by the number of 

reads covering the first or last base of the intron, respectively. Although the authors call their 

metric “splicing efficiency”, it is not limited to a range from 0 to 1 and it is not clear how 

cases without intronic reads (divisions by zero) are handled. Other drawbacks of this 

workflow are that it consists of numerous open-source tools and custom shell and R scripts 

and that it was explicitly developed for yeast. 

Although the above-mentioned frameworks for calculating splicing efficiency from 

RNA-seq data exist, there is more to add to their respective limitations. The bioinformatics 

steps involved might be challenging—including difficulties in running workflows that require 

long running times and the installation of numerous tools—especially for experimental 

biologists. Thus, here we introduce SPLICE-q, a user-friendly open-source Python tool for 

genome-wide SPLICing Efficiency quantification from RNA-seq data. SPLICE-q quantifies 

splicing efficiency for each intron individually and allows the user to select different levels of 

restrictiveness concerning an intron’s overlap with other genomic elements. We show the 

usefulness of SPLICE-q by applying it to time-series nascent and steady-state RNA-seq data 

from human and yeast.  

 

2. Implementation 

2.1. SPLICE-q workflow and parameters 

SPLICE-q is a tool, implemented in Python 3, for quantification of individual intron 

splicing efficiencies from strand-specific RNA-seq data. SPLICE-q's main quantification 
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method uses splicing reads—both split and unsplit—spanning the splice junctions of a given 

intron (Fig. 1). Split reads are junction reads spanning from one exon to another, thus 

indicating processed transcripts from which the individual intron has already been excised. 

Intuitively, unsplit reads are those spanning the intron-exon boundaries (covering both sides 

of the splice junction), hence, indicating transcripts from which the intron has not yet been 

spliced out. As an alternative measure for splicing efficiency, SPLICE-q computes an inverse 

intron expression ratio, which compares the introns’ expression levels with those of their 

flanking exons. 

 

 

Fig. 1: Read assignment scheme for splicing efficiency (SE) and inverse intron expression ratio 

(IER).  Illustration of the reads used by SPLICE-q to quantify SE and IER. In yellow, split reads at 

the 5’ splice junction; in orange, split reads at the 3’ splice junction; in green, unsplit reads at the 5’ 

splice junction; in dark blue, unsplit reads at the 3’ splice junction. In gray and blue, the areas 

covering the exons and introns, respectively. In white, reads not overlapping splice junctions.  

 

SPLICE-q is also sensitive to the overlap of genomic elements. In other words, 

SPLICE-q takes into consideration when a genome shows overlapping features that can cause 

issues with a correct assignment of reads to specific introns or exons. For example, for intron-

exon boundaries overlapping exons of other genes, seemingly unsplit reads might instead 

stem from exonic regions of the overlapping genes. This is problematic due to the RNA-seq 

methodology’s limitation that makes it difficult to confidently determine without ambiguity 

to which genomic element, exon or intron, these reads should be attributed [19].  
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Therefore, SPLICE-q allows the user to select different levels of restrictiveness for 

strand-specific filtering, including (i) Level 1: keep all introns in the genome regardless of 

overlaps with other genomic elements; (ii) Level 2: select only introns whose splice junctions 

do not overlap any exon of a different gene; (iii) Level 3: select only introns that do not 

overlap with any exon of the same or a different gene (Fig. 2).  Other filters, including the 

minimum read coverage at splice junctions, can also be set up according to users’ necessities 

(Additional file 1: Table 1).  

The two necessary input files are:  

i. A Binary Alignment Map (BAM) file with RNA-seq reads aligned to the reference 

genome. 

 

ii. A genome annotation file provided by GENCODE [20] or Ensembl [21] in Gene Transfer 

Format (GTF) containing information on exons and the genes and transcripts they are 

associated with. 

 

 

Fig. 2: SPLICE-q’s levels of restrictiveness. (Level 1) keep all introns in the genome regardless of 

overlaps with other genomic elements; (Level 2) select only introns whose splice junctions do not 

overlap any exon of a different gene; (Level 3) select only introns that do not overlap with any exon 

of the same or a different gene. A and A.1 are isoforms of the same gene (A) and B represents a 

different gene.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.318808doi: bioRxiv preprint 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3447-4#MOESM1
https://doi.org/10.1101/2020.10.12.318808
http://creativecommons.org/licenses/by-nc-nd/4.0/


SPLICE-q’s internal default workflow comprises of the following major steps (Fig. 3):  

i. Parsing of genomic features from the GTF file; 

ii. Locating and annotating introns and splice junctions from the GTF file’s exon 

coordinates; 

iii. Filtering of introns according to the level of restrictiveness based on the overlap of 

genomic elements;  

iv. Selection of split and unsplit reads at the splice junctions according to the reads’ concise 

idiosyncratic gapped alignment report (CIGAR), and subsequent coverage calculation 

for each splice junction. 

v. Computation of splicing efficiencies. 

 

SPLICE-q parses the exon-centric GTF file and infers the corresponding intron coordinates, 

partially adapting related functions of GTFtools [22]. For Level 3 filtering, when the user 

chooses to include the inverse intron expression ratio, the workflow includes two additional 

steps (Additional file 1: Fig. S1):  

 

vi. Computation of median per-base coverages of introns and their flanking exons 

vii. Computation of the inverse intron expression ratios. 

 

2.2 Quantifying splicing efficiency and inverse intron expression ratio 

Splicing efficiency (SE): SPLICE-q uses split and unsplit junction reads to quantify 

SE for each intron individually. It determines the RNA-seq reads mapping to both splice 

junctions of each given intron i, distinguishes split (S) and unsplit (N) reads for the 5’ and 3’ 

splice junctions and estimates a splicing efficiency score (SEi) as a function of the 

corresponding read counts as follows:  

𝑆𝐸𝑖 =
∑ 𝑆𝑖

𝑗
𝑗∈{5′,3′}

∑ (𝑆𝑖
𝑗
+𝑁𝑖

𝑗
)𝑗∈{5′,3′}

     0 ≤ 𝑆𝐸𝑖 ≤ 1                   (Eq.1) 
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An SE of 0 indicates that the intron has not been spliced out in any of the transcripts from 

which the junction reads originate, which may be due to late splicing in case of nascent RNA-

seq or intron retention in case of steady-state RNA-seq. An SE of 1 means completed splicing 

on all transcripts. Therefore, SE values ranging between 0 and 1 approximate the fraction of 

molecules which have already been spliced. This quantification method makes it possible to 

compare spliced and unspliced intron rates directly.  

 

 

Fig. 3: SPLICE-q’s default workflow. Dashed lines indicated steps which depend on parameter 

settings. Solid lines represent the mandatory steps of the workflow. A BAM index (.bai) file is 

generated if not provided by the user (yellow). Arrows in blue represent a lookup in the data structure 

they pass through. SJ = splice junction; TSV = tab-separated values. 
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Inverse intron expression ratio (IER): as an alternative measure for splicing efficiency 

when using Level 3 filtering, SPLICE-q also provides the inverse of the ratio of intron 

expression to exon expression, where Ix is the median per-base read coverage of the x-th 

intron of a given transcript  and Ex and Ex+1 represent the corresponding median coverages of 

the flanking exons:  

𝐼𝐸𝑅 = 1 −𝑚𝑖𝑛 (1,
𝐼𝑥

0.5∙(𝐸𝑥+𝐸𝑥+1)
)            0 ≤ 𝐼𝐸𝑅 ≤ 1                  (Eq.2) 

Here, the focus lies specifically on the per-base median coverage of all reads mapping 

to the involved genomic elements (exonic and intronic reads) rather than just the splice 

junctions (Fig. 1). As explained above, a high SE indicates that an intron was spliced out of a 

large fraction of transcripts. This scenario should display high read coverage in the exons and 

low coverage or none in the intron. In other words, peaks of mapped reads are observed in the 

surrounding exons when compared to the intron itself. On the contrary, introns with a low SE 

should have read coverage profiles more similar to the surrounding exons.  

 

3. Results and Discussion 

3.1.  Fast and user-friendly quantification of splicing efficiency 

Due to its simplicity and efficient data structure for working with genomic intervals, 

SPLICE-q’s run time with default parameters for approximately 100 million input reads 

mapped to the human genome is 18 minutes using a MacBook Pro with a dual-core Intel Core 

i5 processor and 8GB of RAM. By increasing the number of processes to 4 or 8, which is not 

an issue considering nowadays’ number of processor cores of most laptops and desktops, the 

running time on an AMD Opteron 6282 SE with 516GB of memory is less than 2 minutes 

(Additional file 1: Fig. S2a). Memory usage is low, being approximately that of the GTF file 

size (1.4 GB for the human genome; Additional file 1: Fig. S2b). SPLICE-q’s approach 
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provides major advantages over previous workflows which may require the installation of 

numerous tools and suffer from long running times.  

 

3.2.   Splicing kinetics in human and yeast 

We applied SPLICE-q to globally assess the kinetics of intron excision. The goal here 

is to show the tool’s applicability using different data. For this purpose, we performed three 

different analyses using data from two species and different methodologies (Additional file 1: 

Materials and Methods). The first time-series sequencing dataset consists of BrU-labeled 

HEK293 cells with 15 minutes pulse labeling of nascent RNA and subsequent sequencing of 

labeled RNA after 0, 15, 30, and 60 minutes (pulse-chase) [23]. On average we obtained 

~200 million reads per sample, ~85% of which were uniquely mapped. The nascent RNA 

samples were compared to an unlabeled steady-state control of the same cell line [24]. 

SPLICE-q was applied with default parameters: filtering level 3, a minimum coverage of 10 

uniquely mapped reads at each splice junction, and a minimum intron length of 30 

nucleotides [25]. Only introns passing the filters in all samples after running SPLICE-q were 

kept, totalizing 13,178 introns. As expected, SPLICE-q detects a progressive increase of SE 

throughout the time course (Fig. 4a). Interestingly, at 0 and 15 minutes, SE scores are already 

high with a median of 0.71 and 0.75, respectively. This agrees with previous studies showing 

that splicing is predominantly co-transcriptional in humans and for the most part happens 

immediately after the transcription of an intron is completed, when the RNA polymerase has 

proceeded only a few bases into the downstream exon [5, 6, 9–11]. However, the results also 

illustrate that even 60 minutes after the pulse-labeling of newly synthesized RNA, there is a 

significantly larger fraction of introns which have not yet been excised from the transcripts 

than in the steady-state control. 
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We chose a second dataset [26] which would allow us to quantify splicing efficiency 

of nascent RNA within a finer time scale. These sequencing experiments were performed 

with 4-thiouracil labeled RNA (4tU-seq) from Saccharomyces cerevisiae. Nascent RNA was 

labeled for an extremely short time (1.5, 2.5 and 5 minutes) and then sequenced (Fig. 4b). 

Unlabeled control samples were also generated. After alignment of the raw data, we obtained 

an average of over 50 million uniquely mapped reads per sample and 246 introns shared 

between all samples after running SPLICE-q with the above-mentioned default parameters 

and filtering level 2. The SE at 1.5 minutes has a median of 0.29 while, strikingly, there is an 

increase of 131% in just one minute, with a median SE of 0.67 at 2.5 minutes. This value 

does not alter in the next time point and the unlabeled control sample shows a median SE of 

0.93. This brief analysis suggests how essential it is to perform short labeling in S. cerevisiae 

in order to assess its splicing kinetics since some transcripts approximate steady-state levels 

in a time as short as 2.5 minutes (Fig. 4b).  

 

 

Fig. 4: Splicing kinetics using different datasets. a) Time-series nascent and steady-state (total) RNA-seq 

of labeled HEK293 cells; b) Time-series nascent and steady-state RNA-seq of S. cerevisiae. 
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Lastly, we show how SPLICE-q can also be applied to quantify intron retention in 

steady-state RNA-seq data. For this purpose, we used data coming from a prostate cancer 

sample along with its matched normal tissue (patient 15 of ref. [27]). Since for each of the 

tissues two replicates were available, we computed splicing efficiencies for each replicate and 

then averaged the results for the tumor tissue and the normal tissue.  

 

 
Fig. 5: Read coverage of selected introns in the prostate cancer and the normal control 

sample. IGV views of representative cases of introns from different genes comparing 

prostate cancer vs. normal samples. a) Intron located at chr9:76,782,833-76,783,704 of 

PCA3; b) Introns located at chr9:74,630,368-74,634,630 and chr9:74,634,773-74,642,413 of 

RORB; and c) Intron located at chrX:100,662,368-100,664,773 of SRPX2. Tumor and 

normal samples are represented in red and blue, respectively. 

 

Prostate cancer is one of the most common cancer types in men [28]. SPLICE-q 

detected relatively high splicing efficiencies—median SE of 0.96 in both the tumor and the 

normal sample—in the 66,389 introns shared across the sample pair after running the tool 

with default parameters. This is expected when the tool is applied to steady-state RNA-seq 

data. Although this overview suggests that there is no alteration in average splicing efficiency 

levels between normal and tumor tissue, a closer look showed interesting changes for 
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individual introns. One intriguing example is Prostate cancer associated 3 (PCA3), a long 

noncoding RNA highly expressed in prostate cancer and widely known as a prostate cancer-

specific biomarker of high specificity [29]. It has been found to be involved in the 

proliferation and survival of prostate cancer cells by multiple mechanisms, including the 

modulation of androgen receptor signaling, the inhibition of the tumor suppressor PRUNE2, 

and possibly by acting as a competing endogenous RNA (ceRNA) for High mobility group 

box 1 (HMGB1) via sponging of miR-218-5p [29–31]. Interestingly, PCA3’s second intron 

located at chr9:76,782,833-76,783,704 has an SE of 0.57 in normal tissue and a much higher 

SE of 0.90 in the tumor (Fig. 5a), suggesting that PCA3 might not only be overexpressed but 

also more efficiently spliced.  

Variation in splicing efficiency can be also observed among protein coding genes. The 

retinoic acid-related orphan receptor β (RORβ, encoded by the gene RORB) was recently 

reported to inhibit tumorigenesis in colorectal cancer in vivo. When RORβ was 

overexpressed, tumorigenic capacity of the cells was significantly reduced, suggesting that 

this protein acts as a tumor suppressor in colorectal cancer [32]. Intriguingly, we found two 

of the RORB introns—located at chr9:74,630,368-74,634,630 and chr9:74,634,773-

74,642,413—to have reduced splicing efficiencies in the prostate cancer sample (SEs of 0.99 

and 0.98 in the normal control and 0.63 and 0.60 in the tumor, respectively) (Fig. 5b).  

Contrasting, Sushi repeat-containing protein X‐linked 2, or simply SRPX2, shows the 

opposite splicing efficiency profile with an intron at the coordinates chrX:100,662,368-

100,664,773 being less efficiently spliced in the control sample (SE of 0.59) than in the tumor 

(SE of 0.90, Fig. 5c). Previous studies showed SRPX2 to play an important role in cancer 

development and progression. In colorectal cancer, the overexpression of SRPX2 may 

promote invasiveness of tumor cells [33], and in prostate cancer, a knockdown of SRPX2 

affected the proliferation, migration and invasion of cancer cells by partially suppressing the 
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PI3K/Akt/mTOR signaling pathway [34]. PI3K/Akt/mTOR regulates cell proliferation and 

survival in different cancer types and is usually activated in advanced prostate cancer [35, 

36]. Furthermore, the suppression of this signaling pathway was reported to reduce cell 

motility and invasion in prostate cancer  [37].  

These examples illustrate that gene regulation may go beyond the mere expression 

levels, with a gain or loss of splicing efficiency potentially acting as a superposed mechanism 

that may be beneficial to tumor development. 

  

4. Conclusions 

Here we introduced SPLICE-q, an efficient and user-friendly tool for splicing 

efficiency quantification. SPLICE-q enables the quantification of splicing through two 

different methods (SE and IER) and is sensitive to the overlap of genomic elements. We 

demonstrated SPLICE-q’s usefulness showing three use cases, including two different 

species and experimental methodologies. Our analyses illustrate that SPLICE-q is suitable to 

detect a progressive increase of splicing efficiency throughout a time course of strand-

specific nascent RNA-seq data. Likewise, SPLICE-q can be applied to strand-specific steady-

state RNA-seq data and might be useful when it comes to understanding cancer progression 

beyond mere gene expression levels. 

 

Availability and Requirements 

Project name: SPLICE-q 

Project homepage: https://github.com/vrmelo/SPLICE-q 

Operating system (s): Linux, macOS, and Windows 10 Subsystem for Linux. 

Programming language: Python 3 

Other requirements: Python 3.x., including packages PySam and InterLap. 
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License:  GPL-2 

Any restrictions to use by non-academics: None 

 

Supplementary information 

Additional file 1:  Supplementary file contains additional figures, tables and Materials and 

Methods.  
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