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ON THE UNIVERSAL ELLIPSITOMIC KZB CONNECTION

DAMIEN CALAQUE AND MARTIN GONZALEZ

ABSTRACT. We construct a twisted version of the genus one universal
Knizhnik—Zamolodchikov—Bernard (KZB) connection introduced by Calaque-Enriquez—Etingof,
that we call the ellipsitomic KZB connection. This is a flat connection on a principal
bundle over the moduli space of I'-structured elliptic curves with marked points, where
I' = Z/MZ x Z/NZ, and M,N > 1 are two integers. It restricts to a flat connection on
I'-twisted configuration spaces of points on elliptic curves, which can be used to construct
a filtered-formality isomorphism for some interesting subgroups of the pure braid group on
the torus. We show that the universal ellipsitomic KZB connection realizes as the usual
KZB connection associated with elliptic dynamical r-matrices with spectral parameter, and

finally, also produces representations of cyclotomic Cherednik algebras.
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In this paper, which fits in a series of works about universal Knizhnik—Zamolodchikov—

Bernard (KZB) connections by different authors [6, 13], we focus on a twisted version of the

genus 1 situation. In his seminal work [9], Drinfeld considers the monodromy representation of

the universal Knizhnik—Zamolodchikov (KZ) equation which leads to the formality of the pure

braid group (see reminder below) and the so-called theory of associators that makes the link

between rich algebraic structures (such as braided monoidal categories) and the Grothendieck—

Teichmiiller group GT.

B. Enriquez generalizes in [10] Drinfeld’s work to the twisted (a-k-a trigonometric, or cyclo-

tomic) situation and relates it to multiple polylogarithms at roots of unity. Namely, he uses the
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universal trigonometric KZ system to prove the formality of some subgroups of the pure braid
group on C* and to emphazise relations between suitable algebraic structures (quasi-reflection
algebras, or braided module categories) and analogues of the group GT.

The next step has been made by B. Enriquez, P. Etingof and the first author in [6], where
a universal version of the elliptic KZB system (see [2]) is defined and used to:

e give a new proof (see [1] for the original one) of the filtered formality of the pure braid
group on the torus,

o find a relation between the KZ associator and a generating series for iterated integrals
of Eisenstein series (see also [12]),

e provide examples of elliptic structures on braided monoidal categories (see also [11]).

The main goal of the present paper is to introduce a twisted version of the universal elliptic
KZB system, called the ellipsitomic KZB connection, and to derive from it the formality of
some subgroups of the pure braid group on the torus. In a subsequent work [7], we use it to
emphasize a relation between generating series for values of multiple polylogarithms at roots
of unity and values of elliptic multiple polylogarithms at torsion points.

Throughout the paper and unless otherwise specified, k is a field of characteristic zero,
M, N are fixed positive integers, and I" := Z/MZ x Z/NZ.

Genus zero situation (rational KZ). First recall from [26] that the holonomy Lie algebra
of the configuration space

Conf(C,n) :={z=(21,...,2n) €C"|z; £ z; if i # j}

of n points on the complex line is isomorphic to the graded Lie C-algebra t,, generated by t;;,
1<% # j <n, with relations

(S)  tij =tji,
(L) [tijste] =0 if #{i, 4,k 1} =4,
(AT) [tij,tiw +tj] =0 if #{i,5,k} =3.

i=t

Then, on the one hand, denote by PB,, the fundamental group of Conf(C,n), also known as
the pure braid group with n strands, and by pb,, its Malcev Lie algebra (which is filtered by its
lower central series, and complete). One can easily check that PB,, is generated by elementary
pure braids P;;, 1 <4< j <n, which satisfy (at least) the following relations:

(PB1) (Pi;,Pw) =1 if {i,j} and {k,l} are non crossing,
(PB2) (PyjPiyPy), Pu)=1 ifi<k<j<l,
(PB3) (P, Pit Pjx) = (Pjk, PijP) = (Pig, Pjp Pij) =1 ifi<j<k.

We can depict the generator P;; in the following two equivalent ways:



ON THE UNIVERSAL ELLIPSITOMIC KZB CONNECTION 3

[y
~
.
S
L]

1

Therefore one has a surjective morphism of graded Lie algebras p, : t, - gr(pb,,) sending t;;
to o(log(P;;)), i < j and o : pb,, - gr(pb,,) being the symbol map.

On the other hand, denote by exp(?cn) the exponential group associated with the degree
completion t,, of t,,. The universal KZ connection on the trivial exp(t, )-principal bundle over
Conf(C,n) is then given by the holomorphic 1-form

W= Y Mtij € Q' (Conf(C, n), t,),
1gi<jsn ?i T #j

which takes its values in t,,. It is a fact that the connection associated with this 1-form is

flat, and descends to a flat connection on the moduli space Mg 1 ~ Conf(C,n)/ Aff(C) of

rational curves with n + 1 marked points.

Firstly, the regularized holonomy of this connection along the real straight path from 0 to 1
in Mg 4 ~P'-{0,1, 00} gives a formal power series k7 in two non-commuting variables, called
the KZ associator, that is a generating series for values at 0 and 1 of multiple polylogarithms.
Secondly, using the monodromy representation of the universal KZ connection, one obtains:

(1) A morphism of filtered Lie algebras p, : pb,, - t,, such that gr(u,) o p, = id. Hence
one concludes that p,, and p, are bijective. This provides an isomorphic from pb,, to
the degree completion of its associated graded, which is actually ,. This recovers the
known fact that the group PB,, is 1-formal, meaning that its Malcev Lie algebra is
isomorphic to the degree completion of a quadratic Lie algebra.

(2) A system of relations (called Pentagon (P) and two Hexagons (H,)) satisfied by the
KZ associator. Then, if k is a field of characteristic 0, one can define a set of k-
associators Ass(k), for which the KZ associator will be a C-point (showing at the
same time that the set of such abstract C-associators is indeed non-empty).

A twisted variant (trigonometric/cyclotomic KZ). Similarly, one can consider the con-
figuration space

Conf(C*,n):={z=(z1,...,2n) € (C)"|z; # z; if i # j}

of n points on C*. Then Conf(C*,n) ~ Conf(C,n+1)/C and thus its fundamental group PB}
is isomorphic to PB,,.1. More generally, for any M € Z - {0} one can consider an M-twisted
configuration space

Conf(C*,n, M) :={z=(21,...,2n) € (C*)"zM ZJM for some 7 # j}.
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In [10] B. Enriquez exhibits, using the so-called universal trigonometric KZ connection, an
isomorphism pb,]lw - exp(tM), where pbfy is the Malcev Lie algebra of the fundamental group
PBY ¢ PBL of Conf(C*,n, M), and ! is the holonomy Lie algebra of Conf(C*,n, M). The
monodromy of this connection along a suitable (non closed) path gives a universal pseudotwist
\I/%Z e exp(t}!) that is a generating series for values of multiple polylogarithms at Mth roots
of unity, and satisfies relations with ®kyz.

Genus one situation (elliptic KZB). The genus one universal Knizhnik—Zamolodchikov—
Bernard (KZB) connection V?,ZLB was introduced in [6]. This is a flat connection over the
moduli space of elliptic curves with n marked points M ,,, which was independently discovered
by Levin—Racinet [27] in the specific cases n = 1,2. It restricts to a flat connection over the

configuration space
Conf(T,n) :=A"\{z=(21,...,2n) €C"|z; —z; ¢ A; if i # j}

of n points on an (uniformized) elliptic curve E, := A \C, for 7 € h and A, = Z + 7Z. More
precisely, this connection is defined on a G-principal bundle over M , where the Lie algebra
associated with G has as components:

(1) a Lie algebra t;, related to Conf(T,n), somehow controlling the variations of the
marked points: it has generators xz;,y;, for i« = 1,...,n, corresponding to moving z;
along the topological cycles generating Hy(FE.);

(2) a Lie algebra 0 with as components the Lie algebra sly with standard generators e, f, h
and a Lie algebra 0, := Lie({d2m|m > 1}) such that each da,, is a highest weight element
for sl;. The Lie algebra d somehow controls the variation of the curve in M, and is
closely related to the one defined in [32].

can be locally expressed as VEZB := d — A(z|r)dr - %, Ki(z|r)dz;

1,n

KZB

Now, the connection V*%
)

where

(1) the term K;(—|r):C"™ - t; , is meromorphic on C", having only simple poles on

Diag,, , = J{z=(21,...,20) €C"|zi — 25 € A; } .

i%j
It is constructed out of a function

k(x,z|T) = 79(2 +alr) - l
0(z|m)0(z|r) =
This relates directly the connection VE,ZLB with Zagier’s work [34] on Jacobi forms (see
Weil’s book [33]) and to Brown and Levin’s work [5].
(2) the term A(z|7) is a meromorphic function C" xlh — Lie(G), with only simple poles on
Diag,, := {(z,7) € C" x h|z € Diagy , }. The coefficients of day, in A(z|7) are Eisenstein

series.

We also refer to Hain’s survey [23] and references therein for the Hodge theoretic and motivic
aspects of the story.
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Then, one can construct a holomorphic map sending each 7 € f to a couple e(7r) :=
(A(7),B(7)) where A(7) (resp. B(7)) is the regularized holonomy of the universal ellip-
tic KZB connection along the straight path from 0 to 1 (resp. from 0 to 7) in the once
punctured elliptic curve A-\(C - A;) ~ E;\ Conf(E;,2). B. Enriquez developed in [11] the
general theory of elliptic associators, whose scheme is denoted Ell and for which the couple
e(7) is an example of a C-point. Some of the main features of the so-called elliptic KZB
associators e(7) are the following:

e They satisfy algebraic and modularity relations.

e They satisfy a differential equation in the variable 7 expressed only in terms of iterated
integrals of Eisenstein series, which will be called iterated Eisenstein integrals.

e When taking 7 to ioo (which consists in computing the constant term of the ¢-
expansion of the series A(7) and B(7), where ¢ = €2"7), they can be expressed
only in terms of the K7 associator ®kz.

e They provide isomorphisms between the Malcev Lie algebra of the fundamental group

PB1, of Conf(T,n) and the degree completion of its associated Lie algebra t; .

Observe that, contrary to what happens in genus 0, PB; ,, (also known as the pure elliptic
braid group) is not 1-formal (as t; , is not quadratic), but only filtered-formal according to
the terminology of [30].

Ellipsitomic KZB. As we wrote above, the purpose of the present work is to define a
twisted version of the genus one KZB connection introduced in [6]. This is a flat connection
on a principal bundle over the moduli space of elliptic curves with a I'-structure and n marked
points. It restricts to a flat connection on the so-called I'-twisted configuration space of points
on an elliptic curve, which can be used for constructing a filtered-formality isomorphism for
some interesting subgroups of the pure braid group on the torus.

In a subsequent work [7], we will define ellipsitomic KZB associators as renormalized
holonomies along certain paths on a once punctured elliptic curve with a I'-structure, and
exhibit a relation between ellipsitomic KZB associators, the KZ associator [9] and the cyclo-
tomic KZ associator [10]. Moreover, ellipsitomic associators can be regarded as a generating
series for iterated Eisenstein integrals whose coefficients are elliptic multiple zeta values at
torsion points. In the case M = N these coefficients are related to Goncharov’s work [20], and
also to the recent work [4] of Broedel-Matthes—Richter—Schlotterer.

We finally prove that the universal KZB connection realizes as the usual KZB connection as-
sociated with elliptic dynamical r-matrices with spectral parameter, that should be compared
with [16, 18].

It is worth mentioning the recent work [31], where Toledano-Laredo and Yang define a sim-
ilar KZB connection. More precisely, they construct a flat KZB connection on moduli spaces
of elliptic curves associated with crystallographic root systems. The type A case coincides
with the universal elliptic KZB connection defined in [6], and we suspect that the type B case
coincides with the connection of the present paper for M = N = 2. It is interesting to point
out that a common generalization of their work and ours (for M = N) could be obtained by
constructing a universal KZB connection associated with arbitrary complex reflection groups.
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Plan of the paper. The paper is organized as follows:

e In Section 1, we introduce I'-twisted configuration spaces on an elliptic curve and
define the universal ellipsitomic KZB connection on them. It takes values in a the Lie
algebra t] ,, of infinitesimal ellipsitomic (pure) braids, that we also define.

e As in [6], the connection extends from the configuration space to the moduli space
/\711;["] of elliptic curves with a I'-level structure and unordered marked points. This is
proven in Section 3 using some technical definitions introduced in Section 2, involving
derivations of the Lie algebra t{’n related to the twisted configuration space in genus
1. As in the untwisted case, the results of this section also apply to the “unordered
marked points” situation as well.

e In Section 4, we provide a notion of realizations for the Lie algebras previously in-
troduced, and show that the universal ellipsitomic KZB connection realizes to a flat
connection intimately related to elliptic dynamical r-matrices with spectral parameter.

e In Section 5, we derive from the monodromy representation the filtered-formality of the
fundamental group of the twisted configuration space of the torus, which is a subgroup
of PB1,,. As in the cyclotomic case, it extends to a relative filtered-formality result
for the map By, = I x &,,.

e Finally, in Section 6, we construct a homomorphism from the Lie algebra Ilin x o' to
the twisted Cherednik algebra HY (k). This allows us to consider the twisted elliptic
KZB connection with values in representations of the twisted Cherednik algebra. This
study shall be closely related to the recent paper [3].

e We also include an appendix that summarizes our conventions for fundamental groups,

covering maps, principal bundles, and monodromy maps.
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1. BUNDLES WITH FLAT CONNECTIONS ON I'-TWISTED CONFIGURATION SPACES

1.1. The Lie algebra of infinitisemal ellipsitomic braids. In this paragraph, I' can be
replaced by any finite abelian group (with the additive notation).

For any positive integer n we define | (k) to be the bigraded k-Lie algebra with generators
z; (1 <i<n)in degree (1,0), y; (1 <i<n) in degree (0,1), and t; (a €T, i # j) in degree
(1,1), and relations
(tSeeel) ¢ =157,

(tseff2) [:L'iay] :E]ayl Z tz] )

ael
(tNeee) [, 75] = [yi,9;] =0,
(tTell) :C17y1 = Z Z tl]’

J:j#1i ael

£, t,]1=0,

xivt_jk] = [y’mt_(jlk] = 07

15 +5,]=0,

tLeeel)
tLeee2)
£4T 1)
t4Tere2) [z
where 1 <14,j,k,l <n are pairwise distinct and «, 8 € I'. We will call tlf’n(k) the k-Lie algebra
of infinitesimal ellipsitomic braids. Observe that Y, z; and Y ;y; are central in tlin. Then

we denote by t} (k) the quotient of ] , (k) by ¥;2; and ¥;y;, and the quotient morphism
£, (k) > 8 ;(k) by ur a.

(
(
(
(

r—1r—1r—11—1

l+x]atz]] = [yl+y]at%:| :05

When k = C we write t] ,, :=t] ,(C), and £} ,, := £}, (C).
There is an alternative presentation of t{’n(k) and {{,n(k):
Lemma 1.1. The Lie k-algebra t] ,,(k) (resp. £ ,,(k)) can equivalently be presented with the

same generators, and the following relations: (tSeerl), (8Sere2), (tNepr), (tLeeel), (tLeee2),
(t4Tepel), and, for every 1 <i<n,

[szvyz Zy]azz =
J

(resp. ¥ x5 =295 =0).

Proof. 1f x;,y; and t7; satisfy the initial relations, then

Z‘Tjﬂyl = xuyz [ij,yi]=— Z Zt + Z Zt

J#i J:ij#i ael J:ij#t ael
Now, if z;,y; and t{; satisfy the above relations, then relations [Yx;,y;] = 0 and [z;,y;] =
J
Yaertiy, for i # j, imply that [zi,y:] = =Y. Yacr t;. Now, relations [%zk,yj] =0 and
[%zk,xi] = 0 imply that [%xk,Zaep ti;] = 0. Thus, as [z;,t5;] = 0 if card{i,j,k} = 3, we
obtain relation [z; + z;,tf;
1# 7. (Il

] =0, for i # j. In the same way we obtain [y; + y;,t{;] = 0, for
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There is an action I'"™ - Aut(t] ,,(k)) defined as follows:

e it leaves z;’s and y;’s invariant.

e for every i and every a € I'; a; leaves tfl’s invariant if k,! # 7, and sends tiBj to tfjm.
Here a; denotes the element of I'" whose only nonzero component is the ith one and
is a.

This action descends to an action on # , (k).

Proposition 1.2. For any group morphism p : I'y -» I's we have a comparison morphism
Gp: t{ﬁl(k) - t{ﬁl(k) defined by x; = x;, yi — yi, and
1

— AL
# ker(p) Becoker(p) “

o
tij —

When p is not surjective this morphism depends on the choice of a (set theoretic) section
coker(p) — I's.

Proof. Let us prove that the relation [z;,y;] = Xaer tf;, where i # j, is preserved by ¢. On the
one hand [¢(x;),#(y;)] = Laer, tf;- On the other hand

1 (0)+8
o([ziy;]) = o(t;) = = )
! aezFl / aezFl # ker(p) ﬁeco%r(p) ! Otéze !

The last equality holds because p(«) is in the image of p, and S is not. The fact that the

remaining relations are preserved is immediate. O

Comparison morphisms are bigraded, and pass to the quotient by Y, x;, ¥, y;. They also
are compatible with the operadic module structure of ] ,(k) from [7].

1.2. Principal bundles over I'-twisted configuration spaces. Let E be an elliptic curve
over C and consider the connected unramified T-covering p : E — E corresponding to the
canonical surjective group morphism p : 71 (E) = Z? — I' where 71 (E) = Z? is the natural
choice of such an isomorphism. Let us then define the twisted configuration space
Conf(T,n,T') :={z = (21,...,2n) € E"|p(2:) # p(z;) if i £ j},

and C(T,n,T) := Conf(E,n,T)/E its reduced version. Notice that C(E,n,T) is just the inverse
image of C(E,n) under the surjection p" : E" - E".

Let us fix a uniformization E ~ E,;, where 7 € $: E; = A;\C, with A; = Z +7Z. Then
E~FE;r, where E;r =A;r\C and A, := (1/M)Z x (7/N)Z. Therefore

Conf(E, n, F) = AZ\(CH - Diagr,n,l") )
where
Diag, ,, r={(21,...,2n) € C"|2ij := 2; — z; € A p for some i # j}.

We now define a principal eXp(’Ein)—bundle Prn.r over Conf(E,n,TI") as the quotient

A?\((C" - Diag, ,, r) x exp(i1,,)).
where the action is determined by the following non-abelian 1-cocycle:

(z, (a+ bT)i) —s g 2mibTi
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Remark 1.3 (Notation). Whenever we have en element ¢ in a group G, and 1 <i < n, we
write g; for the element of G™ given by g on the i-th component and the unit on the others.

In other words, it is the restriction on Conf(E,n,TI") of the bundle over AZ\C" for which a
section on U c A”\C" is a regular map f: 7 ' (U) - exp(flin) such that
. [(z+6)=f(2).
o f(z+70;)=e 2% f(7).
Here m: C™ - A?\C"™ is the canonical projection and 4; is the ith vector of the canonical basis
of C".

Since the e~27i%:

's in exp(i{n) pairwise commute and their product is 1, then the image
of P;,.r under the natural morphism exp(ilin) - exp(ilin) is the pull-back of a principal
exp(@;’n)—bundle Prnr over C(E,n,T).

1.3. Variations. The first variation we are interested in concerns unordered configuration
spaces. The symmetric group &,, acts on the left freely by automorphisms of Conf(E,n,T") by

g * (211, ce ,Zn) = (ngl(l), cee ,ngl(n)).

This descends to a free action of &,, on C(E,n,I'). We then defined the unordered twisted
configuration spaces

Conf(E, [n],T) := 6,\Conf(E,n,T") and C(E,[n],T') := 6,\C(E,n,T").

The symmetric group S,, also obviously acts on the Lie algebra t{n. One can then define,
keeping the notation of the previous paragraph, a principal exp(%{,n) % &,-bundle P, 1 r over
Conf(E, [n],T): it is the restriction on Conf(E,[n],T") of the bundle over (A? x &,,)\C" for
which a section on U c A”\C" x &,, is a regular map f: 7 1 (U) - exp(@lin) % &,, such that

o f(z+6:)=f(2),

o f(z+70;)=e ™% f(7),

o f(o+2)=0f(2).

In more compact form:
PT,[TL],F = (AZ X 6”)\((Cn - Diagf,n,F) x eXp({in) A 6”) :

Remark 1.4. As before, P, [, r descends to a principal exp(ilin) x G,-bundle 757-1[71]71‘ over
the reduced unordered twisted configuration space C(E,[n],T).

The second variation concerns ordinary configuration spaces of the base £ = E. 1 of the
covering map E; — E. .

Recall from §1.1 that the group I'" acts on ‘Elfn Hence one has a principal exp(%{n) x -
bundle

75(7',F),n = A:},F\((Cn - Diagr,n,F) X eXp({¥,n) e Fn)
over Conf(E,n) = A7 -\(C" - Diag, , ), where the action is determined by the non-abelian

cocycle
v _2miv

(2, (% " NT)i) — e N (T, D)
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U

M
we will use on several occasions. Using this, if & = a + b € A is a lift of @ € I', then the

Remark 1.5. The map sending 17 + 7 to (@, 7) exhibits an isomorphism A, /A, ~ T, that

non-abelian cocycle is

(Z,Ozi) — e*?ﬂibziai )

Remark 1.6. In a similar way as before, the above bundle obviously descends to a principal
exp(t],,) x (I"/T)-bundle P, 1), over the reduced ordinary configuration space C(E,n).

In concrete terms, a section over U ¢ A7 r\C" of P, ), is a regular map f : HU)
exp(t],,) » I' such that
o f(z+6;/M)= (L(_))if(zz)a_
o f(z+76;/N)=(0,1),e" N % f(z).

Remark 1.7. We leave to the reader the task of combining the two variations.

1.4. Flat connections on P, , r and its variants. A flat connection V., on P, is
the same as an equivariant flat connection on the trivial exp(t} ,,)-bundle over C" - Diag, , ,

i.e., a connection of the form

th’F = d — Z KZ(Z|7')dZZ s

i=1

where K;(-|7) : C" — ’E{n are meromorphic with only poles at Diag, , r, and such that for
any i,7j:

(a) Ki(z+6|7) = Ki(z|7),

(b) Ki(z+76,|7) = 72784 K, (g|7),

(¢) [0i - Ki(2|r),0; - Kj(z|7)] = 0.

r

in ™ ilfn is the pull-back of a (necessarily flat) connec-

Moreover, the image of V., r under t
tion V,,.r on P, if and only if:
(d) Ki(z|]t) = Ki(z+uY,; 6;|7) for any ue C and ¥, K;(z|7) = 0.

r
1,n

Similarly, the image of V., r under flin - L' %™ is the pull-back of a (necessarily flat)

connection V(. ), on P, r),, if and only if:
(e) Ki(z+d;/M|r)=(1,0); K;(z|r),

—27i

(f) Ki(z+76;/N|r)=(0,1);-e~ 2d(5) [, (z|7),

Remark 1.8. Observe that (e) implies (a), and that (f) implies (b).

Finally, the image of V., r under ’E{n - ’E{n % &, is the pull-back of a (necessarily flat)

connection V ,)r on 7577[n]1p if and only if:
(g) Ki((ij) *z) = (i) - Ki(2).
1.5. Constructing the connection. We now construct a connection satisfying properties
(d) to (g). Let us take the same conventions for theta functions as in [6]. This is the unique
holomorphic function C x $ - C, (z,7) = 6(z|r), such that
o {2[0(z|7) =0} = A,
o O(z+ 1) =-0(z|r) =0(-2|)
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e 0(z+7|T) = —eTTe 220 (2|T)
e 0.0(0l7) =1.

In particular, 6(z|r + 1) = 0(z|7), while 0(-z/7| - 1/T) = —(1/T)e<7ri/7)z29(z|7'). If n(r) =
q?* 1,151 (1 - ¢") where q = €*™'7 and if we set 9(2|7) = n(7)30(z|7), then 9,9 = (1/471)d2¥.

Observe that for any & = (ag, a) € A, r lifting o € T, the term e ™19 (§(z-a+z))/ (0(z - @)0(x))
only depends on the class a = (ag,a) € I of & mod A,. Then we set

0(z—a+z|r) 1 “emiaay z_d|7_)+e‘2”i‘”—1
0(z-alr)0(z|r) =z ’ x ’

ko(x,2|T) = e 2miaz

where k(z,z2|7) = 09((;;;2) -1 (as'in [6]), and
K;;(z|T) = Z ko(adw, 2|7)(t5;),  Ki(zlT) = ~yi + Z Kij(zij]T) -
ael’ FEED)
In the rest of the section we fix 7 € § and drop it from the notation. Recall from [6] that

k(xz,z+1) =k(z,2) and

4=27ri$_1

¢2wimk(x’z) +

k(x,z+T) =€
x

We then define the universal ellipsitomic KZB connection on P, ,, r by
n
VE,Z:BF =d-Y K(z|r)dz; .
i=1

Proposition 1.9. The K;;(z)’s have the following equivariance properties:

(1) Kiges52) =(L0) (K (),
T R 27 R 6_%8‘(1:”—
@) Kyl ) =00 I (K () 0,1 (8 o 05)

Proof. Let us choose representatives 0 <u < M -1 and 0 <v < N -1so that & = 47 +7%. The

first equation comes from a straightforward verification. Let us show the second relation. On
the one hand, we have

o) - Bl

27

By -vadz; _ 1

_ ( e—%vad(zi)k(adxi’z+l—d)+67)(t%)
P N ad x;

o —2ni(y-1)adx; -1 —
= Z e_T(”_l)ad“k(adxi,z -a)+ ¢’ (t?._(o’l))
ael’ ad(‘rl) J

tii)-

_ i 672]\?(7171) adz; _q
= (0,-1);- (aze:re % (v—l)adxik(ad(zi),z—d) + ad 2, )(
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On the other hand,

e—%‘adzjKij(z) _ e—%iade(Zkza(adxi,z))(t%)

ael’

27i 27i

27i
-1
= _adml(Ze vadwip adxi,Z—O?)+€N7)(t%)

ael’ ad x;

X —2ri(y-1)adz; _ , 2= adx;
i N N
(Z e (”*1)admik(adzi,z—d)+e ¢ )(tf‘j),

ael’ adx;
o)

S e TN (ad a2 - a) (1) = e F MUK ()

ael

27”(11 1)adx; 2riada,

%"

el ad xZ;
By putting these two equations together we finally get
Kij (Z ’ l) = (07T e F G (2)

N
+ 2

ael’ ad xT;

27i

2mi 27
—e R (v-1)adz; +eRadwi | - (v-1)adz; -1

()
27i

. e N adx;
O L b )]

ael’ adx

O

27 . —
adx N ada:

Now recall that £ :: =L - 1= eaé\; * and 1=¢ Py =(tij) = (1 —e__ddz’)(y) We
thus have

T T
Ki (Z + —6_]) = =y, + Z Kij,(zij,) + Kij (Zij + —)
N g N

and therefore we get the announced relation

Ki (Z+%5j) = (G,T)j‘e 27”
Consequently the K;(z)’s satisfy conditions (e) and (f) above (and thus also (a) and (b)).
Moreover, the K;(z)’s also satisfy conditions (d). Indeed, the first part of (d) is immediate
and ko (z,2) + k_o(-x,-2) = 0, therefore K;;(z) + K;;(-2z) =0, and thus ¥; K;(z) = - X; yi.
Finally, from their very definition, the K;(z)’s also satisfy condition (g).
In the next paragraph we show that the flatness condition (c) is satisfied.

ad:nJK (z)

1.6. Flatness of the connection.
Proposition 1.10. [9; - K;(z),0; - K;(z)] =0, i.e., condition (c) is satisfied.
Proof. First we have

0i(K;(z)) - 0;(Ki(2)) = 0:K;i(25:) — 0;Kij(2i5) = 0i(Kij(2i5) + Kji(25:)) = 0
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since K;;(z) + Kj;(-z) = 0. Therefore we have to prove that [K;(z),K,;(z)] =0. As in [6] it
follows from the universal classical dynamical Yang-Baxter equation:

(CDYBE) = Wi, Kji] + [Kji, Kii] + e.p.(4,5,k) = 0,
which we now prove (here K;; := K;;(2;;)). For any f(z) € C[[z]] we have

Z f(adz;) - f(-adz;) [—tf

et adx; + adx;

o tigls

[k, f(ada;)(t5)] =

[y, f(ada) (¢5)] = 3 f(ada;) - f(adz; + ada;)

(4585
Bel’ —adw; ik

[y, fladay)(tg,)] = 3 LE2dw —adey) = f(zadw:)

B o
5 ).
& —ad:rj [ ik kz]

It follows that the Lh.s. of (CDYBE) is now

Z (ka (—adzj, Zij)kﬁ (—adzk, sz) - ka(adzi, zij)kg,a(—adzk, ij)
a,Bel’

ka_o(adz;, zjk) — kg-o(adz; + adz;, 2k )
ad:ci

+kg(adz;, zik Y kg-o(adz;, zjk) +

+k5(adzi, sz) - kﬁ(&dl‘z + ad:cj, Zik) ka(adzi, Zij) - ka(—ad:cj, Zz’j) )[ta tﬁ

adz; adz; + adz; EARL

and thus (CDYBE) follows from the identity

ko(—v,2)kg(u+v,2") = ko (u, 2)kg-a(u+v,2" = 2) + kg(u, 2" ) kp_a(v,2" - 2)
kg—a(v,2' - 2) —kg_a(u+v,2" - 2) . kg(u,z") —kg(u+v,2")
+

u v
_ka(uaz) B ka(_vaz)

u+v

=0.

This last identity can be written as

(ka(—v,z) - %) (kﬂ(u +0,2") + - Jlr v) - (kza(u,z) + %) (k,g_a(u+v,z' -z)+ - Jlr v)
(3) +(k:5(u,z')+%)(k55_a(v,z'—z)+%):0,

which (taking into account that ke (z,z) + (1/z) = e 2719 (k(x,2 - &) + (1/x))) is a conse-

quence of equation (3) of [6]. O

We have therefore proved:

Theorem 1.11. V., 1 is a flat connection on Pr ., and its image under t{,n - iin is the

pull-back of a flat connection V., r on Prpr. U
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2. LIE ALGEBRAS OF DERIVATIONS AND ASSOCIATED GROUPS

2.1. The Lie algebras 0 and ?'. Let fr be the free Lie algebra with generators z, t*
(aeT). Let p,g>0. We define 95’ to be the subspace of fr @ (fr)®T! consisting of elements

(D, C), where C = (Cq)aey

such that deg, (D) + deg,(D) = deg,.(Cy) + deg,(Cq) = p and deg,(D) — 1 = deg,(C,) = ¢ for
every o € I'; and that satisfy the following of linear equations:
(i) Cuo(z,t?) = C_o(~2,t7) in fr,

(ii) [z, D(z,t7)] + 2o [t", Ca(z,t?)] = 0 in fr,

(ii)) [D(w1,t55),y2] + cp.(1,2,3) = 0 in ] 5,

(i) [D(w1,t35) + D(ws, ) = [Ca (w2, t3), 5], 5] = 0 in 4 5,

(V) [Cal@r, ), 1557 + 45,1+ (1557, Cosp (21, 1]5)] + [ths, Cp(wa,1)5)] commutes with £5,

in tlig.

Remark that (i) and (ii) imply another relation

(VI) D(:C,tﬁ) = _D(_zatiﬁ) )

which is very useful for computations. Then 3§ = @, , (90 )™9.
We then define a Lie bracket (,) on fr @ (fr)®" as follows:

((D’C)a (D,aC,» = (6C(D,) - 60’(D)a [07 C,] + 60(0,) - 60'(0))7

where d¢ € Der(fr) is the derivation

o x>0, t*— [t Cyl,
e d¢ acts on (fr)®! componentwise on a direct sum : d¢(C")q = dc(CY),
e the bracket is understood componentwise as well: [C,C’], = [Ca, C?,]-

We let the reader check that f is stable under (,), and becomes a bigraded Lie algebra'.
We now define 0" as the quotient of the free product df #sly by the relations [, (D, C)] = 0,
[h,(D,C)] = (p-q)(D,C), and (ad® f)(D,C) = 0 if (D,C) € d} is homogeneous of bidegree

(p,q). Here
il ]
0 0 0 -1 10

form the standard basis of sly. If we respectively give degree (1,-1), (0,0) and (-1,1) to €,
h and f then 9" becomes 72-graded.

We then define 9% := ker(d" — sly), which is (Zs0)2-graded. One observes that it is posi-
tively graded and finite dimensional in each degree. Thus, it is a direct sum of finite dimen-
sional slo-modules.

1The proof is straightforward but quite long. We do not give it since we do use another simpler Lie algebra
below.
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2.2. The Lie algebras 0 and ?"'. We write 0f for the free bigraded Lie algebra generated
by ds.4’s (s 20, v eT') in degree (s + 1,s) with relations
Os,y = (=1)%0s,—,
for all s>0 and yeT.
We then define 0" as the quotient of the free product df * sly by the relations
[6,05~4] = 0, [h,05] = 505 and ad**'(f)(ds) = 0; and 0L as the kernel of ' — slp. As
above, we have ' =% x sly, and oL is positively graded (actually (Zsq)2-graded).

We now give examples of elements in ) that are of some use below. For any s € N and
vel', we set

Dsri= > S [(ad2)?t?™, (-adz)?t”]

p+q=s-1 Bel’
and
(Csy)a = (adz)*t*™7 + (—adx)*t*".
Observe that (Ds.~,Cs~) = (-1)°(Ds,—, Cs,—).
The following result tells us that 5 4 = (Ds 4, Cs ) defines a bigraded Lie algebra morphism
o5 — 0, that obviously extends to d* — d'.

Proposition 2.1. (D;.,Cs ) € (3§)5h1.

Proof. First observe that relations (i) and (vi) are obviously satisfied.
To prove (ii) it suffices to notice that in the free Lie algebra with three generators x,t1,to
we have

[tr, (ad2)*ta] + [ta, (—ad )ty ] = Y [, [(-adz)', (adz)Pts]].

p+g=s-1
Let us prove (iii). In ¢ ,, we compute for #{i,j, k} = 3,

[ykv(adzz)pt Z Z adl'z) zkv(adzz) t ]

k+l=p-1
l —
= Y S(adx;)*(-aday) [tfk, Z]ﬁ]: > S[(ada;)* Zk, —adx;) tzjﬁ].
k+l=p-1 B k+l=p-1 B
Therefore, in tlig, we have

[y1, D(z2,t5)] = 3 Ylladaz)™ 5, (-adas)'t357 7], (-ad2s) 155

k+l+m=s-2 a,3
0 YD (ad w) Rty [(ad a2) 'ty (—ad a3) ™05 7]
k+l+m=s-2 a,3

Then [y1, D(x2, tgg)] +¢.p.(1,2,3) =0 follows from the Jacobi identity.
Let us prove (iv). On the one hand we have

[D(a1,,) + D(w1,175),155] =

= ¥ Yll(adz)Pey”, (—adar )147,] + [(adw )Pty 7, (—ad ) 1475], 155]
p+q=s—1 Bel’

== 2 2 ([(aday)P[85577 551, (~adw ) #,] + [(ada )Pty 7, (—ada )7 [1957, 154 ]]

p+q=s5-1 el
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+[(ady P[5, 55, (~adar )70 7] + [(adar )PS5 777, (~adar ) [t], t55]])

=[5 Y D (aday)P[£55777, (mada ) 1], ] + (aday )P[ty,, (—ada ) 1t0 7]
p+q=s—1 Bel’

=[t55, ) (adwa)”(-adws) (175777 + (<1)°t55 77, 1,]].
p+q=s5-1 Bel’

On the other hand, we have
[Ca($2,t§3),y1] = [(adw2)*t55” + (-adz2)*t935 ", y1]

S X B a7 ().
p+q=s-1 Bel’

Therefore (iv) is satisfied.
Let us prove (v). We have

[Calw1,132),1557 + t53] = [(ad 1) "5 + (~ad21) 1337, 1957 + 5]
= (adx2)* (1557 + (11557, 15571 + (ad 21 (1957 + (<1)°t35 7, 15
= (ad @) [t577 thy 7 + (—1)%ths "] + (ad a1 ) [thy, 137777 + (-1)%t557 1.
Therefore, by defining A = tgg'y + (—1)%3;7 and B = t(f;ﬁﬂ + (—l)st‘f‘gﬂ” we have
(%) [Ca(:nl,tb),t?;’ﬁ + t§3]] = [t15, [t?;ﬂa (adx2)” A + [t§3, (adz1)°B]]
= [[t%, 19571, (~adws)* A] + [1957, (- ad w3)*[¢55, A]]
(152,55 ], (—adw3)* B] + [t55, (- ad w3)* (17, B]]
= ([t 112], (~ad ) AL + [1757, (- ad ) [ B 1]
+[[1957, 18], (- ad 23)* B] + [thy, (- ad 23) [ A, 175]]
= [[ths, (adw2)* Al + [t35”, (ad 1) B, 13,].
This finishes the proof. (]

Remark 2.2. We do not know if 9 — df is injective or not.

2.3. Derivations of ], and | ,,.

Lemma 2.3. We have a bigraded Lie algebra morphism 0 — Der(t{,n), taking (D,C) € 0}

to the deriation {p,cy:

T; —> 05
Jij#t

£ — [t5, Ca (21, 15))]-

This induces a bigraded Lie algebra morphism 0f — Der({lin).
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Proof. We have to prove that defining relations of tlin are preserved by & := {p,c). First
“
Then conditions (i) and (ii) respectively imply that ¢7; = ¢;* and [z;,y;] = ¥, t§; are preserved.

observe that relations [z, ;] = [; + x;,t5;] = [24, 15, ] = [t}, 5] = 0 are obviously preserved.
Condition (vi) implies that [z;,y;] = [¢;,y:] is preserved, and (vi) together with (iii) imply
that [y;,y;] = 0 is preserved. Therefore it follows from the centrality of ¥; z; and £(>; ;) =0
that
Ewi,yi]) =€(= X0 [wg,mi]) =60 30 2ot55)-
JigEi Jiji

Condition (iv) ensures that [y;,5,] = 0 is preserved, and together with (vi) it implies that
[yi +yj,t7;] = 0 is preserved. Finally condition (v) implies that the twisted infinitesimal braid
relations are preserved, and the first part of the statement follows.

For the second part of the statement it remains to prove that the centrality of Y, y; is
preserved. This follows directly from the identity £(3;y;) = 0 that we now prove. Relation
(vi) implies that for any 7 # j one has D(zi,tfj) = —D(—zi,ti_jﬁ) = —D(xj,tfi) in ¢}, (the last
equality happens since deg, (D) = deg,(C,) + 1 > 0), and hence

5(2%‘) = ZD(%‘JZ—BJ-) = ZD(%‘JZ—BJ-) - ZD(%J@) =0.

] i<j J<i

We are done (the compatibility with bracket and grading are easy to check).
The last part of the statementis a consequence of the fact that £(3; y;) = &£(X; ;) = 0, that
we have already proved. (I

We now prove that this morphism extends to a Lie algebra morphism 0" — Der(tlin):

Proposition 2.4. We have a bigraded Lie algebra morphism d* — Der(tlin) taking (D,C) €

- b
Dg to §p,cy and g = (a d) € sly to the derivation
c

b
§g:t5 =0, (zi yi)~ (1'1 Yi) (i d) .

This induces a bigraded Lie algebra morphism o' — Der({in).
In what follows we write d := l~z, X:=¢é and Ag := f and d := &5, X = &z and AO = §f.
Proof. Tt is obvious that for any g, g’ € sl, &, defines a derivation of the same degree of t{n,
and that &, o1 = [£5,&,]. Hence we have a bigraded Lie algebra morphism sl df — Der(t{,n).
Let us prove that it factorizes through the quotient d%.

It is relatively clear that [X,§(D,c)] =0 and [&,f(Dyc)] =(p-q)(D,C) if (D,C) € (3§)P2.

Thus it remains to prove that (ad Ag)?(&(p.cy) =0 if (D,C) € (3§ )P9. We do this now. Let
us write £ = {(p,cy and A := (ad Ag)P(€). Then after an easy computation one obtains on
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generators:

A(w;) == pALTE(y:) = AT (Y D(xi, 1)),

VRED)
FEED)

A(t5) =ABE(15) = Aty Calai, 1))
Finally remark that we have an increasing filtration on t{’n defined by deg(x;) = 1 and
deg(tf;) = deg(y:) = 0. Ag decreases the degree by 1 and vanishes on degree zero elements. The
result then follows from the fact that deg,(Cy) =p-gq<pand deg, (D)=p-qg-1<p-1. O

Now composing with 9 — 0 (resp. o — ') one obtains a Lie algebra morphism 2§ —
Der(t{n) (resp. o' — Der(t{,n)). We write &5 == §(p, ,,c..,) for the image of d5 . We then
have ], x 8" = (t],, @ 0}) x sly, with t] , x 0 positively graded (since both i, and d} are
(Zs0)*-graded) and a sum of finite dimensional sl,-modules. Therefore we can construct the
semi-direct product group

(4) G, = exp(ty , % 0})" % SLa(C),
where exp(tlf,n xd1)" is the exponential group associated to the degree completion of tlin %L,

Similarly, we define G}, := exp(t] ,, x 0})" x SLy(C).

Notice that one can also define semi-direct product groups G := exp(tlin % 01) " % SLy(C)

and ég = exp(t],, @ 0} )" SLy(C). We therefore have the following commutative diagram:

(5) G, —= G,

Gl — - GI.
Lemma 2.5. The kernel of 0 — Der(t{,n) (n >2) is the space of elements (0,C) for which
Co is proportional to t*, and ker(df - Der(t],,)) = Cdo .

Proof. Let us first prove it for n = 2. Recall that €] , = t] o/(%1 + 2,51 + y2), so it is the Lie
algebra generated by z (the class of x1), y (the class of y1) and t*’s (classes of t5’s) with the
relation [z,y] = ¥ er t“. Then the derivation §p ¢y associated to (D,C') € ) is given by

x> 0,y D(x,t7),t* = [t%, Co (2,17)].

This derivation vanishes if and only if D =0 and C, is proportional to t®. Finally, the result
for n > 2 follows from the fact that
Epcy = (w222 0

where E((Z) ¢ denotes the derivation of t] ,, associated to (D,C). O
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2.4. Comparison morphisms. Let p: 'y - I's a group morphism. We have a comparison
morphism 35" — 02, (D,C) = (DP,C?) defined by

DP e D Z tP(B)+vy () c Z 1P(B)+y
= Z, Ry K a=lalZ, — .
~yecoker(p) #ker(p) ~yecoker(p) #ker(p)

When p is not surjective it depends on the choice of a section coker(p) — I's. It extends to
ol — 92 by sending the generators of sl, to themselves. These comparison morphisms are
compatible with the morphisms 9% — Der(tlf,in), for ¢ = 1,2. Namely, there is a commutative
diagram

g 5 Iy I
0 x tl,n tl,n

C

ok ty}, —= 1,
Finally, we have comparison morphisms for the corresponding groups that fit into a commu-
tative diagram

(6) G, —= G

L

Gzl E—— GEQ.

Notice that the image of (D; -, Cs ) under a comparison morphism is no longer of this form
except if p is injective. In this case (and in this case only) we have a comparison morphism
t{ln xol1 - 1‘{271 x0'2 taking z;’s, y;’s, d, X and Ay to themselves, and £ t0 ¥ gecoker(p) tfj(a)w
and 65,y t0 ¥ gecoker(p) 9s,p(v)+p- 10 particular we have a canonical natural inclusion GY - Gl
(which descends to an inclusion G2 - GI).

3. BUNDLES WITH FLAT CONNECTIONS ON MODULI SPACES

3.1. On some subgroups of SLy(Z) and moduli spaces. Let M, N > 1 two integers.
Consider the group T':= Z/M7Z x Z/NZ and consider the following (finite index) subgroup of
SLQ(Z)

b
SLL (Z) = {(“ d)eSLQ(Z)|a51 mod M,d=1mod N,b=0 mod N and ¢ =0 mod M}.
C

We write Y(T') for the set of equivalences classes of pairs (E, ¢) where E is an elliptic curve
and ¢ : Z/MZ x Z/NZ — E is an injective group morphism that is orientation preserving
i.e. such that the basis (%lt:o(t(b(i,(—))), %h:o(w(ﬁ’i)) of ToE is direct. Then, one can see
that Y (I') = SL5 (Z)\$ and therefore inherits the structure of a complex orbifold.

Remark 3.1. The biggest congruence subgroup on which the connection we will construct in

< T
this section is well defined and flat is the subgroup SL, (Z) of SL2(Z) consisting of matrices

b
(a d) € SL2(Z) such that Mb =0 mod N and Nc = 0 mod M. Nevertheless, in order to
¢
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retrieve the twisted elliptic KZB connection defined at the level of configuration spaces, it

suffices to consider the usual congruence subgroup SL (Z) c Slg(Z).

Recall the following standard group actions:
e The group SL3(Z) acts on the left on C" x $:

a b z at+b
* (z|1) = | .
c d ct+d'ct +d
This obviously descends to a left action of SLy(Z) on (C" x £)/C, where C acts
diagonally on C™: - (z|7) := (z+uY; d:|7).
e The group (Z")? acts on the left on C" x §:

(m,n) * (z|7) = (z+m+7n|7).
It obvioulsy descends to a left action of (Z™)?/Z* on C"x§/C, where Z? is the diagonal
subgroup in (Z")? = (Z*)".
e Finally, there is a right action of SLy(Z) on (m,n) € Z* by automorphisms:

(& 0) 6 m- m(th)

We can thus form the semi-direct products (Z")? x SLy(Z) and ((Z™)?/Z*) x SL2(Z).
A few observations are then in order:

e The above actions are compatible in the sense that we have a left action of (Z™)? x
SL2(Z) on C™ x $, which descends to an action of ((Z")Q/ZQ) xSLo(Z) on (C™x$)/C,
where Z? is embedded in (Z")? via the diagonal map. One can think of translation
by C as a left or right action as it commutes with the ((Z")? x SLy(Z))-action.

e The action of (Z")? preserves the subset

Diag,, r := {(z|7) € C" x 9|z € Diag, ,, r} .
e The action of the subgroup SL} (Z) c SLy(Z) also preserves Diag,, r-
We are thus ready to define several variants of Y (I") “with marked points”:

e We define the quotient
M, = (Z")? x SLy (Z)\((C" x §) - Diag,, )/C
and call it the moduli space of I'-structured elliptic curves with n ordered marked
points.
e It has a non-reduced variant

p: M, = (Z")" »SLy (Z)\((C" x %) - Diag,, r) » M,

e One can also define the moduli space of I'-structured elliptic curves with n unordered

marked points
MY (= 6 \MY,

and its non-reduced variant

M{,[n] = 6’ﬂ\'/\/lin .
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Remark 3.2. We have /\711;71 = /\;11; [ = Y (T'), and Mlil = le (1] is the universal curve over
it. The fiber of M7, - Y(T') (resp. MJ,, — Y (I')) at (the class of) 7 is precisely the twisted

(resp. reduced twisted) configuration space Conf(E; r,n,I") (resp. C(E,r,n,I')). Moreover,
the map

T I
h:Mjy— M,

factors through (and is open in) Mlil. We can interpret /\;11;72 as the I'-punctured universal
curve over Y (T').

3.2. Principal bundles over M}, and M] . In this paragraph, Gy, is defined as in (4)
and we define a principal GL-bundle P, r over ./\/llfn whose image under the natural morphism
GL — Gl is the pull-back of a principal GL-bundle P, i over /\;llfn Let us fix the notation
first: for u € C* and v,w; €C (i =1,...,n),

0 1
ud = Y 5 % = Y.
0 u 0 1

Since [X, 2;] = 0 then it makes sense to define e?X*2: witi .= evX i wiZi Iy particular, we have
Ad(u?)(z;) = uz; and Ad(u?)(y;) = yi/u (Vi), Ad(u?)(X) = u2X and Ad(ud)(Ag) = Ag/u?.

Let 7:C" x § - M, ,, be the canonical projection.

Proposition 3.3. There exists a unique principal GL-bundle P, r over ./\/llf,n for which a
section on U ¢ MY, is a function f: 7" (U) - Gy, such that

f(z+di|) = f(z|r),
flz+707) = eiQ“iIif(zh'),
f(z,7+1) = f(z|r),

2mi

z 1 o
J(E|=2) = 9T £ (g)r),

Moreover, the image of Pnr under G, — GL is the pull-back of a unique principal Gl -
bundle Pp,r over My ,, for which a section on U ¢ MY ,, is a function f: (pom) ™ (U) -~ M,

satisfying the above conditions (with x;’s replaced by Z;’s) and such that f(z+vY; 0:|7) = f(z|T)
for any v e C.

Proof. First recall that for I" = 0 this is precisely [6, Proposition 3.4]. Then observe that we
have an obvious map ¢ : M{n - M?,n. Therefore we define P,, 1 (resp. P, r) to be the image
under the natural inclusion GY - G (resp. G2 - GL) of t*P,, o (vesp. t*Py.0)-

We thus proved existence. Unicity is obvious. (I

In other words, there exists a unique non-abelian 1-cocycle (cg)ge(zn)2xs1,(z) 0n C" x 6
with values in GL such that c;,0) = 1, co,6) = e 2% g =1 and

cr(zlr) = 7 @mi[T)XAE; z525) _ 2m(TX+E; z525) d ,
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11 -1
where S = (0 1) and T = ((1) 0 ) are the generators of SLy(Z). Here cocycle means (as

in [6]) that c,’s are holomorphic functions C" x $§ - G satisfying the cocycle condition
Cag(2T) = cg(g" * (2,7))cy (2|T).

Remark 3.4. Notice that we do have a (Z")? x SLa(Z)-cocycle (since our bundle is define
as the pull-back of a bundle on ./\/1(1),1) but the cocycle defining P, r is its restriction to
(Z")? » SLY (7).

3.3. Connections on P, r and 75»”71‘. A connection on P, r is the same as an equivariant
connection on the trivial Gg-bundle over C" x $ — Diagmr. Namely, it is of the form V,, r :=
d - n(z|r), where 7 is a tin x d''-valued meromorphic one-form on C" x $ with only poles on
Diag,, 1, and the equivariance condition reads: for any g € (Z")* x SLY (7)),

(7) g1 = (deg(a|r))cg (7)™ + Ad(cy(2lm)) (n(2lT)) -
We now construct such a connection. For any v € I', we define g-(z, 2|7) = 0k, (z, 2|T)
and

&y (2)7) = Z Ag ()2 = g_y(2,0]7).

s>0

Then we set

A(z|r) = L (Ao . Y A (T)0s - Zgz‘j(zz'j|7)) ;

2mi 2 5>0,vel’ i<j
where g;(2|7) := Loer ga(adzi, 2|7)(¢;). And finally, with K;(z|7)’s as in §1.4, we define

n(z|T) = A(z|r)dr + ZKi(z|T)dzi.

Remark 3.5. One can see that @o(x) = (6'/0)'(z) + 1/2? and that for any v €' - {0}
~ Ticx 9(’7 + :C) 1
@ (x)=<9z(62 -,
! 0(No(x) =
where 4 = (cg,¢) € A — A, is any lift of .
Proposition 3.6. The equivariance identity (7) is satisfied for any g € (Z"™)? x SLa(7Z).
Before proving this statement, let us notice that the SLo(Z)-equivariance is stronger than
what we need (the SLY (Z)-equivariance), but easier to prove. The action of SLy(Z) moves

the poles while SLg(Z) fixes them. In both cases, it makes sense to prove this proposition for

meromorphic forms on C" x §.

Proof. For g = (6;,0), the identity translates into K;(z + d;|7) = K;(z|r) (¢ = 1,...,n) and
A(z+§,|T) = A(z|r), which are immediate.
For g = (0,d;), the identity translates into K;(z +78,|r) = e727124(@3) ¢ (z|7) (Vi) and
(8) A(z +785|7) + Kj(z + 78;|7) = e 27 124D A(z)r).
The first equality is proved in §1.4, and we prove the second one now. First remember that

for any 7€, 2€ C— (3;Z+ %Z)) and a € T, we have the following identity in C[[2]]:
(9) e (go(x,2) = 1/x?) + 1/2? = 2mi(ko(z, 2+ 7) + 1/2) = go (2,2 + T) .



ON THE UNIVERSAL ELLIPSITOMIC KZB CONNECTION 23

Then, we can compute 2mi(K;(z + 76;|r) - 6_2”iad(Z1)A(z|T)): it is equal to

. 1— e—27riadacj 1 —2riadz;
ori Z ka(ad$j,zjk +T)—yj +A0+7(?Jﬁ)+_ Z AS”Yés’V_e ' ngl(zkl),
W adxj 2 520, k<t
~yel'

and, therefore, using

1-— e—27r1adzj

—2miadx; :
e i—-1  27i
(y‘)—27riy»:( + ) > >t ],
adzj ! ! (a“dl']')2 adzj ael k:k+j !

together with (9), we obtain

1
Bo+3 Yo Acrbon— D gr(zm) = Y, galadry, zi +7)(E5,),

5>0,vell k<l k:k+j
k,l+j ael’

which is precisely equal to —2ri1A(z + 76;).

For g =S, the identity translates into K;(z|r+1) = K;(z) (Vi) and A(z|r+1) = A(z). Both
equalities obviously follow from 6(z|r + 1) = 0(z|7).

For g =T, the identity translates into

(10) K2 2) = Ad (er(alr) (Ki(elr)) + 2m iz,
forallie{l,...,n} and
W L(aE-h-Tar®- ) - adeeren) @@n) - -2,

Let us check (10) first. Ad(e?7 (%5 2:%5+7X)7d) (g} + 27ix; equals

eQWiad(zj Zij) _ 1

- 2™ X5 2% Y (o 1 - Y% _ Py Yi
Ad( ) (il T) - ad(Zij:Cj) ([; SRR T])

~ n 627”21 zjadx; _ 1( Z Zji ta) ~ i e?ﬂlzijadzi ( Z Zji ta)
TS T TS oades T T T T adrs i
T 2; zjadw; jijei T s zgadey S T
ael’

Therefore we have

2miz;jade;

; . e ti;
(12) - y? = Ad(cr(z|r))(~y:) + 2miz; _j;iTxi(aze; =),
Now, since
1 1 xi.2
(9(—E ——) =—=e" % 0(z|1),
Tl T T
we obtain
z a
(o))
k (SC E _l) _ e*?ﬂiax T o0 T o l
N7l 7

t9(E - (ao - 2) T) 0(x|T) .
T T
2mwizx—2miagTx 9(7’,(6 tz+a- Ta0|7-) 1

- 0(z +a-rao|r)0(rzlr) =

o 627riz;v -1
= 7" ko (T, 2|T) + ——,
TT
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where T'(ag,a) = (—a,ap). Now substituting (z, z) = (adz;, z;) in

1 1 . 2mizx _ 1
(13) = (ka(z, 2] - =) = ™ kg (12, 2|7) + —

T T T TT
then applying to ¢{;, summing over j # 7 and a € I' and adding up (12), we obtain (10) by
using that

AT g (rady, zij|T) (155) = Ad(e*T TR D7D (ke (adai, 2il7) ()

We now check (11). Differentiating (13) w.r.t. 2 and dividing by 7, we get

1 z, 1 ; 2miz z, 1
—9a(x, == =) = " gra(ra, 2|r) + —ka(w, 2| - =) +
T T T T T T

1+2miza —e2mize

7202
@

ij» and summing over « € I' we obtain

Now substituting (x,z) = (adx;, zi;), applying to ¢
1 Z 1 2mwizi; Zii 1

—9i5(=1-=) = Ad(er(zln)) (9i(2lr)) + —57Ki; (=2 - =)

T T T T TT

1+ 2miz;ade; — 2™ i#iiadw:
(s
7 ael’

Then taking the sum over i < j one gets

1 z 1 ori z 1
19 ﬁ;ﬁ”(F"ﬁ:Ad@T(Z'T))(KZJ_gu(zIT))+T—2§zim<;|—;>+3(z),
where o
) 2miz;y; 1+ 2miz;jade; — e 1720 N
B(z):=) =5+ Z( T (ade )2 (gtiﬂ.

i T i<j

Lemma 3.7. Ad (cr(z|7)) (Ao) = % + @ - (2mi)?(2 X, ziwi + X) + B(z).
Proof of the lemma. We first compute

Ad (er(2lr)) (Do) So , 2mid

. A i —
Ad(@QTH(TXJrZi Zifli))(—20) =Ad(e27“2i z¢z¢)( +
T

-2
2rid
T

- (271)*X)

= Ad(e*iZ Zﬂi)(A—;) + (27r1)2(l > ziwi +X).
T T

It remains to show that Ad(e?"1%: Zz)(%) = 20 4 B(z). The proof of this fact goes along

the same lines of computation as in [6, pp.16-17]. O

Using the above lemma and equation (14), one sees that equation (11) follows from

Ad(er () (£ s (1)80) = £ Ao ()00

5y

This last equality is proved using [z;,ds ] =0=[X,ds~], [d,ds ] = $J5 4, and, since
N 1 N
(p,y(.’L'| - ;) = TQ(PT'y(T‘ﬂT)a
we get Asﬂ(—%) =752 Ay (7). O

We therefore have:
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Theorem 3.8. V,, r defines a connection on P, r. Moreover, its image under GE - G,S 18
the pull-back of a connection V,r on Py, r.

Proof. The first part follows from Proposition 3.6 above. For the second part, we need to
prove the three following identities:

o 3 Ki(alr) = 01
o Ki(z+ uy; d;T) = Ri(Z|T), for all 4;
L] A(Z+uzj (S]|T) = A(Z|T)

The first two equalities have already been proven, and the last one is obvious. O
3.4. Flatness. In this paragraph we prove the flatness of V,, r (and thus of V,, ).
Proposition 3.9. For anyie{l,...,n} we have [0, — A(z|r),0; - K;(z|7)] =

In what follows, we often drop 7 from the notation when it does not lead to any confusion.

Proof. Let us first prove that 9. K;(z) = 0;A(z). This follows from the identity 0,g4(z,z) =
210 kq(x,z), which is proved as follows (here & = (ag,a) is any lift of «):

. —2miax _ 1
0.90(2,2) =0,0pka(x,2) =0,0, (6_2”‘”/{:(:13,2: -a)+ 67)

x
=20 9 k(x, 2 - &) - 2miae 2T T, k(x, 2 — &)
=2mie ™Y k(x,z - &) - 2miae 2" 0, k(x, 2 — &)
=27i0; (ef%iamk(:c,z ~&)) = 2710, ka(z, 2).

It remains to prove that [A(z), K;(z)] = 0.
Let us first prove it in the case n = 2. Namely, we will prove that

1 (07
(15)  [Ao+s X Acqbeq— Y galadar,2) (1), yo+ Y, ks(adwr, 2)(15)] = 0.
§20,vel’ ael’ Bel

One the one hand,

1
[AO LY Z ASKY(SSW - Z ga(adxlaz)(t?Q) ) 92]

5>0,yel’ ael’
[y1, Z ga(adxy, 2) (75 -3 Z Za [ad” 21 (75 7),ad? x1 (115) ],
ael’ a,vel' p,q

where
@W(u)_(ﬁ—’ﬁ’(v) vy p,.q
=T 2= al uPo?.
u+v ;% P

On the other hand, we have

[AO’;kﬁ(adzlvz)(t%)] y1,Zgﬁ adxl’z)( If?)]

3 BB () [ad? @ (1), ad? 21 (15,)],

p,q o, Bel’
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where the series ¥, , bgf(z)upvq is given by
1

3 (% (kg(u+v,2) - kg(u, z) —vo,ks(u, z)) - % (ka(u+v,2) —ko(v,2) - u@vka(v,z))) .

Therefore the Lh.s. of (15) equals
1
S22 el ()[ad” v (), ad! w1 (#,)] ]
2 P,q o, Bel’

where ¥, cg‘ﬁfupvq(z) is given by

% (kg(u+v,2) —kg(u,z) —vgg(u,z)) - % (ka(u+v,2) = ko(v,2) = uga(v,2))

P3-a() = Pap(v)
u+v

+ ko (u+0,2)Pa-p(v) - kg(u+v,2)Ps-a(u)
+kg(u,2)g9a(v,2) — ga(u, 2)ka (v, 2) ,

which can be rewritten as
(gg,a(u,z )——)(k (u+v,2")+ )—(ga,g(v,z'—z)—U%)(kg(u+v,z)+uiv)
(16) + (ga(v,z') - U%) (kg(u,z) + %) - (gg(u,z) - %) (ka(v,z') + %) ,

with z = z’. Thus, to end the proof of equation (15), the following lemma is sufficient:

u+v

Lemma 3.10. Ezxpression (16) equals zero.

Proof of the lemma. The case a = 8 =0 follows from an explicit computation. Then we choose
lifts @ = (ap,a) and B = (bo,b) of o and S, respectively. One has

ko(z,2) + 1)z = e 2™ (k(z,2 - &) +1/z) and
go(x,2) = 1/2?% = e72imo" (g(z, z-a)-1/2%) - 2inb (ka(z,2) + 1/z) .
Therefore (16) equals

~2im(a - b)( (ka(v,z') + %) (k:g(u,z) + %) + (kﬂ_a(u,z -2")+ %) (ka(u+v,z') + qurv)

(oYt L)

which vanishes because of (3). O

Let us now assume that n > 2.

Let t71;+ c tlin be the subalgebra generated by x;, 5, (i,5,k=1,...,n,j#k, ael).

We have functions E;;(z) with values in t,, , defined by E;;(z) = [Ao, ki;] - [4:, 9i;], which
decomposes as €;;(2z) + Xy ; €ijr(2), where e;;(z) takes its values in

Span,, o sl (adz:)7 (15), (adz;) " (1]))]

and e;;1,(z) takes its values in Span,, 5 C[adw;, adxj][t%,t]k] Explicitely,

ew<z)—ZZb B (zi) [adPay (1), ad % (t])],

B Pp.q
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B i
where b5/ (2) is as before, and

ka(adwi, zi;) — ka(-adx;, zi;)  ga(-aday, 2i;) Al
(adz; + adx;)? adz; + adz; ik

eijr(z) = )
a,B
On the other hand, we have Y;;;(z) € t{w defined by Y;;k(2) = [ys,9;k]- It takes its values

in Span,, 5 C[adz;,adz; ][t tjk] Explicitly,

gs(adzj, zjk) - g-p(adee, —2jk) L0 8
Yige(2) = - Z adz; + adzy [t”,t]k]
a J

B
(remember that go(u, 2) = g_o(-u,—2)). We have

[AG). Ki()] = ;([Ao,kh] (n.01c) + [ 8. ) - glz,ku) EPAINY
= > ([g1i, k11 + [g1j, kil + [9i5, ki + kaj])
1<i<j
(17) = ;(612+[%§5¢a,k12] (912, k12] - 25 Yl )1'
+ 12 _ (euj +e1 — Yiij — [gij, ki; + klj] - [91i7k1j] - [gljvkli])7
<i<j

where {-}1; is the natural morphism t] , — t] ., u1 = u1, ug = u; (u = z,y), t§5 — 1. It is
easy to see that the line (17) equals Y ;01 ([A(214), K1(21:)]),; which is zero as we have seen
before (case n = 2).

Therefore [A(z), K1(z)] equals

Z Z (ka(adxl, Zli) - ka(—adxi, Zli) - ga(—adzi, zli)(adxl + adzz)

0,7
15 b (adzy + adx;)? i, ;)

_kg(adwy, 215) - kg(-adz;, z15) — gs(-aday, 215) (adzy +ada;)
(adzl + adxj)Q

_95-a(adi; 2i) = ga-p(ada, =2i5)
adx; + adx;

— (ka(adz1, 211)gp-a(-adx;, 2i7) - kp(adw, 215) gp-a(adzi, 25)) [55,17;]
— (kg (-adx;, 21j)ga(-adzi, 211) - ka(-adw;, 215)gp(-adz;, 215)) [155.11;1)

which is zero because of Lemma 3.10. O

0,2

We have therefore proved (Proposition 1.10 and Proposition 3.9 above):
Theorem 3.11. The connection V. is flat, and thus so is V. O

Let us now show how the universal KZB connexion over moduli spaces coincides with the
one defined over configuration spaces.

Remark 3.12. The connection V,, 1 defined above is an extension to the twisted moduli space
./\/l{n of the connection V,, , 1 defined over the twisted configuration space Conf(E; r,n,I")
from Subsection 1.4.
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Indeed, the pull-back of the principal GL-bundle with flat connection (P, r, V. r) along
the inclusion
Conf(E:r,n,T') - len

of the fiber at (the class of) 7 in Y(I") admits a reduction of structure group to
exp(ty,) € Gy,

and one easily sees from our explicit formuleethat it coincides with (Pr .1, V7 pn.r) constructed
in Subsection 1.4.

Similarly, the connection V, r is an extension to the twisted moduli space /\;l{n of the
connection V,, , defined over the reduced twisted configuration space C(E; p,n,I").

3.5. Variations. Let us first consider the unordered variants
r r - T - T
Ml,[n] = 671\'/\/11,71 and Ml,[n] = 6’Vl\'/\/tl,n’
where, as before, the action of G,, is again by permutation on C".

Proposition 3.13. 1. There exists a unique principal G x &,,-bundle Pln)r over le[n],

such that a section over U c MI; [n] s a function
fa(U) > Gy« 6,

satisfying the conditions of Proposition 5.3 as well as f(oz|r) = 071 f(z|7) for o0 € &,, (here
7: (C" x ) - Diag,, r > M [n] 18 the canonical projection,).
2. There exists a unique flat connection Vi, r on P, r, whose pull-back to (C*"x H) -

Diag,, s the connection

d-A(zlr)dr - Z K;(z|r)d z;

on the trivial G, x &,,-bundle.
8. The image of (P[y),rs Vn),r) under Gl %6, - GL%&,, is the pull-back of a flat principal
G}, x &, -bundle (Ppur, Vin),r) on /\;lli[n].

Proof. For the proof of the first point, one easily checks that ocj(z|r)o™! = ¢y50-1(07 2), where
G e (Z")2xSLy(Z), o € &,,. Tt follows that there is a unique cocycle ¢y C"xH > GLxG,
such that c(5 1) = c5 and c(1,5)(2|T) = 0.

For the proof of the second point, taking into account Theorem 3.11, one only has to show
that this connection is &,-equivariant. We have already mentioned that ¥, K;(z|)d z; is
equivariant, and A(z|7) is also checked to be so.

The third point is obvious. O

For every (class of) 7 in Y(T"), one has an action of I'” on the fiber Conf(E; r,n,I") at 7
of M, - Y(I'), resp. an action of I'""/T on the fiber C(E,r,n,T) at 7 of M, - Y(I).
Recall that

'\ Conf(E;r,n,I') = Conf(E;r,n) and (I'"/I')\C(E;r,n,I')=C(E.r,n).

T

This action depends holomorphically of 7, so that we have an action of I on M7 ,,

action of I'"/T" on ./\;l{n

resp. an
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Proposition 3.14. 1. There exists a unique principal GL x T™-bundle P(ry,n over I'™ \ MY n
such that a section over U c T"\ MY

n 18 a function
fa Y (U) > GE =™
satisfying the following conditions:
i -
flo+ 4517 = (1,0):f(alr),
Flosr i) = e R0 (0, 1), (),
f(z,7+1) = f(2I7),

z, 1 2ni s
F(Z]=2) =7l oz fg)r).

Here, 7 : (C" x §)) - Diag,, p > I'"\MJ ,, is the canonical projection.
2. There exists a unique flat connection on this bundle whose pull-back to (C" x$) - Diag,, 1
is the connection

-A(z|r)dT - Z K;(zt)d 2

on the trivial GL x T™-bundle.
3. The image of the above flat bundle under GL » T™ — GL x (I'""/T) is the pull-back of a
flat principal G}, » (P [T')-bundle on (I /T)\M],,
Proof. The first assertion is left to the reader. Assertion 3 is evident. Let us prove assertion
2. By Proposition 1.9, we know that the K; satisfy
5, _

(e) Ki(z+37l7) = (1,0);- K'(Zl_T%

(f) Ki(z+22|7) = (0,1); - e~ 2@ Ky (g)r).
The fact that A(z + M|T) (1,0); - A(z|r) is immediate. Thus, it remains to show that
A(z+ s |7) = e~ *Frad(:) (Q, 1);-(A(z|r) - K;(z|r)) which is proved in Lemma 3.15 below. O

Lemma 3.15. We have

27i

(18) A(Z+ﬁ|7) =" T (0,1); - (Azlr) - K (2l7)).

Proof. On the one hand, we have

. T «
—271'1A(z+—) A0+— Z Ag 05— Z g (zk1) — Z go(adwj, zjn, + — ) (L)

2 5>0,vell k<l k:k#j N
k,l#j ael’
On the other hand, as
-Ftad(z;) iad(a;) 1 - e ada;
e TN (A)) = (1-(1-e T D) (Ag) = (Ag) + ————— ()

adx j

B e—%‘adzj _ 1 Z Z o
= - ke
(adzj )2 ael k:k+j !



30 DAMIEN CALAQUE AND MARTIN GONZALEZ
and the d, , commute with the z;, we compute

ori (Kj(z # 2blr) - e FRAE) (0, 1) ~A(z|7-))

_2mi

- 2771((0,_—1)j Kj(ar Tof) e ad(zj)A(Zh’))

27
L= — T 1- e’Tadzj
= 27mi(0,-1), - (k%j ko(adxj, zjk + N) - yj) +Ag + 721(1% (y5)
1 _2xi )
+§ Z As,'y(ss,’y -e N ade; ngl(zkl)-
20, k<l
~yel'

Next, by combining

_2mi

e N

adz; _ 1

Kij(z+ 2) = (0,-1);- e 504 (K () + (0.1 (3

ael’

(t?j)) )

adz;
with equation

gol(z,2) - 1/:E2 = ¢ 2imax (g(z,z -a) - 1/z2) = 2imag (ko(z,2) + 1/x) |
we can follow the same lines as in the proof of relation (8) to obtain the wanted equation. [

We also leave to the reader the task of combining several variants.

4. REALIZATIONS

T
1,n

Assume that we have a group morphism I' - Aut(g,ty) and set [ := gl and u:= ®, -0} x>

4.1. Realizations of tj , and Ifw. Let g be a Lie algebra and ¢4 € S*(g)? be nongenerate.
where g, is the eigenspace of g corresponding to the character x : I' — C*. Then we have
g =l@®u with [Lu] c u, and t = ¢+ t, with ¢ € S?()' and t, € S?(u)". We denote by
(a,b) ~ (a,b) the invariant pairing on [ corresponding to ¢; and write t; =Y, e, ® e,.

Let Diff (I*) be the algebra of algebraic differential operators on [*. It has generators x;, 0,
(l € [) and relations X4l = tXg + Xy, 8tl+y = t@l + 811, [Xl,Xl/] =0= [81,811] and [al,Xll] = <l,l’>
Moreover, one has a Lie algebra morphism [ — Diff (I*);1 = X; := ¥, x[; ¢, 1 0e, . We denote by
(4128 the image of the induced morphism

3lmYi=X0l+10 > 1) eDiff(I') ® U(g)®",
i=1
and define I, (g,*) as the Hecke algebra of A, := Diff(I*) ® U(g)®" with respect to [4i28,
Namely, H,(g,l*) = (4,)"/(A,1428)" Tt acts in an obvious way on (Op ® (®1,V;))" if
(Vi) 1<i<n is a collection of g-modules.
Let us set x, = X, and 0, := 0,,, and write a®. for the action of a € T’ on the i-th
component in U(g)®".
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Proposition 4.1. There is a unique Lie algebra morphism pg :{1;, - H,(g,I") defined by

n

T l—>MZXU ®€l(,i),
giH_NZau®el(j)a
tyy—1® (04(1) ~tg)(ij).

Proof. Let us use the presentation of {lin coming from Lemma 1.1. The only non trivial check
is that the relation }; Z; = 0 is preserved. We have

Pq (Zn:xz) = MY x,® Zn:e,(j) =M (x,®1) (1 ® Zn:e,(j))
i=1 v i=1 v i=1

MY (x,®1)(Y, - X, ®1)

M - ZXUXU ®1l=M Z XeVlX[eVl161/2]8,,2 ®1=0

vi,v2
as Xe,, commutes with x(e, ., 1 and ¢ is invariant. Here the sign = means that both terms
define the same equivalence class in H,(g,[).
The proof that }; §; = 0 is preserved is a consequence of the fact that py (Zj g]j) =0, which
was proven in [6, Proposition 6.1]. O

Let §, , c ], be the Lie subalgebra generated by Z;’s and % ’s. Then the restriction of pg
to t, , lifts to a Lie algebra morphism t, , - (O ® U(g)®")". Moreover, (O ® U(g)®")" is
a subalgebra of H,(g,[*) that is a Lie ideal for the commutator, and one has a commutative
diagram

(u,v)~[u,v]

T o
Hp(g,1%) x (O ® U(g)®")' — (O @ U(g)®")".
4.2. Realizations of Ilin x 0. Let us write tg = 2oy Gy ® ay.

Proposition 4.2. The Lie algebra morphism pg of Proposition 4.1 extends to a Lie algebra
morphism ] ,, x 0" — H,(g,1*) defined by

1
d— —i(ZxU&ﬂrayxy) ®1,
1 2
X — i(le’) ®1,

Do (D) o1,

fsstﬁ S X%, ® Y (ad(ey, )-ad(en, ) (au) © (- au) .

Vg, U =1

Here ® denotes the symmetric product: A® B := AB + BA.
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Proof. Since tg is invariant under the commuting actions of I' and [ then the relation &, ., =
(-1)*&,—y is also preserved. This invariance argument also implies that [pg(&s,+),pg(Zi)]
equals

% Z Xy, Xy, Xy ®tZS; (ad(ew)“'ad([em€ut])"'ad(eys)(au) ® (’Y . au))(z‘) ,

which is zero since the first and second factors are respectively symmetric and antisymmetric
in (v,1). Let us now prove that the relation [&, 5] = [£7, (adz;)*(]; ") + (adZ;)* (£;7) ]
is preserved. It is sufficient to do it for n = 2:
pg(&s,y + (aday) (t1y7) + (adz2) (1157)) = Z Xuy %, @@ - A(Byy ) s
where A is the standard coproduct of Ug and By, ..., = ¥, ad(ey, )-—-ad(ey, )(ayn) © (7- au);
therefore pg(&s., + (adw1)*(t]57) + (adz2)5(175 7)) commutes with pg(t{5). Hence it remains
2

D

to prove that the relation [, %] = ¥ ) is preserved. For this we compute

[Pa(§sy)s Pa(%F)]: it equals

1 2 i (7)
ﬂ Z ( Z;[al,,xyl~~~X,,S]®e,(j)(ad(el,l)wad(e,,s)(au)@(’y~au)) !
Vlil‘;;ll/s j=

Jij#ET 77(]\}’ IT]

Xy, Xy, Oy ® [ey,ad(ey, ) ad(ey, ) (au) © (7- au)]?)
o, D s o 3 (0 (eden)wd(en)(0) 0 () i)
|F|l 1vy,..., Vs,V

The term corresponding to j =i is the linear map S*~(I) - U(g)®" such that for x € [

z5 ! —s % Z,l[ey,ad(x)pad(eu)ad(x)q(au) © (7-a,)]?.

Using l-invariance of Y, a, ® (7 a,,) one obtains that this last expression equals

_ |?1| Z_ } (ad(x)pad([eu, z])ad(x)%ad(e,)(adz) " (ay) © (v ay)

+ad(x)Pad(e, Jad(2)Tad([e,, 2])ad(2)" (au) © (7- au)) "
which is zero from the [-invariance of t; =}, e, ® e,. The term corresponding to j # ¢ is the
linear map S*~*([) - U(g)®" such that for x €[

s LY (ad(@)ad(e,)ad(@) (a,) © (v-a,) P ) - (i < )

|F| p+g:5—1
= % Z,l (ad(z)? ([ev, au]) © (~ad(2))? (- au))P e - (i & §)

- S (=17 (ad(2)?([ev, au]) © (ad(2)) (7 - )P €D = (i < 5)

|F| p+q=s-1
v,u
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- = S (=17 (ad(2)?([ev, au]) © (ad(2)) (7 - )P €D = (i < 5)

|F| p+q=571

S X Y (D) () © (1) (- a) P (300 - i+ )

ﬂer+q s 1

|r|2 > X ()Y (ad(@)(a0) © ad(@) (- @)V (B [anan]) - (i )

Bel p+q=5-1 v,u

|F|2 Y2 (D' (ad@)"(8-a,) 0ad(@)'(8+7) )™ [aw. ] - (i )

Bel p+q=s-1
|r|2 5L D E @) (8= ar) 0 ad(@)*(8)-au)® [, 00] = (i )

which coincides with the image of

B B B
. A\P [t A\ [t

Dy _zz,_” =y ¥ (ad—xz) ) (ad—‘“) 2
M |F| p+q=s—1 Bel’ |F| M |F|

under pg. In conclusion we get the relation

pg([fsm%]) [pg(fsw) pg(?\;)]

A direct computation shows that the commutation relations of [X,& ] =0, [d,& 4] = & 4
and ad**'(Ag) (&) = 0 are preserved, which finishes the proof. O

4.3. Reductions. Assume that [ is finite dimensional and we have a reductive decomposition
[=hem,ie hclisasubalgebra and m c [ is a vector subspace such that [, m] c m. We also
assume that t; =ty + tyn With t = Y5 e; ® €5 € S2(h)" and ty € S%(m)?, and that for a generic
heb, ad(h)jm € End(m) is invertible. This last condition means that

P() = det(ad(\))jm) € ST (p)

is nonzero, where A\Y := (A ®id)(ty) for any A € h*.
We now define 1,,(g,b;.,). As in the previous paragraph, Diff(h*) has generators %, Oh
(h €b) and relations
Xth+h' = tXp + Xpy,
Otnsn =ty + O,
[)_(hv)_(h’] = 0 = [5]175]1']7
[5ha)_(h’] = (h’a h,)v

and Diff(h;,,) = Diff (h*)[+] with [0;, 5] = - [6;3’213]. One has a Lie algebra morphism
h - Dlﬁ‘(h*)’h’ — Xh = Zx[haeﬁ] aer;'
We denote by h4128 the image of the map

hoh— Y= Xp + Zz(l) e Diff(h;,,) ® U(g)®" =: By,

i=1
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and define H,(g,b},,) as the Hecke algebra of B, with respect to hie:

Hy(8,b7q) = (Bn)"/(Bab )",

It acts in an obvious way on (Op:,  ® (®%, V)" if (V;)1<i<n is a collection of g-modules.
Finally, let us set, for A € h*,

r(A) = (id®(ad X)) (tm)-

Then, following [14], 7 : ., — A?(m) is an h-equivariant map satisfying the classical dynamical

Yang-Baxter equation (CDYBE)

Zegl)agr(%) + [P 0] 4 ep.(1,2,3) =0,

and we write 7 = Y5 a5 ® bs ® £5 € (m®2 ® S(h)[1/P])".

Proposition 4.3. There is a unique Lie algebra morphism pg g :{{,n - H,(g,br.,) given by

reg
Zi— MY %, ®h?,
Gir— -NY 3, 0h + 3t 0ab$,
7 i s
t—1e (oM .tg)(ij)_

Proof. First of all, the images of the above elements are all h-invariant. As in [6], we will imply
summation over repeated indices, and adopt the following conventions: 9., = 0y, X, = X5, and
1® -’s and — ® 1’s may be dropped from the notation.

In particular, pg.p(%;) = hy)f{l;, Pap(Ti) = ~h$Dd, + Yo (X)) (here, for 2 ® y € g®2,
(z@y)) = x(i)y(i)).

We will use the same presentation of t] ,, as in Lemma 1.1. The relations [Z;,Z;] = 0 and
tg; =1, are obviously preserved.

Let us check that [Z;,7;] = ¥ 17 is preserved. We have for i # j,

1 _ _ - i), G G j
W[pgﬁ)(xz)apg,h(y])] = - 72 [Xl71 ) aﬂz]hlgl)hzgjg) + Zl/, 6) kXD [hl(j )365 ® a/((gj)bt(gk)]
vi,V2

(i) G _ G _ L @) )
ty! +tw” =t N O;Fa tg
by the same argument as in Proposition 4.1.

Let us check that }>; Z; = ¥, §; = 0 are preserved. We have ¥, pg.5(Z;) =0 and ¥; pg.5(7:) =
Yo h(;')ap (by the antisymmetry of r), which equals zero as in Proposition 4.1.

The fact that the relation [g;,7;] = 0 is satisfied for ¢ # j is a consequence of the dynam-
ical Yang-Baxter equation (this follows from the exact same argument as in the proof of [6,
Proposition 63]).

Next, [fi,f?k] =0 is preserved (i, 7, k distinct). Indeed, we have

_ To — i i ik
[P0 (%), Pan(E53)] = Lo x5 [hS?, 0 - £§P] = 0.
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Finally [g;,#5,] = 0 is preserved (i, j, k distinct): we have
_ o i) a i j ik
[9a.0(5:): o (E5)] =[= 2 b0, + 3, ald) - 1(79))
v 1

Lr)@ 41 () ,a@ - 1§")] =0

)

where the last equality follows the the g-invariance of t4. (I

Remark 4.4. We expect that there exists a Lie algebra morphism

redy  : H,(g,1") - Hu(g, b:eg)
such that the following diagram commutes

t{,n $ Hn(ga [*)

redy y
Pg.b l

Hy(8,b7eq)

4.4. Elliptic dynamical r-matrix systems as realizations of the universal I'-KZB
system on twisted configuration spaces. Let K (z) be a meromorphic function on C with
values in the subalgebra ’Eg,+ c 9;2 generated by x1, zo, t$ (a € T'), such that K(-z) = -K(z)%!
and satisfying the universal CDYBE with a spectral parameter

~[y1, K (203)*3] + [K (212)"%, K (213)"%] + ¢p.(1,2,3) = 0.

On the one hand, it follows from §4.1 that the image r(x,2) = pg(K(2)) of K(z) under
Pg: Eg7+ - (@;* ®g®?)! is a dynamical r-matrix? with spectral parameter, i.e. a solution of the
CDYBE with a spectral parameter for the pair (I, g)

> elN0,r(x,223) ) + [r(x, 212) 1P 7 (x, 208) 1] + ep.(1,2,3) = 0,

which satisfies 7(x,-2) = —r(x,2)?Y). On the other hand, the image of K(z) under pgy :
th, — (@hieg ® g®%)" is precisely equal to the restriction pg(K(2))|p+ € (Op: ® g®2)Y of

reg

pg(K(2)) to b*. Then applying [14, Proposition 0.1], we conclude that
7(X,2) = pg,n (K(2)) +7(N)
is a solution of the CDYBE with spectral parameter for (b, g):
S eV, 7(x, 225) 3D + [7(%, 210) 1P, 7(%, 213) W] + ¢p.(1,2,3) = 0.

Then for any n-tuple V. = (V4,...,V;,) of g-modules one has a flat connection ngn)r on the
trivial vector bundle over C" - Diag. ,,p with fiber (Op: = ® (®;V3))", defined by the following
compatible system of first order differential equations:

(19) 0. F(%,2) =Y e 0, F(x,2) + Y #9)(5,2;) - F(%,2).

FEED)

2Remember that Op := S(I) and O = S(1).
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Here z — F(%,2) is a function with values in (Op: = ® (®;Vi))".

Starting from K (z) = K12(2) as in §1.4, it would be interesting to know if one can recover
(up to gauge equivalence), using the above realization morphisms, the generalization of Felder’s
elliptic dynamical r-matrices [18] constructed in [16, 17].

5. FORMALITY OF SUBGROUPS OF THE PURE BRAID GROUP ON THE TORUS

5.1. Relative formality. Let G and S be two groups, with S finite, and let ¢ : G - S
be a surjective group morphism with finitely generated kernel Kerp. We then consider the
category of commuting triangles
G——=G
@
S
where G’ is pro-algebraic, and ¢’ is surjective with k-prounipotent kernel. This category has

an initial object, denoted ¢(k) : G(p,k) — S, which we call the relative (k-prounipotent)
completion of G with respect to ¢.

Observe that, if we regard the finite group S as an affine algebraic group, then this is a
particular case of the relative completion defined in [22]. It also coincides with the partial
completion defined in [10, §1.1] (which seems to force S to be finite).

Right exactness of relative completion (see e.g. [24, Proposition 2.4]), together with stan-

dard characterization of obstructions to left exactness, provides us with an exact sequence®

Hy(S, k) — (Kercp)(k) — G(p, k) — S — 1.

Since S is finite, H2(S, k) = 0, and thus we get that the kernel Ker (gp(k)) of ¢(k) is the usual k-
prounipotent completion (Ker go)(k) of the kernel of ¢, which we can therefore unambiguously
denote Ker p(k).

Lemma 5.1. Fvery extension
1—U—H—5—1
of a finite group by a k-prounipotent one splits.
Proof. We consider the filtration (F;); given by the lower central series of U, and prove by

induction that
1—U/F,— H|F, — S —1
splits.
Initial step (¢ = 2): Recall that Fy = U, and that F}/F» is abelian and finitely generated, so
that

1—U/F;,— H|F;, — S —1

3This can also be seen as the end of the long exact sequence from [29, Theorem 1.17].
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splits, as every extension of a finite group by a finite dimensional representation splits (this is
because the cohomology of a finite group with coefficients in a divisible module vanishes).
Induction step: We have a (surjective) morphism of extensions

1—>U/Fi+1 ﬁH/F‘z#l — S5 —1.

]

1 U/F; H/F,—— S ——=1

Assuming (by induction) that the bottom extension splits, we have that the corresponding ob-
struction class in the first non-abelian cohomology H*! (S, U/ E) is trivial. Hence, by exactness
of

H'(S, Fi/Fis1) — H'(8,U/Fis1) — H'(S,U/F),
we get that the obstruction class for the splitting of the top extension lies in the image of
H'(S,F;[Fis1) — H'(S,U/Fi1).

We conclude by using the vanishing of group cohomology of a finite group in a finite dimen-
sional representation. O

The above Lemma tells us in particular that G(p,k) ~ Ker(p)(k) x S, and justifies the
following definition from [10, §1.2]*

Definition 5.2. If S is finite, we say that the surjective group morphism ¢ : G - § with
finitely generated kernel is (relatively) filtered-formal if there exists a group isomorphism

G(k,p)—>exp (grLieKer p(k)) x S
over S. This is equivalent to having an S-equivariant filtered-formality isomorphism
Ker o(k)—grLieKer (k).

Example 5.3. The surjective morphism B,, » &,,, where B,, is the standard n strands braid
group is filtered-formal. This morphism, or rather the exact sequence

1—PB,—B,—6,—1,

can be deduced from the covering map Conf(C,n) — Conf(C,n)/&,. Note that filtered-
formality of smooth complex algebraic varieties is proven in [28] in a functorial way, which
implies in particular the wanted relative filtered-formality. An explicit filtered-formality iso-
morphism was first given in [25] when k = C (in terms of the monodromy of the KZ connection)
and then in [9] for k = Q (using an associator). We also refer to [22, Example 1.5] for interesting
considerations about this example. More precisely, one has an &,,-equivariant isomorphism
PB,(k)>exp(t,).

4n [10], Enriquez speaks about relative formality. We prefer to speak about relative filtered-formality in
order to remain consistent with our conventions in the absolute case S =1 (recall that we were following the

convention from [30] in the absolute case).
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Example 5.4. Let M € N be a positive integer. From the covering map Conf(C*,n, M) —
Conf(C*,n)/&,, one also gets an exact sequence

1—>PB711V[—>B711—>S—>1,

where S := (Z/MZ)" x &,. It follows from [10, §1.3-1.6] that the surjective morphism
B,ll - S is filtered-formal. More precisely, Enriquez exhibits an S-equivariant isomorphism
PBY (k) exp(i2).

5.2. Subgroups of B ,. For 7 € ), let U, ,r c C" - Diag,, 1 be the open subset of all
z=(z1,...,2n) of the form z; = a;+7b;, where 0 < a; <+ <a, <1/Mand 0< b, <--<b; <1/N.
If zg € U; .1, then it both defines a point in the I'-twisted configuration space Conf(E, r,n,T")
and in the (non-twisted) unordered configuration space Conf(E; r,[n]).
Recall that the map
Conf(E: r,n,I') » Conf(E; p,[n])

is a covering map with structure group I' x G,,. Hence we get a short exact sequence
1—PB], — By, >I"x6, —1,
where PBEH:: m1(Conf(Er r,n,I),20) and By ,,:= m (Conf(E-r, [n]),20).
We will also consider PB; ,,= ﬂl(Conf(ETI,n),zo), and the short exact sequence
1—PBj, —PB, —I"—1
associated with the I'"-covering map
Conf(E; r,n,I') » Conf(E; r,n).
Our main aim in this Section is to construct a relative filtered-formality isomorphism for
Bip>I"x6,.
Moreover, we will have an explicit description of the relative completion in terms of the Lie
algebra tlin.

5.3. The monodromy morphism B, , — exp(ilin) x ('™ % &,). The monodromy of the
flat eXp(’EEn) % (I'"™ x &,)-bundle (P(+r) [n]> V(r,r),[n]) o0 Conf(E; r,[n]) provides us with a
group morphism

Hzg,(+,T),[n] * B1n — eXP(Ein) (I 6&,).

This actually fits into a morphism of short exact sequences

1——PBj, Bi, MmMxG, —1,

| |

1 exp(E],)) —= (i) 1 (1" 5 6,) —=T" 5 &, —= 1

where the first vertical morphism is the monodromy morphism
Hzp,7,n,T * PBll—‘,n - eXp(%{,n)

of associated with the flat exp(flin)—bundle (Prnr,Venr) on Conf(E,r,n,T).
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Indeed, this comes from the fact that V(; ) [n] is obtained by descent, from V., r and
using its equivariance properties (see §1.3). More precisely, the monodromy of V(r,r),[n] 2long
a loop 7 based at zg in Conf(E; r,[n]) can be computed along the following steps:

e First consider the unique lift 4 of v departing from zg € Conf(E, r,n,I"). Note that it
ends at g-zg, ge " x&,. If g=(g1,-..,9n) €™ and zg = (21,...,2,) we will simply
write g-zg = (2],...29").

e Then compute the holonomy of V., r along 4: this is an element in exp(@lin), as
Vrnr is defined on a principal exp(f{n)—bundle obtained as a quotient of the trivial
one on C" - Diag, , 1 (see §1.2), that we abusively denote jiz, 5,1 (7)-

o Finally, fiz, (7,r),(n](7) = Ghzg,mn,0 (7).

Having such a morphism of exact sequences guarantees that it factors through a morphism

1] —— PABl;n((C) _ Blyn(cpn,([:) — = I"x6, —1,

| |

| —— exp(il,) —= exp(il,) % (I" % 6,) —= 1" 5 &, — 1

where Blﬁn(gpn,C) is the relative prounipotent completion of the morphism B; ,, - I'" x &,,,
and PABfn((C) is the prounipotent completion of PBlin.

We will call the vertical maps the completed monodromy morphisms.

In the remainder of this Section we will prove that these completed monodromy morphisms

are isomorphisms, exhibiting in particular a relative filtered-formality isomorphism for By ,, -
I'"%xG,.

Theorem 5.5. The completed monodromy morphism
Bin(pn, C) — exp(ty,,) x (I % &,,)

is an isomorphism. FEquivalently, the completed monodromy morphism
fizgirn.n (€) £ PBy ,(€) — exp(if,)

is an isomorphism.

Our aim now is to prove Theorem 5.5. For this we will prove, as usual, that the induced
morphism on Malcev Lie algebras

Lie(/j/zoﬂ'ﬂl,r) : pbll—‘,n - E11—‘,71

is an isomorphism of filtered Lie algebras.

5.4. A morphism t| , - gr(pb{,n). Let us start with a few algebraic facts about PB; ;, and
PBlin. The group PBy ,, is generated by the X;’s and Y;’s (i = 1,...,n), where X; (resp. Y;)
is the class of the path given by [0,1] 5 ¢t — z¢ + t6;/M (resp. [0,1] 5 t — z¢ + t70;/N).
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One sees easily that XM (resp. Y;V) is the class of the path given by [0,1] > t + zg + tJ;
(resp. [0,1] 5t = 2z + t74;), so that XM and YV are elements of PB{,n.

/

One has an obvious inclusion PB,, -+ PB

T

1.n coming from the identification of C with the

fundamental domain

1 1
= br € C|0 —,0<b< —
{z=a+breC| <a<M, < <N}

of ET,F'

Recall that we write the composition of paths from left to right. Then one can check (by
simply drawing) that the following relations are satisfied in PBy ,:

(T1) (X, X;) = 1= (Y3, Y;) (i <j),

(T2) (X;,Y;) = P,;j, and is conjugated to (Xj’l,Yi’l) (i <j),

(T3) (X1,Y7") = Pip-Pri3Pra,

(T4) (X3, Pjr) = 1= (Y, Pi) (Vi, j <k),

(T5) (XiXj, Pij) =1=(Y;Y},Py) (i <j).
One also observes that X;---X,, and Y;--'Y,, are central in PBy ,,.

Now it follows from the geometric description of PBlin that it is generated by XM, YV
(i=1,...,n), and P := Xj_ij_qPinquf (i<j,1<p<M,1<qg< N and a=(p,q7)). One can

for instance represent lifts of X3, Y3 and PS D iy Conf(E; r,n,I") as follows

Observe that the standard descending filtration on flfn coincides with the descending filtra-
tion coming from the grading of t{,n defined in §1.1.
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Proposition 5.6. There is a surjective graded Lie algebra morphism py, : tlf’n - gr(pb{,n),
sending

o T; —> a(log(XiM)) fori=1,...,n,

oy '—>J(10g(YiN)) fori=1,...,n,

o 1 —> o(log(Pf;-)) fori<j,

where o denotes the symbol map pb{,n - gr(pbin).

Proof. Tt is sufficient to check that the defining relations of t{  are preserved by the above

1,n
assignment. The relation [z;,2;] = 0= [y;,y;] is obviously preserved, thanks to (T1).
Now using (T2) and the identity

M-1 N-1
(XM,YN) — H XM—7,+1(H Y](X’Y)Y—_])XZ—]\/I—l
i=0 3=0

(which is true in the free group F», and thus in any group) with X = X; and Y =Y (i < j),
one obtains that [x;,y;] = X, t$ is preserved. The same reasoning with X = X; and Y = Yj’1

a ig

(i # j) shows that [z;,y;] = X4t is preserved as well.

a Yig
Using (T3) and the above identity with X = X; and Y = Y;!, one also obtains that
[21,y1] = = X4 Xja+; 11 is preserved. Now it is obvious that the centrality of }¥;z; and
Y.; yi is preserved, and thus it follows that [z;,y;] = =X, ¥j.. t7; 18 also preserved for any
ie{l,...,n}.
For any « = (p,q) we compute
M M y—py -~ -M y-py—q p-1
(Xi 5Pj0;c = Xi kaYk qukquX]Ic)Xi kaYk quk qule

X PG Y Y X Py XY (X Y D T P Y X

X (X Y Y P Y (G Y ) Y TP X

On the one hand, O’( log(XM, Pjojv)) = [o(log(XM)), o(log(Pj}.))], and one the other hand, the
leading term of the log of the r.h.s. lies in higher degree. Hence one obtains that [z;, t;“k] =0is

preserved. The proof that [y;,t$; ] = 0 is preserved is identical, and the proof that [z;+x;,1{;] =

0=y +yj,t5;], [t5, tfl] =0 and [t%,tf‘;ﬁ + tfk] =0 are preserved is similar. O

5.5. The filtered-formality of PBin (end of the proof of Theorem 5.5). To prove that
Lie(ftzy,r.n.r) is an isomorphism, it is sufficient to prove that it is an isomorphism on associated
graded. According to Proposition 5.6, we simply have to prove that ¢ := grLie(zy,7n,r) © Dn
is an isomorphism of graded Lie algebras.

We will actually be more specific and prove the following:

Lemma 5.7. We have ¢(xi) = yi, ¢(yi) = —2miz; + Ty and ¢(t5;) = 2wits;. In particular, ¢

is an automorphism.

Proof. Recall (see the appendix for more details) that pg, rn»r can be computed as follows.
Let Fy, : U, — exp(flin) be such that

{(a/azi)wz) = K1 (2l7)Fyy (2) |
FzU (Zo) =1.
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Then consider
1

H;n = {z =(21,.2n)|zi = a; + 7b;,0 < by, < ... < b1 < N}
and )

VTI:n = {z =(21,.2n)|zi=a; +7b;,0< a1 < ... < a, < M} )
Let Ff (resp. F,) be the analytic prolongations of F, to Hf n (resp. Vlen). Then

tizg,rn,r (X)) = FN(2)F (2 +6)7" and  fpigg,r (YN )™ ¥ = F) (2)F,y (z+76;)7" .
Knowing that log Fy, (z) = - ¥;(zi — 20)y; + terms of degree > 2, we get
1OgMzO77—7n1F(XZ-]w) =y; + terms of degree > 2

and

108 gy 7.0 (YiY) = —2miz; + Ty; + terms of degree > 2.
This gives us that ¢(x;) = y; and ¢(y;) = -2miz; + TY;.

In order to compute 10g fiz, 7 n,r(P;}), which is also equal to log iz, (r,r)n(F;), we will
need to compute fiy, 7.0y, (Xe)s tag,(r,0),n(Yi) and fiy (7 1) 0(FPij):
e As usual, and with our conventions, we have
Pz, ()0 (Pij) = exp(27rit?j + terms of degree >3),
where 0 = (0,0).
o We also have
T — — r 51
lez (Z) = Mzo,(T,F),n(Xi)(_la 0)1FZI—UI (Z + M) )
which implies that
:uzo,(‘r,l"),n(Xi) € (_L (_))z exp(t{,n) .

e We finally have

2n 0

— - _iXi T
FL () = a0y n (V) (0, -1)i T Y (2 T2

which implies that
o (). (Vi) € (0, ~1); exp(ty ) -
Hence, if a = (p,q) € T, then
Mz (.0),n (X PY;T) = 97 (9,0)i(0,7); ,
with g € exp(t] ,,), and
tizg, (v ) (Y] XT) = (0,-9);(-p,0)ig .
Therefore

Hzg (r,1).n (F55) 97 (2,0)i(0,q); exp(2mity; + terms of degree > 3)(0,-¢);(~p,0)ig

= gt exp(2mit;; + terms of degree >3)g.
This shows that 10g ji5,,(r,r),n(P}) = 2mit{; + terms of degree > 3, so that @(tf;) = 2mitg;.
This ends the proof of the Lemma. (I
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= I
Finally, if we denote PB, ,,(C) = 71 (C(Err,n,I'),20)(C), where 7 is the image of zg
by the projection Conf(E; r,n) - C(E;r,n), then the isomorphism fi,, r» r(C) descends to

_ = I a
an isomorphism fiz, r,n,r(C) : PB ,,(C) » exp(4] ,,).

Now let By, be the fundamental group 7 (C(E,r,[n]),[Z0]). By considering the short
exact sequence )
1—PB,,, — Biy 25 (1) 2 &, —> 1,
we deduce that the map
Bin(Pn, €) — exp(iy,,) = ((I"/T) » 6,)

is also relatively filtered-formal. In conclusion, we obtain the summarizing commutative cube

PB},(C) = exp(t],,)
\
By, (¢n,C) - exp(t],,) »x (I" % &,)
|
BB, ,(C ()
Bi.n(%n,C) = exp(L,,) % (T"/T) % &,).

6. REPRESENTATIONS OF CHEREDNIK ALGEBRAS

6.1. The Cherednik algebra of a wreath product. In this paragraph I' is any finite
group such that I' c Aut(C), k = (ko) € C! is such that k, = k_o and G :=1:&,,. We define
the Cherednik algebra H (k) as the quotient of the algebra C(x1,...,2n,¥1,...,Yn) x C[G]
by the relations

o Yixi=2;y; =0

o [xi,x;]=0= [yi’Yj]a

o [xi,y;]= = = Yaer ks (i % ),
where s = (a; — @;)sij, and s;; is the permutation of i and j.

Remark 6.1. Since I' c Aut(C), HL (k) admits a geometric construction. Define X := {z €
C™ ¥, z: = 0} and cousider the following action of G on it: &, acts in an obvious way and

ai(2) = (a1 - 2 T D) (2),

where o*) is the action of a € I on the k-th factor of C™. Following [15] one can construct a
Cherednik algebra Hy ,0(X,G) on X/G. It can be defined as the subalgebra of Diff (X )xC[G]
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generated by the function algebra Ox, the group G and the Dunkl-Opdam operators D; — D;,

where
D=0+ Y koS0
i = 24 =+ Ot .
Jigi (—a)(2i) - a(z;)
el

One can then prove that there is a unique isomorphism of algebras HY (k) — Hi 0(X,G)
defined by

G3gr—g.
6.2. Morphisms from Ilin to the Cherednik algebra.

Proposition 6.2. For any a,b € C there is a morphism of Lie algebras ¢ p :iin - HI (k)
defined by

T; —> ax;

gi — szv

e’ 1 (o7
tl] — ab ; - k/’aSij .

T

Proof. Straightforward from the alternative presentation of t; ,, in Lemma 1.1. g

V)

Hence any representation V of HY (k) yields a family of flat connections Vg ,, over the

configuration space C(E,[n],T).

6.3. Monodromy representations of Hecke algebras. Let E be an elliptic curve and
E - F the I'-covering as in §1.2. Define X = E"/E and G = (I': &,,)/T'%#&. Then the set
X' c X of points with trivial stabilizer is such that X'/G = C(E,[n],T').

Let us recall from [15] the construction of the Hecke algebra H! (q,t) of X/G. It is the
quotient of the group algebra of the orbifold fundamental group By ,, of C(E,[n],T) by the
additional relations (T, — ¢ 'to)(Ta + ¢ 't;') = 0, where T, is an element of B£ ,, homotopic
as a free loop to a small loop around the divisor Y, := Ujj{z; = a-2;} in X/G, in the
counterclockwise direction.”

Let us consider the flat connection Vfl‘;)) and set

q= e*?ﬂ'lab/n, t, = e*?ﬂ"lkaab )

T

Then the monodromy representation BLn - GL(V) of Vflvb) obviously gives a representation

of HL(gq,t) either if V is finite dimensional or if a,b are formal parameters. In particular,
taking a = b a formal parameter and V = HL'(k), one obtains an algebra morphism

r r
H,(¢,1) — H, (B)[[a]].
We do not know if this morphism is an isomorphism upon inverting a.

5Here the sugroup of G acting trivially on Y, is the order 2 cyclic subgroup generated by sf‘]
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6.4. The modular extension of ¢, ;. Now assume that a,b # 0.

Proposition 6.3. The Lie algebra morphism ¢, can be extended to the algebra U(Elinxar) x
G by the following formule:

(o3

(ba,b(szq} = Sz] s

1 1 _
Gap(d) = 3 Z(XiYi +yiXi), Pap(X)= —§ab ! ZX?,

$ab(Bo) = %bafl DVis Pan(€sq) = a0 Y (v (xi - x))"

1<J
Thus, the flat connections Vg,b extend to flat connections on M{ [n]"

Proof. The proof is a straightforward calculation. O

APPENDIX A. CONVENTIONS

In this appendix we spell out our conventions regarding, fundamental groups, covering
spaces, principal bundles, and monodromy morphisms.

A.1. Fundamental groups. Our convention is that we read the concatenation of paths from
left to right. For instance, if X is a space, p is a path from « to y in X, and ¢ is a path from
y to z in X, then we write pq for the concatenated path, going from z to z.

A.2. Covering spaces and group actions. Our convention is that the group of deck trans-
formations acts from the left. Apart from the case of principal bundles (see next §), group
actions will always be from the left. We will often use - for such a left action.

The situation we are interested in is the one of a discrete group H acting properly discon-
tinuously from the left on a space Y, with quotient space X = H\Y, so that the quotient map
Y - X is a covering map.

We thus have a short exact sequence
1l-mY,y) >m((X,z) > H->1

of groups, where y € Y and x = H -y € X is its projection. Note that the surjective map
m(X,z) - H sends (the class of) a loop « based at z to h., which is defined as follows:
(1) = h - 7(0), where 7 is a path lifting (uniquely) v to Y and such that (0) = y. For the
sake of completeness, let us check that this is indeed a group homomorphism.

Proof. We have
h”Yl'YZ Y= m(l) = ’)%2(1) ’

where ¥ = h., -2 is the (unique) lift of 49 such that 42(0) = ¥1(1) = h,, - y. Therefore,
Py = Py iy O



46 DAMIEN CALAQUE AND MARTIN GONZALEZ

A.3. Principal bundles and descent. Let G be a group. All principal G-bundles (apart
from covering spaces, see above) are right principal G-bundles. Let P be a principal G-bundle
over X, so that P/G = X.

Let us assume that X = H\Y, where H is a discrete group acting on Y. We now describe a
way of constructing a G-bundle on the quotient space X from the trivial G-bundle P :=Y x G
on Y, by means of non-abelian 1-cocycles.

A left H-action on P, compatible with the one on Y, is given as follows:
h-(y,9) = (h-y.cn(y)g), cn(y) eG
The property of being a left action is equivalent to the non-abelian 1-cocycle identity
Chiha (Y) = chy (h2 - y)eny (y) -

A.4. Monodromy and group actions. Let us start with the monodromy in the case of a
trivial principal G-bundle P = Y x G on a manifold Y equipped with a flat connection V = d—w.
Here w is a one-form on Y with values in g = Lie(G), and G is assumed to be prounipotent.

Let v : [0,1] = Y be a differentiable path, and consider its (unique) horizontal lift 5 =
(7,9) : [0,1] = P such that g(0) = 1. We define the monodromy (v) := g(1)~".

Remark A.1. Observe that if (v, §) is another lift so that § = go € G, then g(t) = g(¢)go (by
unicity of horizontal lifts), and thus u(vy) = §(0)g(1)~'.

Again, for the sake of completeness, we check that g is a morphism, in the sense that it
sends the concatenation of paths to the product in G.

Proof. Let 1,72 be composable paths in Y, and let g1, g2 determine composable horizontal
lifts. Then

(9192)(0)(g192)(1) ™" = g1(0)g2(1) ™
91(0)g1 (1)1 92(0)g2(1) ™" = p(y1) pu(2) -

w(7172)

O

Let us now assume that Y is acted on properly discontinuously from the left by a discrete
group H, that also acts in a compatible way on P thanks to a non-abelian 1-cocycle ¢ : HxY —
G (see previous § above). We borrow the notation from §A.2, and assume that P is equipped
with an H-equivariant flat connection, that therefore descends to a flat connection on P We
define a monodromy morphism

e :m(X,2) — G
v o= w(¥)en, (y),

where 4 is the lift of v along the quotient map ¥ — X such that 4(0) = y. Let us again check,
for the sake of completeness, that u, is indeed a group morphism.
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Proof. Recall that for every loop 7 based at z, 5(1) = h., -y. Hence, if 7,72 are loops based
at x, then 4793 = V172, with 75 = he, - ¥2. Therefore

w(172)¢Ch o, ()
= u(72)¢n, by (Y)
= (V)b - 72)Cny, (hys - y)n,, (y)
= p()en, Wu(F2)en,, (hy, - y)~ eny, (Bay - y)en,, ()
= pa(7) ke (12)
Here we made used of the (easy) fact that, if the flat connection is equivariant, then so is the
monodromy map p: pu(h-y) = ca(v(0))p(y)en(v(1)) 7 O

pa(7172)
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LIST OF NOTATION

Groups.
PB,,: Pure braid group on the complex plane. 2
Pny : M-decorated pure braid group on the cylinder. 3
GE: Structure group of the principal bundle over ./\/l{n 18
GI: Structure group of the principal bundle over /\;l{n 18
SLY (Z): T-level principal congruence subgroup of SLo(Z). 19
PB{,H: I"-decorated pure braid group on the torus. 38
B1,n: Braid group on the torus. 38
PB;,,: Pure braid group on the torus. 38

Spaces.
Conf(C,n): Configuration space of n points in C. 2
Conf(C*,n): Configuration space of n points in C*. 3
Conf(C*,n, M): M-decorated configuration space of n points in C*. 3
Conf(T,n): Configuration space of n points in T. 4
Conf(T,n,T"): I'-decorated configuration space of n points in T. 8
C(T,n,I'): Reduced I'-decorated configuration space of n points in T. 8
/\711;" Reduced moduli space of I'-structured n-marked elliptic curves. 20
len Non-reduced moduli space of I'-structured n-marked elliptic curves. 20
/\;lli[n]: Reduced moduli space of I'-structured unorderly n-marked elliptic curves. 20
Mli[n]: Non-reduced moduli space of I'-structured unorderly n-marked elliptic curves.
20

Lie and associative algebras.

tM: M-cyclotomic Kohno-Drinfeld Lie C-algebra. 3

t1 n: Elliptic Kohno-Drinfeld Lie C-algebra. 4

tlin(k): I-ellipsitomic Kohno-Drinfeld Lie k-algebra. 7
ol': Intermediate twisted derivations Lie algebra. 14

ol': Twisted derivations Lie algebra. 15

H,(g,*): Hecke algebra of the pair (g,[). 30
Hy(g,byc,): Reduced Hecke algebra of the pair (g,h). 33

Bundles.
Pyn,r: Principal exp(t] ,,)-bundle over Conf(E,n,T). 8
Pr.[n),r¢ Principal exp(i{n)—bundle over Conf(FE,[n],T"). 9
75(7711)7": Principal exp(@;’n) x I'"-bundle over Conf(E,n). 9
Pa,r: Principal GJ-bundle over M}, . 21
P,.r: Principal GL-bundle over /\;llfn 21
Pln),r: Principal an]—bundle over Mi[n]. 28
P(ry,n¢ Principal G}, » ["-bundle over My, /T"™. 29
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