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POLYNOMIAL PRODUCTS MODULO PRIMES AND

APPLICATIONS

OLEKSIY KLURMAN AND MARC MUNSCH

Abstract. For any polynomial P (x) ∈ Z[x], we study arithmetic

dynamical systems generated by FP (n) =
∏

k≤n

P (n)(mod p), n ≥ 1.

We apply this to improve the lower bound on the number of dis-
tinct quadratic fields of the form Q(

√

FP (n)) in short intervals
M ≤ n ≤ M+H previously due to Cilleruelo, Luca, Quirós and Sh-
parlinski. As a second application, we estimate the average number
of missing values of FP (n)(mod p) for special families of polynomi-
als, generalizing previous work of Banks, Garaev, Luca, Schinzel,
Shparlinski and others.

1. Introduction

Let P (x) ∈ Z[x] be a non constant polynomial and define

FP (n) =

n
∏

i=1

P (i).

Throughout the years, arithmetic properties of the function FP (n) at-
tracted considerable attention of several authors. Perhaps the first
occurrence of this object in the literature dates back to Chebyshev,
who considered the case P0(n) = n2 + 1 and showed that the largest
prime factor of FP0(n) is ≫ n. See also [12], [13], [15] for refinements
of the latter result. Another direction in this investigation stems from
equations of the form

FP (n) = mk(1)

where m,n ∈ N, k ≥ 2. Erdös and Selfridge [8] showed that (1)
has finitely many solutions for P (x) = x + a. The same question for
P (x) = ax+ b was the subject of further investigation ( [12], [13], [14],
[19], [24]). Using only elementary arguments, Cilleruelo [4] was the first
to handle the case of polynomials of degree 2 (precisely P (x) = x2+1).
Several authors adapted his method to deal with more general qua-
dratic polynomials or reducible higher degree polynomials ( [3], [9], [11],
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[16], [28], [29], [30]). However, no specific result for irreducible polyno-
mials of degree d ≥ 3 is known. Motivated by the previous work [5], we
study the number of solutions of (1) on average over the short intervals.

1.1. Results on average. For M,N ≥ 1 and d ≥ 1 we denote by
Sd(M,N) the set of integers n such that there exists t ≥ 1 satisfying

(2) FP (n) = dt2, for n = M + 1, . . . ,M +N.

Cilleruelo, Quirós and Shparlinski investigated the averaged version of
the problem (2). In particular, they proved in [5] that uniformly

#Sd(M,N) ≪ N11/12(logN)
1
3 .

Our first goal in this note is to improve this result.

Theorem 1.1. Let P (x) ∈ Z[x] be an irreducible polynomial with

deg P ≥ 2. Then, uniformly for squarefree integers d ≥ 1 and arbi-

trary integers M,N ≥ 1, we have

#Sd(M,N) ≪ N7/8(logN)1/4,

where the implied constant depends only on the degree of P.

As a corollary we obtain

Corollary 1.2. Let P (x) ∈ Z[x] be an irreducible polynomial with

deg P ≥ 2. Then, there are at least ≫ N7/8

(logN)1/4
distinct quadratic fields

amongst Q(
√

FP (n)) for n = M + 1, . . . ,M +N .

This improves on the previous bound given in [5]. Our second objec-
tive is to study the distribution of the values of polynomial products
modulo primes.

1.2. Distribution of polynomials products modulo p. The case
P (x) = x for which FP (n) = n! has been extensively investigated
in [1], [2], [6], [10], [17] and [21]. Our main motivation is the following
question:

Question: Given a prime p, what can be said about the cardinality

GP (p) =
∣

∣ {FP (n) (mod p), n = 1 . . . p}
∣

∣?

This is a part of a general program concerning images of dynamical
system of non-algrebraic origin. See the survey paper [25] for the ex-
tensive list of the related problems and references therein. Although
GP (p) is a natural generalization of the analogous quantity for factori-
als (namely, for P (x) = x), in general the asymptotic behaviour might
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be rather different. If P (n) has a root modulo p and n0 denotes the
smallest of such roots, we have

FP (n) ≡ 0 (mod p),

for all n ≥ n0. In this case, GP (p) ≤ n0. Furthermore, we know since
Nagel [22] that there exists very large prime factors dividing polyno-
mial products. This culminates with the work of Tenenbaum [27] who
showed

P+(FP (n)) ≫ n exp((logn)α for each 0 < α < 2− log 4

where the implied constants depend only on α and P . Choosing such
large primes p, we derive

GP (p) ≪ p exp(−(log p)α)

for every α as above. In order to circumvent this problem, we confine
ourselves with the case where p does not divide P (n), for all n ∈ Z.
This brings significant complications to the analysis below. One might
speculate that

GP (p) ∼ Cpp.

This is in line with the conjecture of Erdős and Schinzel [23] for the
case P (x) = x and Cp =

(

1− 1
e

)

. The random model of this problem,
namely when n! (mod p) is replaced by the product π(1)π(2) . . . π(n)
(mod p) where π is a random permutation has been studied in the
works [6] and [21].

In the last section of the paper, we show that GP (p) is not too large
on average over these “good” primes, in other words, FP (n) misses a
lot of values modulo p. This generalizes previous works for the case of
factorials [1], [17]. Similar results have been obtained for some others
maps n → F (n) (mod p), see the survey [25] for more details.

For the sake of proving such results, we restrict ourselves to several
families of polynomials. First, suppose that P ∈ Z[x] is such that its
splitting field (which we denote by Spl(P )) is an imaginary quadratic
extension of Q. Next theorem shows that the number of “missing”
residue classes tends to infinity on average for such polynomials.

Theorem 1.3. For any imaginary quadratic P (x) ∈ Z[x], we have

1

π(x)

∑

p≤x
P has no root mod p

(p−GP (p)) ≫
log log log x

log log log log x
·

Theorem 1.3 directly implies:

Corollary 1.4. There exists infinitely many primes p such that P does

not have a root modulo p and

p−GP (p) ≫
log log log p

log log log log p
.
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Assuming Generalized Riemann Hypothesis (GRH) the bound from
Theorem 1.3 can be improved.

Theorem 1.5. Assume that GRH is true. Then,

1

π(x)

∑

p≤x
P has no root mod p

(p−GP (p)) ≫ log x.

As before, Theorem 1.5 directly implies:

Corollary 1.6. Assume that GRH is true. There exists infinitely many

primes p such that P does not have a root modulo p and

p−GP (p) ≫ log p.

We prove analogue results for binomials of any degree which, in some
sense, generalizes the case of imaginary quadratic polynomials. Even
though the method is essentially similar, the algebraic properties of the
polynomials involved and their utilization in the proof are different.

Theorem 1.7. Let P (x) = xd − a ∈ Z[x] with d coprime to a and

a 6= ±1 squarefree. Then

1

π(x)

∑

p≤x
P has no root mod p

(p−GP (p)) ≫d,a
log log log x

log log log log x
.

Again, Theorem 1.7 directly implies:

Corollary 1.8. There exists infinitely many primes p such that P does

not have a root modulo p and

p−GP (p) ≫d,a
log log log p

log log log log p
.

In Theorem 1.7 and Corollary 1.8, the dependence on a is in fact
a dependence on the smallest prime factor of a. Furthermore, the
condition d coprime to a can be weakened. Finally, akin results under
the assumption of the Generalized Riemann Hypothesis can also be
deduced.

The paper is organized as follows. In Section 2, we prove the results
of Section 1.1. We prove the necessary algebraic results concerning a
suitable family of shifted polynomials in Section 3 and conclude with
the proofs of results announced in Section 1.2.

2. Number of solutions of (1) in intervals

We proceed using the square sieve in a different way than in [5]. In
order to prove our theorem, we now collect a few auxiliary lemmas
from [5] and incorporate an additional combinatorial input.
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2.1. Technical lemmas. The following lemma can be deduced from
the Weil bound and is stated in that way in [5, Lemma 4].

Lemma 2.1. Let P (x) ∈ Z[x] be an arbitrary polynomial with D =
deg P ≥ 2. For all primes l 6= p such that P (x) is not a perfect square

modulo l and p, we have

M+N
∑

n=M+1

(

P (n)

lp

)

≪ D2

(

N

lp
+ 1

)

(lp)1/2 log(lp).

Remark 2.2. The result remains true for linear polynomials and is,
in that case, a direct consequence of the Pólya-Vinogradov inequality.

We recall a consequence of Chebotarev Density Theorem. Denote
by Lz the set of primes in the interval [z, 2z] such that P (x) has no
root modulo l.

Lemma 2.3. Let P (x) ∈ Z[x] be an irreducible polynomial of degree

D ≥ 2. We have

#Lz =
1

κ
(π(2z)− π(z)) +O

(

z(log z)−2
)

,

where κ ≤ D!
(D−1)

is a positive rational number depending on the poly-

nomial P (x) and π(x), as usual denotes the number of primes ≤ x.

For an integer h ≥ 1, we introduce

Fh(x) =
h
∏

n=1

P (x+ n) ∈ Z[x].

In order to apply Weil’s inequality, we need to ensure that these par-
ticular polynomials are not squares modulo a lot of primes. The next
result follows directly from the proof of the main Theorem of [5].

Lemma 2.4. Let P (x) ∈ Z[x] be an irreducible polynomial of degree

D ≥ 2 and H ≥ 1. There is at most O (H logH/ log logH) primes p
such that Fh is a square modulo p for some 0 < h ≤ H.

2.2. Proof of Theorem 1.1. Fix H as a parameter which will be
chosen later. Write Sd(M,N) = S1 ∪ S2 where

S1 = {n ∈ Sd(M,N), m− n > H for all m > n ∈ Sd(M,N)}
and let S2 = Sd(M,N)\S1. Clearly we have #S1 ≤ N/H and we want
to upper bound the cardinality of S2 in terms of H . First, remark
that if n ∈ S2, this implies that there exists h ≤ H such that n and
n+ h are solutions of the equation (2) and it follows easily that Fh(n)

is a square. Therefore
(

Fh(n)
l

)

= 1 for all primes not dividing Fh(n).

Particularly, this holds for primes l such that P has no roots modulo l.
For a parameter z which will be chosen later as well, we can choose such
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primes using Lemma 2.3. Let us denote by Lz this set of good primes.
Using Lemma 2.4 we have that for sufficiently large z, there is at least
half of the primes l ∈ Lz such that Fh(x) is not a perfect square modulo
l for every h ≤ H (z will be chosen such that H logH = o(z/ log z)).
We denote this set of primes by Pz. Thus, we have that for every
n ∈ S2, there exists h ≤ H such that

∑

l∈Pz

(

Fh(n)

l

)

= #Pz.

Hence, averaging over the interval we get

(#Pz)
2#S2 ≪

M+N
∑

n=M+1

∑

1≤h≤H

(

∑

l∈Pz

(

Fh(n)

l

)

)2

.

Separating the diagonal contribution from the nondiagonal terms, we
obtain

(#Pz)
2#S2 ≪ NH#Pz +

∑

l,p∈Pz
l 6=p

∑

1≤h≤H

M+N
∑

n=M+1

(

Fh(n)

lp

)

.

Applying Lemma 2.1, we derive

#S2 ≪
NH

#Pz
+ (#Pz)

−2
∑

l,p∈Pz
l 6=p

∑

1≤h≤H

h2(lp)1/2
(

N

lp
+ 1

)

log(lp).

It leads to

#S2 ≪
NH

#Pz
+H3z

(

N

z2
+ 1

)

log z.

Setting z =
√
N , we end up with

#S2 ≪
NH(logN)√

N
+H3

√
N logN.

Choosing the optimal parameter H = N1/8

(logN)1/4
concludes the proof.

3. Value distribution of polynomials products modulo p

As was mentioned in the introduction, we are interested in the quan-
tity GP (p). We have a trivial lower bound.1

Proposition 3.1. Suppose p is a prime that does not divide P (n) for
all n ∈ Z. Then

GP (p) ≥
√

p

degP
·

1Improving this bound seems hard to the authors.
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Proof. Since every polynomial P has at most degP roots, for p ≥ degP
we have that

∣

∣P (n) (mod p)
∣

∣ ≥ p

degP
·

Now take different values P (n1), P (n2), . . . , P (nk) such that P (ni) 6=
P (nj) (mod p) for i 6= j. Consider the pairs of the form (ni − 1, ni).
Clearly,

FP (ni)

FP (ni − 1)
= P (ni)

and the result follows in exactly the same way as in the case of factorials
[17] which corresponds to P (n) = n. �

Our goal in this section is to show that GP (p) is not too large on
average for “good” primes. We restrict ourselves to some specific fami-
lies of polynomials. In the first part, we assume that the splitting field
of P is an imaginary quadratic extension of Q. In the second part, we
extend our results to some particular polynomials of any degree.

3.1. Algebraic properties of polynomial products. We fix a few
standard notations from algebraic number theory. Let L/Q be a Ga-
lois extension of number fields and denote by nL its degree. If G is
the Galois group of this extension, we denote by C a subset of G sta-
ble by conjugation. For all x > 1, the function πC(x) will count the
number of prime numbers p ≤ x, non ramified in L, and such that
[

L/Q
p

]

∈ C, where
[

L/Q
p

]

is the unique Galois automorphism (up to

conjugacy) such that its reduction modulo p coincides with the Frobe-
nius automorphism. In case C = G we have

πC(x) = π(x) ∼ x

log x

when x → +∞.
For any ideal I of the ring of integers OL, we denote the norm of

an ideal by NL/Q(I) and write N(I). We also denote by f (p/p) the
inertial degree | [OL/p : Fp] | of the ideal p above the rational prime p.
The function πL(x) will count the number of prime ideals p of L such
that N(p) ≤ x. Finally, denote by dL the absolute discriminant of the
extension L.

In the rest of the paper, we consider the family of polynomials defined
by fn(x) = P (x)P (x+ 1) . . . P (x+ n− 1)− 1, n ≥ 1 and P (x) ∈ Z[x].

3.1.1. Imaginary quadratic case. In this section, take P ∈ Z[x] such
that the splitting field of the polynomial P (which we denote by Spl(P ))
is an imaginary quadratic extension of Q. Denote by α1 and α2 the
complex roots of P . Hence Spl(P ) = Q(α1) and denote by OQ(α1) the
ring of integers of Q(α1).
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Proposition 3.2. There exists an effective constant CP depending only

on P such that fn(x) is irreducible over OQ(α1)[x] for n > CP .

Proof. Observe that

fn(α) = −1, α = αi − j, i = 1, 2, 0 ≤ j ≤ n− 1.

Now, suppose that fn(x) = g(x)h(x) in OQ(α1)[x] with deg g ≥ n
and deg h ≥ 1. First, note that the above 2n values of α are distinct.
Indeed, otherwise, we would have α1 − j1 = α2 − j2 with j1 6= j2. It
would imply α1 = α2+k with k a nonzero integer which forces α1 to be
rational by Vieta’s formulas. Hence g has to take units values for 2n
distinct algebraic integers of OQ(α1). The hypothesis implies that there
are at most six units in OQ(α1). Thus, by the pigeonhole principle, we
derive that g(βi) = u for at least n/3 distinct algebraic integers βi

2.
Consequently,

g(x) = (x− β1)(x− β2) · · · (x− βn
3
)q(x) + u.

Suppose that g takes another unit value u′ at an algebraic integer point
β. Then

(3) (β − β1)(β − β2) · · · (β − βn
3
)q(β) = u′ − u.

Define M = max {d(y), y = v1 − v2, v1, v2 units} where d(y) denotes
the divisor function in OQ(α1). If n > 3M , then immediately get a
contradiction.

In fact, in view of (3), the values β−βj , 1 ≤ j ≤ n
3
have to be divisors

of u′ − u and we have at most M of those. We deduce that g(α) = u
for all αi − j, i = 1, 2, 0 ≤ j ≤ n− 1 and so h(α) = −1/u at these 2n
values. This is indeed impossible since deg h ≤ n.

�

We note that the previous argument is standard while working over
Q, see for example, [7, Theorem 8] or [15, Theorem 5.1]. We deduce

Corollary 3.3. Suppose that Spl(P ) is an imaginary quadratic exten-

sion of Q. Letn > CP be as in Proposition 3.2 and set β to be a root

of fn. Then

Q(β) ∩ Spl(P ) = Q.

Proof. Let Q(α1) denote the splitting field of P . Suppose that Q(β) ∩
Q(α1) 6= Q, in which case Q(α1) ⊂ Q(β). By Proposition 3.2 fn is
irreducible over OQ(α1)[x]. Therefore, β is of degree 2n over Q(α1) and
also over Q. The following diagram immediately yields a contradiction.

2These are a subset of the previous αi − j.
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Q

Q(β) Q(α1)

Q(β, α1)

2n 2

1 2n

�

The argument above heavily relies on the finiteness of the units of
the splitting field of P , thus it can only work when the roots of P lie
in an imaginary quadratic extension. However, we can prove weaker
(but sufficient for our applications) algebraic results concerning some
subfamily of polynomials fn(x) for some other class of polynomials as
we will show in the next section.

3.1.2. Radical extension case. In this section, we consider the case of
binomials P of higher degrees which give rise to simple radical exten-
sions. The first two lemmas are well-known.

Lemma 3.4 (Theorem 9.1, [20]). Let a an element of a field K, and

n ∈ N. Then the polynomial xd − a is irreducible over K if and only if

a /∈ Kp for all primes p | d and a /∈ −4K4 when 4 | d.

An easy classical computation gives the discriminant of such poly-
nomials.

Lemma 3.5.

disc(xd + ax+ b) = (−1)
d(d−1)

2 ((1− d)d−1ad + ddbd−1).

In particular,

|disc(xd − a)| = dnad−1.

Assume P (x) = xd − a with a 6= ±1 a squarefree integer. Then for
any integer k ≥ 1, we have

fkq(x) mod q = P (x)P (x+ 1) . . . P (x+ kq − 1)− 1 mod q

= (xd(x+ 1)d . . . (x+ q − 1)d)k − 1 mod q

for every prime divisor q of a. Under these conditions, we deduce

Lemma 3.6. Suppose that q|a and (dk, q) = 1. Then

disc(fkq(x)) mod q = disc(fkq(x) mod q) 6= 0.
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Proof. Using the previous reduction, we can easily show that the poly-
nomials fkq(x) and f ′

kq(x) are coprime in Z/qZ[x]. Thus, denoting by
Res(f, g) the resultant of two polynomials, we have

Res(fkq(x) mod p, f ′
kq(x) mod p) 6= 0.

This implies that disc(fkq(x) mod q) 6= 0 or equivalently q ∤ disc(fkq(x)).
�

Combining all of the above, we arrive at

Proposition 3.7. Assume P (x) = xd − a with (d, a) = 1 and a 6= ±1
squarefree. If k ≥ 1 is such that (k, a) = 1 and q is a prime divisor

of a then P (x) is irreducible over Kkq := Q(βkq) where βkq is a root of

fkq.

Proof. We show that the conditions of Lemma 3.4 are fulfilled. We only
need to verify that a /∈ Kp

kq for p a prime divisor of d. If a ∈ Kp
kq, then

there exists β ∈ Kkq such that a = βp, in other words the polynomial
xp − a has a root in Kkq. Thus, Q(β) would be a subextension of Kkq.
By hypothesis, xp − a has no rational root and thus it is irreducible
over Q. Hence it is the minimal polynomial of β and, by Lemma 3.6, q
divides the absolute discriminant of the field Q(β). Therefore, q should
ramify in Kkq. We know that disc(Kkq) is a factor of the discriminant
of the minimal polynomial of βkq which is by definition a divisor of fkq.
Thus by transitivity, q has to divide disc(fkq) which is in contradiction
with Lemma 3.6.

�

In order to bound discriminants of number fields and locate Siegel
zeroes, we need the the following simple result.

Lemma 3.8. Take P (x) = xd−a ∈ Z[x] an irreducible polynomial and

d ≥ 2. If βi, i = 1 . . . n are the complex roots of fn, then

|βi − βj| ≪d n, i 6= j·
Proof. A direct application of Rouché’s Theorem to the polynomials fn
and g = fn+1 in the ball B(0, 3(n+

√
a)) := {z ∈ C, |z| < 3(n+

√
a)}

gives the result after noticing that the roots of the polynomial g are
exactly −k+ ζ d

√
a, k = 0 . . . n−1 with ζ being a d-th root of unity. �

3.2. Proofs of the results of Section 1.2.

3.2.1. Proof of Theorem 1.3. Let N be a parameter which will be de-
termined later. For n ≥ 1 we consider the family of polynomials

fn(t) = P (t)P (t+ 1) . . . P (t+ n− 1)− 1.

By Proposition 3.2, fn(t) is irreducible over Q for all n ≥ 1. Let ρn(p)
denote the number of roots of fn(t) modulo p. Taking p such that P
has no root modulo p, we observe that fn(t0) ≡ 0 (mod p) implies

FP (t0 + n− 1) = FP (t0 − 1) (mod p).
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Therefore, each distinct root of fn(t) modulo p increases the number
of “missing” values by 1, so we get

1

π(x)

∑

p≤x
P has no root mod p

(p−GP (p)) ≥
N
∑

n=1

1

π(x)

∑

p≤x
P has no root mod p

ρn(p).(4)

Our task now is to produce a lot of roots of fn for many values of p.
As before, denote by Q(α1) the splitting field of P . For n sufficiently

large, we know by Corollary 3.3 that

Q(βn) ∩Q(α1) = Q

where βn is a root of fn. In the following, we will denote by Kn the
extension Q(βn).

We need a lot of primes p such that P has no root mod p and fn
has a root mod p. We will achieve this by producing a lot of primes p
above p such that f (p/p) = 1 and p does not split in Kn(α1).

Kn(α1) P OKn(α1)/P

Kn p OKn/p

Q p Fp

2 non-split prime
extension of
finite fields

2n f (p/p) = 1
extension of
finite fields

Indeed, by Dedekind’s theorem we know that, up to finitely many
exceptions, p splits inKn(α1) if and only if P splits in OKn/p[x]

∼= Fp[x]
where the last isomorphism comes from the fact that p is of inertial
degree 1. Denote by C the set of degree 1 primes of Kn which does not
split in Kn(α1). By a standard argument, the prime ideals p of Kn of
inertial degree f (p/p) > 1 will give negligible contribution. Moreover,
we remark that at most 2n degree 1 primes of Kn correspond to the
same rational prime. Hence, we get

(5)
∑

p≤x
P has no root mod p

ρn(p) ≥
1

2n

∑

NKn/Q(p)≤x

p does not split in Kn(α1)

1.

The strategy is to apply Chebotarev density theorem in the Galois
extension Kn(α1)/Kn. We have using [18] that there exists an absolute
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constant c > 0 such that for all n ≥ 1

(6)
∑

N(p)≤x, f(p/p)=1
p does not split in Kn(α1)

1 =
π(x)

2
+O

(

Li(xβn) + x exp

(

−c

√

log x

4n

))

where βn is the potential positive real zero of the Dedekind zeta func-
tion ζKn(α1) and

0 < 1− βn ≪ 1

log dKn(α1)
·

By a result of Stark [26, Theorem 1′], there exists an absolute con-
stant c1 such that

(7) βn ≤ max

{

1− 1

(4n)! log |dKn(α1)|
, 1− 1

c1|dKn(α1)|1/4n
}

Using (4), (5) together with (6), we derive

1

π(x)

∑

p≤x
P has no root mod p

(p−GP (p)) ≥
N
∑

n=1

1

4n
+ ET

where

(8) ET = O

(

1

π(x)

N
∑

n=1

Li(xβn) + x exp

(

−c

√

log x

4n

))

·

Hence, we have to choose a parameter N such that

(9) logN ≫
N
∑

n=1

1

π(x)

{

Li(xβn) + x exp

(

−c

√

log x

4n

)}

.

The sum of the exponential terms in (9) satisfies this as long as

N ≪ log x

(log log x)2
.

We have the following bound for the discriminant using transitivity
formula and Lemma 3.8

dKn(α1) = d2Kn
·NKn/Q

(

dKn(α1)/Kn

)

≤
∏

i<j

|βi − βj|4dn

≪ (n4)4n
2

dn ≪ n64n2

dn(10)

where d is the discriminant of the quadratic extension Spl(P ). To
bound the contribution coming from the potential Siegel zeroes, we
apply the result of Stark (7) together with the discriminant bound
(10) to arrive at
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(11)
N
∑

n=1

1

π(x)
Li(xβn) ≪

N
∑

n=1

x− 1
nc2n ≪ Nx

− 1

Nc2N

where c2 is an absolute constant.
Using the previous bound (11) and standard computations, we de-

duce that inequality (9) is true as long as

(12) N ≪ log log x

log log log x
.

We used twice Dedekind’s theorem and so we have to bound the con-
tribution of “bad” rational primes and of “bad” rational primes which
have a “bad” prime of degree 1 above. Thus, the “bad” rational primes
are exactly the primes dividing [OKn : Z [βn]] or

[

OKn(α1) : OKn [α1]
]

≤
2. We have at most ω(2n) ≪ logn of such primes and, using (4), their
total contribution is at most

N
∑

n=1

1

π(x)

∑

p≤x
p‘ bad”

ρn(p) ≪
1

π(x)

N
∑

n=1

n logn ≪ N2 logN

π(x)
= o(logN).

Remark 3.9. We remark that we are not working directly in the com-
positum of the splitting fields of P and fn. The reason is that it is
much harder, in general, to prove the “independence” of the splitting
conditions.

3.2.2. Proof of Theorem 1.5. We consider as before the family of poly-
nomials fn and the associated family of extensions Kn of degree 2n.
Following the same lines as in the proof of Theorem 1.3 and replacing
the error term in Chebotarev density theorem by the conditional one
(see [18]), we obtain

(13)
∑

N(p)≤x, f(p/p)=1
p does not split in Kn(α1)

1 =
π(x)

2
+O

(

x1/2(log dKn(α1) + 4n log x)
)

.

Averaging over the family of polynomials {fn(x), 1 ≤ n ≤ N} and
performing the same computation as in the proof of Theorem 1.3, we
arrive at

1

π(x)

∑

p≤x
P has no root mod p

(p−GP (p)) ≥
N
∑

n=1

1

4n
+ ET
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where

(14) ET = O

(

1

π(x)

N
∑

n=1

{

x1/2(log dKn(α1) + 4n log x)
}

)

.

Hence, we have to choose a parameter N such that

(15) logN ≫ 1

π(x)

N
∑

n=1

{

x1/2(log dKn(α1) + 4n log x)
}

.

Using the discriminant bound (10), we can bound error term by

ET ≪
N
∑

n=1

{

x− 1
2 log x(log(n64n2

) + n log x)
}

≪ log x√
x
N3.

An easy computation shows that the error term is negligible compared
to logN provided that N ≪ x1/6 and the result follows.

Arguing as in the proof of Theorem 1.3, we can easily deal with the
contribution of “bad” primes.

3.2.3. Proof of Theorem 1.7. As in subsection 3.1.2, we assume that
P (x) = xd − a ∈ Z[x] with d coprime to a and a 6= ±1 squarefree. The
proof follows the same lines as the proof of Theorem 1.3 and thus we
merely sketch some of the modifications required.

Denoting by Kn the extension Q(βn) with βn a root of the polyno-
mial fn, we want to apply Chebotarev theorem in the Galois extension
(Spl(P ), Kn)/Kn. Without loss of generality, we can assume that fn is
irreducible3 over Q. Indeed, we can replace fn by an irreducible factor
gn and look for primes p such that gn has a root modulo p (and so fn).

Thus, we can assume that Kn is a field obtained by adjoining a root
of an irreducible polynomial and apply Dedekind’s theorem to relate
prime ideals of degree 1 in Kn with roots of gn modulo p. In order to
use results from subsection 3.1.2, we restrict ourselves to the subfamily
of polynomials fkq with (k, q) = 1 and q being the smallest prime factor
of a.

We know by Proposition 3.7 that P is irreducible over Kkq and conse-
quently the Galois group of P over Kkq is transitive. Thus, it contains
a conjugacy class C consisting of elements without fixed point. Hence,
by Chebotarev theorem there exists a positive proportion of primes
(depending only on d the degree of P ) of degree 1 (over Q) primes p of
Kkq such that the associated Frobenius lies in C.

Similarly as in the proof of Theorem 1.3, these prime ideals are
associated to rational primes p such that P has no root modulo p
and fkq has a root modulo p. More precisely, at most nKkq

≤ dkq of
these ideals lies above the same rational prime p.

3The irreducible case is in fact the worst. Indeed, if fn has a lot of factors, it
will produce many more roots modulo p and consequently many missing values.
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Averaging over the family of polynomials {fkq(x), 1 ≤ k ≤ N}, we
arrive at a similar inequality as (5). Performing the same kind of
computation as in the proof of Theorem 1.3 concludes the proof.

Remark 3.10. The main difference comes from a factor term 1/dq
which arises because we work in a thinner family of polynomials. This
gives the dependence in terms of the degree of the original polynomial
P as well as its coefficients in the statement of Theorem 1.7.
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