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TOPOLOGY AND TOPOLOGICAL SEQUENCE ENTROPY

L’UBOMÍR SNOHA, XIANGDONG YE AND RUIFENG ZHANG

Abstract. Let X be a compact metric space and T : X −→ X be continuous. Let h∗(T ) be the supremum
of topological sequence entropies of T over all subsequences of Z+ and S(X) be the set of the values
h∗(T ) for all continuous maps T on X. It is known that {0} ⊆ S(X) ⊆ {0, log 2, log 3, . . .} ∪ {∞}. Only
three possibilities for S(X) have been observed so far, namely S(X) = {0}, S(X) = {0, log 2,∞} and
S(X) = {0, log 2, log 3, . . .} ∪ {∞}.

In this paper we completely solve the problem of finding all possibilities for S(X) by showing that in
fact for every set {0} ⊆ A ⊆ {0, log 2, log 3, . . .} ∪ {∞} there exists a one-dimensional continuum XA with
S(XA) = A. In the construction of XA we use Cook continua. This is apparently the first application of
these very rigid continua in dynamics.

We further show that the same result is true if one considers only homeomorphisms rather than con-
tinuous maps. The problem for group actions is also addressed. For some class of group actions (by
homeomorphisms) we provide an analogous result, but in full generality this problem remains open. The
result works also for an analogous class of semigroup actions (by continuous maps).
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1. Introduction

1.1. Supremum topological sequence entropy and main results. By a topological dynamical system
(t.d.s. for short) we mean a pair (X,T ), where X is a nonempty compact metric space and T : X → X is a
continuous map. A (metric) continuum is a nonempty connected compact metric space.

In 1958 Kolmogorov associated to any measure preserving system (X,B, µ, T ) an isomorphic invariant,
namely the measure theoretical entropy hµ(T ). Later on, in 1965, Adler, Konheim and McAndrew introduced
in any t.d.s. an analogous concept, topological entropy h(T ). Systems with positive entropy are random in
certain sense, and systems with zero entropy are said to be deterministic though they may exhibit complicated
behaviors. There are several ways to distinguish between deterministic systems. One way to do this is to
introduce the concept of entropy with respect to a (strictly increasing) subsequence of Z+ (here we think of
Z+ as the sequence 0, 1, 2, . . . ), see [33] and [18], or the survey [10]. Another way to do this is to investigate
the so called complexity, see [5].

To study topological analogues of Kolmogorov systems, the authors in [4] and [27] introduced the notion
of entropy pairs and entropy tuples. In [24] and [26] the authors investigated sequence entropy pairs, and
sequence entropy tuples and sequence entropy tuples for a measure, respectively. In Subsection 2.1 we recall
the definitions of a (sequence) entropy and a (sequence) entropy tuple. A tuple is called intrinsic if all its
entries are pairwise different.

In [28] the authors defined a notion called maximal pattern entropy. One of equivalent definitions is that
the maximal pattern entropy h∗(T ) of a t.d.s. (X,T ) is the supremum of topological sequence entropies
hA(T ) of T over all subsequences A of Z+:

h∗(T ) = sup{hA(T ) : A is a subsequence of Z+} . (1.1)

This is why we will, throughout the paper, call the quantity h∗(T ) also the supremum topological sequence
entropy of (X,T ) or T (some authors denote it by h∞(T )). In [28] it is also showed that

h∗(T ) = sup{logn : there is an intrinsic sequence entropy tuple of length n} (1.2)

(to be precise, we should speak on sequence entropy tuples for the map T ; here and below we however abuse
terminology if it is obvious which map is considered). Since hkZ+(T ) = h(T k) = kh(T ), positive entropy
implies infinite supremum topological sequence entropy (the converse is not true), and hence supremum
topological sequence entropy is especially useful for zero entropy systems. By [28], if T is a homeomorphism
then h∗(T n) = h∗(T ) for all n 6= 0. The same proof gives that if T is a continuous map then this is true for
n ≥ 1. If X is a countable compact metric space, it is known that h(T ) = 0 for any continuous map T from
X into itself. Note that this is not the case for the topological sequence entropy [48] and our construction
heavily relies on this fact. See Subsection 2.1 for the definitions of sequence entropy and basic properties.
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The notion of the supremum topological sequence entropy fits especially well into the interval dynamics.
To explain this, recall first the Sharkovsky ordering, see [40], on the set N ∪ {2∞}:

3 ≻ 5 ≻ 7 ≻ · · · ≻ 2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ · · · ≻ 4 · 3 ≻ 4 · 5 ≻ 4 · 7 ≻ · · · ≻ · · ·

≻ 2n · 3 ≻ 2n · 5 ≻ 2n · 7 ≻ · · · ≻ · · · ≻ 2∞ ≻ · · · ≻ 2n ≻ · · · ≻ 4 ≻ 2 ≻ 1.

We will also use the symbol � in the natural way. For t ∈ N∪{2∞} we denote by S(t) the set {k ∈ N : t � k}
(S(2∞) stands for the set {1, 2, 4, . . . , 2k, . . . }). Denote by C(I) the set of continuous selfmaps of a real
compact interval I. For T ∈ C(I) let Per(T ) be the set of periods of its periodic points. By Sharkovsky
theorem, for every T ∈ C(I) there exists a t ∈ N ∪ {2∞} with Per(T ) = S(t) and, on the other hand, for
every t ∈ N ∪ {2∞} there exists a T ∈ C(I) with Per(T ) = S(t).

If Per(T ) = S(t), then T is said to be of Sharkovsky type t. When speaking of types we consider them
to be ordered by the Sharkovsky ordering. So if a map T is of type 2∞ or greater than 2∞ or less than
2∞, then, respectively, Per(T ) = {1, 2, . . . , 2k, . . . } or T has a periodic point with period not a power of 2 or
Per(T ) = {1, 2, . . . , 2n} for some n ∈ Z+.

The topological entropy of T ∈ C(I) is positive if and only if T is of type greater than 2∞ (see [1, Theorem
4.4.20] and references therein). Further, if T ∈ C(I) is of type greater than 2∞ then it is Li-Yorke chaotic
and if it is of type less than 2∞ then it is not Li-Yorke chaotic, while among the maps of type 2∞ there are
both Li-Yorke chaotic and non-chaotic maps, see [41]. By [14], T ∈ C(I) is Li-Yorke chaotic if and only if
h∗(T ) > 0. Due to [9], there are only three possibilities for T ∈ C(I), namely, h∗(T ) is either 0 or log 2 or
∞. These facts are shown in Table 1.

h(T ) > 0 h(T ) = 0

type ≻ 2∞ (chaotic) type 2∞, chaotic type 2∞, non-chaotic type ≺ 2∞ (non-chaotic)

h∗(T ) = ∞ h∗(T ) = log 2 h∗(T ) = 0

Table 1. Supremum topological sequence entropy for interval maps

So, in the particular case X = I, we know the set

S(X) = {h∗(T ) : T is a continuous map X → X} . (1.3)

In the present paper we are interested in how this set can look like for nonempty compact metric spaces.
By (1.2), h∗(T ) = logn for some n ∈ N or h∗(T ) = ∞ =: log∞. Further, if T is a constant map or the
identity then h∗(T ) = 0. Therefore

{0} ⊆ S(X) ⊆ {0, log 2, log 3, . . .} ∪ {∞} .

The set S(X) depends on X . Table 2 summarizes known results (here N is the set of positive integers,
N∗ = N∪{∞}, Nk = {1, . . . , k}, N∗

k = {1, . . . , k}∪{∞} and logM has obvious meaning for anyM ⊆ [1,∞]):

S(X) logN1 = {0} logN∗
2 = {0, log 2}∪{∞} logN∗ = {0, log 2, log 3, . . . } ∪ {∞}

X

finite sets,
zero-dimensional
spaces with finite
derived sets [48]

interval [9],
circle [8],
finite trees [42],
finite graphs [43]

zero-dimensional spaces with infi-
nite derived sets [42],
some dendrites [42],
manifolds of dimension ≥ 2 [42]

Table 2. Known values of S(X)

Since every dendrite is an absolute retract for the class of all compact metric spaces [7], we in fact have
S(X) = logN∗ not only for the manifolds with dimension ≥ 2, but for any compact metric spaceX containing
the dendrite from [42].

Thus only three possibilities for S(X) have been found so far: logN1, logN
∗
2 and logN∗. It is natural to

ask whether these are the only possibilities for S(X). In fact, at the beginning of our research we conjectured
this. However, in the present paper we show that this is not the case. We completely solve the problem of
finding all possibilities for S(X) by proving the following theorem.
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Theorem A (Main Theorem). For every set {0} ⊆ A ⊆ logN∗ there exists a one-dimensional continuum
XA ⊆ R3 with S(XA) = A.

The information thatXA exists inR3 is superfluous since by Menger-Nöbeling theorem everym-dimensional
compact metrizable space can be embedded in R2m+1. The formulation we use just indicates that we con-
struct the 1-dimensional XA already as a subspace of R3.

As mentioned in Table 2, only for some dendrites X we know their set S(X). However, it is obvious
that for c-many sets A (c being the cardinality of the continuum), the required space XA does not exist
among dendrites. In fact, since every dendrite D can be retracted onto an interval I ⊆ D, we get that
S(D) ⊇ S(I) = {0, log 2,∞}.

The proof is long and complicated. In fact, Main Theorem itself is repeated in Subsection 8 as Theorem 8.2
and a relatively short proof is given there; however, all the previous sections are a preparation for the proof.

Recall that the definition of S(X), see (1.3), involves all continuous selfmaps of X . One can ask whether
our Main Theorem still will be true if, instead of continuous maps, only homeomorphisms are considered.
The answer is positive. If we denote

Shom(X) = {h∗(T ) : T is a homeomorphism X → X},

then the following is true.

Theorem B. For every set {0} ⊆ A ⊆ logN∗ there exists a one-dimensional continuum X̃A ⊆ R3 with

Shom(X̃A) = A.

The problem can be addressed also for group actions. If G is a topological group (with discrete topology)
and Φ is an action (by homeomorphisms) of G on X , let h∗(X,G,Φ) be the supremum topological sequence
entropy of this action; for definitions see Subsection 8.3. If we denote

SG(X) = {h∗(X,G,Φ): Φ is an action of G on X},

then we have the following theorem.

Theorem C. Let G be a topological group such that there is a surjective group homomorphism G → Z.
Then for every set {0} ⊆ A ⊆ logN∗ with A finite or ∞ ∈ A, there exists a one-dimensional continuum

X̃A ⊆ R3 with SG(X̃A) = A. If in addition G is also finitely generated, then such a continuum exists for
every set {0} ⊆ A ⊆ logN∗.

So, the problem is solved for groups which have Z as a quotient group (though some sets A are not covered
if the group is not finitely generated). In full generality this problem remains open.

Such a theorem is true also for an analogous class of semigroup actions (by continuous maps). If P
is a topological semigroup with identity (and with discrete topology), let SP (X) be the set of supremum
topological sequence entropies of all P -actions on X . Then we have the following analogue of the previous
theorem.

Theorem D. Let P be a topological semigroup with identity such that there is a surjective semigroup
homomorphism P → Z+. Then for every set {0} ⊆ A ⊆ logN∗ with A finite or ∞ ∈ A, there exists a
one-dimensional continuum XA ⊆ R3 with SP (XA) = A. If in addition P is also finitely generated, then
such a continuum exists for every set {0} ⊆ A ⊆ logN∗.

Section 9 contains several open problems related to the topic of this paper.

To work with supremum topological sequence entropy, we will use tools developed by David Kerr and
Hanfeng Li in [30] and tools from [28]. Namely, to compute h∗(T ), we will use the formula (2.1) obtained
by comparing the formula (1.2) with the characterization of sequence entropy tuples in terms of IN-tuples,
which is due to Kerr and Li.

Last but not least, we wish to bring the attention of the reader to the remarkable fact that in the
construction of the continua XA and X̃A we use amazing Cook continua studied in continuum theory
since 1960’s. Our paper is apparently the first application of these very rigid continua in dynamics. We
believe that the way how we use them may turn out to be useful for producing some other examples and
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counterexamples in dynamics and to solve some problems (including perhaps the problem of possible sets of
values of topological entropy, see Question 9.5).

1.2. Rigid spaces, Cook continua and their applications. Roughly speaking, Cook continua are non-
degenerate metric continua which are ‘everywhere’ rigid for continuous maps (the definition is given below).
They are difficult to construct and were motivated by previously known examples of spaces rigid for home-
omorphisms.

A nondegenerate space X is called rigid for homeomorphisms if the only homeomorphism X → X is the
identity. De Groot and Wille [20] found such spaces in the class of one-dimensional Peano continua in 1958.
An example of such a space is a disc with interiors of a dense family of propellers, with different numbers
of blades, removed. Another example, attributed by them to de Iongh, is a dendrite with a dense set of
branching points of different orders.

For a topological space X , let H(X,X) be the group of all homeomorphisms of X onto X , the group
operation being the composition. Given an abstract group G, does there exist a topological group picture
of G, i.e. a space X such that H(X,X) is isomorphic to G? Due to de Groot [19], we know that the answer is
affirmative. He showed that such a space X can always be found in the class of connected, locally connected,
complete metric spaces of any positive dimension, as well as in the class of compact, connected, Hausdorff
spaces. Note that in general the topological group picture X does not exist in the class of compact metric
spaces because then the cardinality cardX ≤ c while there are groups with arbitrarily large cardinalities.
Let us also mention that if the group G is countable then X exists in the class of Peano continua, as shown
already by de Groot nad Wille [20].

A nondegenerate space X is rigid for continuous maps , or just rigid, if every continuous map X → X
is either the identity or a constant map. A rigid metric continuum was constructed by Cook [12] in 1967.
For a topological space X , let C(X,X) be the monoid of all continuous maps of X into X , the semigroup
operation being the composition (the unit element is the identity). Given an abstract monoid M , does there
exist a space X such that C(X,X) is isomorphic toM? In general the answer is negative. The reason is that
C(X,X) contains all the constant maps (denote by consta the constant map sending X to the point a ∈ X)
and the constant maps are left zeros (left absorbing elements) of the monoid C(X,X), i.e. consta ◦f = consta.
However, monoids with many left zeros are rather special. In particular, the monoid (C(X,X), ◦) is never
isomorphic to (Z,+) (such a space X would be infinite, so C(X,X) would have infinitely many left zeros,
while (Z,+) has no left zero). What about the family C(X,X)\{consta : a ∈ X}? In general it is not closed
under composition. Nevertheless, in some cases it is a monoid. Given an abstract monoid M , does there
exist a space X such that C(X,X) \ {consta : a ∈ X} is a monoid isomorphic to M?1 Trnková proved that
the answer is affirmative. She showed that such a space X always exists in the class of metric spaces [44] as
well as in the class of compact Hausdorff spaces [44, 45]. In particular, the choice of the trivial monoid M
gives the existence of a nondegenerate space rigid for continuous maps.

We mentioned that the first example of a rigid metric continuum was given by Cook [12] in 1967. In fact
he constructed in that paper what is now usually called a Cook continuum (see the continuum M1 in [12,
Theorem 8], for a detailed description see [39, Appendix A]).

Definition 1.1. A Cook continuum C is a nondegenerate metric continuum such that, for every subcontin-
uum K and every continuous map f : K → C, either f is constant (i.e. f(K) is a singleton) or f(x) = x
for all x ∈ K (hence f(K) = K).

The Cook continuum constructed in [12] is one-dimensional (and hereditarily indecomposable) and so it
can be embedded into R3, but it cannot be embedded into the plane because the construction uses solenoids,
see [12, Note after Theorem 12]. A continuum is planar if it is embeddable into the plane. Maćkowiak
constructed a Cook continuum in the plane, see [37, Corollary 6.2 and the discussion below it]. His continuum
is arc-like (i.e. chainable, hence planar and non-separating), and hereditarily decomposable.

The fact that there exist spaces rigid for homeomorphisms and even for continuous maps (even Cook
continua in the plane) is surprising. Such spaces are interested for topologists as, in a sense, pathological
objects. They are used in the theory of topological representations of algebraic objects, see [39]. Say, the de

1This problem was posed by de Groot himself, at the Colloquium on Topology in Tihany, Hungary, in 1964.
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Groot’s result [19] that every group is isomorphic to the group of homeomorphisms of a (nice) metric space,
can be proved as follows. After realizing that every group G is isomorphic to the automorphism group of
some directed graph G (where by a directed graph we mean a set, possibly infinite, with binary relation),
one can replace the edges of G by homeomorphic copies of a space Y rigid for homeomorphisms, obtaining
in such a way a space X whose group H(X,X) is isomorphic to G. Roughly speaking, we take copies of
the same rigid space, place them along the edges of a directed graph and glue them at the points where two
edges meet.

Can rigid spaces be useful in dynamics? It seems that so far they have been used in dynamics only
either in a trivial way or as an inspiration for constructing spaces which are ‘rigid-like’ with respect to some
dynamical property:

• Rigid spaces used as counterexamples to naive questions. For instance, one can be interested in
whether every nondegenerate space/continuum X admits a continuous map T : X → X such that

– there exists x ∈ X whose omega-limit set is not a singleton;
– there exists a scrambled pair for T (a question really discussed in [6, p. 353]);
– the topological entropy of T is positive.

The existence of rigid continua shows that in all three cases the answer is negative.
• Rigid spaces as inspiration for constructing spaces which are ‘rigid-like’ with respect to some dy-
namical property. Say, in [13] a continuum X is constructed such that it is rigid-like with respect
to minimality, meaning that H(X,X) = {T n : n ∈ Z} where all T n, n 6= 0, are minimal homeo-
morphisms and there is no other minimal continuous map X → X . Being inspired by this, Akin
and Rautio [2] consider compact metric spaces X such that every homeomorphism other than the
identity is topologically transitive.

In particular, Cook continua are well known in the continuum theory as examples of ‘very rigid’ continua,
but apparently they have not been used in topological dynamics yet. The reason is, perhaps, that one can
hardly imagine that they could be really useful in topological dynamics, say for the purpose of constructing
spaces admitting an interesting nontrivial dynamics. In the present paper we will controvert this by using
them to prove our Main Theorem. To obtain required spaces XA, we will use infinitely many pairwise
disjoint nondegenerate subcontinua of a planar Cook continuum. We will built infinitely many blocks,
usually obtained by gluing together (copies of) infinitely many appropriately chosen Cook continua from
that infinite family, and then we will glue together those blocks in an appropriate way (in fact some blocks
will not really be ‘glued’ with the rest of the space but, in spite of it, the whole spaceXA will be a continuum).

1.3. Outline of the proof of Main Theorem. To make the life of the reader easier, we write this outline
of the proof of our Main Theorem. As we have mentioned, we use Cook continua, in fact a countably infinite
family of pairwise disjoint subcontinua of a fixed planar Cook continuum. For a moment denote this family
by F. The whole proof can be divided into 4 steps.

• Step 1: We prove the theorem for A = {0,∞} (this is done in Section 3 and Section 4, see
Proposition 4.30).

• Step 2: We prove the theorem for A = {0, log 2} (this is done in Section 5 and Section 6, see
Proposition 6.17).

• Step 3: We extend the result of Step 2 to the case A = {0, logm}, for any integer m ≥ 3 (see
Section 7, Proposition 7.6). This is just an analogue of Step 2.

Each of the continua XA, where A has cardinality 2 as above, is a disjoint union of two parts called the
head and the snake of XA. The snake has a first point and approaches the head (an analogue is the
sin(1/x) continuum; of course, our continua XA are much more complicated). Moreover, each of the above
constructions depends on the choice of the family F, more precisely, on the choice of one Cook continuum
from F which is used in the construction of the head and on the way how all the other Cook continua from
F are arranged into an injective sequence; they are used in the construction of the snake. When we say here
that a Cook continuum is used in the construction of a space, we have in mind that a copy or many copies
of this continuum are subsets of that space (by a copy we mean a homeomorphic copy).
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Moreover, our constructions are such that if we fix the same family F and we make the same choice of the
mentioned one Cook continuum and the same way of arranging all the other Cook continua into an injective
sequence, then the snakes are homeomorphic (but not equivalently embedded in R3).

Now split F into infinitely many pairwise disjoint infinite families of continua. For a moment denote these
families of Cook continua by F∞,F2,F3, . . . (for each of them also choose one Cook continuum and arrange
all the other Cook continua into an injective sequence).

• Step 4: Once we know that Main Theorem is true whenever A has cardinality 2 (and is trivially
true also when A = {0}), we finally prove it for arbitrary set {0} ⊆ A ⊆ logN∗ (see Section 8,
Theorem 8.2) as follows. For every k ∈ N∗ \ {1} put A(k) = {0, log k} and consider the continuum
XA(k) constructed in one of the Steps 1,2,3, but now using building bricks from the family Fk. Then

choose, in R3, a ‘central’ point and such copies of the continua XA(k) which are pairwise disjoint
except that the chosen central point is the first point of the snakes of all considered continua XA(k).
Moreover, we choose the copies of XA(k) such that the diameters of XA(∞), XA(1), XA(2), . . . tend to
zero. Then the union of all XA(k) is a one-dimensional continuum which looks like a ‘flower’ with
infinitely many smaller and smaller ‘petals’ (copies of the continua XA(k)) intersecting at the chosen
‘central’ point. Given A with cardinality at least 3, we obtain the required XA as the union of the
petals which correspond to those k ∈ N∗ \ {1} for which log k ∈ A. The proof that S(XA) = A is
not difficult and it takes only about one page. It uses the properties of the continua XA(k).

So, the most important and difficult parts are Step 1 and Step 2. We are going to present ideas behind
them. Assume that F is fixed, one Cook continuum K ∈ F is chosen and K1,K2, . . . is an injective sequence
containing all the other Cook continua in F.

In Step 1, to construct a continuum X with S(X) = {0,∞} we first construct a system (X1, T ) with

X1 = K0 ⊔ C with C = {x1, x2, . . . }, T xi = xi+1, i = 1, 2, . . . and T |K0 = Id|K0 .

Here K0 is a copy of K ∈ F; it will be the head of X ⊇ X1. The trajectory x1, x2, . . . of T can be chosen
in such a way that h∗(T ) = ∞, see Section 3 for details. We think of K0 as lying in a vertical plane, the
trajectory x1, x2, . . . approaches it from the right. For every m, we connect xm and xm+1 by a properly
chosen continuum Dm. For each m, Dm = D∗

m ⊔ {xm+1} where the sets D∗
m are of the form:

D∗
1 =copy of K1 ⊔ copy of K2 ⊔ copy of K3 ⊔ copy of K4 ⊔ . . . ,

D∗
2 =copy of K2 ⊔ copy of K4 ⊔ copy of K6 ⊔ copy of K8 ⊔ . . . ,

D∗
3 =copy of K4 ⊔ copy of K8 ⊔ copy of K12 ⊔ copy of K16 ⊔ . . . ,

. . . ,

see Figure 4.3. The used Cook continua of the form ‘copy of Ki’ as well as the Cook continuum K0 are
building ‘bricks’ of the continuum X defined by

X = K0 ⊔
∞⋃

m=1

Dm = K0 ⊔
∞⊔

m=1

D∗
m,

see Figure 4.4. The bricks in a set D∗
m form a sequence, each of them has the ‘first point’ and the ‘last

point’ (see Section 4 for details), two consecutive bricks intersect at one point (the last point of one of them
and the first point of the next one), otherwise they are disjoint. The consecutive continua Dm and Dm+1

intersect at the point xm+1, non-consecutive ones are disjoint.

One can show that X , defined as the disjoint union of the ‘head’ K0 and the ‘snake’
⋃∞

i=1Dm, is a one-
dimensional continuum, see Lemma 4.2. It has the required property S(X) = {0,∞}, see Proposition 4.30.
The main steps in the proof of this fact are as follows.

First, in Lemma 4.6 we prove that if B is a brick then F (B) is either a singleton or a brick homeomorphic
to B, whenever F : X → X is a continuous map. Further, the definition of the sets Di is such that if m < M
are positive integers then there is exactly one continuous surjective map of Dm onto DM , but there is no
surjective map of DM onto Dm, see Lemma 4.14, Figure 4.5 and Remark 4.15. Already this fact and the
fact that all the bricks in X are Cook continua, indicate that the continuum X does not admit ‘too many’
continuous selfmaps.
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To study the dynamics of all possible continuous selfmaps of X we first define a particular continuous
map G : X → X , a continuous extension of the map T : X1 → X1, with h∗(G) = ∞ (see Lemma 4.25;
this map G sends each continuum Dm onto Dm+1). Further we show that if F : X → X is a non-constant
continuous map, then there are only two possibilities, see Proposition 4.30. The first possibility is that the
set of fixed points Fix(F ) of the (non-constant) map F is a ‘nice’ subcontinuum of X intersecting the snake
and there is a positive integer N such that FN (X) = X , whence h∗(F ) = 0. The second possibility is that
the (non-constant) map F has no fixed point in the snake and, for some positive integer N , the map F
coincides with GN on some neighbourhood of the head, which implies that h∗(F ) = ∞.

In Step 2, the construction of a continuum X ⊆ R3 with S(X) = {0, log 2} is to some extent similar to
that in Step 1, but necessarily there are also important differences and the situation is dramatically more
complicated than in Step 1.

Again we start with an auxiliary system (X1, T ), now with h∗(T ) = log 2, in the form of a disjoint union
of two parts. Now the first part is not a Cook continuum with identity as in Step 1. Instead, it is a countable
set A = {ai, i ∈ Z}∪ {a∞} in the vertical plane above the point 0 on the horizontal axis, with T (ai) = ai+1,
i ∈ Z and T (a∞) = a∞, see Figure 5.1. The second part of (X1, T ) is, similarly as in Step 1, just one
trajectory x0, x1, . . . . This trajectory lies in (0, 1]× A with T (xi) = xi+1, approaching the first part ‘from
the right’. Thus,

X1 = A ⊔ {x0, x1, . . . }

with the dynamics given by the map T described above. By choosing the points xi, i = 0, 1, . . . carefully (this
construction is long and complicated, see Section 5 for the details), we get h∗(T ) = log 2, see Theorem 5.5.
Here one can see the first complication when compared with Step 1. Even if we restrict ourselves to spaces
X1 in the form of the disjoint union of a first part of X1 and just one trajectory approaching it, it is much
more easier to construct the system (X1, T ) in such a way that h∗(T ) is extremely large, i.e. equal to ∞,
than to construct it with h∗(T ) being exactly log 2, neither larger nor smaller.

Further, similarly as in Step 1, we add Cook continua to get X in the form of the disjoint union of a head
and a snake. In Step 1, the head of X was the same as the first part of X1, namely the Cook continuum K0.
Now we denote the head of X by A0 and in Section 6 we construct it, in the vertical plane containing A, by
joining the consecutive points of A by copies of the chosen Cook continuum from F, see shaded continua in
Figure 6.1. These copies are in fact taken such that each of them is obtained from any other one by a direct
similitude, to keep the geometry of X under control (this will be useful later). So, the head of X looks like
a necklace of similar copies of the same Cook continuum, together with the point a∞. Topologically, the
snake is obtained from {x0, x1, . . . } in the same way as in Step 1, so the snake is homeomorphic to that from
Step 1 and we have

X = head ⊔ snake = A0 ⊔ (snake homeomorphic to that from Step 1).

However, the two snakes have different positions in R3, meaning that they are not equivalently embedded in
R3. We have to be careful with the construction because we want X to be a compact space (i.e., we want
that all the cluster points of the snake which lie in the vertical plane containing the head, belong to the
head). With some care, the snake can indeed be placed in R3 in such a way that X is compact (in fact a
one-dimensional continuum), see Lemma 6.1.

Similarly as in Step 1, in Subsection 6.3 we extend the map T : X1 → X1 to a particular map G : X → X
(we of course want that h∗(G) = log 2). The map G on our snake is just the unique map topologically
conjugate to the map G we defined on the snake in Step 1. Further, G sends each Cook continuum in
the ‘necklace’ A0 onto the next one. Unfortunately, while in Step 1 the particular map G was trivially
continuous on X and h∗(G) = ∞, now we are facing two problems. First, the restrictions of G to the head
and to the snake are clearly continuous but contrary to Step 1, now these two continuous parts of G need
to fit together to produce a continuous map on X . Further, while it is trivial that h∗(G) ≥ h∗(T ) = log 2,
this inequality alone does not imply that h∗(G) = log 2. (In Step 1 we were in better situation, since there
h∗(G) ≥ h∗(T ) = ∞ trivially implied that h∗(G) = ∞.) To cope with these two problems, we specify the
geometry of X in more details, by adding some additional requirements to our construction of X . For the
details see Subsection 6.4. Then finally X is as we need. In Lemma 6.6 we prove that G on such a continuum
X is continuous and in Lemma 6.9, using Lemma 6.8, we prove that h∗(G) = log 2. Though only snakes
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in Step 1 and Step 2 are homeomorphic (while the heads are not), analogous arguments as in Step 1 then
easily give that S(X) = {0, log 2}, see Proposition 6.17.

Organization of the paper. In Section 2 we introduce some notions and facts that will be used in the
paper. In Section 3 we construct systems with zero topological entropy but infinite supremum topological
sequence entropy. In Section 4, based on an example from Section 3, we construct a continuum X with
S(X) = {0,∞}. Then in Sections 5 and 6 we construct a continuum X with S(X) = {0, log 2}. For
a generalization of these two Sections from log 2 to logm see Section 7. Finally, the proof of our Main
Theorem is given in Section 8. Also for the proofs of Theorems B, C and D see Section 8. Readers interested
in open problems should consult Section 9.
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2. Preliminaries from dynamics and topology

In this section we introduce some related notions from topological dynamics and topology.

2.1. Topological sequence entropy, sequence entropy tuples. Let (X,T ) be a t.d.s. Recall that a set
Y ⊆ X is called T -invariant if T (Y ) ⊆ Y .

The topological entropy of T , the topological sequence entropy of T with respect to a subsequence A of
Z+ and the maximal pattern entropy of T are denoted by h(T ), hA(T ) and h∗(T ) respectively. To recall the
definition of hA(T ), let A = {a0 < a1 < · · · } be a sequence of nonnegative integers. Given an open cover U
of X , define

hA(T,U) = lim sup
n→∞

1

n
logN

(
n−1∨

i=0

T−ai(U)

)
,

N (V) being the minimal possible cardinality of a subcover chosen from a cover V . Then

hA(T ) = sup{hA(T,U) : U is an open cover of X}.

Note that hA(T ) becomes h(T ) for A = Z+. As already said in Introduction, for the maximal pattern
entropy of T we have h∗(T ) = supA h

A(T ) , where A is ranging over all subsequences of Z+, see [28] and
therefore we will call h∗(T ) also the supremum topological sequence entropy of T .

Recall that a t.d.s. (X,T ) is null if the sequence entropy is zero for all subsequences, i.e. if h∗(T ) = 0,
and it is tame if its enveloping semigroup is Fréchet (a topological space is Fréchet if for any A ⊆ X and
any x ∈ A there is a sequence {xn} with A ∋ xn −→ x).

Let us state some properties for null systems. For a measure preserving system (X,B, µ, T ) we can define
entropy or sequence entropy with respect to µ. It is a classical result [33] that a measure preserving system
(X,B, µ, T ) is null if and only if it has discrete spectrum. It is known [24] that if (X,T ) is a minimal system
and h∗(T ) = 0, then π : X → Xeq (the factor map to the maximal equicontinuous factor) is an almost
one-to-one extension, (X,T ) is uniquely ergodic and π is also an isomorphism (in the measurable sense).
Recently, the structure of a minimal null system under group actions is determined by Glasner [16]. See
[35, 15, 25] for other results related to nullness and sequence entropy.
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The notion of a (sequence) entropy tuple of length n was defined in [4, 27, 24]. An n-tuple (xi)
n
i=1 ∈

Xn, n ≥ 2, is called a sequence entropy n-tuple for (X,T ) if at least two points in (xi)
n
i=1 are different and for

any disjoint closed neighborhoods {U1, . . . , Ut} of {xj1 , . . . , xjt} = {x1, . . . , xn}, there exists an increasing
sequence A ⊆ Z+ (A = Z+ in case of entropy tuples) such that

hA(T, {U c
1 , . . . , U

c
t }) > 0,

where 2 ≤ t ≤ n and xjp 6= xjk when p 6= k.

The set of entropy tuples and sequence entropy tuples of length n will be denoted by En(X,T ) and
SEn(X,T ) respectively. A tuple is said to be a pair if n = 2. Instead of E2(X,T ) and SE2(X,T ) we
write E(X,T ) and SE(X,T ), respectively. Note that the maximal zero entropy factor (resp. null factor) of
a topological dynamical system is induced by the smallest closed invariant equivalence relation containing
E2(X,T ) (resp. SE2(X,T )), see [4] and [24].

Originally, entropy and sequence entropy tuples were defined using open covers. We will not use the
original definitions but we are going to state equivalent definitions given in [30] using the following notion
of independence.

Definition 2.1. Let (X,T ) be a t.d.s. and Ã = (A1, . . . , Ak) be a tuple of subsets of X. We say that a

subset J ⊆ Z+ is an independence set for Ã if for any nonempty finite subset I ⊆ J , we have
⋂

i∈I

T−iAs(i) 6= ∅

for any s ∈ {1, . . . , k}I. If such a set J is finite and has p elements, we also say that it is an independence
set, or independence set of times, of length p.

Remark 2.2. Note that J in this definition is also an independence set for any sub-tuple of Ã. Also, a subset
of an independence set for Ã is again an independence set for Ã.

Remark 2.3. In a natural way we will use this terminology also in the following slightly more general situation.
Suppose that Y ⊆ X and S : Y → X . Let Ã = (A1, . . . , Ak) be a tuple of subsets of X and J ⊆ Z+. By

saying that J is an independence set for Ã for the map S, we will mean that for any nonempty finite subset
I ⊆ J and any map s : I → {1, . . . , k} we have

⋂
i∈I S

−iAs(i) 6= ∅, i.e. there is a point y ∈ Y such that,

for every i ∈ I, Si(y) ∈ X exists and Si(y) ∈ As(i). In particular, if such a map S is then extended to a
continuous map T : X → X (note that Y is not necessarily T -invariant), obviously J will be an independence

set for Ã for the t.d.s. (X,T ).

In [30] the authors defined IE-tuples , IT-tuples and IN-tuples (here I, E, T and N stand for independent,
entropy, tame and null, respectively). Though we use only IN-tuples, for completeness recall the three
definitions.

Definition 2.4. Consider a tuple x̃ = (x1, . . . , xk) ∈ Xk. If for every product neighborhood U1 × . . . × Uk

of x̃ the tuple (U1, . . . , Uk) has an independence set of positive density or an infinite independence set or
arbitrarily long finite independence sets, then the tuple x̃ is called an IE-tuple or an IT-tuple or an IN-tuple,
respectively.

Notice that for tuples we have IE ⇒ IT ⇒ IN . Recall that a tuple (xi)
n
i=1 is called intrinsic if xi 6= xj

when i 6= j and diagonal if all its entries are equal.

The following theorem gives the promised equivalent definitions of entropy tuples and sequence entropy
tuples from [30] (see also [27] and [23]).

Theorem 2.5. Let (X,T ) be a t.d.s.

(1) A tuple is an entropy tuple if and only if it is a non-diagonal IE-tuple. In particular, a system (X,T )
has zero entropy if and only if every IE-pair is diagonal.

(2) A tuple is a sequence entropy tuple if and only if it is a non-diagonal IN-tuple. In particular, a
system (X,T ) is null if and only if every IN-pair is diagonal.

(3) (X,T ) is tame if and only if every IT-pair is diagonal.
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We remark that (1) was proved by Huang and Ye [27] using the notion of an interpolating set (which
was first used by Glasner and Weiss [17] in the symbolic setting), one half of (3) was proved by Huang in
[23] using the notion of a scrambled pair and (1-3) were showed by Kerr and Li [30] using the notion of
independence.

Comparing (1.2) with Theorem 2.5(2), we get that

h∗(T ) = sup{log k : there is an intrinsic IN-tuple of length k} . (2.1)

Throughout the paper, this formula will be used to compute h∗(T ). Just for completeness, we add one
formula more. Recall that a set A ⊆ X is called a sequence entropy set if every non-diagonal tuple from A
is a sequence entropy tuple, and it is maximal if it is maximal with respect to the inclusion. Comparing this
terminology with (1.2), we get that

h∗(T ) = sup{log#A : A is a sequence entropy set} . (2.2)

Let (Y, S) and (X,T ) be t.d.s. If there is a surjective continuous map π from Y to X such that π◦S = T ◦π
then we say that (X,T ) is a factor of (Y, S) and (Y, S) is an extension of (X,T ). The direct product of n copies
of X is denoted by Xn and the direct product of n copies of the map T by T (n). Let IEn(X,T ), INn(X,T )
and ITn(X,T ) be the families of all IE-tuples, IN-tuples and IT-tuples, respectively, of length n. Below, let
Pn(X,T ) be one of them, i.e. P is one of IE, IN , IT . The set of non-wandering points of T is denoted by
Ω(T ).

Proposition 2.6. Let (X,T ) and (Y, S) be t.d.s. and let π : (Y, S) −→ (X,T ) be a factor map. Then

(a) Pn(X,T ) is a closed T (n)-invariant subset of Xn.
(b) (1) If (xi)

n
i=1 ∈ Pn(X,T ), then for all 1 ≤ i ≤ n there exists yi ∈ Y such that π(yi) = xi and

(yi)
n
i=1 ∈ Pn(Y, S).

(2) If (yi)
n
i=1 ∈ Pn(Y, S), then (π(yi))

n
i=1 ∈ Pn(X,T ).

(c) If (xi)
n
i=1 ∈ Pn(X,T ) then xi ∈ Ω(T ) for each 1 ≤ i ≤ n.

(d) Pn(X,T ) = Pn(X,T
k) for any k ∈ N.

Proof. (a) and (b) can be found in [4], [27] and [30], (c) and (d) can be proved directly by definition. �

Proposition 2.7. Let (X,T ) be a t.d.s.

(a) h∗(T ) = h∗(T |T (X)).
(b) Let T be an injective map and (ai)

n
i=1 ∈ Pn(X,T ). Then each of the points ai has a (unique)

preimage and (T−1ai)
n
i=1 ∈ Pn(X,T ). So, Pn(X,T ) is a (T−1)(n)-invariant subset of Xn.

Proof. (a). Clearly, every intrinsic IN-tuple of G = T |T (X) is also an IN-tuple for T . Conversely, let
(x1, . . . , xn) be an IN-tuple for T . We show that it is also an IN-tuple for G. Due to Proposition 2.6(c),
all the points xi lie in T (X). For every i, let Vi be a neighbourhood of xi in the topology of T (X), i.e.
Vi = Ui ∩ T (X) for some neighbourhood Ui of xi in the topology of X . Given k, we are going to show
that for the neighbourhoods V1, . . . , Vn there is an independence set J of times of length k for the map G.
Since (x1, . . . , xn) is an IN-tuple for T , there is an independence set J∗ of times of length k + 1 for the
neighbourhoods U1, . . . , Un and the map T . This means that for any choice of indices s(i) ∈ {1, . . . , n},
i ∈ J∗, there is a point x ∈ X such that T i(x) ∈ Us(i). Now let J be the set of (nonnegative) times of length
k obtained from J∗ by removing the smallest element of J∗ and subtracting 1 from every other element.
Since T (x) ∈ T (X) and T i−1(T (x)) ∈ Us(i) ∩ T (X) = Vs(i) for any i ∈ J∗ which is greater than zero, we see
that J has the required properties.

(b) Again, since Ω(T ) ⊆ T (X), Proposition 2.6(c) gives that ai ∈ T (X), i = 1, . . . , n. So, the tuple
(T−1ai)

n
i=1 is well defined.

Consider any tuple of open neighbourhoods (U(T−1ai))
n
i=1 (here U(T−1ai) is a neighbourhood of T−1ai).

Since T : X → T (X), being a continuous bijection between compact metric spaces, is a homeomorphism, for
every i we get that the set V (ai) := T (U(T−1ai)) is an open neighbourhood of ai in the topology of T (X)
and so V (ai) =W (ai) ∩ T (X) for some open neighbourhood W (ai) of ai in the topology of X .
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So, for any tuple of open neighbourhoods (U(T−1ai))
n
i=1 there is a tuple of open neighbourhoods (W (ai))

n
i=1

such that T (U(T−1ai)) ⊆ W (ai) for every i. No matter whether P is IE, IN or IT , to finish the proof of
(b) it is sufficient to prove the following implication (cf. Definition 2.4):

{t(1) < t(2) < t(3) < . . . } is a (finite or infinite) independence set of times for (W (ai))
n
i=1 =⇒

=⇒ {t(2)− 1, t(3)− 1, . . . } is an independence set of times for (U(T−1ai))
n
i=1

(2.3)

So, fix such a set JW = {t(1) < t(2) < t(3) < . . . } (i.e., t(1) is perhaps zero but t(i) ≥ 1 for i ≥ 2). To prove
that JU = {t(2)− 1, t(3)− 1, . . . } is an independence set of times for (U(T−1ai))

n
i=1, fix a nonempty finite

subset IU ⊆ JU and a function s : IU → {1, . . . , n}. We want to find a point xs ∈ X such that for every
t(i)−1 ∈ IU (note that then i ≥ 2) we have T t(i)−1(xs) ∈ U(T−1as(t(i)−1)). Since IW = {t(i) : t(i)−1 ∈ IU}
is a finite subset of JW and JW is an independence set of times for (W (ai))

n
i=1, there is a point z ∈ X such

that T t(i)(z) ∈ W (as(t(i)−1)) for every t(i) ∈ IW . However, for t(i) ∈ IW we have i ≥ 2, whence ti ≥ 1

and so T t(i)(z) ∈ T (X). The last two inclusions give that T t(i)(z) ∈ W (as(t(i)−1)) ∩ T (X) = V (as(t(i)−1)) =

T (U(T−1as(t(i)−1))). Hence T
t(i)−1(z) ∈ U(T−1as(t(i)−1)) and so the choice xs = z finishes the proof of the

implication (2.3). �

Remark 2.8. In connection with Proposition 2.7(a), be careful. It is not already true that hA(T ) =
hA(T |Ω(T )) and h

∗(T ) = h∗(T |Ω(T )). See also Remark 3.2.

2.2. Retracts, chains in connected spaces, continua, Cook continua in the plane. Throughout the
paper, if a space Y is homeomorphic to a space X , we say that Y is a (homeomorphic) copy of X . Given a
space X and its subspace Y ⊆ X , a continuous map r : X → Y is called a retraction if the restriction r|Y is
the identity. Then Y = r(X) is called a retract of X . A compact metric space Y is called an absolute retract
for the class of all compact metric spaces (in what follows we will sometimes shortly say “absolute retract”)
if for any compact metric space Z, whenever (a copy of) Y is a subspace of Z, (this copy of) Y is a retract
of Z.

A classical result of Borsuk [7, Corollary 13.5, p. 138] says that each dendrite is an absolute retract and
that there are no other one-dimensional compact metric spaces which are absolute retracts. In particular,
any arc is an absolute retract (other examples of absolute retracts are the n-dimensional cubes, n ≥ 1, and
the Hilbert cube).

Every connected space has the property that every two points can be joined by an ε-chain of points , see
e.g. [47, p.13]. We will use the following modification of this fact.

Lemma 2.9. Let M be a nondegenerate connected metric space with a metric ̺, D be a dense subset of M
and a, b ∈M . Let ε > 0. Then there is a positive integer n such that a and b can be joined by an ε-chain of
points of length n+ 2 lying (with possible exceptions of the points a and b) in D, i.e. there is a finite chain
a = c0, c1, c2, . . . , cn, cn+1 = b with c1, c2, . . . , cn in D \ {a, b} and ̺(ci, ci+1) < ε for every i = 0, . . . , n. The
set of such n’s is in fact cofinite.

Proof. Let Ma be the set of all points x ∈ M such that a can be joined with x by such a chain (with n
depending on x). Since D is dense, the set Ma is nonempty (it contains a because there is an ε-chain a, c1, a
with c1 ∈ D \ {a}) and it is easily seen that Ma is both open and closed. Hence Ma = M and so b ∈ Ma.
By repeating the point cn one can see that the lengths of ε-chains joining a and b form a cofinite set (by
small perturbations, one can even construct such chains consisting of pairwise different points, with possible
exception of the endpoints a and b, provided they coincide). �

Recall that, throughout the paper, a continuum is a nonempty compact connected metric space. Thus
a singleton is a continuum. However, we will be interested in nondegenerate continua. A nondegenerate
continuum has cardinality c (in fact, every nonempty perfect Polish space has cardinality c).

The following is Boundary Bumping Theorem , see e.g. [38, Theorem 5.4].

Theorem 2.10. Let X be a continuum, and let U be a nonempty, proper, open subset of X. If K is
a component of U , then K intersects the boundary of U (equivalently, since K ⊆ U and U is open, K
intersects X \ U).
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From this we get the following fact, see e.g. [38, Corollary 5.5].

Lemma 2.11. If X is a nondegenerate metric continuum then for every open set ∅ 6= U ⊆ X there is a
nondegenerate continuum K ⊆ U .

We say that two continua are comparable by continuous maps if one of them can be continuously mapped
onto the other. Otherwise, they are incomparable by continuous maps.

Lemma 2.12. (1) A nondegenerate metric continuum is a Cook continuum if and only if it has the
property that no two different nondegenerate subcontinua of it are comparable by continuous maps.

(2) Every nondegenerate subcontinuum of a Cook continuum is a Cook continuum.
(3) If two Cook continua C1 and C2 are homeomorphic, then they are uniquely homeomorphic, i.e. there

exists a unique homeomorphism ϕ : C1 → C2. Moreover, if σ : C1 → C2 is a continuous surjection
then σ = ϕ.

Proof. (1) If C is a Cook continuum then it clearly has that property. Conversely, let a nondegenerate metric
continuum C have that property. Let K be a subcontinuum of C and f : K → C be continuous such that
the continuum f(K) is not a singleton. By the property, f(K) = K. To prove that C is a Cook continuum,
we show that g := f |K is the identity. From now on we work in the topology of K. Suppose, on the
contrary, that a point b ∈ K is not fixed for g. Choose a g-preimage a of b. So, a 6= b and g(a) = b 6= g(b).
By continuity and Lemma 2.11, there is a continuum A ⊆ K such that A contains a but not b and g(A)
contains b but not a. Due to the property, the continuum g(A) has to be degenerate, so g(A) = {b}. The
closed set g−1(b) contains A and is disjoint from {b}. Let U be an open neighbourhood (recall that in the
topology of K) of g−1(b) such that b /∈ U . Let K∗ be that component of U which contains the continuum
A. By Theorem 2.10, K∗ contains a point c ∈ K \ U . Then the continuum f(K∗) = g(K∗) contains both b
and g(c) 6= b and so is both different from K∗ and nondegenerate. This contradicts the property.

(2) A subcontinuum of a continuum is a continuum. So, (2) follows from the definition or from (1).

(3) If also ψ : C1 → C2 is a homeomorphism, then ψ−1 ◦ϕ is a homeomorphism of C1 onto C1 and since C1

is a Cook continuum, it is the identity, whence ϕ = ψ. If σ : C1 → C2 is a continuous surjection then ϕ−1 ◦σ
is a continuous surjection C1 → C1 and, since C1 is a Cook continuum, it is the identity. Hence σ = ϕ. �

Cook continua are known to be at most two-dimensional, hereditarily indecomposable Cook continua are
always one-dimensional, see e.g. the very end of [31] and references therein, cf. [32]. Though the planar Cook
continuum constructed by Maćkowiak [37] is hereditarily decomposable, it is still one-dimensional. This is
even because of the following trivial reason.

Lemma 2.13. Every Cook continuum C in R2 (even every rigid space C ⊆ R2) is one-dimensional.

Proof. Let C ⊆ R2 be rigid. Then C is not zero-dimensional, since a disconnected space obviously admits a
continuous selfmap whose range consists of two points. So, C is at least one-dimensional. However, it is not
two-dimensional, otherwise, see e.g. [29, Theorem IV.3], it properly contains a 2-dimensional cube and since
the cube is an absolute retract for the class of all compact metric spaces, there is a continuous retraction of
C onto that cube, a contradiction with rigidity of C. �

Lemma 2.14. Let Q be a planar Cook continuum. Then there exist planar Cook continua

K0,K1,K2, . . . , (2.4)

in fact pairwise disjoint subcontinua of Q, with the following properties for every i, j = 0, 1, . . . .

(a) Whenever K ⊆ Ki is a continuum and g : K → Ki is continuous, then g is constant or identity.
(b) Whenever K ⊆ Ki is a continuum and f : K → Kj, i 6= j, is continuous, then f is constant (in

particular, Ki and Kj are incomparable by continuous maps and hence non-homeomorphic).

Proof. Since there is an infinite family of pairwise disjoint nonempty open sets in Q, Lemma 2.11 shows
that in Q there are pairwise disjoint nondegenerate subcontinua K0,K1,K2, . . . . By Lemma 2.12(2) they
are Cook continua, hence (a). To prove (b), fix nonnegative integers i 6= j, a nondegenerate subcontinuum
K ⊆ Ki (if K is a singleton, the claim is trivial) and a continuous map f : K → Kj . Then f can be viewed as
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a continuous map K → Q and so f is either constant or identity. However, the latter possibility is excluded,
because Ki and Kj are disjoint. �

The following fact is now obvious, but it will be needed below and therefore we state it explicitly.

Corollary 2.15. Replace the continua K0,K1,K2, . . . in (2.4) by homeomorphic copies ‹K0,‹K1,‹K2, . . . of
them, respectively. Then these new continua are still Cook continua (embeddable into the plane) and they
still have the following properties.

(ã) Whenever ‹K ⊆ ‹Ki is a continuum and g̃ : ‹K → ‹Ki is continuous, then g̃ is constant or identity.

(â) Let “Ki be a copy of Ki, possibly different from ‹Ki. Whenever ‹K ⊆ ‹Ki is a continuum and ĝ : ‹K → “Ki

is continuous, then ĝ is either constant or a homeomorphism ‹K → ĝ(‹K).

(̃b) Whenever ‹K ⊆ ‹Ki is a continuum and f̃ : ‹K → ‹Kj, i 6= j, is continuous, then f̃ is constant (in

particular, ‹Ki and ‹Kj are incomparable by continuous maps and hence non-homeomorphic).

The following simple fact will be used in Section 6 for Cook continua in the plane.

Lemma 2.16. Let C be a continuum in Rn and V an open set containing C. Then each two points of C
can be joined by a polygonal arc in V .

Proof. Each two points of a connected open set U in Rn can be joined by a polygonal arc in U , see e.g. [22,
Theorem 3-5]. However, V does contain a connected open set U such that C ⊆ U ⊆ V . �

3. Systems with zero entropy and infinite supremum sequence entropy

As already mentioned in Introduction, h(T ) > 0 implies h∗(T ) = ∞. What can be said on the supremum
sequence entropy h∗(T ) if h(T ) = 0? As we know from [8, 9, 43, 42], if the phase space X is a unit interval
or a unit circle or a finite graph, then h(T ) = 0 implies that h∗(T ) is finite (zero or log 2). However, in
general a space X can admit a continuous selfmap T with h(T ) = 0 and h∗(T ) = ∞. The next subsection
is devoted to the construction of such an example. It will be helpful in the next section.

If A and B are disjoint sets, A ∪B will sometimes be denoted by A ⊔B. We will also use the notations

1/N = {1/n : n ∈ N} and 1/N↑k = {1/n : n = k, k + 1, . . . }, k ∈ N .

Further, IdA denotes the identity on A.

3.1. A map T : X1 → X1 with h(T ) = 0 and h∗(T ) = ∞. We are going to define such a map on a space
which differs from a prescribed continuum C0 by one orbit only.

Start by fixing any nondegenerate metric continuum C with metric ̺ and a countable dense set E =
{e1, e2, . . . } ⊆ C. Our space X1 will be a subset of ({0} ∪ 1/N) × C endowed with the maximum metric
(we have the Euclidean metric in the first coordinate and the metric ̺ in the second coordinate). For
n ∈ N and i ∈ N, put C0 = {0} × C, Cn = {1/n} × C, E0 = {0} × E, ei0 = {0} × {ei}, En = {1/n} × E,
ein = {1/n} × {ei}. Let P1 :

⊔∞
n=0 Cn → {0} ∪ 1/N and P2 :

⊔∞
n=0 Cn → C be the projections onto the first

and the second coordinates.

The set X1 ⊆ C0 ⊔
⊔∞

n=1 Cn will be of the form

X1 = C0 ⊔ C with C = {x1, x2, . . . } ⊆ (1/N)× E . (3.1)

Define T : X1 → X1 by
T |C0 = IdC0 and T (xn) = xn+1 . (3.2)

Then the set C and the sequence (xn)
∞
n=1 are the orbit and the trajectory (under T ) of the point x1.

So, we only need to choose the points xn for all ‘times’ n (we want compactness of X1, continuity of T ,
h(T ) = 0 and h∗(T ) = ∞). We will do it step by step, for blocks of times

{1, 2, . . . , k1}, {k1 + 1, k1 + 2, . . . , k2}, . . . , {kn−1 + 1, kn−1 + 2, . . . , kn}, . . . (3.3)

where the integers 1 < k1 < k2 < . . . are not specified yet. The pieces of trajectory corresponding to the
blocks of times in (3.3) (and only to these blocks of times) will be conveniently called blocks (of trajectory).
For simplicity, our first requirements on the choice of the points xn are:
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(1) P1(xn) = 1/n, n = 1, 2, . . . (in view of (3.1) this implies compactness of X1).
(2) P2(x1) = P2(xk1) = P2(xk1+1) = P2(xk2 ) = P2(xk2+1) = · · · = e1 (so, the points x1, xk1 , xk1+1, xk2 , . . .

are already determined and, by (3.2), T (xkn
) = xkn+1, n = 1, 2, . . . ).

Since the T -trajectory of the point x1 = {1} × {e1} will, due to (1), (3.1) and (3.2), approach the set C0

on which T is the identity, the ‘jumps’ performed by our trajectory have to tend to zero (in order not to
destroy the continuity of T at the points of C0). Since the sequence P1(xi) tends to zero, we only need that
also ̺(P2(xi), P2(xi+1)) → 0 for i → ∞. To ensure this, it is sufficient to fix positive reals εn ց 0 and to
choose (xi)

∞
i=1 such that if consecutive points xi and xi+1 belong to the n-th block of the trajectory, then

̺(P2(xi), P2(xi+1)) < εn (if they belong to different blocks, then i = kn for some n and so, by (2), we even
have ̺(P2(xi), P2(xi+1)) = 0). In other words, our requirement is (we put k0 = 0):

(3a) for every n = 1, 2, . . . , the sequence (P2(xi))
kn

i=kn−1+1 is an εn-chain of points lying in the countable

dense set E = {e1, e2, . . . } ⊆ C and, not to violate (2), it starts and ends with e1. (This together with
(1) imply that T defined by (3.2) is continuous and h(T ) = h(T |Ω(T )) = h(T |C0) = h(IdC0) = 0.)

We still need something more from the sequence (xi)
∞
i=1 because we want also h∗(T ) = ∞. Therefore we

add the following requirement on the choice of (xi)
∞
i=1:

(3b) for some positive integers t1,1, t2,1 < t2,2, . . . , tn,1 < tn,2 < · · · < tn,n, . . . , we have the following:
• {0, t1,1} is an independence set of times for the map T restricted to the first block {x1, . . . , xk1}
and for the family of 2 sets (1/N)× {ej}, j = 1, 2 (in the sense of Remark 2.3),

• {0, t2,1, t2,2} is an independence set of times for the map T restricted to the second block

{xk1+1, . . . , xk2} and for the family of 3 sets
(
1/N↑(k1+1)

)
× {ej}, j = 1, 2, 3,

. . .
• {0, tn,1, tn,2, . . . , tn,n} is an independence set of times for the map T restricted to the n-th block

{xkn−1+1, . . . , xkn
} and for the family of n+ 1 sets

(
1/N↑(kn−1+1)

)
× {ej}, j = 1, 2, . . . , n+ 1.

. . .

Realize that (3b) really implies h∗(T ) = ∞. Indeed, for every j, every neighborhood (in the topology of

X1) of the point ej0 ∈ E0 ⊆ C0 contains the sets
(
1/N↑(kn−1+1)

)
× {ej} for all sufficiently large n. Hence we

easily come to the conclusion that each finite subset of the countable infinite set E0 forms an IN-tuple for T
(for any choice of neighbourhoods of these points, the tuple of the neighbourhoods has arbitrarily long finite
independence sets of times; see Remark 2.2). In view of (2.1), it follows that h∗(T ) = ∞. Note that our
argument shows that even for every positive integer r, the set Sr := C0 ⊔ {xr, xr+1, . . . } (notice that this is
a T -invariant subset of X1) has the property

h∗(T |Sr
) = ∞ . (3.4)

Thus, it remains to prove that the choice of (xi)
∞
i=1 can be done in such a way that all the requirements

(1), (2), (3a) and (3b) are fulfilled simultaneously. To prove that, notice that due to cofiniteness emphasized
in Lemma 2.9, one can find a positive integer t1,1, as large as we need/wish, such that in C

• there are four ε1-chains of the same length t1,1 + 1 – namely chains from e1 to e2 (the chain starts
at e1 at time 0 and ends at e2 at time t1,1), from e2 to e1, from e1 to e1 and from e2 to e2.

By concatenating these four chains and possibly some intermediate ε1-chains in an appropriate order, we
obtain an ε1-chain e

i(1), . . . , ei(k1) in E ⊆ C with some length k1 (this will be the length of the first block
in (3.3)) and i(1) = i(k1) = 1. Then we choose corresponding points x1, . . . , xk1 with P2(xn) = ei(n) and,
to fulfill (1), P1(xn) = 1/n, n = 1, . . . , k1 (the points x1, xk1 have in fact already been defined in this way,
see (2)). We define T at the first k1 points by putting T (xi) = xi+1 for i = 1, . . . , k1. By the construction,
{0, t1,1} is an independence set of times for the map T restricted to the first block {x1, . . . , xk1}, even for
T restricted to {x1, . . . , xk1−1}, and for the family of 2 sets (1/N) × {ej}, j = 1, 2. The first block of the
trajectory of T may look like in Figure 3.1 (where, however, proper scales are ignored).

To define the second block of the trajectory, we proceed similarly. Again, using cofiniteness in Lemma 2.9,
we find integers 0 < t2,1 < t2,2, perhaps very large ones, such that in C there are 27 ε2-chains such that

• for any of the 27 choices of not necessarily distinct integers j1, j2, j3 in the set {1, 2, 3}, one of these
ε2-chains is such that it starts at ej1 at time 0, then hits ej2 at time t2,1 and ends at ej3 at time t2,2.
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2nd block 1st block. . .

x1
x2

x3

xk1xk1+1e10

e20

e30

C0

1

Figure 3.1. The first block (the parts corresponding to the four ε1-chains of the same
length are framed; we do not care whether they cover the whole block {x1, . . . , xk1} or not).

By concatenating these 27 chains and possibly some intermediate ε2-chains in an appropriate order, we
obtain an ε2-chain ei(k1+1), . . . , ei(k2) in E ⊆ C with some length k2 − k1 (this will be the length of the
second block in (3.3)) and i(k1 + 1) = i(k2) = 1. Then we choose points xn, n = k1 + 1, . . . , k2 with
P2(xn) = ei(n) and P1(xn) = 1/n. Again, we put T (xi) = xi+1 for i = k1 + 1, . . . , k2.

Continuing this way, by induction we construct the whole set C and the map T |C . Then, since (1), (2),
(3a) and (3b) are fulfilled, we know that X1 is compact, T is continuous, h(T ) = 0 and h∗(T ) = ∞ as shown
above. The set E0 is a sequence entropy set and so the same is true for its closure C0. The set C0 is in fact
the unique maximal sequence entropy set of the system.

Remark 3.1. The space X1 is quite simple and we know that S(X1) ⊇ {0,∞}. Unfortunately, this space
admits too many continuous selfmaps and it is probable that S(X1) is larger than {0,∞}. Moreover, we
prefer to have a continuum, while X1 is a disconnected space.

Before going to a construction of a continuum X with S(X) = {0,∞}, it will be instructive to show how
we can modify the construction from Subsection 3.1 if we wish the phase space to be a continuum.

3.2. Modifying X1 to get a continuum. In the construction of the spaceX1 from the previous subsection,
let C be just a straight line segment in the plane. Then the system (X1, T ) lives in the plane. If we denote
by Ii the straight line segment with the endpoints xi and xi+1, then the union of X1 and all the segments
Ii, i ∈ N is a continuum X1

1 .
2 The continuous map T sends the endpoints of each Ii to the endpoints of

Ii+1 and so it can be extended to a continuous map which sends Ii onto Ii+1, i = 1, 2, . . . . What we get is
obviously a map T1 : X1

1 → X1

1 with h(T1) = 0 and h∗(T1) = ∞.

2In the next section we use this trick to get a continuum X with S(X) = {0,∞} but, instead of arcs, we will use much more
complicated continua. Then the space X will be complicated, but the dynamics of all possible continuous selfmaps of X will
be relatively simple and so we will be able to prove that S(X) = {0,∞}.
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Moreover, the εn-chains in the construction can be chosen and the full orbit {x1, x2, . . . } of the point x1
(here T (xi) = xi+1 for every i) can be placed in the plane in such a way that the phase space of the system
(X1

1 , T
1) is the topologist’s sine curve.

Remark 3.2. Still slightly modifying the above construction, one can get a map (even a homeomorphism)
T1 : X1

1 → X1

1 with h(T1) = 0 and h∗(T1) = ∞, where X1

1 is the Warsaw circle. Notice that the Warsaw
circle is a uniquely arcwise connected continuum, though not locally connected, and still it admits a map
with infinite supremum sequence entropy but with zero entropy. It is also worth noticing that in all the
above examples h∗(T) = ∞ while h∗(T|Ω(T)) = 0, where T stands for T or T1.

4. A continuum X with S(X) = {0,∞}

In this section, we will construct a continuum X ⊆ R3 with S(X) = {0,∞}.3 In the next subsection we
outline the construction and then we provide necessary details in the rest part of the section.

4.1. Bricks and outline of the construction of X. Now we outline the construction.

• To construct X , we use Cook continua K0,K1,K2, · · · ⊆ R2 from Lemma 2.14 as building bricks
(they are subcontinua of, say, the Cook continuum constructed in the plane by Maćkowiak). To
avoid cumbersome notations below, we will however denote them as

K,K1,K2, . . . (4.1)

(i.e. we omit the index in the notation of zeroth continuum). More precisely, our bricks will be
homeomorphic copies of these continua, placed in R3. We will use only one copy of K, namely in
the form K0 = {0} ×K (zeroth brick), and a sequence of sequences of other bricks in R3:

(K1
i )

∞
i=1 = copy of K1, copy of K2, copy of K3, copy of K4, . . .

(K2
i )

∞
i=1 = copy of K2, copy of K4, copy of K6, copy of K8, . . .

(K3
i )

∞
i=1 = copy of K4, copy of K8, copy of K12, copy of K16, . . .

. . .

(4.2)

where copies of the same Kn (belonging to different sequences) will be different, even disjoint and
possibly with different diameters. In fact all the bricks will be pairwise disjoint, except of that two
consecutive bricks in one sequence will have one point in common.

• We start the construction with the system (X1, T ) from Subsection 3.1, where the arbitrary contin-
uum C is now chosen to be the planar Cook continuum K from our list (4.1). Thus,

X1 = K0 ⊔ C with C = {x1, x2, . . . } ⊆ (1/N)× E, (4.3)

E being a countable dense subset of K. The space X1 lives in R3, we think of the Cook continuum
K0 = {0} ×K as of a continuum lying in the vertical yz-plane (the x-axis going to the right).

• Then, by using the method from Subsection 3.2, with the arcs Im (joining consecutive points xm
and xm+1 of the orbit C) replaced by appropriate continua Dm, we finally obtain our continuum
X ⊇ X1 in R3. The continua D1, D2, D3, . . . will have the form of ‘infinite chains’ from (4.2). More
precisely, for every m = 1, 2, . . . the continuum Dm will be the closure of the union of all sets in the
m-th sequence in (4.2) and Dm and Dm+1 will have just one point in common, namely xm+1.

• We will need to study continuous selfmaps of X . First recall that T : X1 → X1 is an injective map
defined by

T |K0 = IdK0 and T (xn) = xn+1 . (4.4)

By Subsection 3.1, for the system (X1, T ) we have h(T ) = 0 and h∗(T ) = ∞. In Lemma 4.25 we
then extend T : X1 → X1 to a continuous map G : X → X . Clearly, h∗(G) = ∞. We also carefully
study the dynamics of all non-constant continuous maps F : X → X . We show that they are of two
kinds. Some of them coincide with an iterate of G on a substantial part of X , see Lemma 4.29, and
then h∗(F ) = ∞. The others have quite a simple dynamics, see Corollary 4.24 and Lemmas 4.26
and 4.27, and then h∗(F ) = 0. Hence S(X) = {0,∞}, see Proposition 4.30.

3We do not know whether X could be found in the plane.
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4.2. Notation for bricks and details of the construction of X. As described above, we start with
the space X1 ⊆ R3 from (4.3), with the Cook continuum K0 = {0} × K lying in the vertical yz-plane
π0 = {0} × R2. Thus the zero-th brick from the list (4.1) has already been used. From now on we will use
only bricks which are homeomorphic copies of the Cook continua in the set

D = {K1,K2, . . . }. (4.5)

Consider any two consecutive points xm, xm+1 ∈ C. They are in two vertical planes, xm ∈ πm =
{1/m}×R2 and xm+1 ∈ πm+1 = {1/(m+1)}×R2. In the straight line segment with the endpoints xm and
xm+1, choose a strictly monotone sequence of points starting with xm and converging to xm+1. For any two
consecutive points in this sequence one can choose a ‘two cones base to base’ solid , i.e. the solid obtained
by a rotation of a kite along its axis of symmetry (we shortly call it a ‘solid’), such that the two mentioned
consecutive points are the two vertices of the solid. Thus, the points xm and xm+1 are ‘joined’ by a sequence
of solids

Sm
1 ∋ xm, S

m
2 , S

m
3 , . . . (4.6)

monotonically converging to xm+1, see Figure 4.1.

xm

xm+1

. . .

Sm1

Sm2

Sm3
πmπm+1

Figure 4.1. The sequence of solids
‘joining’ xm and xm+1.

hm
i

li2m−1

fi2m−1

Sm
i

fm
i

lm
i

Ki2m−1

K
m
i

1

Figure 4.2. A Cook continuum Km
i

inside the solid Sm
i .

By choosing sufficiently small cone angles we may assume that:

• each solid has the diameter equal to the distance of its vertices (hence the diameters of the solids in
the sequence (4.6) tend to zero),

• two consecutive solids intersect only at their common vertex,
• given a vertex of a solid, no other point of the solid has the same P1-projection onto the x-axis,
• the union of the solids in (4.6) lies strictly between the vertical planes πm and πm+1, with the
exception of the point xm (one of the vertices of the first solid Sm

1 ) which lies in πm.

Now we are going to specify the choice of copies of Ki in (4.2), i.e. the choice of all bricks different
from K0. First, for each Ki, i = 1, 2, . . . fix, once and for all, two extremal points fi, ℓi ∈ Ki, i.e. points
whose (Euclidean) distance equals the diameter of Ki. We will call them the first point and the last point
of Ki , respectively. For m = 1, 2, . . . and i = 1, 2, . . . ,

let Km
i be a homeomorphic copy of Ki2m−1 (4.7)

(this corresponds to (4.2)) and consider a homeomorphism

hmi : Ki2m−1 → K
m
i (4.8)

(by Lemma 2.12(3), such a homeomorphism exists exactly one). Clearly, we can chooseKm
i with the following

properties:

• Km
i ⊆ Sm

i ,
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• the hmi -images of extremal points of Ki2m−1 , i.e. the points fm
i := hmi (fi2m−1) and ℓmi := hmi (ℓi2m−1),

coincide with the two vertices of the solid Sm
i , see Figure 4.2.

So, when going from xm towards xm+1, we meet the points xm = fm
1 , ℓ

m
1 = fm

2 , ℓ
m
2 = fm

3 , . . . . The points
fm
i and ℓmi will be called the first and the last point (the extremal points) of Km

i .4 The other points of Km
i

are its non-extremal points.

The sequence (Km
i )∞i=1 ‘joins’, in a sense, xm with xm+1. We adopt the notations

Dm =
∞⋃

i=1

K
m
i ∪ {xm+1} and D∗

m =
∞⋃

i=1

K
m
i = Dm \ {xm+1}. (4.9)

The first three sets Dm can be seen in Figure 4.3; the bricks belonging to the same Dm are pairwise non-
homeomorphic (because we have (4.2) and the continua Ki in (4.1) are not homeomorphic).

IIIIIIIVVVIVIIVIIIIIIVVIVIIIIVVIII

D1D2D3

x1x2x3x4

K1K2K3K4K5K6K7K8K2K4K6K8K4K8

1

Figure 4.3. The first three sets Dm. Instead of “copy of Ki” we write just “Ki”.

By the construction, we have the following obvious lemma (the convergence in (4) is the convergence in
Hausdorff metric derived from the Euclidean metric in R3; we identify {xm+1} with xm+1).

Lemma 4.1. For each m = 1, 2, . . . , we have:

(1) xm is the first point of Km
1 , i.e. xm = fm

1 ;
(2) xm+1 6∈

⋃∞
i=1 K

m
i = D∗

m;
(3) Km

i ∩Km
i+1 = {ℓmi } = {fm

i+1};
(4) Km

n → xm+1 when n→ ∞.

(5) Dm =
⋃∞

i=1 K
m
i = D∗

m.
(6) The diameters of Dm tend to zero when m→ ∞.

Finally, we define

X = K0 ⊔
∞⋃

m=1

Dm = K0 ⊔
∞⊔

m=1

D∗
m. (4.10)

Thus X is the union of bricks (planar Cook continua) K0 and K
m
i , m = 1, 2, . . . , i = 1, 2, . . . .

Lemma 4.2. The space X ⊆ R3 defined by (4.10) is a one-dimensional continuum.

Proof. Since X1 is compact and the diameters of Dm tend to zero, see Lemma 4.1(6), all those cluster
points of the snake which are in π0 belong to the head K0. Hence X is compact. By Lemma 2.13, all the
bricks K0 and Km

i are one-dimensional and since the union of countably many closed one-dimensional sets
is one-dimensional, also X is one-dimensional, see e.g. [29, Theorem III.2]. �

The continuum X is depicted in Figure 4.4. It lies in R3 and we are going to prove that S(X) = {0,∞};
this will be done in Proposition 4.30 below. However, the proof requires some preparation.

Standing notation for the rest of Section 4: In the rest of the section, X denotes the
space X constructed above in (4.10) and F denotes a continuous map X → X .

4By the way, the terminology is in accordance with the fact that, due to the choice of Sm
i
, these points are really extremal

points of Km
i

in the sense of distance.
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x1

x2

x3

D1

D2

D3

K0

1

Figure 4.4. The continuum X with S(X) = {0,∞}; see also Figures 3.1 and 4.3.

4.3. More terminology for parts of the space X. Properties of X. Call the brick K0 the head and
the union of all other bricks in X the snake . In view of (4.10), X is the disjoint union of the head and the
snake. Let

Σ = {fm
i , ℓ

m
i : m, i = 1, 2, . . . } = {fm

i : m, i = 1, 2, . . . }

be the set of extremal points of the bricks belonging to the snake. We will say that a ∈ X is to the left of
b ∈ X and we will write a ≺ b if for their first projections we have P1(a) < P1(b). In such a case we will
also say that b is to the right of a and write b ≻ a . If a ≺ c ≺ b, we say that c is between a and b (or
between b and a). Further, a 4 b or b < a means that a = b or a ≺ b (note that a 4 b is not equivalent with
P1(a) ≤ P1(b)). Clearly, 4 is a partial order on X . In the obvious meaning, the head K0 is on the left end
of X and x1 is the rightmost point of X . Note that the last point ℓmi of Km

i is its leftmost point, similarly
its first point fm

i is its rightmost point. So ℓmi ≺ fm
i and not conversely.5

If A,B are any subsets of X , we write A ≺ B (or B ≻ A) if a ≺ b whenever a ∈ A and b ∈ B. In such a
case we say that A is to the left of B and B is to the right of A. If also C ⊆ X and A ≺ C ≺ B, we say that
C is between A and B (or between B and A). We are not going to define A 4 B if A,B are arbitrary subsets
of X . However, for special subsets of X we will do that in an appropriate, maybe not the most natural, way
in Subsection 4.5.

If we restrict the partial order 4 to the set Σ, we get a linearly ordered set. The linearly ordered set
(Σ,<), i.e. the one with reversed order, is clearly well ordered. Therefore we immediately get the following
fact.

Lemma 4.3. Every nonempty subset of (Σ,4) has the largest element.

If a, b ∈ Σ, we denote by 〈〈a, b〉〉 = 〈〈b, a〉〉 the union of the set {a, b} with the set of all points in X
which are between a and b; in particular, 〈〈a, a〉〉 = {a}, Km

i = 〈〈fm
i , ℓ

m
i 〉〉 and Dm = 〈〈xm, xm+1〉〉. We

will also use the notation 〈〈K0, b〉〉 for the union of the set K0 ∪ {b} with the set of all points which are
to the right of all points of K0 and to the left of b. Clearly, 〈〈K0, xm〉〉 = K0 ⊔

⋃m
i=1Di. Further, we put

((K0, b〉〉 = 〈〈K0, b〉〉 \K0 . The sets of the form ((K0, f
m
i 〉〉 are said to be sub-snakes .

Let a 4 b be in Σ. Let r : X → 〈〈a, b〉〉 be the map sending all the points which are to the left of a to
the point a and all the points which are to the right of b to the point b, leaving all the points from 〈〈a, b〉〉

5The terminology “first” and “last” is related to the fact that we go along the snake towards the head, i.e. in the opposite
direction as is the direction of the x-axis, while the terminology “left” and “right” corresponds to the direction of the x-axis.
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fixed. Then r is obviously continuous, so it is a retraction of X onto 〈〈a, b〉〉. We will call it a monotone
retraction.6

Recall that if M is a connected set then p ∈M is called a cut point of M if M \ {p} is not connected.

Lemma 4.4. The space X constructed above in (4.10) has the following properties:

(1) The sets D∗
m, the snake and the sub-snakes are connected. The sets Dm, 〈〈a, b〉〉 and 〈〈K0, b〉〉, where

a, b ∈ Σ, a ≺ b, are continua. The space X is the closure of the snake. The head K0 is in the closure
of any sub-snake.

(2) X is a one-dimensional continuum in R3.
(3) Every point from Σ \ {x1} is a cut point of X.
(4) Σ is totally disconnected, i.e. it does not contain any non-degenerate continuum.
(5) Every brick Km

i as well as every set Dm are monotone retracts of X.
(6) If a non-degenerate continuum Q ⊆ X intersects a brick Km

i in a point different from the extreme
points of Km

i , then Q ∩Km
i is a non-degenerate continuum.

Proof. (1-2) X is one-dimensional by the discussion after (4.10). We prove the rest. For every m, the
bounded set D∗

m =
⋃∞

i=1 K
m
i is connected because consecutive continua Km

i , Km
i+1 intersect. Therefore the

closure of this set, i.e. the set Dm, is a continuum. An analogous argument gives that every set 〈〈a, b〉〉 is a
continuum. Similarly, the snake

⋃∞
m=1Dm is bounded and connected and so its closure is a continuum. For

the same reason all the sub-snakes are connected. Thus, to finish the proof of (1-2), it is sufficient to show
that X coincides with the closure of the snake (since the points of the snake which are outside of a given
sub-snake have distance from the head larger than some positive constant, it is obvious that then K0 is in
the closure of the sub-snake).

Each finite union
⋃N

m=1Dm is compact, so it is sufficient to show that the intersection of the closure of the
snake with the vertical plane π0 containing K0 is exactly the set K0. By construction from Subsection 3.1
this intersection contains the set E0 dense in K0 and so it contains K0. To prove the converse inclusion, let
(yn)

∞
n=1 be a sequence in the snake converging to a point ω ∈ π0. We need to prove that ω ∈ K0.

Consider also the sequence (xn)
∞
n=1 of points forming the set C in (4.3). Recall that the distance from

xn to π0 is 1/n and if a subsequence of xn converges to some point, then this point belongs to the closure
of E0, i.e. is in K0. Let δn be the diameter of Dn. Each yn belongs to (at least one) Dk(n). This means

that the (Euclidean) distance in R3 between yn and xk(n) is at most δk(n). Since yn converges to ω and, by
Lemma 4.1, δk(n) converges to zero, then xk(n) converges to ω. Hence ω ∈ K0.

(3) If c ∈ Σ \ {x1} then X \ {c} is the disjoint union of the set U of all points of X which are to the left
of c and the set V of all points of X which are to the right of c. Both U and V are nonempty and open in
X and so X \ {c} is not connected.

(4) It is obvious that Σ is totally disconnected.

(5) Even more has already been explained when defining the monotone retraction.

(6) To simplify the notation, instead of Km
i , fm

i and ℓmi write for a moment K, f and ℓ. We have
X = L⊔K⊔R where L or R are the sets of all those points from X which are to the left of ℓ or to the right
of f , respectively.

By the assumption, some point b ∈ Q belongs to K \ {ℓ, f}. If Q ⊆ K then Q ∩K = Q and we are done.
So assume that Q intersects L ∪ R. Without loss of generality suppose that there is a point a ∈ Q ∩ L.
Then, since Q contains both a and b and, by the proof of (3), ℓ separates a and b in X , the continuum Q
contains ℓ. Thus the compact set Q∩ (K⊔R) contains ℓ and b. We claim that it is a continuum. Otherwise
Q ∩ (K ⊔ R) = A ⊔ B where A,B are nonempty compact sets. One of them, say A, contains ℓ. Then
Q = ((Q ∩ L) ∪ A) ⊔ B is a disjoint union of two nonempty compacts sets, which contradicts the fact that
it is a continuum.

We have proved that Q∩ (K⊔R) = Q \L is a non-degenerate continuum. If it is disjoint with R then we
are done because Q∩K = (Q \L) \R = Q \L. Otherwise, the non-degenerate continuum Q \L (containing

6In fact there are no other retractions of X onto 〈〈a, b〉〉, but this fact is not important for us and so we will not prove it.
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b and ℓ) contains a point c ∈ R and by repeating an argument from above we get that (Q \ L) \R = Q ∩K

is a nondegenerate continuum. �

4.4. Properties of continuous selfmaps of X. The list of all bricks is: K0,K
1
1,K

1
2, . . . ,K

2
1,K

2
2, . . . , . . . .

It follows from the construction that two terms of this list are homeomorphic sets if and only if they are
copies of the same of the continua K1,K2, . . . , i.e. if and only if they are of the form Km

i and Kn
j with

i2m−1 = j2n−1.

Lemma 4.5. Consider bricks in X and in particular the brick K0 and the bricks Km
i = hmi (Ki2m−1 ) and

Kn
j = hnj (Kj2n−1 ).

(a) The only continuous selfmaps of a brick are constant maps and the identity.
(b) The only continuous maps Km

i → K0 are constant maps.
(c) The only continuous maps K0 → Km

i are constant maps.
(d) If the sets Ki2m−1 and Kj2n−1 are different terms of the sequence K1,K2, . . . (i.e., i2m−1 6= j2n−1),

then the only continuous maps K
m
i → K

n
j are constant maps.

(e) If the sets Ki2m−1 and Kj2n−1 are equal (i.e., i2m−1 = j2n−1) then there exists a non-constant
continuous map ϕ : Km

i → Kn
j . Such a map exists only one, it is a homeomorphism, ϕ(fm

i ) = fn
j

and ϕ(ℓmi ) = ℓnj .

Proof. (a) follows from Corollary 2.15(ã). (b), (c) and (d) follow from Corollary 2.15(̃b).

(e) Put K∗ := Ki2m−1 = Kj2n−1 . The homeomorphism H = hnj ◦ (h
m
i )−1 : Km

i → Kn
j obviously has all the

required properties. Now let ϕ : Km
i → K

n
j be any non-constant continuous map. Then (hnj )

−1 ◦ ϕ ◦ hmi is a
non-constant continuous map K∗ → K∗. Since K∗ is a Cook continuum, the only non-constant continuous
selfmap of K∗ is the identity. Thus (hnj )

−1 ◦ ϕ ◦ hmi = Id |K∗ whence ϕ = hnj ◦ (hmi )−1 = H and so the proof
of uniqueness is finished. �

Lemma 4.6. If B is a brick then F (B) is either a singleton or a brick homeomorphic to B.

Proof. The snake can be written in the form
⋃∞

i=1 Bi where Bi are bricks. Fix a brick B. It is either the
head K0 or one of the bricks Bi. Denote F |B by G. Assume that G(B) is not a singleton. Then it is a
non-degenerate continuum and so, by Lemma 4.4(4), it cannot be a subset of Σ. To prove that it is a brick,
distinguish three cases.

Case 1 : G(B) is a non-degenerate subset of the head K0. By Lemma 4.5(b), B cannot be any of those
Bi. Therefore B = K0. By Lemma 4.5(a), G is the identity and so G(B) = K0.

Case 2 : G(B) is a non-degenerate subset of the snake. Let Bk be one of those bricks in the snake, which
are intersected by G(B) in a non-extremal point (i.e. in a point different from the first and last point of
Bk). By Lemma 4.4(6) the continuum G(B) intersects Bk in a non-degenerate subcontinuum. Now let rk
be the monotone retraction of X onto Bk. The map rk ◦ G : B → Bk is continuous and not constant. By
Lemma 4.5, Bk is a copy of B and rk ◦ G(B) = Bk. Hence, taking into account the special form of the
retraction rk, G(B) contains all the points of Bk with possible exceptions of the extremal points of Bk.
However, G(B) is a compact set, therefore G(B) ⊇ Bk.

Let us summarize. We have proved that if k is such that G(B) intersects Bk in a non-extremal point, then
Bk is a copy of B (hence B is not the head K0, because in the snake we do not have any brick homeomorphic
to K0) and G(B) ⊇ Bk. We claim that such a brick Bk is only one. Suppose, on the contrary, that G(B)
intersects two bricks in the snake in non-extremal points. Since the projection of the continuum G(B) onto
the x-axis is again a continuum, G(B) intersects also two consecutive bricks in the snake in non-extremal
points. We know that each of these two consecutive bricks is a copy of B. However, no two consecutive
bricks in the snake are homeomorphic, a contradiction.

Thus G(B) intersects only one brick Bk in the snake in a non-extremal point. Then G(B) ⊇ Bk and
G(B) does not intersect any other brick in a non-extremal point. It follows that G(B) = Bk and the proof
in this case is finished, because the fact that Bk is a copy of B has already been established.

Case 3 : G(B) intersects both the head and the snake. So, the continuum G(B) intersects both K0 and
some brick in the snake. Then each brick in the snake which is to the left of this one, is intersected by G(B),
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even in non-extremal points. This is in particular true for some two consecutive bricks and in the same way
as in Case 2 we get that these two consecutive bricks in the snake are homeomorphic. This contradiction
shows that Case 3 is impossible. �

Corollary 4.7. Let B be a subfamily of the family of all bricks and let F (
⋃
B) ⊇ C for some brick C. Then

there is a brick B ∈ B such that B is homeomorphic to C and F (B) = C.

Proof. There are only countably many bricks in B and C has cardinality c. Therefore there is a brick B ∈ B

such that F (B) intersects C in more than one point. Hence, by Lemma 4.6, F (B) is a brick homeomorphic
to B and since different bricks have at most one point in common, F (B) = C. �

If K is a brick in the snake with extremal points f and ℓ, put K◦ := K \ {f, ℓ} .7

Corollary 4.8. Let B and C be bricks in the snake such that F (B) = C. Then F |B : B → C is a
homeomorphism sending the first and the last point of B to the first and the last point of C, respectively.
So, F (B◦) = C◦.

Proof. By Lemma 4.6, C is homeomorphic to B. The rest follows from Lemma 4.5(a)(e). �

The following immediately follows from Lemma 4.6 and Corollary 4.8.

Corollary 4.9. Let ℓ ≺ f be consecutive points of Σ mapped by F to consecutive points F (ℓ) ≺ F (f) of Σ.
Then the brick 〈〈ℓ, f〉〉 is mapped onto the brick 〈〈F (ℓ), F (f)〉〉.

Lemma 4.10. (a) If a point b of a brick B is fixed for F then either b is the only fixed point in B and
then F (B) = {b}, or all points of B are fixed.

(b) If two points of a brick are fixed then all points of the brick are fixed.
(c) If B is a brick and two points of B are mapped by F to the same point, then F (B) is a singleton.
(d) If B1 and B2 are bricks in the snake (different or not, homeomorphic or not) and one of the extremal

points of B1 is mapped by F to a non-extremal point z ∈ B2 then F (B1) = {z}.
(e) If B1 and B2 are bricks in the same set Dm and one of the points of B1 is mapped by F to a point

z ∈ B2 \B1 then F (B1) = {z}.
(f) If B is a brick in the snake and F (B) intersects the head K0 then F (B) is a singleton in K0.

Proof. (a) By Lemma 4.6, F (B) = {b} or F (B) is a brick homeomorphic to B and clearly containing b.
However, by construction of X , the bricks which are different from B but intersect B are not homeomorphic
to B. Thus F (B) = {b} or F (B) = B. In the latter case, all the points of B are fixed by Lemma 4.5(a).

(b) This follows from (a).

(c) If not, then by Lemma 4.6 and Corollary 4.8 the map F |B : B → F (B) is a homeomorphism,
contradicting our assumption that it is not injective.

(d) Just combine Lemma 4.5 and Lemma 4.6.

(e) Since F (B1) ∋ z, by Lemma 4.6 either F (B1) = {z} or F (B1) is a brick homeomorphic to B1. Suppose
that we are in the latter case. Since z /∈ B1, the brick F (B1) 6= B1. Thus B1 and F (B1) are two different
but homeomorphic bricks. Hence, since the bricks in Dm are pairwise non-homeomorphic, the brick F (B1)
does not belong to Dm. However, the structure of X is such that a brick which does not belong to Dm never
contains a point z belonging to a brick in Dm. Thus, we have the former case F (B1) = {z}.

(f) Since no brick homeomorphic with B intersects K0, by Lemma 4.6 we get that F (B) is a singleton
in K0. �

The following lemma easily follows from the construction of X and so we omit the proof.

Lemma 4.11. Let P be a family of some of the bricks in the snake. Assume that P has the following five
properties.

(P1) P contains at least one brick in the snake.
(P2) If Km

i ∈ P then also Km
i+1 ∈ P.

7If the brick K is neither K0 nor K1
1, then K◦ is the interior of K in the space X.
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(P3) If Km
i ∈ P then also K

m
i−1 ∈ P, provided i ≥ 2.

(P4) If Km
i ∈ P for all i = 1, 2, . . . , then also K

m+1
1 ∈ P.

(P5) If Km
i ∈ P for all i = 1, 2, . . . , then also K

m−1
k ∈ P for some k ≥ 1, provided m ≥ 2.

Then all bricks in the snake belong to P.

Lemma 4.12. (a) If the snake is not F -invariant then F is constant.
(b) If the set Σ is not F -invariant then F is constant.
(c) If F (K0) = {z0} for some z0 ∈ K0, then F (X) = {z0} and so F is constant.

Proof. (a) By the assumption, there is a brick B in the snake such that F (B) contains a point z0 ∈ K0. By
Lemma 4.10(f) we get F (B) = {z0} ⊆ K0. So the family P of all bricks in the snake whose F -image is {z0}
is nonempty. We are going to show that P satisfies also (P2)-(P5) from Lemma 4.11.

Indeed, (P2) and (P3) follow from Lemma 4.10(f). Further, if F (Km
i ) = {z0} for all i = 1, 2, . . . , then

continuity gives F (xm+1) = z0 and by Lemma 4.10(f) we get F (Km+1
1 ) = {z0}. So we have (P4). To prove

(P5), let m ≥ 2 and F (Km
i ) = {z0} for all i = 1, 2, . . . . In particular, F (xm) = z0. We have z0 = {0} × {z}

where z belongs to K in (4.1) and K0 = {0} × K. Let ε > 0 and let V be an open neighbourhood of z
in K, different from the whole K. Then W = X ∩ ([0, ε) × V ) is an open neighbourhood of z0 in X . The
open set F−1(W ) contains the point xm and so there exists N such that F−1(W ) contains also K

m−1
k for

all k ≥ N . Put D = {xm} ∪
⋃∞

k=N K
m−1
k . Then D is a continuum and so F (D) ⊆ W is also a continuum

and contains the point z0 ∈ K0. Since V is not the whole K, the set W consists of {0} × V and ‘pieces’ of
the snake, where each ‘piece’ is a subset of the snake with positive distance from K0 (hence from z0) and
with positive distance from the union of all other ‘pieces’. Therefore the continuum F (D) is necessarily a
subset of {0}× V . So, F (D) ⊆ K0. Then by Lemma 4.5(b), each brick in D is mapped to a point and since
the consecutive bricks in D intersect, they are mapped to the same point. Thus F (D) is a singleton and so
F (D) = {z0}. Hence (P5).

By Lemma 4.11, all the bricks in the snake are mapped to z0 and since X is the closure of the snake,
F (X) = {z0}.

(b) If a point from Σ is mapped to the head, just use (a). Otherwise there is an extremal point of some
brick Kr

s which is mapped to a non-extremal point z of some brick Kn
j . By Lemma 4.10(d), F (Kr

s) = {z}. So
the family P of all bricks in the snake whose F -image is {z} is nonempty. We claim that P satisfies also (P2)-
(P5) from Lemma 4.11. Since z is a non-extremal point of Kn

j , (P2) and (P3) follow from Corollary 4.10(d).

Further, if F (Km
i ) = {z} for all i = 1, 2, . . . , then continuity gives F (xm+1) = z and by Corollary 4.10(d)

we get F (Km+1
1 ) = {z}. So we have (P4). To prove (P5), let m ≥ 2 and F (Km

i ) = {z} for all i = 1, 2, . . . .
In particular, we have F (xm) = z. Let U(z) ⊆ (Kn

j )
◦ be a small neighbourhood of z. By continuity, there

is N ∈ N such that F (Km−1
j ) ⊆ U(z) for all j ≥ N . Then, say by Corollary 4.10(d), for all j ≥ N there are

points zj ∈ U(z) such that F (Km−1
j ) = {zj}, j ≥ N . Then the F -image of the continuum {xm}∪

⋃∞
j=N K

m−1
j

is the countable set {z} ∪ {zj : j ≥ N}. Since this image has to be a continuum, the only possibility is that

zj = z for all j ≥ N . Hence Km−1
j ∈ P for all j ≥ N and (P5) is proved. Now, by Lemma 4.11, all the bricks

in the snake are mapped to z. Since X is the closure of the snake, we get F (X) = {z}.

(c) Consider a neighbourhood W of z0 as in the proof of (a). Now the open set F−1(W ) contains the
set K0. Since K0 is a compact set in X ⊆ [0, 1] × K, F−1(W ) necessarily contains a whole sub-snake
S = ((K0, f

m
i 〉〉 for some m and i. Since S is connected and has zero distance from z0, its image F (S) ⊆W

is connected and has zero distance from F (z0) = z0. Therefore, due to the structure of W described in the
proof of (a), F (S) is necessarily a subset of {0} × V . So, F (S) ⊆ K0. Then by Lemma 4.5(b), each brick
in S is mapped to a point and since the consecutive bricks intersect, also each set Dm ⊆ S is mapped to a
point. Since also consecutive sets Dm intersect, it is easy to see that F (S) is a singleton. Since F (S) has
zero distance from z0, we get F (S) = {z0}. Thus the snake is not F -invariant and (a) implies that F is a
constant map. Since z0 is in its range, we get F (X) = {z0}. �

Lemma 4.13. Assume that F is not constant. Then we have the following.

(a) F (Σ) ⊆ Σ and F |Σ : Σ → Σ is order-preserving, i.e. a 4 b implies F (a) 4 F (b) whenever a, b ∈ Σ.
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(b) F sends connected subsets of Σ to connected subsets of Σ.8 In particular, two consecutive points of
Σ are mapped to one point of Σ or again to two consecutive points of Σ.

(c) Let a, b ∈ Σ, a 4 b. Then F (a), F (b) ∈ Σ, F (a) 4 F (b) and F maps 〈〈a, b〉〉 onto 〈〈F (a), F (b)〉〉.
(d) For every m ∈ N there is k(m) ∈ N such that F (D∗

m) ⊆ D∗
k(m) (hence F (Dm) ⊆ Dk(m)).

(e) If F (D∗
m) contains the first point of D∗

k(m) and has zero distance from the first point of D∗
k(m)+1,

then F (D∗
m) = D∗

k(m).

Proof. (a-b) By Lemma 4.12(b), Σ is F -invariant. Assume that ℓ 4 f are two consecutive points of Σ, i.e.
the extremal points of a brick B in the snake. We are going to prove that F (ℓ) = F (f) or F (ℓ) and F (f)
are two consecutive points of Σ, i.e. the last point and the first point, respectively, of a brick in the snake
(in particular, in either case we have F (ℓ) 4 F (f)). If F (B) is a singleton, this is trivial. Otherwise, by
Lemma 4.6, F (B) is a brick C homeomorphic to B. So, also C is in the snake. By Corollary 4.8, ℓ and f
are mapped to the last point and to the first point of C, respectively, and we are again done.

Recall that Σ =
⊔∞

m=1 Σm where Σm := Σ ∩ D∗
m. Fix m. Using the fact that on any two consecutive

points of Σ the map F is order preserving in the special way proved above (i.e. the two consecutive points
are mapped either to the same point or to two consecutive points), we easily by induction get that F is
order preserving on Σm and F sends connected subsets of Σm to connected subsets of Σk(m) where k(m) is
a positive integer depending on m.

The elements of Σm form a sequence converging to the largest point fm+1
1 of Σm+1. If F (Σm) has the

smallest element then, by continuity of F at fm+1
1 we get that F sends fm+1

1 to that smallest element. If

the set F (Σm) does not have the smallest element then its elements form a sequence converging to f
k(m)+1
1

and continuity of F at fm+1
1 gives F (fm+1

1 ) = f
k(m)+1
1 . In either case, the facts that F is order preserving

both on Σm and Σm+1 and sends connected subsets of these two sets again to connected sets, imply that F
is order preserving on the set Σm ∪ Σm+1 and sends connected subsets of this set to connnected subsets of
Σ. Now it follows by induction that F sends connected subsets of Σ to connected subsets of Σ.

(c) We know from (a) and (b) that F (a) 4 F (b) are in Σ and F maps Σ∩ 〈〈a, b〉〉 onto Σ∩ 〈〈F (a), F (b)〉〉
in the order-preserving way. Now it is sufficient to use Lemma 4.10(c) and Corollary 4.9.

(d) Fix m. The set Σ ∩D∗
m consists of a sequence of points fm

1 , f
m
2 , f

m
3 , . . . . Since Σ is F -invariant, for

some k(m) we have F (fm
1 ) ∈ Σ ∩D∗

k(m) and, by induction and using (b), we get that the whole set Σ ∩D∗
m

is mapped into Σ ∩D∗
k(m). Now use Lemma 4.10(c) and Corollary 4.9, or the result from (c).

(e) This follows from the previous parts. �

Lemma 4.14. Let m < M be positive integers. Then there is exactly one continuous surjective map of Dm

onto DM .

Proof. Let M = m + k, k > 0. Let B1, B2, B3, . . . be the list of all bricks in D∗
m (here Bi := Km

i ).
Then B′

2k , B
′
2.2k , B

′
3.2k , . . . is the list of all bricks in D∗

M . Any two of the bricks in the former list are non-
homeomorphic and for every i, there is a homeomorphism hi : Bi.2k → B′

i.2k sending the first point and the
last point of Bi.2k to the first point and the last point of B′

i.2k , respectively.

Suppose that Φ : Dm → DM is a continuous surjective map. It is the restriction of a continuous selfmap
of X (consider the monotone retraction of X onto Dm composed with Φ). So, we can apply Lemma 4.6
to get that, for every j, Φ(Bj) is either a singleton or the brick B′

i.2k , where the latter case is possible

only if j = i.2k. The remaining last point of Dm is mapped to a point. Since countably many singletons
cannot cover the whole brick B′

i.2k , the surjective map Φ necessarily sends Bi.2k onto B′
i.2k , i = 1, 2, . . . . By

Lemma 4.5(e), Φ coincides on Bi.2k with the homeomorphism hi, i = 1, 2, . . . . If j is not a multiple of 2k,
Φ(Bj) is necessarily a singleton. By continuity (remembers also how hi maps extremal points of the bricks),
there is no choice: Φ necessarily sends the bricks B1, . . . B2k−1 to the first point of B′

2k , then the bricks
B2k+1, . . . , B2.2k−1 to the point where B′

2k and B′
2.2k intersect, etc., see Figure 4.5. Also, by continuity, Φ

has to send the last point of Dm to the last point of DM , see Lemma 4.1(4).

8Here we use “connected” in the sense of the theory of ordered sets, not topology.
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Figure 4.5. The unique continuous surjective map D1 → D3.

So, there is at most one continuous surjective Φ. Since the map acting as just described is obviously
continuous and surjective, the proof is finished. �

Remark 4.15. If m < M then there are (countably) many non-constant continuous non-surjective maps of

Dm into DM (say, modify Figure 4.5 by sending
⋃7

i=1 K
1
i to the intersection of K3

4 and K3
8, or by sending the

closure of
⋃∞

i=13 K
1
i to the intersection of K3

12 and K3
16, or both). What about non-constant continuous maps

DM → Dm? There is no such surjective map (no brick in DM can be continuously mapped onto such a brick
in Dm, say onto the first one, which is non-homeomorphic with any of the bricks in DM ). Non-constant
non-surjective maps DM → Dm do exist; one can show that each of them is the composition of a monotone
retraction of DM onto a brick B in DM with the unique homeomorphism from B onto the brick in Dm

homeomorphic to B.

4.5. Induced function “F . The sets Fix(“F ) and Fix(F ). To prove that S(X) = {0,∞}, we need to
understand the dynamics of all continuous maps F : X → X . To this end, it will be convenient first to

replace every such map F by what we will call an induced function “F . It will be something like a discrete
analogue of F , when we are basicly interested only in the images of bricks. To avoid a technical problem
with the fact that two bricks may intersect, we partition the continuum X into the sets (recall that if K is
a brick in the snake with extremal points f and ℓ, then K

◦ := K \ {f, ℓ})

K0 ≺ . . .

≺ · · · ≺ (Km
i )◦ ≺ {fm

i } ≺ · · · ≺ (Km
2 )◦ ≺ {fm

2 } ≺ (Km
1 )◦ ≺ {fm

1 }

≺ . . .

≺ · · · ≺ (K2
i )

◦ ≺ {f2
i } ≺ . . . (K2

2)
◦ ≺ {f2

2} ≺ (K2
1)

◦ ≺ {f2
1 }

≺ · · · ≺ (K1
i )

◦ ≺ {f1
i } ≺ · · · ≺ (K1

2)
◦ ≺ {f1

2} ≺ (K1
1)

◦ ≺ {f1
1}

(4.11)

where A ≺ B (or B ≻ A) has the meaning from the beginning of Subsection 4.3, i.e. a ≺ b whenever a ∈ A

and b ∈ B. Denote the family of all sets in (4.11) by “X . If A,B ∈ “X then we introduce also the notation
A 4 B (or B < A), By definition, for such special subsets of X , this means that A = B or A ≺ B. Recall
that for arbitrary subsets of X we do not define A 4 B.9

Clearly, (“X,4) is a linearly ordered set and analogously as in Lemma 4.3 we have the following obvious
fact.

Lemma 4.16. Every nonempty subset of (“X,4) has the largest element.

In particular, every element of “X different fromK0 has its left neighbour (the largest among those elements
which are to the left of it). Similarly, one can define the right neighbour of an element of X ; however, K0

and the elements {fm
1 } do not have right neighbours.

Lemma 4.17. Let A be any of the sets appearing in (4.11), i.e., let A ∈ “X. Then F (A) ⊆ B for exactly one

B ∈ “X. So, the continuous map F : X → X naturally induces a function “F : “X → “X defined by “F (A) = B

when F (A) ⊆ B for A,B ∈ “X.

9Note that if A,B ∈ X̂ then just defined relation A 4 B is not equivalent with a 4 b, a ∈ A, b ∈ B. Try A = B = (Km
i
)◦.
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Proof. We only need to prove the existence of such a set B (since A is nonempty and “X is a partition of
X , such B is then unique). This is trivial if A is a singleton {fm

n }. If A = K0 then, by Lemma 4.6, F (A)
is either K0 or a singleton, and again such B exists. Finally, let A = (Km

i )◦ for some m and i. Then, by
Lemma 4.6 and Corollary 4.8, F (A) is a singleton or F (A) = (Kn

j )
◦ for some n and j, and again we are

done. �

In view of Lemma 4.6, “F (A) = B thus means that F (A) is a singleton in B or coincides with B (or both,

if B ∈ “X is a singleton). Note also that if A,B ∈ “X and F (A) intersects B then the previous lemma and

the fact that “X is a partition of X , imply that F (A) ⊆ B and so “F (A) = B.

If ψ is any function let Fix(ψ) denote the set of fixed points of ψ. We are going to study the set Fix(“F ).
It will help us to describe the set Fix(F ) which will play a crucial role in description of all possible dynamics
on X .

Lemma 4.18. Assume that (Kr
s)

◦ is a fixed point of “F . Then we have one of the following.

(a) F ((Kr
s)

◦) = (Kr
s)

◦ and the restriction of F to Kr
s is identity.

(b) F ((Kr
s)

◦) = {z} for some z ∈ (Kr
s)

◦ and F (X) = {z}.

In particular, F has a fixed point in (Kr
s)

◦.

Proof. By continuity, also the Cook continuum Kr
s is F -invariant. So, either F is identity on Kr

s and we are
in the case (a), or F (Kr

s) = {z} for some z ∈ Kr
s. In the latter case z ∈ (Kr

s)
◦, because (Kr

s)
◦ is F -invariant.

It follows that Σ is not F -invariant whence F (X) = {z} by Lemma 4.12(b). So we are in the case (b). �

Corollary 4.19. Assume that F is not constant and (Kr
s)

◦ ∈ Fix(“F ). Then also {f r
s } and {ℓrs} = {f r

s+1}

belong to Fix(“F ).
Proof. Lemma 4.18 implies that the restriction of F to Kr

s is identity. �

Lemma 4.20. Fix(F ) ⊆
⋃
Fix(“F ) and Fix(F ) intersects every set A ∈ Fix(“F ).

Proof. Let x ∈ Fix(F ). Then x ∈ A for some A ∈ “X and since x is fixed for F , we have F (A) ∩ A 6= ∅.

Hence “F (A) = A and so x ∈ A ∈ Fix(“F ).
Now let a set A ∈ “X be a fixed point of “F . If A = {a} then a is a fixed point of F . If A is not a singleton

then either A = K0 or A = (Kn
j )

◦ for some n and j. In the former case we have F (K0) ⊆ K0 and the Cook
continuum K0 = A contains a fixed point of F . In the latter case use Lemma 4.18. �

Lemma 4.21. Suppose that A ≺ B in “X are such that “F (A) ≻ A and “F (B) ≺ B. Then there exists C

between A and B such that “F (C) = C.10

Proof. Suppose, on the contrary, that there is no such C. We may assume that A 6= K0, since otherwise

we can replace A by A∗ ∈ “X which is between A and B and sufficiently ‘close’ to K0 (then continuity of F

ensures that “F (A∗) is to the right of A∗). Further, we may assume that not only B, but also every element

between A and B (if A and B are not neighbours in “X) is mapped by “F to the left. Otherwise we replace

A by the largest element between A and B which is mapped by “F to the right. So, it is sufficient to deduce
a contradiction from the following assumptions: K0 ≺ A ≺ B, A is mapped to the right and all D with
A ≺ D 4 B are mapped to the left.

First assume that A has its right neighbour. Then either A = (Km
i )◦ is mapped to the right and its right

neighbour {fm
i } to the left, or A = {fm

i } (with i ≥ 2) is mapped to the right and its right neighbour (Km
i−1)

◦

to the left. Either case clearly contradicts the continuity of F .

Now let A = {fm
1 } for some m ≥ 2 (since A ≺ B, m 6= 1). Since A is mapped to the right, the continuity

of F implies that all elements between A and B which are sufficiently ‘close’ to A are also mapped to the
right, a contradiction with the fact that all D with A ≺ D 4 B are mapped to the left. �

10The lemma works also with B ≺ A, but we will not need it.
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Since the largest element of “X is either a fixed point of “X or is mapped to the left, this lemma immediately
gives the following corollary.

Corollary 4.22. If there is A in “X which is mapped by “F to the right, then “F has a fixed point different
from K0.

A subset of “X is said to be connected, if it contains all elements C between A and B whenever it contains
A and B.

Lemma 4.23. The set Fix(“F ) is nonempty, has the smallest element and the largest element, and is con-

nected. Moreover, if Fix(“F ) has more than one element, then Fix(F ) =
⋃
Fix(“F ).

Proof. Either K0 is a fixed point for “F or K0 ≺ “F (K0) and then Fix(“F ) 6= ∅ by Corollary 4.22. From now

on we will assume that Fix(“F ) has more than one element (and hence F is not constant), otherwise the rest
of the lemma is obvious.

Fix(“F ) has the largest element by Lemma 4.16. Suppose for a moment that Fix(“F ) has no smallest
element. In view of Corollary 4.19 it means that either

(i) for some m, Fix(“F ) does not contain {fm+1
1 }, while containing {fm

i } with arbitrarily large i, or

(ii) Fix(“F ) does not contain K0, while containing {fm
i } with arbitrarily large m (i depends on m).

In case (i), the point fm+1
1 , being the limit of a sequence of fixed points of F , is obviously fixed for F . So

{fm+1
1 } is fixed for “F , a contradiction. In case (ii), by considering a subsequence of fixed points converging

to a point in the head, we see that F has necessarily a fixed point also in K0 and so, by Lemma 4.6,

K0 ∈ Fix(“F ), a contradiction.

To prove that Fix(“F ) is connected, let A,B ∈ Fix(“F ) and A ≺ C ≺ B. We need to prove that C ∈ Fix(“F ).
By Corollary 4.19, it is sufficient to consider two cases, namely

(I) A = {fm+r
j } ≺ {xm+r} ≺ . . . ≺ {xm+1} ≺ {fm

i } = B where r ≥ 0, and if r = 0 then this reduces to

A = {fm
j } ≺ {fm

i } = B where j > i,
(II) A = K0 ≺ {fm

i } = B.

First consider the case (I). To prove that C ∈ Fix(“F ), it is clearly sufficient to show that the map F is
identity on DAB = 〈〈fm+r

j , fm
i 〉〉. Let BAB be the family of all bricks which are subsets of DAB (i.e. bricks

‘joining’ A and B). Then F (DAB) is a sub-continuum of X containing both fm+r
j and fm

i . Therefore the

first projection of F (DAB) contains the whole interval whose endpoints are the first projections of f
m+r
j and

fm
i , i.e

P1(F (DAB)) ⊇ P1(DAB) . (4.12)

Now notice that, by Lemma 4.6, if B1, B2 ∈ BA,B then F (B1) is either disjoint with B2 (then even their
first projections are disjoint) or F (B1) is a singleton in B2 or F (B1) = B2, where F (B1) = B2 is possible
only if B1 is homeomorphic to B2. It follows that for every brick B2 ∈ BAB there is a brick B1 ∈ BAB

homeomorphic to B2 (perhaps B1 = B2) such that F (B1) = B2 (one may notice that this strengthens (4.12)
to F (DAB) ⊇ DAB). Indeed, otherwise the first projection of the F -image of each of the countably many
bricks in BAB covers at most one point of the uncountable first projection of B2, a contradiction with (4.12).

However, as one can see from the construction of X (see (4.2) and (4.9)), every second brick among those
‘joining’ B and xm+1 is such that no other brick in BAB is homeomorphic with it (if r = 0 or if r = 1 and
j = 1 then necessarily even every brick, not only every second one, has this property). Therefore every such
brick is mapped onto itself and so, by Lemma 4.5(a), F is identity on it.

So, not only F fixes the singletons A and B but F is identity also on every second brick joining B and
xm+1 (joining B and fm

j if r = 0). It follows that F is identity on 〈〈xm+1, f
m
i 〉〉 (on 〈〈fm

j , f
m
i 〉〉 if r = 0), see

Lemma 4.10(b). If r = 0 or r = 1 and j = 1 (i.e. if the whole DAB is a subset of Dm), we are already done.
Otherwise, reasoning similarly but with B replaced by B′ = {xm+1} = {fm+1

1 }, we get that F is identity
also on that part of DAB which lies in Dm+1. Continuing this way, after finitely many steps we finish the
proof that F is identity on the whole set 〈〈fm+r

j , fm
i 〉〉.
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Now consider the case (II). It is sufficient to prove that F is identity on DK0B = 〈〈K0, f
m
i 〉〉. The set

F (DK0B) is a sub-continuum of X containing both a point from K0 (because K0 ∈ Fix(“F ) and K0 has fixed
point property) and the point fm

i . By the same cardinality argument as in the case (I) we get that F is
identity on the sub-snake ((K0, f

m
i 〉〉 and so it is identity also on 〈〈K0, f

m
i 〉〉.

Finally, let Fix(“F ) have at least two elements. In the proofs of the cases (I) and (II) we have shown that

F is identity on every set which is an element of Fix(“F ). This together with Lemma 4.20 give Fix(F ) =⋃
Fix(“F ). �

Corollary 4.24. If F is not constant, then the set Fix(F ) is either K0 or of the form 〈〈K0, f
m
i 〉〉 or

〈〈fn
j , f

m
i 〉〉 for some fn

j 4 fm
i .11

Proof. By Lemma 4.23, Fix(“F ) 6= ∅. First assume that K0 ∈ Fix(“F ), i.e. F (K0) ⊆ K0. By Lemma 4.5(a),
F is constant or identity on K0. The former case implies, by Lemma 4.12(c), that F is constant on X ,
a contradiction. Thus F is identity on K0 and so Fix(F ) ⊇ K0. Then, combining Corollary 4.19 and
Lemma 4.23 we get that either Fix(F ) = K0 or Fix(F ) = 〈〈K0, f

m
i 〉〉 for some m and i.

If some (Kr
s)

◦ ∈ Fix(“F ), then by Corollary 4.19 the set Fix(“F ) has more than one element and, by using
Lemma 4.23, we get that Fix(F ) is either 〈〈K0, f

m
i 〉〉 or 〈〈fn

j , f
m
i 〉〉 for some fn

j ≺ fm
i .

Finally, let some {fm
i } ∈ Fix(“F ), i.e. fm

i ∈ Fix(F ). We may assume that Fix(“F ) contains neither K0

nor any of the sets (Kr
s)

◦, since these cases have already been considered. Thus, since Fix(“F ) is connected,
{fm

i } is the only element of Fix(“F ). By Lemma 4.20, Fix(F ) = {fm
i }. �

4.6. Proof that S(X) = {0,∞}. We show that X does admit more continuous selfmaps than just the
identity and the constant maps, but not too many of them. Moreover, we show that besides selfmaps with
rather trivial dynamics, there is in a sense only one significant selfmap of X . So, X exhibits some degree of
rigidity.

Lemma 4.25. There is a continuous map G : X → X, a continuous extension of the map T : X1 → X1,
with the following properties.

(a) h∗(G) = ∞.
(b) For every r ∈ N, the set S1

r = 〈〈K0, xr〉〉 is G-invariant and h∗(G|S1
r
) = ∞.

(c) For every m ∈ N, G(D∗
m) = D∗

m+1.

Proof. Recall that by the construction of X from Subsection 4.1 we have X ⊇ X1 where X1 is the space
from Subsection 3.1, with C0 := K0 (the arbitrary continuum C0 has been replaced by the Cook continuum
K0). For the map T : X1 → X1 we have h∗(T ) = ∞, even for every positive integer r we have h∗(T |Sr

) = ∞
for the T -invariant set Sr, see (3.4). Note that Sr ⊆ S1 = X1, S

1

r ⊆ S1

1 = X and Sr ⊆ S1

r . To prove
the existence of G with (a) and (b), it is therefore sufficient to extend T : X1 → X1 to a continuous map
G : X → X such that S1

r is G-invariant. Indeed, G|X1 = T and h∗(T |Sr
) = ∞ trivially imply h∗(G|S1

r
) = ∞.

To find such G, recall the homeomorphisms hmi : Ki2m−1 → Km
i used in the construction of X , see (4.8).

Define G : X → X as follows:

(1) G|X1 = T ;
(2) for every m ∈ N, G maps D∗

m onto D∗
m+1 (hence (c)) in such a way that for every i ∈ N,

G(Km
2i) = K

m+1
i with G(x) = hm+1

i ◦ (hm2i)
−1 whenever x ∈ K

m
2i,

and G(Km
2i−1) = {fm+1

i }.

(One can see that the restriction of G to Km
2i defined above is a homeomorphism and it is in fact the only

non-constant continuous map K
m
2i → K

m+1
i , see Lemma 4.5(e), cf. Lemma 2.12(3).) Clearly, G : X → X is

a continuous extension of T and every set S1

r is G-invariant. �

Lemma 4.26. Assume that F is not constant and p ∈ Σ is the smallest element of Fix(F ). Then for every
x ∈ X such that x 4 p we have F 2(x) = p (but in general not F (x) = p).

11The case fn
j

= fm
i

= f1
1 can in fact be excluded because if Fix(F ) = {f1

1 } then F can be shown to be constant.
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Proof. We have p = fn
j for some n and j. The brick K

n
j contains no fixed point of F different from

p. Therefore, by Lemma 4.10(a), F (Kn
j ) = {p}. Then, by Lemma 4.13(c), the sub-snake ((K0, p〉〉 is F -

invariant. It is sufficient to prove that the F 2-image of this sub-snake is just {p}; since the head is in the
closure of this sub-snake, the lemma follows. There are three possibilities.

Case 1 : F (((K0, p〉〉) = {p}. Then there is nothing to prove.

Case 2 : F (((K0, p〉〉) = Kn
j . Since F (Kn

j ) = {p}, we get F 2(((K0, p〉〉) = {p} as required. To show that

here we cannot in general replace F 2 by F , see Figure 4.3 and consider the following map. Let p = f2
2 (i.e.,

p is the first point of the brick K2
2, which is a copy of K4) and let Fix(F ) = 〈〈p, x1〉〉. Now, send the points

of D2 which are to the left of p into p, the brick K3
1 (which is also a copy of K4) homeomorphically onto K2

2,
and all those points of X which are to the left of K3

1 into the last point of K2
2.

Case 3 : F (((K0, p〉〉) ⊇ Kn
j+1 ∪ Kn

j . We show that this is impossible. Indeed, by Corollary 4.7, in this
case there are bricks B1 and B2 in ((K0, p〉〉 such that F (B1) = Kn

j and F (B2) = Kn
j+1. Since F (K

n
j ) = {p},

also F (Kn
j+1) = {p} (note that Kn

j+1 cannot be mapped onto Kn
j because the bricks Kn

j+1 and Kn
j are not

homeomorphic, see Lemma 4.6). So, B1 and B2 are in ((K0, f
n
j+2〉〉, B1 is homeomorphic to Kn

j and B2 is

homeomorphic to Kn
j+1. However, it follows from (4.2), cf. Figure 4.3, that in ((K0, f

n
j+2〉〉 there may exist

such a brick B1 or such a brick B2, but not both. The reason is that no two bricks in Dn are homeomorphic
and when we construct the bricks in the sets Dn+1, Dn+2, . . . , then they are always homeomorphic copies of
every second of the bricks in the previous set. However, Kn

j and Kn
j+1 are two consecutive bricks of Dn. �

Lemma 4.27. Assume that F is not constant and q ∈ Σ is the largest element of Fix(F ). Then there exists
N ∈ N such that FN (x) = q for all points x < q.

Proof. We have q = fn
j for some n and j. Let q ≺ x1, otherwise there is nothing to prove.

First assume that j ≥ 2, i.e. Kn
j is not the first brick of Dn. Since q is fixed, we deduce from Lemma 4.13

that the F -images of the bricks Kn
j−1, . . .K

n
1 are subsets of 〈〈q, xn〉〉. Since these bricks are pairwise non-

homeomorphic, Lemma 4.6 shows that they are mapped to singletons. Due to continuity of F we then
have

F (〈〈q, xn〉〉) = {q}

and (if n ≥ 2), using again Lemma 4.13 and continuity of F , F (D∗
n−1) ⊆ 〈〈q, xn〉〉. The last two formulas

give F 2(D∗
n−1) = {q}. In particular the point xn−1 is mapped by F 2 to q and so (if n ≥ 3), by Lemma 4.13

applied to the continuous map F 2, we get F 2(D∗
n−2) ⊆ 〈〈q, xn〉〉. Hence F 3(D∗

n−2) = {q}. Continuing this

way (if n ≥ 4) we get F 4(D∗
n−3) = {q}, . . . , Fn(D∗

1) = {q}. So, we see that for N = n, FN (x) = q for all
points x < q.

Now assume that j = 1, i.e. q = fn
1 = xn. Since q ≺ x1, we have n ≥ 2. By Lemma 4.13, either

F (D∗
n−1) = {q} or F (D∗

n−1) ⊆ D∗
n−1. The latter case is impossible because all the bricks in D∗

n−1 are
pairwise non-homeomorphic and so, by Lemma 4.6, each of them would be mapped to a singleton or onto
itself. However, if a brick in D∗

n−1 is mapped onto itself then the restriction of F to such a brick is the
identity, contradicting the assumption that q is the maximal element of Fix(F ). Therefore we have

F (D∗
n−1) = {q}. (4.13)

If n ≥ 3, consider the next set D∗
n−2. Since F (xn−1) = q and F is continuous, by Lemma 4.13 we get

that either F (D∗
n−2) = {q} or F (D∗

n−2) ⊆ D∗
n−1. Using (4.13) we get that in either case F 2(D∗

n−2) = {q}.
If n ≥ 4, consider the set D∗

n−3. Since F 2(xn−2) = q, by Lemma 4.13 applied to F 2 we get that either

F 2(D∗
n−3) = {q} or F 2(D∗

n−3) ⊆ D∗
n−1. Hence F 3(D∗

n−3) = {q}. Continuing this way (if n ≥ 5) we get

F 4(D∗
n−4) = {q}, . . . , Fn−1(D∗

1) = {q}. So, we see that for N = n− 1, FN (x) = q for all points x < q. �

Lemma 4.28. Assume that F is not constant and has no fixed point in the snake. Let m ∈ N. Then
F (D∗

m) ⊆ D∗
k(m) for some k(m) > m.

Proof. By Lemma 4.13(d), F (D∗
m) ⊆ D∗

k(m) for some k(m) ∈ N. No element A ∈ “X \ {K0} is a fixed point

of “F , otherwise Lemma 4.20 gives the existence of a fixed point of F in the snake, a contradiction. Therefore,

by Corollary 4.22, every element A ∈ “X \ {K0} is mapped by “F to the left. It follows that k(m) ≥ m. To
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prove strict inequality, suppose on the contrary that F (D∗
m) ⊆ D∗

m. Consider the point xm+1. Since it is
in the closure of D∗

m and F (D∗
m) ⊆ D∗

m, it is mapped by F to the closure of D∗
m. By the assumption, it is

not a fixed point of F and so it is in fact mapped by F to D∗
m. This contradicts the fact that every element

A ∈ “X \ {K0} is mapped by “F to the left, in particular “F ({xm+1}) ≺ {xm+1}. �

If F (D∗
m) ⊆ D∗

k(m), then we say that the jump of D∗
m has length k(m) − m and we write jump(m) =

k(m) − m. Under the assumptions of the previous lemma, all the sets D∗
m have jumps of positive length

(i.e., they ‘jump’ to the left under the action of F ).

Lemma 4.29. Assume that F is not constant and has no fixed point in the snake.

(a) For every m, jump(m+ 1) ∈ {jump(m)− 1, jump(m)}.
(b) The sequence jump(1), jump(2), . . . is eventually constant.
(c) There exist positive integers r and N such that on S1

r = 〈〈K0, xr〉〉 we have

F |S1
r
= GN |S1

r

where G is the map from Lemma 4.25.

Proof. (a) Fix m. By Lemma 4.13, we have F (D∗
m) ⊆ D∗

k(m) and F (D
∗
m+1) ⊆ D∗

k(m+1). Since F |Σ preserves

the order 4 on Σ, and D∗
m+1 is to the left of D∗

m, either D∗
k(m+1) is to the left of D∗

k(m) or D
∗
k(m+1) = D∗

k(m).

Thus, either k(m+1) > k(m) or k(m+1) = k(m). On the other hand, we cannot have k(m+1) ≥ k(m)+ 2
because then there would exists at least one set D∗

r lying between the sets D∗
k(m+1) and D∗

k(m) and so the

F -image of the connected set D∗
m ∪D∗

m+1 would be disconnected. Therefore either k(m+ 1) = k(m) + 1 or
k(m+1) = k(m). In the former case jump(m+1) = k(m+1)− (m+1) = k(m)−m = jump(m) and in the
latter case jump(m+ 1) = k(m+ 1)− (m+ 1) = k(m)−m− 1 = jump(m)− 1.

(b) This follows from (a) since, under the assumptions, the jumps are positive integers.

(c) By (b), there exist positive integers r ≥ 2 and N such that jump(i) = N for i ≥ r− 1. Thus F (D∗
i ) ⊆

D∗
i+N for every i ≥ r − 1. Here F (D∗

r−1) may be a proper subset of D∗
r−1+N (cf. Remark 4.15). However,

we claim that F (D∗
i ) = D∗

i+N for i ≥ r. Indeed, suppose that there exists i ≥ r with F (D∗
i ) ( D∗

i+N . Then,
by Lemma 4.13(e), the set F (D∗

i ) either does not contain the first point of D∗
i+N or has positive distance

from the first point of D∗
i+N+1. It contradicts the fact that the F -images of connected sets D∗

i ∪D∗
i−1 and

D∗
i ∪D

∗
i+1 have to be connected.

Once we know that F (D∗
i ) = D∗

i+N for i ≥ r, Lemma 4.13(e) implies that even F (Di) = Di+N , i ≥ r.

Since GN (Di) = Di+N for every i, Lemma 4.14 gives that F and GN coincide on Di, i ≥ r. Hence they
coincide on the sub-snake ((K0, xr〉〉 and, by continuity, also on S1

r . �

We finally get the following result.

Proposition 4.30. For the one-dimensional continuum X ⊆ R3 constructed above in (4.10) we have S(X) =
{0,∞}. Moreover, if F : X → X is a continuous map then h∗(F ) = ∞ if F is non-constant and has no
fixed point in the snake, otherwise h∗(F ) = 0.

Proof. Let F : X → X be a continuous map. If F is constant then h∗(F ) = 0. Now let F be non-constant.

First assume that F has a fixed point in the snake. By Corollary 4.24, Fix(F ) is either of the form
〈〈K0, f

m
i 〉〉 or 〈〈fn

j , f
m
i 〉〉 for some fn

j 4 fm
i . Then, by Lemmas 4.26 and 4.27, there exists a positive integer

N such that FN (X) = Fix(F ). This clearly implies that hA(F ) = 0 for any sequence A and so h∗(F ) = 0
(alternatively, use Proposition 2.7(a)).

Now assume that F has no fixed point in the snake. Then, by Lemma 4.29(c), there exist positive integers
r and N such that on S1

r = 〈〈K0, xr〉〉 we have

F |S1

r
= GN |S1

r

where G is the map from Lemma 4.25. So, h∗(G|S1
r
) = ∞ and since h∗(T ) = h∗(TN) for every T , we have

also h∗(GN |S1
r
) = ∞. Then h∗(F ) ≥ h∗(F |S1

r
) = h∗(GN |S1

r
) = ∞.

We have shown that, for every continuous map F on X , either h∗(F ) = 0 or h∗(F ) = ∞ and so the
proposition is proved. �
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5. A map T : X1 → X1 with h∗(T ) = log 2

Recall that in the construction of the continuum X with S(X) = {0,∞} we started with the auxiliary
system (X1, T ) such that h∗(T ) = ∞. The (disconnected) space X1 consisted of two parts. The first part
was a Cook continuum (with identity on it), the second one was just one orbit x0, x1, . . . approaching the
first part. Having defined the system (X1, T ), for each m we have ‘joined’ the points xm and xm+1 by a
continuum Dm in the form of a sequence of Cook continua and we obtained in such a way the continuum X
with the required property S(X) = {0,∞}.

In this section and the next one, we are going to construct a continuum X ⊆ R3 with S(X) = {0, log 2}
in a similar way; we start with an auxiliary system (X1, T ) and then we add sequences of Cook continua.
However, now the construction is more complicated. In fact, it is much easier to make all ‘nontrivial’
continuous selfmaps T to have h∗(T ) extremely large, i.e. equal to ∞, than to have it equal exactly to log 2,
neither larger nor smaller.

In this section, we will first construct a system (X1, T ) with h
∗(T ) = log 2 and then show that h∗(T ) =

log 2.

5.1. Construction of a system (X1, T ). The first part of our system (X1, T ) in R3 will be the one point
compactification of n 7→ n+ 1 on Z. Let its countable phase space A be a subset of the unit circle S1 lying
in the vertical plane π0 (containing the second and third axes), the first axis going to the right.12

So, let ai, i ∈ Z and a∞ be different points in S1, with limi→∞ ai = limi→∞ a−i = a∞, see Figure 5.1,
and put A = {ai|i ∈ Z} ∪ {a∞}. Define the restriction of T to the set A by putting T (ai) = ai+1 and
T (a∞) = a∞.

*

a0

*

a1
*

a−1

*
a2*

a−2

* a3*a−3

* a4
*a−4

*
a5

*
a−5

*

a6
*

a−6
*

a7

*

a−7 *

a∞

1

Figure 5.1. The system (A, T |A) lying in the vertical plane π0

To keep under control the continuity of the map T : X1 → X1, as well as for investigating IN-tuples, we
will work with neighbourhoods (in R3) of the points ai, i ∈ Z and a∞. For each k ∈ N fix a family of pairwise
disjoint open sets Uk(ai) ∋ ai, i ∈ Z such that Uk(ai) is the product of the interval (−1/3k, 1/3k) and a
small open disk in π0 centered at ai, such that

diam(Uk(ai)) < 1/k and Uk+1(ai) ⊆ Uk(ai) for every k and i.

12We think of R3 as the product (−∞,∞)× π0, each point z ∈ R3 being uniquely determined by its projections P1(z) and
P2(z) into (−∞,∞) and π0, respectively.
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Choose also a neighbourhood U1(a∞) of a∞ such that

U1(a∞) ∩ U1(aj) = ∅ for |j| ≤ 3. (5.1)

The second part of (X1, T ) will be formed by just one trajectory x0, x1, . . . lying in (0, 1] × A, with
T (xi) = xi+1, approaching our set A. In particular, we choose

(the distance of xj from π0) ց 0 as j → ∞. (5.2)

Since the set of all accumulation points of this trajectory will be the set A, all sequence entropy tuples of
(X1, T ), if any, will consist only of points of the set A. So, we claim that to get h∗(T ) = log 2, it will be
sufficient to fulfill the following list of requirements:

(1) (a0, a1) is an IN-pair for T ,
(2) (a0, aj) is not an IN-pair for T for any |j| ≥ 2,
(3) (a0, a∞) is not an IN-pair for T .

Indeed, (1) implies h∗(T ) ≥ log 2. On the other hand, (2) and (3) imply that there is no intrinsic IN-tuple
of length 3. In fact, suppose that such a tuple of length 3 exists. It does not contain a∞, otherwise there is
also an IN-pair of the form (ai, a∞) for some i ∈ Z, but then, using Proposition 2.6(a) or Proposition 2.7(b),
also (T−i(ai), T

−i(a∞)) = (a0, a∞) is an intrinsic IN-pair, contradicting (3). So, if an intrinsic IN-tuple
of length 3 exists, it is of the form (ai, aj, ak), where i < j < k are integers. By Proposition 2.6(a) or
Proposition 2.7(b), (T−i(ai), T

−i(ak)) = (a0, ak−i) is an intrinsic IN-pair and since |k − i| ≥ 2, we have a
contradiction with (2).

To fulfill the three above requirements, it is obviously sufficient to fulfill the following two requirements:

(R1) For every k, the tuple (Uk(a0), U
k(a1)) has an independence set of times of cardinality k + 1 (this

is equivalent to (1)).
(R2) The tuple (U1(a0), U

1(aj)) does not have an independence set of times of cardinality 5 whenever
|j| ≥ 2 or j = ∞ (this implies (2) and (3)).

Now we are going to describe the sequence x0, x1, . . . , i.e. the trajectory of x0 under T . It will be a
concatenation of infinitely many finite sequences, some of them will be called blocks , the others will be
called outer gaps :

x0, x1, · · · = 1st block, 1st outer gap, 2nd block, 2nd outer gap, . . . . (5.3)

Further, for every k, the k-th block will be a concatenation of finite sequences called pieces and inner gaps :

k-th block = 1st piece, 1st inner gap, 2nd piece, . . . , (2k+1 − 1)st inner gap, (2k+1)-th piece. (5.4)

A proper choice of pieces will ensure (R1) and proper choices of inner and outer gaps will ensure (R2).

The k-th block and the k-th outer gap will be denoted by B(k) and OG(k) , respectively, k = 1, 2, . . . . The
k-th outer gap OG(k) will have length og(k) . The pieces in the k-th block (denoted by P (k, l), 1 ≤ l ≤ 2k+1)
will be finite sequences of the same lengths nk

k+1. The t-th inner gap in k-th block (denoted by IG(k, t), 1 ≤
t ≤ 2k+1 − 1) will have length ig(k, t). (The detailed definitions of nk

k, ig(k, t), og(k), P (k, l), IG(k, t), OG(k)
will be given later.) Thus, the structure of the trajectory is as in Table 3, the 3rd row shows the lengths.

B(1) OG(1) . . . B(k) . . .

P (1, 1) IG(1, 1) P (1, 2) IG(1, 2) P (1, 3) IG(1, 3) P (1, 4) . . . P (k, 1) . . . P (k, 2k+1) . . .

n1
1 + 1 ig(1, 1) n1

1 + 1 ig(1, 2) n1
1 + 1 ig(1, 3) n1

1 + 1 og(1) . . . nk
k
+ 1 . . . nk

k
+ 1 . . .

Table 3. Blocks, pieces, gaps and their lengths

For each k, the 2k+1 pieces in the k-th block will be designed so that (R1) be fulfilled for this k. Denote

F (k) = {0, 1}{0,1,2,··· ,k} = {sl : 1 ≤ l ≤ 2k+1}, s1 = (0, 0, . . . , 0), . . . , s2k+1 = (1, 1, . . . , 1). (5.5)
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So, for each k we fix, once and for all, a choice of 2k+1 functions sl. They can be considered as (k+1)-tuples
of zeros and ones. Say, let them be ordered from s1 to s2k+1 lexicographically (then s1 and s2k+1 are constant,
as written above).13

For each l, the piece P (k, l) will be a finite sequence of length nk
k + 1 of the form

P (k, l) = xj , xj+1, . . . , xj+nk
1
, . . . , xj+nk

2
, . . . , xj+nk

k
(5.6)

where j = j(k, l) ≥ 0 will depend on both k and l, but nk
1 , . . . , n

k
k only on k and not on l,14 such that

xj ∈ Uk(asl(0)), T
nk
i xj = xj+nk

i
∈ Uk(asl(i)), 1 ≤ i ≤ k . (5.7)

Equivalently, if we put nk
0 := 0, this means that xj ∈

⋂k
i=0 T

−nk
iUk(asl(i)). Since for each l = 1, . . . , 2k+1

there will be a piece P (k, l) corresponding to sl, the set

N(k) = {nk
0 = 0, nk

1 , . . . , n
k
k} (5.8)

will be an independence set of times of length k + 1 for (Uk(a0), U
k(a1)).

We see from (5.6) that the piece P (k, l) consists of k shorter sequences, called winds :

W
(k,l)
1 = xj(= xj+nk

0
), xj+1, . . . , xj+nk

1
, . . . , W

(k,l)
k = xj+nk

k−1
, . . . , xj+nk

k
. (5.9)

The wind W
(k,l)
i starts in xj+nk

i−1
∈ Uk(asl(i−1)) and ends in xj+nk

i
∈ Uk(asl(i)). Put wk

i = |W
(k,l)
i |.15 The

following table shows the structure of P (k, l). The second row shows the function (tuple) to which the piece
corresponds, the last row contains the lengths of the winds.

P (1, 1) P (1, 2) P (1, 3) P (1, 4) . . .

s1 = (0, 0) s2 = (0, 1) s3 = (1, 0) s4 = (1, 1) . . .

W
(1,1)
1 W

(1,2)
1 W

(1,3)
1 W

(1,4)
1 . . .

w1
1 = n1

1 + 1 w1
1 w1

1 w1
1 . . .

P (k, l) = xj , . . . , xj+nk
1
, . . . , x

j+nk
2
, . . . , x

j+nk
k

. . .

sl = (sl(0), sl(1), . . . , sl(k)) . . .

W
(k,l)
1 W

(k,l)
2 . . . W

(k,l)
k

. . .

wk
1 = nk

1 − nk
0 + 1 = nk

1 + 1 wk
2 = nk

2 − nk
1 + 1 . . . wk

k
= nk

k
− nk

k−1
+ 1 . . .

Table 4. Winds and their lengths

Note that each of the elements xj+nk
1
, . . . , xj+nk

k−1
belongs to two of these winds. So, the winds in P (k, l)

are not disjoint, two consecutive winds have one point in common. However, we will abuse terminology and
we still will say that P (k, l) is a concatenation of these winds. The fact that P (k, l) consists of k winds
(though not pairwise disjoint) will also be expressed by saying that P (k, l) ‘winds k-times around the set A’.

We have seen that already the mere concatenation of the pieces

P (1, 1), . . . , P (1, 4), P (2, 1), . . . , P (2, 8), . . . , P (k, 1), . . . , P (k, 2k+1), . . .

ensures (R1). Unfortunately, then there is a risk that (U1(a0), U
1(aj)) for some |j| ≥ 2 or (U1(a0), U

1(a∞))
will have an independence set of times of length 5. Therefore, to be sure that also (R2) is fulfilled, we are
going to add the gaps as indicated above. Since the proof that the gaps will really have the required effect
will need computations, we are going to describe the trajectory x0, x1, . . . in more details. We provide also
pictures.

Our space X1 will be a subset of [0, 1]×A ⊆ [0, 1]× π0, so let P1 and P2 be the projections of [0, 1]× π0
onto [0, 1] and π0, respectively. The trajectory x0, x1, . . . will be chosen such that

P2(xi) ∈ A, i = 0, 1, 2, . . . , and P1(xi) ց 0 (5.10)

13Since the functions sl depend both on k and l, we should in fact write s(k,l) rather than just sl. We abuse notation here

hoping that no misunderstanding will arise.
14Therefore we write nk

i
rather than n

(k,l)
i

.
15The wind W

(k,l)
i

depends on k, l and i but its length does not depend on l, therefore we write wk
i
rather than w

(k,l)
i

.
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U1(a0) U1(a1)U1(a−1)
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Figure 5.2. P (1, 1) = {x0, x1, . . . , x7}
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Figure 5.3. IG(1, 1) =
{x8, x9, . . . , xm1−1} with
m1 − 8 = ig(1, 1)
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Figure 5.4. P (1, 2) =
{xm1 , xm1+1, . . . , xm1+7}
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Figure 5.5. IG(1, 2) =
{xm1+8, xm1+9, . . . , xm2−1}
with m2 −m1 − 8 = ig(1, 2)

and so all the accumulation points of the trajectory x0, x1, . . . will be in A.

Recall that, to ensure (R1), the first block B(1) has 22 pieces. Each piece P (1, l), corresponding to an
sl ∈ {0, 1}{0,1}, satisfies (5.7) for k = 1. We have n1

0 = 0 and choose n1
1 = 7. Further, s1 = (0, 0), s2 = (0, 1),

s3 = (1, 0) and s4 = (1, 1). Figures 5.2-5.9 show the four pieces and the three inner gaps of the first block,
and the first outer gap. We are going to explain how the pictures should be understood.

Let us start with Figure 5.2 which shows the piece P (1, 1) = {x0, x1, . . . , x7}. We are looking at our
system along the first axis (with the eyes at the point +∞) and so what we see in that picture is in fact
the projection onto the vertical plane π0. Thus, though we consider our ‘cylindrical’ neighbourhoods U1(ai)
of the points ai, on the picture we can see only their projections onto π0, i.e. disks. However, we keep the
notation U1(ai) rather than P2(U

1(ai)). Similarly, we consider points x0, x7 ∈ (0, 1]× {a0} but we can see
only their projections onto π0, still keeping the notations x0 and x7. Since P2(x0) = P2(x7) = a0 = P2(a0),
the projections of both points x0 and x7 should be in the center of the corresponding disk. However, our
rule when drawing the picture is that if the projections of points we consider are exactly the centers of the
disks, we draw them as different points in that disk, not to loose the lucidity of the picture. So, Figure 5.2
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Figure 5.6. P (1, 3) =
{xm2 , xm2+1, . . . , xm2+7}
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Figure 5.7. IG(1, 3) =
{xm2+8, xm2+9, . . . , xm3−1}
with m3 −m2 − 8 = ig(1, 3)
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Figure 5.8. P (1, 4) =
{xm3 , xm3+1, . . . , xm3+7}
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Figure 5.9. OG(1) =
{xm3+8, xm3+9, . . . ,
xm3+7+og(1)}

means: x0, x7 ∈ (0, 1]×{a0}, x1 ∈ (0, 1]×{a1}, . . . , x4 ∈ (0, 1]×{a−3}, . . . . Further, arrows of course mean
that T (xi) = xi+1 for i = 0, 1, . . . , 6. Recall also that P1(x0) > · · · > P1(x7), see (5.10).

The first piece P (1, 1) is concatenated with the first inner gap IG(1, 1) = {x8, x9, . . . , xm1−1}, see Fig-
ure 5.3. Here x8 ∈ (0, 1]× {a1}. Of course T (x7) = x8, but we do not draw the corresponding arrow (since
we even do not draw x7 in Figure 5.3). We continue this way, alternating pieces and inner blocks until the
first block is completed, see Figures 5.4-5.8. Finally, before starting the construction of the second block, we
add the first outer gap OG(1) = {xm3+8, xm3+9, . . . , xm3+7+og(1)}, see Figure 5.9.

The pictures show the role of those finite sequences whose concatenation gives the T -trajectory of x0 and
they also show why T is continuous. Let us go to details.

The pieces P (1, 1), P (1, 2), P (1, 3) and P (1, 4) give the existence of points x0, xm1 , xm2 and xm3 ,
respectively, such that x0 is in U1(a0) at time n1

0 = 0 and again in U1(a0) at time n1
1 = 7, xm1 is in U1(a0)

at time n1
0 = 0 and in U1(a1) at time n1

1 = 7, xm2 is in U1(a1) at time n1
0 = 0 and in U1(a0) at time n1

1 = 7,
and xm3 is in U1(a1) at time n1

0 = 0 and again in U1(a1) at time n1
1 = 7.



TOPOLOGY AND TOPOLOGICAL SEQUENCE ENTROPY 37

If k > 1, the structure of the pieces in B(k) is more complicated than in the case k = 1. To make the
life of the reader easier, we add one more picture. For instance, consider k = 2. Let the corresponding
independence set of times be, say, {n2

0 = 0, n2
1 = 9, n2

2 = 23} (this is just for an illustration, later in fact the
numbers n2

1 and n2
2 will be chosen much larger). Further, consider for instance l = 6. The piece P (2, 6),

see (5.6) and Figure 5.10, corresponds to s6 = (1, 0, 1). So, at time n2
0 = 0 the piece starts at U2(a1)

(because s6(0) = 1), at time n2
1 = 9 it visits U2(a0) (because s6(1) = 0) and at time n2

2 = 23 it ends in
U2(a1) (because s6(2) = 1).

U1(a0) U1(a1)U1(a−1)

U1(a2)U1(a−2)

U1(a3)U1(a−3)

U1(a4)U1(a−4)

U1(a5)U1(a−5)

U1(a−6) U1(a6)
*

a−7

*

a7*

a∞

b
b

xl

xl+23

b

bb

bb

bb

b

b

xl+9

bb

bb

bb

bb

bb

bb

b

1

Figure 5.10. The piece P (2, 6) corresponding to s6 = (1, 0, 1), with {n2
0 = 0, n2

1 = 9, n2
2 =

23}. It consists of two winds W
(2,6)
1 and W

(2,6)
2 with lengths w2

1 = 10 and w2
2 = 15.

We want that T : X1 → X1 be continuous. Therefore, when constructing the trajectory x0, x1, . . . ap-
proaching the set A (where T has already been defined), we use the general rule that the P2-projections of
consecutive points xi, xi+1 are the consecutive points of A (consecutive in the sense of T |A-dynamics). In
rare exceptions from this rule the points xi, xi+1 are either ‘far away’ from the plane π0 (such as x3 and x4
in Figure 5.2) or they both are ‘close’ to the fixed point a∞. Always, when xi, xi+1 is such an exception, the
point xi is on the ‘right side’ of a∞ and xi+1 is on the ‘left side’ of a∞ (see e.g. the ‘jump’ from x3 on the
‘right side’ of a∞ to x4 on the ‘left side’ of a∞ in Figure 5.2 or two such ‘jumps’ in Figure 5.10). In fact we
will have infinitely many exceptions from what we call the general rule, but they will be closer and closer to
the fixed point a∞. Therefore the continuity of T will not be violated.

The inner gap IG(1, l) is inserted between the pieces P (1, l) and P (1, l + 1) and so, following the just
mentioned general rule, we take care that P2(first point of IG(1, l)) = T |A(P2(last point of P (1, l))) and
P2(first point of P (1, l + 1)) = T |A(P2(last point of IG(1, l))) (check this in our pictures).

The outer gap OG(1) is used for linking the blocks B(1) and B(2). So, the first point in OG(1) is xm3+8,
the first point in B(2) is xm3+og(1)+8 and when choosing their positions we keep our general rule mentioned
above, cf. Figures 5.8 and 5.9.

The constructions of B(2) and OG(2) and, generally, B(k) and OG(k) go in an analogous way. However,
note that in B(1) each of the pieces winds around A only once (i.e., it consists of just one wind). Each of
the inner gaps in the first block, as well as the first outer gap, also wind around A once. When constructing
B(k) and OG(k), all the gaps will still wind around A only once (therefore we do not introduce the notion of
a wind in a gap), but each of the pieces in B(k) will k times wind around A. So, each piece in B(k) consists
of k winds. This is because the role of the pieces in B(k) is to ensure that there exists an independence set
{nk

0 = 0, nk
1 , . . . , n

k
k} of times of length k + 1 for (Uk(a0), U

k(a1)). Our way how to do that is as follows.
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Given sl ∈ {0, 1}{0,1,...,k}, the piece P (k, l) starts in Uk(asl(0)) at time nk
0 = 0, then winds once around A

to come to Uk(asl(1)) at time nk
1 (this is the last point of the wind W

(k,l)
1 and the first point of the wind

W
(k,l)
2 ), again winds once around A to come to Uk(asl(2)) at time nk

2 (this was the wind W
(k,l)
2 ), and so on,

finally winds around A to come to Uk(asl(k)) at time nk
k (this was the wind W

(k,l)
k ). For an example see

Figure 5.10 where the piece P (2, 6) consists of two winds.

Now the reader has a global picture of the system (X1, T ).

Before going to a more detailed specification of parameters in our construction, we introduce some no-
tation. Let Yk be the concatenation of B(k) and OG(k). If we abuse the notation (making no difference
between a finite sequence and its set of values), then

Yk = B(k) ∪OG(k)

and the second part of X1, i.e. the orbit of x0, is the set Y =
⋃∞

k=1 Yk. For k = 1, 2, . . . , the set (or the
finite sequence) Yk will be called the k-th level of Y . So, by saying that a point is in the k-th level we mean
that it belongs to Yk. Further, let S be a finite subsequence of the trajectory x0, x1, . . . (say, S is a block, a
piece, a gap or a wind). Consider the (finite) set

pre(S) = {xi : 0 ≤ i < s, where xs is the first element of S} .

We will call it the set of all predecessors of S . If s ≥ 1, the point xs−1 will be called the immediate
predecessor of S .

Let us also adopt the convention that

• a≫ b, or b≪ a , means that a > 100× b, and
• (ai)

N
i=1 ⇈ and (ai)

∞
i=1 ⇈ mean that in the corresponding sequence we have ai ≪ ai+1 for each

considered i (except of i = N in the first case). Moreover, in each of these cases we will sometimes
write just (ai) ⇈.

If S is a finite set or a finite injective sequence, we will denote by |S| the number of points in S.

For proving that h∗(T ) is log 2 (and not higher), we still need to specify appropriately some of the pa-
rameters, namely, for k ∈ N, the independence set of times N(k) = {nk

0 = 0, nk
1 , n

k
2 · · · , n

k
k} , the outer gap

length og(k) and the inner gap lengths ig(k, j) , 1 ≤ j ≤ 2k+1 − 1. When imaging how we construct the
trajectory x0, x1, . . . , cf. Table 3 and (5.6), we see that we just need to specify the numbers n1

1, ig(1, 1),
ig(1, 2), ig(1, 3), og(1), n2

1, n
2
2, ig(2, 1), . . . , ig(2, 7), og(2), n

3
1, n

3
2, n

3
3, ig(3, 1), . . . . Notice that to specify

the numbers nk
i is equivalent, cf. Table 4, with specifying the lengths of all winds. However, note that the

lengths of the winds in the pieces P (k, l) do not depend on l and so we will, for each k, specify only the

lengths of the windsW
(k,1)
1 , . . . ,W

(k,1)
k , which will be equivalent with specification of the numbers nk

1 , . . . , n
k
k.

Thus, our task is to specify w1
1 , ig(1, 1), ig(1, 2), ig(1, 3), og(1), w

2
1 , w

2
2, ig(2, 1), . . . , ig(2, 7), og(2), w

3
1 , w

3
2 ,

w3
3 , ig(3, 1), . . . . We need continuity of T and h∗(T ) = log 2 but in spite of this we have much freedom in

specification of those numbers.

Inductively, we require only the following (for k = 1, 2, . . . ):

(L1) w1
1 = 8 or, equivalently, n1

1 = 7.
(L2) |IG| ≫ | pre(IG)| whenever IG is an inner gap.
(L3) |OG| ≫ | pre(OG)| whenever OG is an outer gap.
(L4) |W | ≫ | pre(W )| whenever W is a wind in the first piece of a block. (Recall that the lengths of the

winds in P (k, l) are the same as those in P (k, 1).)

The pieces and the gaps are formed by consecutive points of the trajectory x0, x1, . . . , so we may for
instance write P (k, l) as xj , xj+1, . . . , xj+|P (k,l)|−1. Here j depends on k and l but we do not need to know
the exact formula for it. We simply choose separately the pieces, the inner gaps and the outer gaps, then
concatenate them as in (5.3) and (5.4), and denote the sequence we obtain as x0, x1, . . . . So, it will be
convenient to adopt an alternative notation. Instead of “x”, we will use “y” for elements in pieces, “z” for
elements in inner gaps and “ω” for elements in outer gaps. Moreover, the indices will indicate to which block
or gap the element belongs to. The alternative notation can be seen in the next table.
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P (1, 1) IG(1, 1) P (1, 2)

x0, x1, . . . , x7 x8, x9, . . . , xm1−1 xm1 , xm1+1, . . . , xm1+7

y(1,1),0, y(1,1),1, . . . , y(1,1),n1
1

z(1,1),1, z(1,1),2, . . . , z(1,1),ig(1,1) y(1,2),0, y(1,2),1, . . . , y(1,2),n1
1

IG(1, 2) P (1, 3) IG(1, 3)

xm1+8, xm1+8, . . . , xm2−1 xm2 , xm2+1, . . . , xm2+7 xm2+8, xm2+9, . . . , xm3−1

z(1,2),1, z(1,2),2, . . . , z(1,2),ig(1,2) y(1,3),0, y(1,3),1, . . . , y(1,3),n1
1

z(1,3),1, z(1,3),2, . . . , z(1,3),ig(1,3)

P (1, 4) OG(1) . . .

xm3 , xm3+1, . . . , xm3+7 xm3+8, xm3+9, . . . , xm3+7+og(1) . . .

y(1,4),0, y(1,4),1, . . . , y(1,4),n1
1

ω1,1, ω1,2, . . . , ω1,og(1) . . .

Table 5. Alternative notation

So, z(k,l),t is the t-th point in the l-th inner gap of the k-th block and ωk,t is the t-th point in the k-th

outer gap. In both cases t starts to run from 1. In contrast, the piece P (k, l) with length nk
k + 1 has its

elements denoted by y(k,l),t where t runs from 0 to nk
k. Then (5.7) becomes

y(k,l),0 ∈ Uk(asl(0)) and T nk
i (y(k,l),0) = y(k,l),nk

i
∈ Uk(asl(i)), 1 ≤ i ≤ k. (5.11)

Recall that all the elements of pieces and gaps are in (0, 1]×A and so it will be convenient to adopt the
convention (in fact used already above, say in Figures 5.2-5.9) that

b ∈ Uk(aj) means b ∈ Uk(aj) and P2(b) = aj . (5.12)

Recall that P (k, l) (corresponding to sl ∈ {0, 1}{0,1,2,··· ,k}) will wind k-times around A, i.e. it will ‘jump’
from the ‘right side’ of a∞ to the ‘left side’ of a∞ k-times. As we mentioned above, when k → ∞, the
jumps will be performed closer and closer to a∞ to ensure the continuity of T . For instance, in P (1, 2), see

Figure 5.4), the jump is from U1(a3) to U
1(a−2) and we put j

(1,2)
1 = 3 and p

(1,2)
1 = 2. In general, given k

and l, the piece P (k, l) performs k jumps and so we will have k pairs of positive jump numbers , namely

j
(k,l)
q , p

(k,l)
q for q = 1, . . . , k. The meaning is that

the q-th jump in P (k, l) is performed from Uk(a
j
(k,l)
q

) to Uk(a
−p

(k,l)
q

), (5.13)

i.e., this jump starts at a point xm and ends at a point xm+1, with P2(xm) = a
j
(k,l)
q

and P2(xm+1) = a
−p

(k,l)
q

.

In Figure 5.10 we see the jump numbers j
(2,6)
1 = 4, p

(2,6)
1 = 5 and j

(2,6)
2 = 6, p

(2,6)
2 = 6.

The notion of jump numbers can analogously be introduced also for inner and outer gaps, but we will
not need a notation for them. Notice that in all the above pictures of the inner gaps and outer gaps the
jumps from the ‘right’ to the ‘left’ are ‘horizontal’, meaning that they are performed from Uk(ar) to U

k(a−r)
(the both jump numbers are the same, equal to some r), and in all the above pictures of pieces we have

‘horizontal’ or ‘almost horizontal’ jumps, meaning that |j
(k,l)
q − p

(k,l)
q | ≤ 1. Similarly as in the pictures, after

fixing the lengths of all gaps and winds, see (L1-4), the jumps can be chosen in such a way that all the jumps
(in pieces and in inner and outer gaps) are almost horizontal.

Now take into account that, by (L1-4), the lengths of the winds in the pieces of a block B(k) tend to
infinity when k → ∞. Since all the jumps are almost horizontal, this clearly implies that the jump numbers

j
(k,l)
q and p

(k,l)
q , for 1 ≤ l ≤ k, tend to ∞ when k → ∞. Similarly, by (L1-4), the lengths ig(k, l) of inner

gaps as well as the lengths og(k, l) of outer gaps tend to ∞ when k → ∞. Since the gaps wind around A
only once and the jumps in the gaps are almost horizontal, these jumps are performed closer and closer to
a∞ when k → ∞. It follows that T is continuous.

5.2. Proof of h∗(T ) = log 2. We have finished the construction of (X1, T ) and we already know that (X1, T )
fulfills (R1). It remains to show that also (R2) is fulfilled.

We embark on a complicated proof that (R2) is fulfilled. To find an idea, suppose, on the contrary, that
l1 < l2 < l3 < l3 < l5 is an independence set of times of length 5 for (U1(a0), U

1(aj)). What does it mean
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for {l1, l2, l3, l4, l5}? Among others, there exists a point z ∈ {x0, x1, . . . } such that

T liz ∈ U1(a0), i = 1, 2, 3, 4, 5 .

However, below we show that there are severe restrictions for the differences li+1 − li, i = 1, 2, 3, 4. These
are iterative distances, with respect to T , between the above points (the points in the snake are denoted as
xi = T i(x0) and then the iterative distance between xs and xs+t, t ≥ 0, is defined to be t).

Thus, we are going to investigate the iterative distances between elements of the snake lying in U1(a0).
Notice the following. It follows from the construction of x0, x1, . . . , cf. Figures 5.2-5.10, that if xi ∈ U1(a0),
then either xi belongs to some piece P (k, l) or, if it belongs to a gap, it is the last point of an inner gap and
the next piece starts in U1(a1). It cannot be the last point of an outer gap because P (k, 1) always starts
in U1(a0) (in fact, s1 = (0, . . . ) and not (1, . . . ), see (5.5)). Said in a different way, by the construction the
outer gaps do not contain points from U1(a0). Therefore it will be convenient to introduce the following
notion.

For any k ∈ N and 1 ≤ l ≤ 2k+1, we denote by P̃ (k, l) the l-th part in the k-th level defined as follows:

• If y(k,l),0 ∈ U1(a0), then set P̃ (k, l) = P (k, l);

• If y(k,l),0 ∈ U1(a1), then set P̃ (k, l) = P (k, l) ∪ {xj−1} where xj = y(k,l),0.

The point xj−1 with xj = y(k,l),0 does not exist if k = l = 1 (i.e. if j = 0). However, by the construction,

y(1,1),0 ∈ U1(a0) and so P̃ (1, 1) = P (1, 1) is defined. More generally, since P (k, 1) always starts in U1(a0),
we have

P̃ (k, 1) = P (k, 1), k = 1, 2, . . . . (5.14)

As already shown above,

if xi ∈ U1(a0), then xi ∈ P̃ (k, l) for some k and l. (5.15)

Lemma 5.1. Let k > 0, l ∈ {1, . . . , 2k+1}.

(1) The piece P (k, l) is of the form

P (k, l) = xj , xj+1, . . . , xj+nk
1
, . . . , xj+nk

2
, . . . , xj+nk

k
.

The list of all points from P̃ (k, l) which belong to U1(a0) is then

one of xj+nk
0
, xj+nk

0−1, one of xj+nk
1
, xj+nk

1−1, . . . , one of xj+nk
k
, xj+nk

k
−1 (5.16)

(here nk
0 = 0 and “one” means “exactly one”). If l = 1 then in fact xj+nk

0
= xj belongs to U1(a0).

If sl ∈ F (k) is the function corresponding to P (k, l), then we can write

P̃ (k, l) ∩ U1(a0) = {xj+nk
0−sl(0), xj+nk

1−sl(1), . . . , xj+nk
k
−sl(k)}. (5.17)

(2) If two points in P̃ (k, l) ∩ U1(a0) have iterative distance t > 0, then

t ∈ {nk
c − nk

d − 1, nk
c − nk

d, n
k
c − nk

d + 1} for some 0 ≤ d < c ≤ k

and no other pair of points in P̃ (k, l) ∩ U1(a0) has the same iterative distance t.

Proof. (1) As in (5.6), we have P (k, l) = xj , xj+1, . . . , xj+nk
1
, . . . , xj+nk

2
, . . . , xj+nk

k
. It immediately follows

from the construction of the winds in P (k, l) that the list of all points from P̃ (k, l) which belong to U1(a0)
is (5.16). If l = 1 then (5.15) and (5.14) exclude the point xj+nk

0−1 from the list. To be more precise, for

each c ∈ {0, 1, . . . , k} we have xj+nk
c
∈ U1(asl(c)) and so

xj+nk
c−sl(c) ∈ U1(a0).

This means that the list of all elements of P̃ (k, l) ∩ U1(a0) is (5.17).

(2) So, if t > 0 and xs, xs+t are two points in P̃ (k, l) ∩ U1(a0), there are 0 ≤ d < c ≤ k such that xs is
one of xj+nk

d
, xj+nk

d
−1 and xs+t is one of xj+nk

c
, xj+nk

c−1. Hence the three possibilities for t.

Thus, in each of the pairs xj+nk
d
, xj+nk

d
−1 and xj+nk

c
, xj+nk

c−1, exactly one of the points is in U1(a0) and

their iterative distance is t. Therefore, if p < q and xp, xq is another pair of points in P̃ (k, l) ∩ U1(a0), i.e.
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in the list (5.16), then either xp /∈ {xj+nk
d
, xj+nk

d
−1} or xq /∈ {xj+nk

c
, xj+nk

c−1}. Since by (L4) the lengths of

the winds in P (k, l) satisfy the inequalities

nk
1 + 1 ≪ nk

2 − nk
1 + 1 ≪ · · · ≪ nk

k − nk
k−1 + 1 ,

the iterative distance q − p of xq and xp is different from t. �

Notice that, in notation from Lemma 5.1,

E(k, l) = {xj , xj+nk
1
, . . . , xj+nk

2
}

is the set of the endpoints of the winds in P (k, l). By Lemma 5.1(1), the points of U1(a0) ∩ P̃ (k, l) almost
coincide with the endpoints of the winds. By saying that two points almost coincide, we mean that their
iterative distance is at most one.

Due to the construction, the independence is ‘caused’ by the trajectory of x0, the points from the head A
are not those points which visit a tuple of neighbourhoods in prescribed times. Assume again that {l1, l2, l3},
with l1 < l2 < l3, is an independence set of times of lengths 3 for (U1(a0), U

1(aj)). Then we will have 23

different segments of trajectory with lengths l3 − l1 + 1 and corresponding to different choices of functions
saying which of the sets U1(a0), U

1(aj) are to be visited in the times l1, l2, l3 by a point appropriate for that
choice. Since these segments have the same length, each one of them can be viewed as a ‘shift’ (along the
trajectory x0, x1, . . . ) of any other one.

Now it will be useful to think of the trajectory x0, x1, . . . as a sequence of points going from left to right,
along the real line, with the distance 1 between every two consecutive elements of the trajectory. The reason
is that then for t > 0 the iterative distance between xs and xs+t, which is t, is the same as the euclidean
distance between them. Say, then a gap or a block is long if and only if it is long also in the sense of the
euclidean metric on the real line. Another advantage is that we can speak on inner and outer gaps to the
right of some block, or on all those elements of the trajectory which lie in U1(a0) and are to the left of some
element, and the like. Say, pre(S) is the set of all elements which are to the left of S (meaning, of course, to
the left of every element of S).

Notice that if xm ∈ U1(a0) then it has its right neighbour (immediate successor) in U1(a0) and if m > 0
then it has also its left neighbour (immediate predecessor) in U1(a0). If two points xi, xj belong to a finite
subsequence F of the trajectory x0, x1, . . . , we say that the pair xi, xj lies in F (instead of saying that the
pair (xi, xj) is an element of some cartesian product).

Let xi = T i(x0) and xj = T j(x0), i 6= j, be two different elements of the trajectory x0, x1, . . . . Then we
say that the pair xi, xj is U

1(a0)-shiftable , or just that the two points are U1(a0)-shiftable, if both xi and xj
belong to U1(a0) and there is m 6= 0 such that also both xi+m and xj+m belong to U1(a0). More precisely,
if this is true for some m < 0 or m > 0 we say that the pair xi, xj is U1(a0)-left shiftable or U1(a0)-right
shiftable , respectively. The function sending each point xk to the point xk+m is called the shift by m (right
shift or left shift, depending on whether m > 0 or m < 0, respectively).

We are going to study the space {x0, x1, . . . } from the point of view of shiftability.

Lemma 5.2. Let s ≥ 0, t > 0 and xs, xs+t ∈ U1(a0). If the points xs and xs+t belong to different blocks,
then they are not U1(a0)-left shiftable.

Proof. Let xs ∈ B(p) and xs+t ∈ B(q) for some p 6= q. Of course, p < q and so at least the whole outer
gap OG(q − 1) lies between xs and xs+t. Suppose on the contrary that there is m < 0 such that also
xs+m, xs+t+m ∈ U1(a0). This in particular means that s +m ≥ 0. Let q− > 0 be the iterative distance of
xs+t from its left neighbour in U1(a0), i.e. the least positive integer such that xs+t−q− ∈ U1(a0). By (L4)
(no matter whether xs+t is the first point of B(q) or not) and (L3) we know that, respectively,

q− > og(q − 1) and og(q − 1) > s .

Since xs+t+m ∈ U1(a0), by the definition of q− we then have |m| = −m ≥ q− > og(q − 1) > s. Hence
s+m < 0, a contradiction. �

Lemma 5.3. Let s ≥ 0, t > 0 and xs, xs+t ∈ U1(a0) ∩ P̃ (k, l). Then there is no m < 0 such that

xs+m ∈ U1(a0) ∩
⋃k−1

i=1 B(i) and xs+t+m ∈ U1(a0) ∩ P (k, 1).
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Proof. Let k ≥ 2, otherwise there is nothing to prove. Suppose, on the contrary, that there is m < 0 with
that property (hence s+m ≥ 0). We have, as in (5.6),

P (k, l) = xj(l), xj(l)+1, . . . , xj(l)+nk
1
, . . . , xj(l)+nk

2
, . . . , xj(l)+nk

k
,

where the set E(k, l) = {xj(l), xj(l)+nk
1
, . . . , xj(l)+nk

k
} is the set of the endpoints of the winds in P (k, l).

Similarly,

P (k, 1) = xj(1), xj(1)+1, . . . , xj(1)+nk
1
, . . . , xj(1)+nk

2
, . . . , xj(1)+nk

k
,

where E(k, 1) = {xj(1), xj(1)+nk
1
, . . . , xj(1)+nk

k
} is the set of the endpoints of the winds in P (k, 1).

Since xs, xs+t ∈ U1(a0) ∩ P̃ (k, l), by Lemma 5.1(1) we know that they almost coincide with the p-th and
the q-th elements in E(k, l), for some p < q (recall that by saying that two points almost coincide we mean
that their iterative distance is at most one). The left shift from xs, xs+t to xs+m, xs+t+m can be performed
as the composition of two shorter left shifts. First, we shift xs, xs+t to points xs+σ, xs+t+σ which almost
coincide with the p-th and the q-th elements in E(k, 1) (this is possible because the lengths of winds in P (k, l)
are the same as in P (k, 1)). Then the point xs+σ is either in P (k, 1) or it is the last point of OG(k − 1). So
we need to shift xs+σ, xs+t+σ still to the left, now finally to xs+m, xs+t+m. Since OG(k−1) does not contain
points from U1(a0), this shift has to be at least as long as it is the length of OG(k− 1), which is much larger
than 1. Since xs+t+m has to be in U1(a0) and to the left of xs+t+σ , this second shift (whose length is much
larger than 1) is of course at least as long as the iterative distance between (q − 1)-st and q-th elements in
E(k, 1) (see Lemma 5.1(1)), meant in approximative sense, i.e. an error, now definitely not greater than 2,
is possible when we claim this. This iterative distance is, by (L4), much larger than | pre(W )| where W is
the wind whose endpoints are the (q − 1)-st and q-th elements in E(k, 1). Since xs+σ almost coincides with
the p-th element of E(k, 1) and p ≤ q − 1, we get that s+m < 0, a contradiction. �

Lemma 5.4. Let s ≥ 0, t > 0 and let the points xs, xs+t ∈ U1(a0) be U1(a0)-shiftable, i.e. there exists an
m 6= 0 such that also xs+m ∈ U1(a0) and xs+t+m ∈ U1(a0). Then the following is true.

(1) If xs, xs+t ∈ P̃ (k, i1) for some k and i1, then xs+m, xs+t+m ∈ P̃ (k, i2) for some i2 6= i1.

(2) If xs ∈ P̃ (k, i1), xs+t ∈ P̃ (k, i2) for some k and i1 < i2, then xs+m ∈ P̃ (k, i1), xs+t+m ∈ P̃ (k, i2).
(3) The points xs, xs+t, xs+m, xs+t+m belong to the same block B(k), for some k.

(4) If xs, xs+t ∈ P̃ (k, i) for some k and i, then xs, xs+m are in the “similar positions” , meaning that if
we write, as in (5.17), the point xs in the form

xs = xr+nk
c−si(c) ∈ P̃ (k, i) for some 0 ≤ c ≤ k,

then there exists i′ such that

xs+m = xr′+nk
c−si′ (c)

∈ P̃ (k, i′) with the same 0 ≤ c ≤ k.

Here r, r′ ≥ 0 are such that xr = y(k,i),0, xr′ = y(k,i′),0 are the first points of the pieces P (k, i), P (k, i
′),

respectively, and si, si′ ∈ F (k) are the functions corresponding to the pieces P (k, i), P (k, i′), respec-
tively.

(5) If xs ∈ P̃ (k, i1) and xs+t ∈ P̃ (k, i2) for some k and i1 < i2, then xs, xs+t are in the “similar
positions”.

Proof. By (5.15) and (5.14), the points from U1(a0) belong to
⋃∞

k=1 B(k). Moreover, since they belong to
the union of all parts, Lemma 5.1(1) shows their location more precisely. Namely, each of them almost
coincides with an endpoint of a wind.

(1) Since xs, xs+t ∈ P̃ (k, i1), we have t < |P̃ (k, i1)|. On the other hand, by combining (L2) and (L4),

each inner gap in B(k) is much longer than |P̃ (k, i1)|, hence much longer than t. Therefore

xs+m, xs+t+m cannot lie in different parts of B(k) . (5.18)

Further, we claim that, for m 6= 0,

xs+m, xs+t+m cannot both lie in P̃ (k, i1) . (5.19)

This is because by Lemma 5.1(2), different pairs of point in P̃ (k, i1)∩U1(a0) have different iterative distances.
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By (L2-4), all (inner and outer) gaps which are to the right of xs+t are much longer than t. So, if m > 0
then the points xs+m, xs+t+m cannot be separated by such a gap, i.e. they are in the same part. This cannot
be a part to the right of B(k) because, by (L4), every wind in such a part is much longer than t and so the
iterative distance of xs+m, xs+t+m would be longer than t, a contradiction. We conclude that

if m > 0 then xs+m, xs+t+m ∈ P̃ (k, i2) for some i1 < i2 (5.20)

(we have excluded the equality i1 = i2 by (5.19)).

Now let m < 0. Since xs, xs+t ∈ P̃ (k, i1), t is at least as large as the length of the shortest wind in
P (k, i1). Hence, by (L4), t≫ | pre(B(k))|. Therefore, since the iterative distance between xs+m and xs+t+m

is t, the point xs+t+m cannot be in pre(B(k)). Using this fact as well as (5.18) and (5.19), we get two cases:

(i) xs+m ∈
⋃k−1

i=1 B(i) and xs+t+m ∈ P̃ (k, i2) for some i2 ≤ i1, or

(ii) xs+m, xs+t+m ∈ P̃ (k, i2) for some i2 < i1.

In the case (i) we have i2 = 1, otherwise the inner gap IG(k, 1) is between xs+m and xs+t+m and so
the iterative distance of these two points is t > ig(k, 1). However, this contradicts the facts that, by (L2),

ig(k, 1) is much larger than |P (k, 1)| = |P (k, i1)| and P̃ (k, i1) contains xs and xs+t. So, (i) can be replaced

by (note that P̃ (k, 1) = P (k, 1))

(i’) xs+m ∈
⋃k−1

i=1 B(i) and xs+t+m ∈ P (k, 1).

However, (i’) is excluded by Lemma 5.3. So, only the case (ii) is possible and then we are done, just combine
it with (5.20).

(2) The inner gap IG(k, i2 − 1) lies between xs and xs+t (with possible exception of the last point of

IG(k, i2 − 1) which may belong to P̃ (k, i2) and to be equal to xs+t). Hence t ≥ ig(k, i2− 1) and so, by (L2),

t≫ |P (k, i1)| = |P (k, l)|, l = 1, 2, . . . , 2k+1 (5.21)

(all the pieces in a block have the same length).

We claim that

xs+t+m cannot be to the left of P̃ (k, i2). (5.22)

Indeed, xs+t+m cannot be in IG(k, i2 − 1) \ P̃ (k, i2), because this set is disjoint with U1(a0). Also, xs+t+m

cannot be to the left of IG(k, i2−1), otherwise |m| ≥ ig(k, i2−1) and since ig(k, i2−1) ≫ | pre(IG(k, i2−1))|
and xs ∈ pre(IG(k, i2 − 1)), we would get |m| ≫ s whence s+m < 0, a contradiction.

Further, we claim that

xs+t+m cannot be to the right of P̃ (k, i2). (5.23)

We prove this. First suppose that xs+t+m ∈ P̃ (k, i3) for some i3 > i2. By (5.21), xs+m /∈ P̃ (k, i3). Then

t = (s+ t+m) − (s+m) > ig(k, i3 − 1). On the other hand, since xs ∈ P̃ (k, i1) and xs+t ∈ P̃ (k, i2), (L2)
gives t≪ ig(k, i3 − 1), a contradiction.

Now suppose that xs+t+m ∈ B(L) for some L > k. If also xs+m ∈ B(L) then, since xs+t+m, xs+m ∈
U1(a0), t is at least as long as the first wind in B(L). By (L4), and using that xs, xs+t ∈ pre(B(L)), we
get t ≫ | pre(B(L))| ≥ t, a contradiction. So assume that xs+m /∈ B(L), i.e. xs+m ∈ pre(B(L)). Since
OG(L − 1) is disjoint with U1(a0), the whole gap OG(L − 1) is between xs+m and xs+t+m. Hence, using
also (L3) and the fact that xs, xs+t ∈ pre(OG(L − 1)), we get t > OG(L − 1) ≫ pre(OG(L − 1)) ≥ t, again
a contradiction. We have proved (5.23).

By (5.22) and (5.23), xs+t+m ∈ P̃ (k, i2). Since both xs+t and xs+t+m belong to the same part P̃ (k, i2),
by the already proved claim (1) we get that their shifts by −t, i.e. the points xs and xs+m, belong to the

same part P̃ (k, l), for some l 6= i2. However, xs ∈ P̃ (k, i1) by the assumption, therefore l = i1 and we are
done.

(3) First we prove that the points xs, xs+t are in the same block.

Suppose, on the contrary, that there are p < q such that xs ∈ B(p) and xs+t ∈ B(q). In view of
Lemma 5.2, these two U1(a0)-shiftable points are U1(a0)-right shiftable. So, there is m > 0 such that also
xs+m, xs+t+m ∈ U1(a0). Hence, also these two points belong to the union of blocks. We see that they are
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U1(a0)-left shiftable (shift by −m sends them to xs and xs+t). So, by Lemma 5.2, xs+m and xs+t+m belong
to the same block B(r) for some q ≤ r.

Suppose that q < r. Then xs+m and xs+t+m, being two elements of U1(a0) in the block B(r), have
their iterative distance t at least as large as the length of the first wind of the first piece in B(r) (see (L4)).
However, by (L4), this length is larger than the length of pre(B(r)). In particular, t is larger than the
iterative distance between xs, xs+t ∈ pre(B(r)), a contradiction.

So, q = r. We have four points in U1(a0), namely xs ∈ B(p), xs+t, xs+m, xs+t+m ∈ B(q), where p < q.
Since xs+m, xs+t+m ∈ B(q), then either

xs+m, xs+t+m ∈ P̃ (q, i)

for some i ∈ N or

xs+m ∈ P̃ (q, i1) and xs+t+m ∈ P̃ (q, i2)

for some i1 < i2 ∈ N. Then, by applying either (1) or (2) to the points xs+m and xs+t+m and the shift by
−m, we get that

xs = x(s+m)−m ∈ Bq

and this contradicts the assumption that xs ∈ B(p).

So, we already know that xs, xs+t are in the same block B(k). They are either in the same part or in
different parts of this block. In either case, by (1) or (2), the other two points xs+m and xs+t+m are also in
that block B(k). The proof is finished.

(4) By (1), xs+m ∈ P̃ (k, i′) for some i′. Denote the firts points of the pieces P )(k, i) and P (k, i′) by

xr = y(k,i),0 and xr′ = y(k,i′),0, respectively. Since xs ∈ P̃ (k, i) ∩ U1(a0) and xs+m ∈ P̃ (k, i′) ∩ U1(a0), we
can write, as in (5.17),

xs = xr+nk
c−si(c), for some 0 ≤ c ≤ k

and

xs+m = xr′+nk
d
−si(d), for some 0 ≤ d ≤ k.

We need to show that d = c. Using that xs+t ∈ P̃ (k, i) and, by (1), xs+t+m ∈ p̃(k, i′), we also have

xs+t = xr+nk
γ−si′ (γ)

, for some 0 ≤ c < γ ≤ k

and

xs+t+m = xr′+nk
δ
−si′ (δ)

, for some 0 ≤ d < δ ≤ k.

So, since t = (s+ t)− s = (s+ t+m)− (s+m), we get

t = nk
γ − nk

c − (si(γ)− si(c)) = nk
δ − nk

d − (si′(δ)− si′(d)).

Recall that nk
γ − nk

c and nk
δ − nk

d are much larger than si(γ)− si(c) and si′(δ)− si′(d). Also, by (L4), in the

finite sequence nk
0 , n

k
1 , . . . , n

k
k we have nk

j+1 ≫ nk
j . It follows that c = d and γ = δ.

(5) By (2), we have xs+m ∈ P̃ (k, i1) and xs+t+m ∈ P̃ (k, i2). Then

xs, xs+m ∈ P̃ (k, i1) and xs+t, xs+m+t ∈ P̃ (k, i2).

Then by (4), xs, xs+t are in the “similar positions”. �

We are finally able to prove the main result of this section. As already said, it is sufficient to prove (R1)
and (R2) from the beginning of this section.

Theorem 5.5. The system (X1, T ) has the following properties.

(1) (a0, a1) is an IN-pair.
(2) (a0, aj) is not an IN-pair for any |j| ≥ 2.
(3) (a0, a∞) is not an IN-pair.

Hence h∗(T ) = log 2.
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Proof. (1) This is by the construction. As already said above, see e.g. (5.7), the set N(k) from (5.8) is an
independence set of times of length k + 1 for (Uk(a0), U

k(a1)). Hence (1).

(2) It is sufficient to show that (a0, aj) is not an IN-pair whenever j ≥ 2 because then, for j ≥ 2, neither
(a0, a−j) is an IN-pair. Indeed, if for some j ≥ 2 the pair (a0, a−j) were an IN-pair, then by Proposition 2.6(a)
also (a0, aj) would be an IN-pair.

Fix j ≥ 2 and suppose, on the contrary, that (a0, aj) is an IN-pair. It follows that (U1(a0), U
1(aj)) has an

independence set of times of length 5, i.e. there are pairwise distinct positive integers l−1 < l0 < l1 < l2 < l3
such that {l−1, l0, l1, l2, l3} is an independence set of times for (U1(a0), U

1(aj)). Then, in particular, there
exist pairwise distinct m1,m2,m3,m4 ∈ N such that (notice that in the underlined inclusions we have aj
rather than a0)

xm1+l−1 ∈ U1(a0), xm1+l0 ∈ U1(a0), xm1+l1 ∈ U1(a0), xm1+l2 ∈ U1(a0), xm1+l3 ∈ U1(a0), (5.24)

xm2+l−1 ∈ U1(a0), xm2+l0 ∈ U1(a0), xm2+l1 ∈ U1(a0), xm2+l2 ∈ U1(aj), xm2+l3 ∈ U1(a0), (5.25)

xm3+l−1 ∈ U1(a0), xm3+l0 ∈ U1(a0), xm3+l1 ∈ U1(aj), xm3+l2 ∈ U1(a0), xm3+l3 ∈ U1(a0), (5.26)

xm4+l−1 ∈ U1(a0), xm4+l0 ∈ U1(aj), xm4+l1 ∈ U1(a0), xm4+l2 ∈ U1(a0), xm4+l3 ∈ U1(a0). (5.27)

Look at the eight points in the first and last columns. If we now take a pair (made of them) lying in one
row, then it is U1(a0)-shiftable to a pair (made of them) lying in any other row. Then, by Lemma 5.4(3),
there exists k ∈ N such that these eight points lie in B(k). Hence, since l−1 < l0 < l1 < l2 < l3, in each row
the five points are in the same block (i.e., in that block B(k)). So,

{xmi+lj : 1 ≤ i ≤ 4, −1 ≤ j ≤ 3} ⊆ B(k).

From now on we are interested in the nine points in the following smaller 3× 3 table:

xm1+l1 ∈ U1(a0), xm1+l2 ∈ U1(a0), xm1+l3 ∈ U1(a0),

xm2+l1 ∈ U1(a0), xm2+l2 ∈ U1(aj), xm2+l3 ∈ U1(a0),

xm3+l1 ∈ U1(aj), xm3+l2 ∈ U1(a0), xm3+l3 ∈ U1(a0).

We show that if two points in the first row of this smaller table are in the same part P̃ (k, i1) then all the three

points in this row are in P̃ (k, i1). Suppose that this is not the case. To get a contradiction, we will use only
these three points and the last three points in (5.27). All these six points are in U1(a0). Therefore, due to

this symmetry, we can assume that for instance xm1+l1 , xm1+l2 ∈ P̃ (k, i1) and xm1+l3 ∈ P̃ (k, i2) with i1 6= i2.

Since xm1+l1 , xm1+l3 are U
1(a0)-shiftable to xm4+l1 , xm4+l3 , by Lemma 5.4(2) we get xm4+l1 ∈ P̃ (k, i1). Also,

xm1+l1 , xm1+l2 are U1(a0)-shiftable to xm4+l1 , xm4+l2 and so, by Lemma 5.4(1) we get xm4+l1 ∈ P̃ (k, i3)
with i3 6= i1, a contradiction.

Therefore we have two cases: either all three points in the first row are in the same part, or they are in
three different parts.

Case 1: xm1+l1 , xm1+l2 , xm1+l3 ∈ P̃ (k, i) for some i.

In this case, by Lemma 5.4(1), we have

xm1+l1 , xm1+l2 , xm1+l3 ∈ P̃ (k, i) (5.28)

xm2+l1 , xm2+l3 ∈ P̃ (k, i′) (5.29)

xm3+l2 , xm3+l3 ∈ P̃ (k, i′′) (5.30)

where i, i′, i′′ are pairwise different (note that all these seven points are in U1(a0)). According to Lemma 5.4(4),
Tm2+l1x0 and Tm1+l1x0 are in the “similar positions”, i.e.

xm1+l1 = xr+nk
d
−si(d) and xm2+l1 = xr′+nk

d
−si′ (d)

for some 0 ≤ d ≤ k (here xr and xr′ are the first points of the pieces P (k, i) and P (k, i′), and si and si′ are

the corresponding functions in F (k)). Further, since xm1+l2 ∈ P̃ (k, i), we have

xm1+l2 = xr+nk
c−si(c) (5.31)
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for some 0 ≤ c ≤ k (here d < c and so nk
d < nk

c , because m1+ l1 < m1+ l2, but we do not use this property).
Then

l2 − l1 = m1 + l2 − (m1 + l1) = nk
c − nk

d − (si(c)− si(d)).

We are interested in the point xm2+l2 , so let us compute

m2 + l2 = m2 + l1 + (l2 − l1) = r′ + nk
d − si′(d) + (l2 − l1)

= r′ + nk
c − si′(d)− (si(c)− si(d))

= r′ + nk
c − si′(c) + (si′(c)− si′(d)) − (si(c)− si(d))

∈ {r′ + nk
c − si′(c) + t : −2 ≤ t ≤ 2}.

(5.32)

Note that xr′+nk
c
∈ U1(asi′ (c)), whence xr′+nk

c−si′ (c)
∈ U1(a0). Therefore

xm2+l2 ∈ U1(a−2) ∪ U
1(a−1) ∪ U

1(a0) ∪ U
1(a1) ∪ U

1(a2). (5.33)

On the other hand, by (5.25), xm2+l2 ∈ U1(aj). So, when j ≥ 3, we have a contradiction.

If j = 2, xm2+l2 ∈ U1(aj) is specified as xm2+l2 ∈ U1(a2). Then, using (5.32) and the fact that
xr′+nk

c−si′ (c)
∈ U1(a0), we get (si′(c)− si′(d)) − (si(c)− si(d)) = 2 and thus

l2 − l1 = nk
c − nk

d − (si(c)− si(d)) = nk
c − nk

d + 1. (5.34)

Let r′′ be the first point of P (k, i′′) and let si′′ be the function from F (k) which corresponds to P (k, i′′).
Then

xr′′+nk
u−si′′ (u)

∈ U1(a0) for 0 ≤ u ≤ k.

Recall that, by (5.24) and (5.26),

xm1+l2 , xm1+l3 ∈ U1(a0) and xm3+l2 , xm3+l3 ∈ U1(a0).

Therefore, by Lemma 5.4(4), xm1+l2 and xm3+l2 are in the “similar positions”. In view of (5.31), xm3+l2 =
xr′′+nk

c−si′′ (c)
. Using this and (5.34) and taking into account that the values of si′′ are just 0 and 1, we have

m3 + l1 = m3 + l2 − (l2 − l1)

= r′′ + nk
c − si′′(c)− (nk

c − nk
d + 1)

= r′′ + nk
d − si′′(d) + (si′′ (d)− si′′(c)) − 1

∈ {r′′ + nk
d − si′′(d) + t : −2 ≤ t ≤ 0}.

This implies that

xm3+l1 ∈ U1(a−2) ∪ U
1(a−1) ∪ U

1(a0),

which contradicts that, by (5.26), xm3+l1 ∈ U1(a2).

Case 2: xm1+lt ∈ P̃ (k, it), t = 1, 2, 3, for pairwise different i1, i2, i3.

In this case, using Lemma 5.4(2), we have

xl1+m1 , xl1+m2 ∈ P̃ (k, i1) (5.35)

xl2+m1 , xl2+m3 ∈ P̃ (k, i2) (5.36)

xl3+m1 , xl3+m2 , xl3+m3 ∈ P̃ (k, i3) (5.37)

We have received a system of inclusions very similar to that from Case 1, see (5.28)-(5.30). Recall that in
Case 1 we have obtained a contradiction by considering two U1(a0)-shifts. Namely, we shifted xm1+l1 , xm1+l3

to xm2+l1 , xm2+l3 , and xm1+l2 , xm1+l3 to xm3+l2 , xm3+l3 . Then we were looking for the possible positions
of the points xm2+l2 and xm3+l1 (i.e. the points missing in (5.28)-(5.30)). This led to contradictions. To
finish the proof in Case 2, it is sufficient to proceed analogously as in Case 1, but now we consider the
following U1(a0)-shifts: the shift of xl3+m1 , xl3+m3 to xl2+m1 , xl2+m3 and then the shift of xl3+m1 , xl3+m2

to xl1+m1 , xl1+m2 . Then contradictions will be obtained by looking for positions of the points xm2+l2 and
xm3+l1 . We leave the details to the reader.
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(3) The proof is completely analogous to that of (ii). Replacing always U1(aj) by U
1(a∞), but otherwise

repeating the proof word by word, one again gets (see (5.33))

xm2+l2 ∈ U1(a−2) ∪ U
1(a−1) ∪ U

1(a0) ∪ U
1(a1) ∪ U

1(a2)

and simultaneously xm2+l2 ∈ U1(a∞). In view of (5.1), this already immediately gives a contradiction and
finishes the proof of Case 1, so the proof is even easier than in (2). Analogously in Case 2. �

Remark 5.6. Theorem 5.5 gives a space X1 with S(X1) ⊇ {0, log 2}. Since X1 is a zero-dimensional space
with infinite derived set, we in fact have S(X1) = logN∗, see Table 2.

6. A continuum X with S(X) = {0, log 2}

In this section, we will construct a continuumX with S(X) = {0, log 2}. The main idea of the construction
is similar to that of the construction of a continuum X with S(X) = {0,∞} in Section 4. However, now the
construction is more subtle and the technical details are more complicated.

6.1. Outline of the construction of X. We start with the space X1 ⊆ R3 defined in Section 5. So,

X1 = A ⊔ {x0, x1, . . . } (6.1)

with the set A = {ai : i ∈ Z}∪{a∞} lying in the circle S1 in the vertical plane π0 and {x0, x1, . . . } ⊆ (0, 1]×A.
Recall that we have also constructed a continuous map

T : X1 → X1 with h∗(T ) = log 2 . (6.2)

We use the same tools as in Section 4. For terminology, the reader is referred to that section.

While the head in Section 4 (i.e. in the case S(X) = {0,∞}) was just one planar Cook continuum K0,
now (i.e. in the case S(X) = {0, log 2}) the head is more complicated. We denote it by A0 and we construct
it by joining the consecutive points of A by some Cook continua as follows.

We may assume that a0 or a∞ is the north or south pole of S1, respectively, and that the points ak and
a−k are symmetric with respect to the vertical diameter of S1, see Figure 5.1. By the arc˚�akak+1 of the circle
S1 we mean that arc of the circle, which has endpoints ak and ak+1 and does not contain any other point
of A. Let the lengths of these circle arcs be decreasing for k = 0, 1, 2, . . . and, due to symmetry, also for
k = −1,−2, . . . . Thus, ā0a1 and ȧ−1a0 are the longest of them. We may also assume that the set A is such
that the lengths of these arcs are not longer than 1/4 of the length of the circle S1. Then the angle between
consecutive chords, i.e. between straight line segments aiai+1 and ai+1ai+2, is not smaller than π/2. For
k ∈ Z, let Sk be the sector of the plane obtained as the union of all rays starting at the center of the circle
S1 and going through the points of the circle arc˚�akak+1, see Figure 6.1.

We choose a (so called ‘big’) rhombus BR0 ⊆ S0 ⊆ π0 such that the straight line segment a0a1 is one of
its diagonal, the other diagonal being shorter.16 Then the angles of this big rhombus at the vertices a0 and
a1 are smaller than π/2. Note that the only points of BR0 lying in the boundary of the sector S0 are a0 and
a1.

Let H0 ⊆ BR0 be a Cook continuum (which is not homeomorphic to any of the Cook continua used below
as bricks in the snake) containing the points a0 and a1 and containing no other points in the boundary of
BR0. The points a0 and a1 will be called the extremal points of H0, namely the first point and the last point
of H0, respectively. So,

H0 ⊆ BR0 with all non-extremal points in IntBR0 (6.3)

and the distance between extremal points of H0 equals the diameter of H0 (and this equals the diameter of
BR0).

For every integer k, let Zk be the direct similitude (similarity transformation) defined in the plane π0,
i.e. the composition of a homothety and a direct euclidean motion, which maps the straight line segment
a0a1 onto the straight line segment akak+1, with Zk(a0) = ak, Zk(a1) = ak+1 (in particular, Z0 is the
identity). Then the big rhombus BR0 containing a0, a1 is mapped by Zk onto some rhombus, again call

16The strange notation BR means a ‘big rhombus’, in contrast with ‘small rhombuses’ which will appear later. The small
rhombuses will be subsets of big rhombuses and the notation SR (with some indices) will be used for them.
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a0

a−1

Sk

a1

ak

ak+1

ak+2

a∞

Zk

Zk,k+1

BRk

BRk+1

BR0BR−1

H0
H−1

Hk

Hk+1

1

Figure 6.1. Big rhombuses and maps Zk

it a big rhombus, BRk containing ak, ak+1 and the Cook continuum H0 ⊆ BR0 is mapped by Zk onto a
(homeomorphic) Cook continuum Hk ⊆ BRk. So,

BRk := Zk(BR0) and Hk := Zk(H0). (6.4)

The points ak and ak+1 are said to be the extremal points, or, more precisely, the first point and the last
point, respectively, of both BRk and Hk. Due to (6.3),

Hk ⊆ BRk with all non-extremal points in IntBRk. (6.5)

So, all the continua Hk are copies of H0, obtained from it by just ‘zooming and moving’ it. Recall that the
angle between two consecutive chords aiai+1 and ai+1ai+2 is at least π/2, while the vertex angles of our big
rhombuses at those vertices which belong to the set A are smaller than π/2 (for BR0 this is by construction
and note that the similitudes preserve angles). Hence the big rhombuses BRk, k ∈ Z, are pairwise disjoint,
except that BRk ∩BRk+1 = {ak+1}, k ∈ Z. The same is true for the Cook continua Hk, k ∈ Z.

Clearly, Z0 is an isometry and since the arcs ā0a1 and ȧ−1a0 have the same lengths, also Z−1 is an
isometry. However,

for k 6= 0,−1, the similitudes Zk decrease distances. (6.6)

Note also that, given i, j ∈ Z, for the homeomorphism (in fact a similitude defined in the whole plane π0)

Zi,j = Zj ◦ (Zi)
−1 (6.7)

we have Zi,j(ai) = aj , Zi,j(ai+1) = aj+1 and

BRj = Zi,j(BRi) and Hj = Zi,j(Hi), (6.8)

see Figure 6.1.

The head of our space X will then be the set

A0 = A ∪
⋃

i∈Z

Hi = {a∞} ∪
⋃

i∈Z

Zi(H0) ⊆ π0 (6.9)

which looks like a necklace of infinitely many copies of the Cook continuum H0, together with the point a∞.
Clearly, it is a continuum in the vertical plane π0.

In Section 4 (i.e. in the case S(X) = {0,∞}) we had planar Cook continua Km
i , called bricks, and the sets

D∗
1 , D

∗
2 , . . . made of the bricks, which were used to join the points of the trajectory x1, x2, . . . . The union of
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all sets D∗
i was the snake of X . Now (i.e. in the case S(X) = {0, log 2}) the snake is defined similarly as in

Section 4 (and, as before, X is the union of the head and the snake) with only two differences.

• First, a small technical difference is that now we start with the trajectory x0, x1, . . . , rather than
x1, x2, . . . , therefore we ‘shift’ the indices in the notations of the bricks and the sets Dm. Now a
continuum joining xm and xm+1 will be in fact denoted by D(m) , m = 0, 1, . . . . So,

D(m) =
∞⋃

i=1

K
m
i ∪ {xm+1} and D∗(m) =

∞⋃

i=1

K
m
i = Dm \ {xm+1}, (6.10)

and

D∗(0) = copy of K1 ∪ copy of K2 ∪ . . . ,

D∗(1) = copy of K2 ∪ copy of K4 ∪ . . . , (6.11)

D∗(2) = copy of K4 ∪ copy of K8 ∪ . . . ,

. . . .

Recall that {K1,K2, . . . } is a family of planar non-homeomorphic Cook continua, which are also
non-homeomorphic to Cook continua Hk used in the head. In the usual sense we speak on the
extremal points, i.e. on the first point and the last point, of the copies of Ki used to built the snake.
As in Subsection 4.2, in every Ki we choose two points whose distance equals the diameter of Ki and
we call them the extremal points of Ki, or the first point and the last point of Ki. When considering
a homeomorphic copy of Ki, the images of these two points are still called the first point and the
last point, respectively, of this copy. We will call them the extremal points of this copy; later it will
be seen that, in our construction, these two points will really be extremal points of the copy with
respect to the euclidean metric. We will also speak on the extremal points of the set D(m), the first
point of D(m) being defined as the first point of the first brick in D(m) and the last point of D(m)
being defined as the unique point of D(m) \ D∗(m). Again, they will be extremal in the sense of
the metric. In D∗(0), see (6.11), the last point of the copy of Ki coincides with the first point of the
copy of Ki+1, i = 1, 2, . . . . The sets D∗(m), m > 0, are built analogously.

• Second, while in Section 4 we joined xm and xm+1 by placing the set Dm along the straight line
segment xmxm+1, see Figures 4.1-4.2, now the straight line segments are replaced by (polygonal)
arcs. We have to choose these arcs very carefully and to place the sets D(m) into sufficiently small
neighborhoods of them. In fact, otherwise the snake could have cluster points in the plane π0 also
outside the head A0 and so X would not be compact. To be sure that the snake does not ‘produce’
cluster points in π0 \ A0, as well as to avoid some other potential problems which will be discussed
later, we proceed as shown in the next subsection.

Let us remark that not only the mentioned change in notation (D(m), m = 0, 1, . . . instead of Dm,
m = 1, 2, . . . ) is unimportant, but in fact the whole snake is even a homeomorphic copy of the snake from
Section 4, compare Figure 4.3 and (6.11). However, the two snakes have different positions in R3, meaning
that they are not equivalently embedded in R3, i.e. there is no homeomorphism R3 → R3 mapping one snake
onto the other one (note that the two heads are not homeomorphic).

6.2. More details of the construction of X. We first introduce some terminology.

The trajectory of x0 performs infinitely many jumps in the sense described in Section 5 (formally, a jump
is a pair of points). So, we can use them to separate {x0, x1, x2, . . . } into a disjoint union of sets (finite
sequences) J(m) , m = 0, 1, . . . , as follows:

• J(0) = {x0, x1, . . . , xj0} = {xk0 , xk0+1, . . . , xk0+j0} where k0 = 0 and j0 is the smallest positive
integer such that xj0 is the first point of a jump (then xj0+1 is the last point of this jump). In
Figure 5.2, j0 = 3.

• J(1) = {xk1 , xk1+1, . . . , xk1+j1} where k1 = j0 + 1 and j1 is the smallest positive integer such that
xk1+j1 is the first point of a jump. In Figure 5.2, k1 = 4 and in Figure 5.3 we see xk1+j1 as the point
on the right hand side of a∞, from which the trajectory jumps to the left hand side of a∞ (to be
precise, in the figure we see the P2-projections of those points).
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• In general, for m ≥ 1, J(m) = {xkm
, xkm+1, . . . , xkm+jm} where km = km−1 + jm−1 + 1, and jm is

the smallest positive integer such that xkm+jm is the first point of a jump.

So, these sets are maximal intervals in {x0, x1, x2, . . . } containing no jump. A jump can only be performed
from the last point of J(m) to the first point of J(m+1). The set J(m) is called the m-th jump level . Note
that it contains exactly one pair of points whose P2-projections are a0 and a1.

Fix m ≥ 0. Recall that P2(J(m)) is a block of consecutive points of {ai : i ∈ Z}. Let ak and ak+1 be
two neighboring points in P2(J(m)). They are P2-projections of two neighboring points from J(m) which

we denote by x
[m]
k and x

[m]
k+1, respectively (the latter one is closer to π0 than the former one).17 Among all

planes containing the points x
[m]
k and x

[m]
k+1, let P

[m]
k be the one whose angle with π0 is the same as the angle

of the line x
[m]
k x

[m]
k+1 with π0, i.e. the plane whose intersection with π0 is the line perpendicular to the line

x
[m]
k x

[m]
k+1.

If m is given and P
[m]
k exists, then for every set M ⊆ π0 lying in the sector Sk we define its lift to P

[m]
k ,

or the [m]-lift of M , by

M [m] =M
[m]
k := {x ∈ P

[m]
k : P2(x) ∈M} . (6.12)

The homeomorphism Zk : π0 → π0 can be lifted to a homeomorphism Z
[m]
k : P

[m]
0 → P

[m]
k . It is defined by

the equality

P2 ◦ Z
[m]
k = Zk ◦ P2

(in particular, Z
[m]
0 is the identity).

If P
[m]
k is defined (hence Z

[m]
k is defined), then the Z

[m]
k -image of a set (i.e., a Z

[m]
k -copy of a set) is

sometimes less precisely said to be a Z [m]-copy of that set (i.e. without specifying k). A family of sets is

said to be Z [m]-homeomorphic if each of them is a Z
[m]
k -copy of the same set (the values of k are different

for different sets in the family, while m is the same). Clearly, such sets are pairwise homeomorphic.

Now let H ⊆ π0 be a polygonal arc with the first point c1 and the last point ck, say the union of straight
line segments [c1, c2], [c2, c3], . . . , [ck−1, ck]. If they are maximal straight line segments in H , they are called
the links of H and the points c2, . . . , ck−1 are called the turning points of H . The first point c1 and the last
point ck of H are also called the extremal points of H . We define the distance of any points a, b ∈ H along
H , denoted by lH(a, b) , as follows:

• If a, b ∈ [ci, ci+1] for some i, then lH(a, b) = d(a, b), where d is the euclidean metric in π0.
• If a ∈ [ci, ci+1], b ∈ [cj , cj+1] with j > i, then

lH(a, b) = d(a, ci+1) +

j−1∑

t=i+1

d(ct, ct+1) + d(cj , b).

The case i > j is covered by requiring lH(a, b) = lH(b, a). Notice that if a, b ∈ H then d(a, b) ≤ lH(a, b).
Given different points a, b ∈ H , let [a, b]H be the polygonal arc which is a subset of H and has endpoints a
and b; so, lH(a, b) is the length of the arc [a, b]H .

Now we are going to choose, in the plane π0, some polygonal arcs ‘close’ to H0 and joining a0 and a1,
then some polygonal arcs ‘close’ to Hk, k 6= 0, and joining ak and ak+1, and finally the polygonal arcs, in
this case in fact straight line segments, ‘along’ the P2-projections of jumps (meaning that such a straight
line segment joins the P2-projections of the points forming a jump).

First consider H0. Let V
m
0 be the open (1/2m)-neighbourhood of H0 in π0, m = 0, 1, . . . . Then, since H0

is closed,

V
0
0 ⊇ V

1
0 ⊇ . . . and

∞⋂

m=0

V
m
0 = H0. (6.13)

17Note that, given m ≥ 0, x
[m]
k

exists only for finitely many integers k, because J(m) is finite. Given an integer k, x
[m]
k

exists for all sufficiently large m ≥ 0.
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By Lemma 2.16, for any nonnegative m, the points a0 and a1 can be joined by a polygonal arc Hm
0 ⊆ V

m
0 .

Moreover, since H0 is a subset of the big rhombus BR0, there exists even a polygonal arc Hm
0 joining a0

and a1 such that

Hm
0 ⊆ V

m
0 ∩BR0 . (6.14)

In fact, for every point Xo ∈ π0 \ BR0 there exists its projection into BR0, i.e. a unique point Xb in the
boundary of BR0 which is closest to Xo among all points of BR0. When we replace those points of Hm

0

which are outside BR0 by their projections into BR0, we obtain a new polygonal arc joining a0 and a1,
already satisfying (6.14). Since Vm

0 is open and Hm
0 is compact, we may even assume that, in (6.14), the

polygonal arc Hm
0 lies in the interior of BR0 with the exception of its extremal points which coincide with

the endpoints of the longer diagonal of BR0. Thus,

Hm
0 ⊆ V

m
0 ∩BR0 with all non-extremal points of Hm

0 in Int(BR0) . (6.15)

If a set A is in the open ε-neighbourhood of a set B, we say that A is ε-close to B.18 The fact that Hm
0

is in the open (1/2m)-neighbourhood Vm
0 of H0 thus means that

Hm
0 is (1/2m)-close to H0 . (6.16)

Figure 6.2 illustrates the situation.

a0

a1

BR0

Hm
0

H0

1

Figure 6.2. The Cook continuum H0 and the polygonal arc Hm
0 in the big rhombus BR0,

with only the extremal points a0 and a1 in its boundary. The arc Hm
0 is (1/2m)-close to the

continuum H0.

We choose finitely many points in Hm
0 satisfying the following ‘equidistant points conditions’.

(EP1) The points a0, (b
m
0 )1, (b

m
0 )2, . . . , (b

m
0 )nm

0
, a1 ∈ Hm

0 are equidistant with respect to lHm
0
, i.e.

lHm
0
(a0, (b

m
0 )1) = lHm

0
((bm0 )1, (b

m
0 )2) = · · · = lHm

0
((bm0 )nm

0
, a1) =: rm0 .

This family is said to be the (distinguished) equidistant family in Hm
0 or the (distinguished) family

of equidistant points in Hm
0 . The number rm0 is said to be the equidistance constant of Hm

0 .19 The
considered equidistant points divide Hm

0 into finitely many (in fact nm
0 + 1) subarcs. In the sequel

we will call them equi-subarcs of Hm
0 . The family of them is naturally ordered, the first equi-subarc

being the one containing a0.
(EP2) nm

0 is so large, i.e. rm0 is so small, that each equi-subarc of Hm
0 contains at most one turning point

of Hm
0 in its interior (in the topology of Hm

0 inherited from the plane π0).
(EP3) nm

0 ≥ 3 is so large that the first two equi-subarcs and the last equi-subarc of Hm
0 are straight line

segments.

18Note the lack of symmetry: If A is ε-close to B then B need not be ε-close to A.
19More precisely, we should speak on the equidistance constant of Hm

0 with respect to that family of points or on the

equidistance constant of the considered family of points with respect to Hm
0 .
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(EP4) nm
0 is so large that

[a0, (b
m
0 )1]Hm

0
= Bd(a0, r

m
0 ) ∩Hm

0 and [(bm0 )nm
0
, a1]Hm

0
= Bd(a1, r

m
0 ) ∩Hm

0

where Bd(x, δ) is the closed ball, with respect to the euclidean metric d, with centre x and radius δ.
Notice that, by (EP3), on the left hand sides we have straight line segments and not just polygonal
arcs.

(EP5) The sequence (nm
0 )∞m=0 increases so fast that, for any nonnegative m,

0 < rm+1
0 < (1/2)rm0 , hence rm0 ց 0 as m→ ∞ .

For m ≥ 0, the homeomorphism Zk sends

• the open neighbourhood Vm
0 ofH0 to the open neighbourhood Vm

k := Zk(V
m
0 ) ofHk, with (see (6.13))

V
0
k ⊇ V

1
k ⊇ . . . and

∞⋂

m=0

V
m
k = Hk ; (6.17)

• the polygonal arc Hm
0 joining a0 and a1 to the polygonal arc Hm

k := Zk(H
m
0 ) joining ak and ak+1 (in

particular, the turning points of Hm
0 are mapped to the turning points of Hm

k ), where, due to (6.15),

Hm
k ⊆ V

m
k ∩BRk with all non-extremal points of Hm

k in Int(BRk) (6.18)

and, since the similitudes Zk do not increase distances, due to (6.16) we have that

Hm
k is (1/2m)-close to Hk ; (6.19)

• the points a0, (b
m
0 )1, (b

m
0 )2, . . . , (b

m
0 )nm

0
, a1 ∈ Hm

0 with the equidistance constant rm0 to the same
number of points ak, (b

m
k )1, (b

m
k )2, . . . , (b

m
k )nm

0
, ak+1 ∈ Hm

k .

Since Zk is a similitude, we have the following analogues of (EP1)-(EP5).

(EP6) The family of points ak, (b
m
k )1, (b

m
k )2, . . . , (b

m
k )nm

0
, ak+1 ∈ Hm

k , being the Zk-image of the equidistant
family of points in Hm

0 , is an equidistant family of points in Hm
k , with some equidistance constant

rmk ≤ rm0 (with equality only for k = 0,−1, see (6.6)) with respect to lHm
k
.

(EP7) Each equi-subarc of Hm
k contains at most one turning point of Hm

k in its interior.
(EP8) The first two equi-subarcs and the last equi-subarc of Hm

k are straight line segments.

(EP9) [ak, (b
m
k )1]Hm

k
= Bd(ak, r

m
k ) ∩Hm

k and [(bmk )nm
0
, ak+1]Hm

k
= Bd(ak+1, r

m
k ) ∩Hm

k .

(EP10) 0 < rm+1
k < (1/2)rmk , hence rmk ց 0 as m→ ∞.

Finally, for any nonnegative m consider the m-th jump, i.e. the jump from J(m) to J(m + 1), and let
Lm ⊆ π0 be the straight line segment whose endpoints are P2(xkm+jm), P2(xkm+1 ) ∈ A, i.e. the P2-projections
of the two points forming the jump (here km+1 = km + jm +1). Let Um be the open (1/2m)-neighbourhood
of Lm in π0 (for each Lm we consider just one neighbourhood Um). In an obvious sense,

the neighbourhoods Um of Lm converge to the point a∞ as m→ ∞. (6.20)

We choose finitely many points in Lm satisfying the following conditions.

(EP11) The points P2(xkm+jm), (cmL )1, (c
m
L )2, . . . , (c

m
L )nm

0
, P2(xkm+1 ) ∈ Lm are equidistant with respect to

(both d and) lLm , with the equidistance constant rmL . Note that the number of these points is the
same as the number of the chosen distinguished points in Hm

0 or in Hm
k . Notice that the analogues

of (EP2)-(EP4), or (EP7)-(EP9), are trivial.
(EP12) Since the number of points in (EP11) tends to infinity and the length of Lm converge to zero, we

get rmL → 0 as m→ ∞.

Now consider the trajectory

x0, x1, . . . , xj0︸ ︷︷ ︸
J(0)

, xk1 , xk1+1, . . . , xk1+j1︸ ︷︷ ︸
J(1)

, xk2 , . . .︸ ︷︷ ︸
J(2)

, . . .
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and also the sequence of P2-projections of these points. These two sequences can be seen in the first and the
second row of Table 6, respectively. In the table we of course have p0 = j0. All the integers ni and pi are
positive. It follows from the construction of the trajectory of x0 that ni → ∞ and pi → ∞.

x0 x1 . . . xj0−1 xj0 xk1
xk1+1 . . . xk1+j1−1 xk1+j1 xk2

. . .

a0 a1 . . . ap0−1 ap0 a−n1 a−n1+1 . . . ap1−1 ap1 a−n2 . . .

Table 6. Trajectory of x0 and its P2-projection

While the trajectory of x0 is injective, its P2-projection in the second row contains for instance the periodic
subsequence a0, a1, a0, a1, . . . . Consider the following sequence of polygonal arcs which join the consecutive
points of the sequence P2(x0) = a0, P2(x1) = a1, . . . :

H0
0 , H

0
1 , . . . , H

0
p0−1︸ ︷︷ ︸

H0
k
=Zk(H0

0 )

, L0, H1
−n1

, H1
−n1+1, . . . , H

1
p1−1︸ ︷︷ ︸

H1
k
=Zk(H1

0 )

, L1, H2
−n2

, . . . . (6.21)

Notice that this sequence contains a subsequence of polygonal arcs H0
0 , H

1
0 , H

2
0 , . . . which are used to join

the pairs of points a0 and a1 from the above mentioned periodic sequence. In the second row of the following
Table 7 we summarize the equidistance constants for the arcs from (6.21). By (EP5), (EP10), (EP12) and
the fact that rmk ≤ rm0 we know that they converge to zero.

H0
0 H0

1 . . . H0
p0−1 L0 H1

−n1
H1

−n1+1 . . . H1
p1−1 L1 H2

−n2
. . .

r00 r01 . . . r0p0−1 r0
L

r1
−n1

r1
−n1+1 . . . r1p1−1 r1

L
r2
−n2

. . .

Table 7. Polygonal arcs joining the points of the P2-projection of the trajectory of x0 and
their equidistance constants (converging to zero)

Now we are going to lift the polygonal arcs from (6.21) (together with the distinguished families of
equidistant points in them), in order to join the consecutive points of the trajectory x0, x1, . . . . We use lifts
as follows.

• For each arc from (6.21) which is of the form Hm
i (and so is a subset of the big rhombus BRi in the

sector Si) we use its [m]-lift, see (6.12).
• For each straight line segment Lm ⊆ π0 joining the points apm

and a−nm+1 , see Table 6, we use, as
its lift, the straight line segment joining the points xkm+jm and xkm+1 , i.e. the last point of J(m)
and the first point of J(m+ 1).

For each polygonal arc H from (6.21) we have thus defined, in a unique way, its lift . We denote this lift by
L(H) and we also call it the regular polygonal arc above H . However, if L(H) has endpoints xh and xh+1,
then a ‘natural’ notation for this lift is L(h) , so we have the sequence L(0),L(1),L(2), . . . . In Table 8, each
of the considered regular polygonal arcs is placed in the third row just below its first point (the next point
to the right is its last point). In the fourth row we write the mentioned ‘natural’ notation. Any two arcs are
of course homeomorphic. Some of the considered arcs are even Z [m]-homeomorphic for some m, as shown
in the last row of the table. By the construction, see also (6.14) and (6.18), the lifts in the table intersect
only in their common endpoints.

J(0) J(1) . . .

x0 . . . xj0−1 xj0 xk1
. . . xk1+j1−1 xk1+j1 xk2

. . .

L(H0
0 ) . . . L(H0

p0−1) L(L0) L(H1
−n1

) . . . L(H1
p1−1) L(L1) L(H2

−n2
) . . .

L(0) . . . L(j0 − 1) L(j0) L(j0 + 1) . . . L(j0 + j1) L(j0 + j1 + 1) L(j0 + j1 + 2) . . .

Z [0]-copies of L(H0
0 ) Z[1]-copies of L(H1

0 ) . . .

Table 8. The regular polygonal arcs joining the elements of the trajectory of x0

The distinguished equidistant family of points in a polygonal arc H from (6.21) is lifted to the family of
points in L(H) with the same cardinality but, in general, this lifted family of points is not equidistant.
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The polygonal arcs from (6.21) can be viewed as the P2-projections of their lifts. The first and the second
row of the following Table 9 show these arcs written in two alternative ways. The third row of the table
contains their equidistance constants, but redenoted; this new notation will be more convenient than the
one from Table 7.

H0
0 . . . H0

p0−1 L0 H1
−n1

. . . H1
p1−1 L1 . . .

P2(L(0)) . . . P2(L(j0 − 1)) P2(L(j0)) P2(L(j0 + 1)) . . . P2(L(j0 + j1)) P2(L(j0 + j1 + 1)) . . .

r(0) . . . r(j0 − 1) r(j0) r(j0 + 1) . . . r(j0 + j1 r(j0 + j1 + 1) . . .

Table 9. Polygonal arcs joining the points of the P2-projection of the trajectory of x0, an
alternative notation. The equidistance constants r(j) → 0.

Recall (6.16) and (6.19). Further, since Lm ⊆ Um, (6.20) shows that, for some δ(m),

Lm is δ(m)-close to a∞ and δ(m) → 0 as m→ ∞. (6.22)

The situation is shown in Table 10.

H0
0 . . . H0

p0−1 L0 H1
−n1

. . . H1
p1−1 L1 . . .

P2(L(0)) . . . P2(L(j0 − 1)) P2(L(j0)) P2(L(j0 + 1)) . . . P2(L(j0 + j1)) P2(L(j0 + j1 + 1)) . . .

(1/20)-close to δ(0)-close (1/21)-close to δ(1)-close . . .
H0 . . . Hp0−1 to {a∞} H−n1 . . . Hp1−1 to {a∞} . . .

Table 10. Polygonal arcs P2(L(j)) ⊆ π0 approach the head. Here δ(m) → 0.

We are going to finish the definition of the snake. For every j ≥ 0, the continuum D(j) joining the points
xj and xj+1 will lie in a plane P(j):

xj , xj+1 ∈ D(j) ⊆ P(j) .

With few exceptions (corresponding to the jumps), P(j) will be one of the planes P
[m]
k introduced earlier.

To define P(j), fix j and take into account that xj ∈ J(m) for some m ≥ 0. There are two possibilities.

(i) If also xj+1 belongs to J(m), the P2-projections of xj and xj+1 are some consecutive points ak and

ak+1 from A. Then put P(j) := P
[m]
k .

(ii) If xj is the last point of J(m), then xj+1 is the first point of J(m+ 1) and so these two points form
the m-th jump. Then let P(j) be that plane containing xj and xj+1 whose intersection with π0 is
the line perpendicular to the line containing xj and xj+1 (recall that xj+1 is closer to π0 than xj).

So, we have
xj , xj+1 ∈ L(j) ⊆ P(j), j = 0, 1, . . . . (6.23)

For each j,
we place D(j) in a ‘nice way’ along the regular polygonal arc L(j)

(see (6.10) and (6.11)). By this we first of all mean that we choose homeomorphic copies of the sets D(j),
but still denoted by the same symbols D(j), satisfying the following three ‘placing conditions’ for every j.

(PL1) The first point and the last point of D(j) coincide with the first point xj and the last point xj+1 of
the polygonal arc L(j), respectively.

(PL2) The set E(j) consisting of the extremal points of D(j) and the extremal points of all bricks in D(j) is
a subset of the polygonal arc L(j) and is ordered along L(j) in the ‘natural’ way, i.e. as in Section 4
(where, however, the role of L(j) is played by a straight line segment): the first point of D(j) =
xj = the 1st point of the 1st brick, then the last point of the 1st brick = the first point of the 2nd
brick, then the last point of the 2nd brick, etc., and finally the last point of D(j).

(PL3) The set E(j) ⊆ L(j) contains, among others,
◮ the set Eeq(j) of all the points of L(j) which are the lifts of the points from the distinguished

equidistant family of points in the polygonal arc P2(L(j)),
20 and also

◮ all the points of L(j) which are the lifts of the turning points of the polygonal arc P2(L(j)).

20In spite of this and in spite of the notation, note that Eeq(j) is in general not equidistant with respect to ℓL(j).



TOPOLOGY AND TOPOLOGICAL SEQUENCE ENTROPY 55

Since E(j) is by definition infinite, it has to contain also some other points from L(j). In other words,
(PL1)–PL(3) admit many ways of placing the set D(j) along L(j) — the points of the two kinds mentioned
in (PL3) divide L(j) into finitely many straight line segments, and we have to choose how many consecutive
bricks of D(j) will be placed along the individual segments. Of course, along each of them we have to place
at least one brick and along the last of them we have to place a ‘tail’ consisting of infinitely many bricks.
Though the particular way how we do that will be specified below, in Subsection 6.4, for a moment suppose
that we have already chosen the extremal points of all the bricks in the snake. This assumption allows us to
describe in more details how we place the sets D(j) along L(j).

Fix j ≥ 0. By (6.11) we can write D∗(j) as the union of bricks, call them now Bj,n, n = 1, 2, . . . :

D∗(j) =
∞⋃

n=1

Bj,n . (6.24)

Let fj,n and ℓj,n be the first and the last point of Bj,n, respectively. The polygonal arc P2(L(j)) is one of
the polygonal arcs Hm

k or one of the straight line segments Lm, see e.g. Table 10.

First suppose that P2(L(j)) = Hm
k for some m ≥ 0 and k ∈ Z. Recall that Hm

k is a subset of the
big rhombus BRk and that even (6.18) holds. Due to (PL3), for every n we have that [fj,n, ℓj,n]L(j) is a
straight line segment in L(j) and so P2([fj,n, ℓj,n]L(j)) ⊆ Hm

k is a straight line segment with the endpoints
P2(fj,n) and P2(ℓj,n). For every n, we choose a ‘small’ rhombus SRj,n such that the longer diagonal of
SRj,n is the straight line segment P2([fj,n, ℓj,n]L(j)) and the other diagonal is short enough so that the small
rhombuses SRj,n for n = 1, 2, . . . are pairwise disjoint, except that the consecutive rhombuses have one
vertex in common. Moreover, due to (6.18) we may choose this ‘chain’ of small rhombuses in such a way
that it completely lies in the big rhombus BRk:

∞⋃

n=1

SRj,n ⊆ BRk .

By lifting the small rhombuses SRj,n to P(j) we get quadrilaterals Qj,n ⊆ P(j) (in fact parallelograms, but
not necessarily rhombuses).21 They are pairwise disjoint except that two consecutive quadrilaterals have one
vertex in common, because the small rhombuses have such a property. See Figure 6.3.

Now suppose that P2(L(j)) = Lm for some m ≥ 0 (we say that D(j) is going to be placed along the
straight line segment L(j) or along the m-th jump). Then we proceed analogously. Again we choose, now
along the straight line segment Lm, small rhombuses SRj,n which are pairwise disjoint, except that two
consecutive rhombuses have one point in common. Here Lm corresponds to a jump, so this chain of small
rhombuses is between two chains of small rhombuses corresponding to the neighbouring sets D(j − 1) and
D(j + 1), and so placed along polygonal arcs in some big rhombuses as already explained above. Since
the jump is almost horizontal (in the sense explained below the formula (5.13)), we can choose the small
rhombuses along Lm in such a way that they are disjoint from those corresponding to D(j−1) and D(j+1).
Again, by lifting SRj,n to P(j) we get quadrilaterals Qj,n ⊆ P(j) (one can see that in this case they are in
fact rhombuses) which are pairwise disjoint except that two consecutive quadrilaterals have one vertex in
common. See Figure 6.4.

Thus, for every j ≥ 0, n ≥ 1 and corresponding brick Bj,n as in (6.24), we choose a small rhombus
SRj,n ⊆ π0 and a quadrilateral Qj,n ⊆ P(j). The consecutive points of the trajectory x0, x1, . . . are joined
by chains of quadrilaterals, so we have in fact a chain of chains of quadrilaterals. According to our choice
of them, and the fact that the distances of the points xj from the plane π0 strictly decrease, it is obvious
that all the quadrilaterals are pairwise disjoint except that if two of them are consecutive (and so lie in one
of those chains of quadrilaterals) then they have one point in common.22

Finally, we are ready to formulate the fourth ‘placing condition’.

21We do not introduce any notation for the lifts of the big rhombuses BRk .
22The family of all small rhombuses SRj,n in π0 of course does not have this property. For instance, every point ak, k ∈ Z

belongs to infinitely many small rhombuses.
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. . .

. . .

BRk

ak+1 = P2(xj+1)P2(xj) = ak

turning points in Hm
k

P2(Eeq(j)) =equidistant points in Hm
k

SRj,3 = P2(Qj,3)
Hm

k = P2(L(j))

1

Figure 6.3. The chain of small rhombuses SRj,n, n = 1, 2, . . . , placed along the poly-
gonal arc P2(L(j)) = Hm

k in the big rhombus BRk. The lifts of SRj,n to P(j) are some
quadrilaterals Qj,n placed along the polygonal arc L(j) joining the points xj and xj+1.
Notice that, by (PL3) and the definition of small rhombuses, every turning point of Hm

k

is a vertex of a small rhombus and the same is true for every point from the distinguished
family of equidistant points in Hm

k .

BRpm−1BR−nm+1

Lm = P2(L(j))

P2(xj+1) = a−nm+1
apm = P2(xj)

SRj,3 = P2(Qj,3)

1

Figure 6.4. The chain of small rhombuses along P2(L(j)). It is between two big rhombuses
containing their own chains of small rhombuses. See Table 6 for the notation of the endpoints
of Lm.

(PL4) Every brick Bj,n, see (6.24), is placed in the corresponding quadrilateral Qj,n ⊆ P(j) in such a way
that the first point and the last point of Bj,n coincide with the first point and the last point of Qj,n,
respectively (these are the lifts of the first point and the last point of SRj,n, respectively).

Note that, by (PL4), all the bricks in the snake are pairwise disjoint with the exception that two neigh-
boring bricks intersect at one point (because the quadrilaterals containing them have such a property).
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Clearly, for every j and n, diamSRj,n = diamP2(Bj,n) = d(P2(fj,n), P2(ℓj,n)). If the small rhombuses
SRj,n are chosen narrow enough, i.e. with shorter diagonals short enough, then also diamQj,n = diamBj,n =
d(fj,n, ℓj,n) and even the following is true. We formulate it as the fifth ‘placing condition’.

(PL5) We choose small rhombuses narrow enough to ensure the following. If, for some j ≥ 0, D is a union
of (finitely or infinitely many) consecutive bricks of D∗(j), SRD and QD are the unions of small
rhombuses and quadrilaterals, respectively, corresponding to the bricks in D, and ED is the set of
extremal points of the bricks in D, then

diam SRD = diamP2(D) = diamP2(ED)

and

diamQD = diamD = diamED .

Indeed, no matter whether we are in the plane π0 or in the plane P(j) (i.e. no matter whether we want
to prove the first formula or the second one), a simple geometrical argument shows that the diameter of a
polygonal arc is realized as the diameter of the finite set of the endpoints of all its links. Then one can see
that if the small rhombuses are narrow enough, both formulas in (PL5) work.

Having described the head and the snake, we finally define our space, a candidate for the equality S(X) =
{0, log 2}, by

X = head ⊔ snake = A0 ⊔
∞⋃

m=0

D(m) = A0 ⊔
∞⋃

m=0

D∗(m). (6.25)

Lemma 6.1. The space X ⊆ R3 defined by (6.25) is a one-dimensional continuum.

Proof. Due to the ‘closedness conditions’ which can be seen in Table 10 and taking into account (5.2), our
construction ensures that all those cluster points of the snake which are in π0 belong to the head A0. Hence
X is compact.23 Moreover, X is one-dimensional and connected for the same reasons as the space X in
Section 4. �

6.3. A map G : X → X and a need to specify the geometry of X. The proof that S(X) = {0, log 2}
will be similar to that in Section 4 (though we will still need to specify the geometry of our space X
from (6.25) in more details). This means that

• we construct a map G : X → X , in fact a continuous extension of the map T : X1 → X1 with
h∗(T ) = log 2, such that also h∗(G) = log 2, and

• we show that, for every continuous map F : X → X , either h∗(F ) = 0 or h∗(F ) = h∗(G).

We define, for the space X from (6.25) and the map T from (6.2), the map G : X → X as follows:

• G|X1 = T ;
• for every k ∈ Z, G|Hk

is the unique homeomorphism Hk → Hk+1 (i.e. G|Hk
= Zk,k+1|Hk

=

(Zk+1 ◦ Z
−1
k )|Hk

);
• for everym ≥ 0, G|D(m) is the unique continuous surjective map D(m) → D(m+1) (see Lemma 4.14
and Figure 4.5).

In Section 4 the map G was trivially continuous and h∗(G) = ∞. Contrary to this, now we are facing the
following two problems.

• While our map G, just defined above, is obviously continuous at all points of the snake, we still have
not proved that it is continuous also at all points of the head. (The restrictions of G to the head
and to the snake are clearly continuous, but we have not proved that these two continuous parts of
G fit together to produce a continuous map on X . In Section 4 the continuity was trivial because
G on the head was the identity and the diameters of Dm tended to zero. Now G on the head is not
identity and the diameters of D(m) do not tend to zero.)

23We do not claim that the closure of the snake is the whole X, as it was the case in Section 4, since we do not know
whether the snake approaches every point in every Hk. However, with a little care we could modify the construction to get
this – instead of just using Lemma 2.16 for joining the endpoints of Hk, we would combine it with Lemma 2.9.
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• While it is trivial that h∗(G) ≥ h∗(T ) = log 2, this inequality alone does not imply that h∗(G) = log 2.
(In Section 4, see Lemma 4.25, we were in better situation, since h∗(G) ≥ h∗(T ) = ∞ trivially implies
that h∗(G) = ∞.)

To cope with these two problems, we are going to specify the geometry of X in more details, by adding
some additional requirements to our construction of X .

6.4. Specification of geometry of X. We have adopted placing conditions (PL1)–(PL5) for placing D(j)
along L(j). But still there is much freedom for doing that. Consider the sets Eeq(j) ⊆ E(j) in L(j) from
(PL3). The set Eeq(j) is already chosen by our construction, the larger set E(j) will depend on how we now
place the bricks from D(j) along L(j).24

Since the set Eeq(j) is obtained as a lift of the distinguished family of equidistant points in P2(L(j)),
we will sometimes call it a distinguished family of points in L(j) (we do not say “equidistant” points, since
the family need not be equidistant in L(j)). The set Eeq(j) divides L(j) into finitely many distinguished
(polygonal) subarcs. In the sequel we will call them lequi-subarcs of L(j) (meaning “lifts of equi-subarcs
of P2(L(j))”). We order this family of lequi-subarcs in the natural way, the first of them being the one
containing xj , the first point of L(j). It follows from (EP2) and (EP7) that each of these lequi-subarcs
contains at most one turning point. Note the following, which follows from (PL3).

(PL3a) If a lequi-subarc does contain a (unique) turning point, in view of (PL3) we will have to place at
least two bricks of D(j) along this subarc. Moreover, we will have to do it in such a way that this
turning point will coincide with the last point of some brick and with the first point of the next
brick. However, we will not need to specify this pair of consecutive bricks — in case of placing more
than two bricks along this subarc we have thus some freedom in choosing this pair.

(PL3b) On the other hand, if a lequi-subarc contains no turning point, (PL3) gives us a freedom — we are
allowed to place either only one brick or more bricks along this subarc.

We are going to specify the positions, along the polygonal arcs L(j), of the bricks from D(j). When
speaking on positions of bricks, we are not interested in all the details related to them. We in fact have in
mind the positions of the corresponding quadrilaterals (basically just the positions of the extremal points of
their longer diagonals), see (PL4). The reason is that everything what is important for us about the position
of a brick is determined by the quadrilateral containing it. We hope that no misunderstanding will arise if
we speak just on positions of bricks.

We start with j = 0, i.e. with L(0) and D(0). The distinguished family Eeq(0) of points in L(0) divides
L(0) into finitely many lequi-subarcs. We place the first brick of D(0) along the first of these lequi-subarcs.
For each of the other lequi-subarcs except the last one, let the number of bricks placed along that lequi-
subarc be the same as the total number of bricks placed along all the previous lequi-subarcs of L(0). So,
the numbers of bricks placed along the lequi-subarcs, except the last one, are powers of two, starting with
1, 1, 2, 4. All the infinitely many remaining bricks of D(0) are placed along the last lequi-subarc of L(0).
This is in accordance with (PL3a) and (PL3b) because the first two lequi-subarcs, being lifts of straight line
segments by (EP3), are straight line segments.

We will shortly say that the bricks of D(0) are placed along L(0) according to the rule “1, sums, ∞”. We
divide D(0) into three parts: Dfront(0), Dmiddle(0) and Dend(0) as follows:

• Dfront(0) is the union of bricks (in fact one brick) placed along the first lequi-subarc of L(0),
• Dend(0) is the union of (infinitely many) bricks placed along the last lequi-subarc of L(0), together
with the last point of L(0),

• Dmiddle(0) is the union of (finitely many) other bricks in D(0).

Notice that these sets are not pairwise disjoint, because Dmiddle(0) intersects each of the other two sets in
one point.

Recall that r(0) = r00 (see Table 7 and the alternative notation in Table 9). We may assume that

P2(D
front(0)) = Bd(a0, r(0)) ∩ P2(D(0)) and P2(D

end(0)) = Bd(a1, r(0)) ∩ P2(D(0)), (6.26)

24Here and below we for simplicity sometimes speak on D(j), though it would perhaps be more precise to speak on D∗(j).
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though (EP1), (EP3) and (EP4) do not automatically ensure this. If necessary, we just choose n0
0 larger

enough, i.e. r00 smaller enough, to get the first and the last equi-subarcs in (EP3) sufficiently short to get
these properties. Finally, denote by N0 the number of bricks in Dfront(0) ∪Dmiddle(0).

Now consider 0 < j < j0. We have L(j) = Z
[0]
j (L(0)), see Table 8. The same is true for the distinguished

families of points in L(0) and L(j), i.e. Eeq(j) = Z
[0]
j (Eeq(0)), and so the cardinalities of these families are

the same (the number of lequi-subarcs in L(0) is the same as in L(j) for 0 < j < j0). Following the pattern
from the case j = 0, we place D(j) along the polygonal arc L(j) according to the rule “1, sums, ∞”. Here
D(j) is not a copy of D(0), it is given by (6.11).25 In the same way as above for j = 0, we define the sets
Dfront(j), Dmiddle(j) and Dend(j). We may also assume (see (EP8), (EP9) and (6.26)) that

P2(D
front(j)) = Bd(aj , r(j)) ∩ P2(D(j)) and P2(D

end(j)) = Bd(aj+1, r(j)) ∩ P2(D(j)). (6.27)

Now consider j = j0. Then L(j0) corresponds to the 0-th jump, see Table 8, and it is a straight line
segment with the cardinality of Eeq(j0) equal to the cardinality of Eeq(j) for 0 ≤ j < j0 (the number of
lequi-subarcs in L(j0) is the same as in L(j) for 0 ≤ j < j0). Still according to the rule “1, sums, ∞”, we
place D(j0), see (6.11), along L(j0). In the same way as above, we define the sets Dfront(j0), D

middle(j0)
and Dend(j0). Since L(j0) is a straight line segment, an analogue of (6.26) again holds.

Notice that for every j considered so far, i.e. for 0 ≤ j ≤ j0, the set Dfront(j) ∪Dmiddle(j) consists of N0

bricks, as in case j = 0. The situation is summarized in Table 11 (where the lequi-subarcs are called just
subarcs).

D(j), 0 ≤ j ≤ j0
Dfront(j) Dmiddle(j) Dend(j)

1 brick along 1st lequi-subarc finitely many bricks ∞ many bricks along last lequi-subarc

N0 bricks

Table 11. D(j) along the polygonal arc L(j) for j such that xj ∈ J(0). The rule is “1, sums, ∞”.

We have thus put restrictions on the geometry of the continua D(j) joining the consecutive points of the
0-th jump level J(0) and the 0-th jump.

Now we are going to work with the 1-st jump level J(1) and the 1-th jump. We start with placing D(t1)
where xt1 , xt1+1 is the unique pair of points in J(1) with P2(xt1 ) = a0 and P2(xt1+1) = a1. Similarly as we
have distributed the bricks of D(0) along L(0) by the rule “1, sums, ∞”, we proceed with D(t1), though
with a different rule. The family Eeq(t1) divides L(t1) into lequi-subarcs. We place the bricks of D(t1)
along them, but now according to the rule “N0, sums, ∞”. This means the following. We place the first N0

bricks of D(t1) along the first of these lequi-subarcs. Further, for each of the other lequi-subarcs except the
last one, let the number of bricks placed along that lequi-subarc be the same as the total number of bricks
placed along all the previous lequi-subarcs of L(t1). All the infinitely many remaining bricks of D(t1) are
placed along the last lequi-subarc of L(t1). We also divide D(t1) into three parts: Dfront(t1), D

middle(t1)
and Dend(t1) as follows:

• Dfront(t1) is the union of bricks (in fact N0 bricks) placed along the first lequi-subarc of L(t1),
• Dend(t1) is the union of (infinitely many) bricks placed along the last lequi-subarc of L(t1), together
with the last point of L(t1),

• Dmiddle(t1) is the union of (finitely many) other bricks of D(t1).

Recall that r(t1) = r10 . For analogous reasons as in case j = 0, we may assume that

P2(D
front(t1)) = Bd(a0, r(t1)) ∩ P2(D(t1)) and P2(D

end(t1)) = Bd(a1, r(t1)) ∩ P2(D(t1)). (6.28)

Finally, denote by N1 the number of bricks in Dfront(t1) ∪Dmiddle(t1).

25This is an exception from the ‘rule’ that for passing from j = 0 to 0 < j < j0 one just needs to apply the similitude Zj or

its lift Z
[0]
j

.
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In the same way, according to the rule “N0, sums, ∞” we place D(j) along the polygonal arc L(j) not
only for j = t1, but also for all other j0 + 1 ≤ j < j0 + j1 + 1 (so, N0 bricks are placed along the 1st
lequi-subarc etc.). For each such j, we define the sets Dfront(j), Dmiddle(j) and Dend(j) in the same way as
above for j = t1. We also have an analogue of (6.28):

P2(D
front(j)) = Bd(P2(xj), r(j)) ∩ P2(D(j)) and P2(D

end(j)) = Bd(P2(xj+1), r(j)) ∩ P2(D(j)). (6.29)

Further, still according to the rule “N0, sums, ∞”, we place D(j0 + j1 + 1) along the straight line segment
L(j0 + j1 + 1) corresponding to the 1-st jump (i.e. N0 bricks placed along the 1st lequi-subarc etc.), we
define the sets Dfront(j0 + j1 +1), Dmiddle(j0 + j1 +1) and Dend(j0 + j1 +1) and we again have an analogue
of (6.28).

Notice that for every j0 + 1 ≤ j ≤ j0 + j1 + 1, the set Dfront(j) ∪Dmiddle(j) consists of N1 bricks. The
situation is shown in Table 12.

D(j), j0 + 1 ≤ j ≤ j0 + j1 + 1

Dfront(j) Dmiddle(j) Dend(j)

N0 bricks along 1st lequi-subarc finitely many bricks ∞ many bricks along last lequi-subarc

N1 bricks

Table 12. D(j) along the polygonal arc L(j) for j such that xj ∈ J(1). The rule is “N0,
sums, ∞”.

We have thus put restrictions on the geometry of the continua D(j) joining the consecutive points of the
1-st jump level J(1) and the 1-st jump.

We continue by induction. Suppose that, for s ≥ 2, we have already put the restrictions on the geometry of
the continuaD(j) joining the consecutive points of the jump levels J(0), . . . , J(s−1) and the 0-th, . . . , (s−1)-
st jumps. Denote by xts , xts+1 the unique pair of points in J(s) with P2(xts) = a0 and P2(xts+1) = a1,
and consider the polygonal arc L(ts) joining xts and xts+1. The family Eeq(ts) divides L(ts) into lequi-
subarcs. We place D(ts) along L(ts) according to the rule “Ns−1, sums, ∞”, we define the sets Dfront(ts),
Dmiddle(ts), D

end(ts) and we require also an analogue of (6.28). Finally, denote by Ns the number of bricks
in Dfront(ts) ∪Dmiddle(ts).

In the same way, according to the rule “Ns−1, sums, ∞” we place D(j) along the polygonal arc L(j) not
only for j = ts, but also for any other ks ≤ j < ks+ js (so, Ns−1 bricks are placed along the 1st lequi-subarc
etc.). For each such j, we define the sets Dfront(j), Dmiddle(j) and Dend(j) in the same way as above for
j = ts. We have also the analogues of (6.28) for P2(D

front(j)) and P2(D
end(j)), with a0 and a1 replaced by

the first point and the last point of P2(L(j)), respectively, and with radius r(j). Further, still according to
the rule “Ns−1, sums, ∞”, we place D(ks + js) along the straight line segment L(ks + js) corresponding to
the s-th jump (i.e. Ns−1 bricks placed along the 1st lequi-subarc etc.), we define the sets Dfront(ks + js),
Dmiddle(ks + js) and D

end(ks + js) and we require also an analogue of (6.28).

Notice that for every ks ≤ j ≤ ks + js, the set Dfront(j) ∪Dmiddle(j) consists of Ns bricks. The situation
is illustrated in Table 13.

D(j), ks ≤ j ≤ ks + js
Dfront(j) Dmiddle(j) Dend(j)

Ns−1 bricks along 1st lequi-subarc finitely many bricks ∞ many bricks along last lequi-subarc

Ns bricks

Table 13. D(j) along the polygonal arc L(j) for j such that xj ∈ J(s). The rule is “Ns−1,
sums, ∞”.

We have thus put restrictions on the geometry of the continua D(j) joining the consecutive points of the
s-th jump level J(s) and the s-th jump. The induction is finished.
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6.5. Properties of the map G. In Subsection 6.3 we have defined a map G : X → X . Recall that
G|X1 = T , for every integer k the map G|Hk

is the unique homeomorphism Hk → Hk+1, i.e. Zk,k+1|Hk
,

and, for every m ≥ 0, G|D∗(m) is the unique surjective continuous map D∗(m) → D∗(m+ 1).

By (6.11), the set D∗(m) is the union of some bricks B1, B2, B3, B4, . . . and D∗(m + 1) is the union of
copies of B2, B4, B6, B8, . . . . The map G maps the 1st brick of D∗(m) to the first point of the 1st brick of
D∗(m+ 1), the 2nd brick of D∗(m) onto the 1st brick of D∗(m+ 1) and, in general,

G(n-th brick of D∗(m)) ⊆

õ
n+ 1

2

û
-th brick of D∗(m+ 1) (6.30)

(if n is even we have equality and if n is odd then the left side is a singleton, namely the first point of the
brick on the right side).

We introduce the following notations:

• B
(j)
i is the union of all bricks placed along the i-th lequi-subarc of L(j),

• b
(j)
i is the number of all bricks placed along the i-th lequi-subarc of L(j),

• Q
(j)
i is the union of all quadrilaterals placed along the i-th lequi-subarc of L(j),

• SR
(j)
i is the union of all small rhombuses placed along the i-th equi-subarc of P2(L(j)).

Let j ≥ 0 be such that both xj and xj+1 belong to J(s), s ≥ 0. Then the numbers of lequi-subarcs in
L(j) and in L(j + 1) are the same, denote them by t. Moreover, if we put N−1 = 1, we have (see Table 13)

b
(j)
1 = b

(j)
2 = Ns−1, b

(j)
3 = 2Ns−1, . . . , b

(j)
t−1 = 2t−3Ns−1 and b

(j)
t = ∞

and exactly the same equalities for b
(j+1)
i , i = 1, . . . , t. A simple computation, using this and (6.30), shows

that for such j we have

G(B
(j)
1 ∪B

(j)
2 ) = B

(j+1)
1 ,

G(B
(j)
k ) = B

(j+1)
k−1 , k = 3, 4, . . . , t− 1, (6.31)

G(B
(j)
t ) = B

(j+1)
t−1 ∪B

(j+1)
t .

Lemma 6.2. Let xj and xj+1 belong to the same set J(s). Then

G(Dfront(j)) ⊆ Dfront(j + 1),

G(Dmiddle(j)) ⊆ Dfront(j + 1) ∪Dmiddle(j + 1),

G(Dend(j)) ⊆ Dmiddle(j + 1) ∪Dend(j + 1) .

Proof. The number of lequi-subarcs in L(j) and in L(j+1) are the same and, as mentioned above (6.31), the
number of bricks placed along the i-th lequi-subarc is the same for L(j) and for L(j+1). Now use (6.31). �

Lemma 6.3. Let xm, xm+1 either belong to J(i) or form the i-th jump, and let xk, xk+1 either belong to
J(s) or form the s-th jump for some s > i. Let

x ∈ Dfront(m) ∪Dmiddle(m)

and let n be the positive integer for which Gn(x) ∈ D∗(k). Then

Gn(x) ∈ Dfront(k) and so d(P2(G
nx), P2(xk)) ≤ r(k).

Proof. Since s > i, the number of bricks in Dfront(k) is greater than or equal to the number of bricks in
Dfront(m) ∪Dmiddle(m) (if s = i + 1, they are equal). Since G preserves the order of bricks in the snake,26

the assumption x ∈ Dfront(m) ∪ Dmiddle(m) implies Gn(x) ∈ Dfront(k). The inequality in the lemma then
follows from (6.26) or one of its analogues mentioned below it, e.g. (6.27), (6.28), (6.29). �

From the previous two lemmas we immediately get the following corollary.

Corollary 6.4. For every j ≥ 0, G(Dfront(j)) ⊆ Dfront(j + 1).

26We speak on non-strict order since two consecutive bricks can be mapped to one brick, one of those two bricks being
mapped to a point.



62 L’UBOMÍR SNOHA, XIANGDONG YE AND RUIFENG ZHANG

Lemma 6.5. Let xj , xj+1, xj+2 ∈ J(s) for some j ≥ 0 and s ≥ 0 and so, for some k ∈ Z, P2(xj) = ak,
P2(xj+1) = ak+1, P2(xj+2) = ak+2. Let y ∈ D∗(j) and so G(y) ∈ D∗(j + 1). Then

d(Zk,k+1(P2(y)), P2(G(y))) ≤ 2 · r(j + 1).

Proof. The arc L(j) joins xj and xj+1, the arc P2(L(j)) joins ak and ak+1. Similarly, L(j + 1) joins xj+1

and xj+2, P2(L(j + 1)) joins ak+1 and ak+2. Each of the four arcs is divided into the same number of
distinguished subarcs (lequi-subarcs or equi-subarcs).

Assume that y ∈ B
(j)
i , i.e. y belongs to some brick placed along the i-th distinguished subarc of L(j).

By (6.31),

G(y) ∈ B
(j+1)
i−1 ∪B

(j+1)
i (6.32)

where B
(j+1)
i−1 should be replaced by the empty set provided i = 1. Suppose that i > 1 (for i = 1 the proof

is almost the same).

Since y ∈ B
(j)
i , we have y ∈ Q

(j)
i . Hence P2(y) ∈ SR

(j)
i and so Zk,k+1(P2(y)) ∈ SR

(j+1)
i . On the other

hand, by (6.32) we have G(y) ∈ Q
(j+1)
i−1 ∪Q

(j+1)
i and so P2(G(y)) ∈ SR

(j+1)
i−1 ∪ SR

(j+1)
i . Thus,

d(Zk,k+1(P2(y)), P2(G(y))) ≤ diam
Ä
SR

(j+1)
i−1 ∪ SR

(j+1)
i

ä
≤ diamSR

(j+1)
i−1 + diamSR

(j+1)
i .

The equidistance constant of P2(L(j + 1)) is r(j + 1), see e.g. Table (9). Further, the euclidean distance of
points on a polygonal arc is less than or equal to their distance along the arc. Therefore, by (PL5), each of
the diameters on the right-hand side is less than or equal to r(j + 1). �

Lemma 6.6. The map G : X → X is continuous.

Proof. The restrictions of G to the head and to the snake are both continuous by the construction of G.
Since the snake is open in X and the head is not, it remains to prove that G : X → X is continuous at every
point of the head. So, let z be a point from the head and let yk ∈ D∗(ik), k = 0, 1, . . . be a sequence of
points from the snake converging to z. We want to show that G(yk) → G(z).

First suppose that z = a∞. Then, by the construction, the sequence G(D∗(ik)) = D∗(ik + 1) converges
to a∞. Hence G(yk) → a∞. Since a∞ is a fixed point of G , the continuity of G at a∞ follows.

Now assume that z ∈ Hm for some m ∈ Z and that z is not an extremal point of Hm. Then z is an
interior point of Hm in the topology of the head. It follows that the extremal points xik , xik+1 of D(ik) are
P2-projected onto the extremal points am, am+1 of Hm for all sufficiently large k. We may of course assume
that this is the case for all k. Moreover, as the sequence of jumps converges in an obvious sense to a∞, for all
sufficiently large k we have that neither the set D(ik+1) is placed along a jump. Again, we may assume that
this is the case for every k. So, we conclude that for every k there is sk such that xik , xik+1, xik+2 ∈ J(sk).
Then the P2-projections of these three points are am, am+1, am+2, respectively. Since yk ∈ D∗(ik) and so
G(yk) ∈ D∗(ik + 1), we may now use Lemma 6.5 to get

d(Zm,m+1(P2(yk)), P2(G(yk))) ≤ 2 · r(ik + 1). (6.33)

On the other hand, since z ∈ Hm and so G(z) = Zm,m+1(z), our task is to show that G(yk) → Zm,m+1(z).
However, Zm,m+1(z) ∈ π0 and the distance between G(yk) and π0 tends to zero as k → ∞. Therefore it is
sufficient to show that P2(G(yk)) → Zm,m+1(z). Using (6.33), we get the estimate:

d(P2(G(yk)), Zm,m+1(z)) ≤ d(P2(G(yk)), Zm,m+1(P2(yk))) + d(Zm,m+1(P2(yk)), Zm,m+1(z))

≤ 2 · r(ik + 1) + d(Zm,m+1(P2(yk)), Zm,m+1(z)) .

For k → ∞ we have r(ik + 1) → 0 and since P2(yk) → P2(z) = z, just use the continuity of Zm,m+1 to see
that the right-hand side tends to zero.

Finally, let z ∈ Hm be an extremal point of Hm, say z ∈ Hm ∩Hm+1. Then we get G(yk) → G(z) by
dividing, if necessary, the sequence yk into two subsequences and then applying the above argument. �

Lemma 6.7. The set Ω(G) of nonwandering points of G equals A = {ai : i ∈ Z} ∪ {a∞}.
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Proof. Each point of the snake is clearly wandering for G. Further, for i ∈ Z, infinitely many points of the
trajectory x0, x1, . . . are P2-projected onto ai. Since this subsequence of the trajectory converges to ai, we
have ai ∈ Ω(G). The point a∞ is also nonwandering, even for G|A.

Fix x ∈ A0\A. To finish the proof we need to show that x is wandering. Since x ∈ Hk\{ak, ak+1} for some
k ∈ Z and r(j) → 0 as j → ∞, there is n0 ∈ N such that the three open r(n0)-balls centered at the points x,
ak and ak+1 are pairwise disjoint and we may also assume that the r(n0)-disk Bd(x, r(n0)) ∩ π0 centered at
x lies in the sector Sk. Hence there is ε > 0 such that the open set U0 := (−ε, ε)× (Bd(x, r(n0)) ∩ π0) ⊆ R3

satisfies, for every m ≥ 0, the following implication:

D(m) ∩ U0 6= ∅ ⇒ D(m) ∩ U0 ⊆ Dmiddle(m) \Dfront(m) (6.34)

(see (6.26) and its analogues mentioned below it, e.g. (6.27), (6.28), (6.29)). Note that U0 is an open set
containing x. To prove that x is wandering, fix any z ∈ U0 ∩X . If z ∈ U0 ∩ head then z will never visit U0

again, because G(Hi) = Hi+1, for every integer i. If z ∈ U0∩snake, say z ∈ U0∩D(m) with xm, xm+1 ∈ J(i),
then we claim that again all the points G(z), G2(z), . . . are outside U0. In fact, if j > 0 is small enough
then Gj(z) ∈ D(s) with xs, xs+1 either belonging to the same set J(i) or forming the i-th jump, whence
Gj(z) /∈ U0. Otherwise use (6.34) and Lemma 6.3 to get that Gj(z) /∈ U0. It follows that x is a wandering
point of G. �

We embark on the proof that h∗(G) = log 2. Of course, h∗(G) ≥ h∗(T ) = log 2. By Proposition 2.6(c),
when we are looking for IN-tuples of the map G, it is sufficient to consider the set Ω(G) = A. Recall also
how we proved that h∗(T ) = log 2. First we realized that it was sufficient to prove the conditions (1), (2)
and (3) below the formula (5.2), cf. Theorem 5.5.

Lemma 6.8. For the map G defined above, the following holds.

(1) (ai, aj) is not an IN-pair for any i, j ∈ Z with |j − i| ≥ 2.
(2) (ai, a∞) is not an IN-pair for any i ∈ Z.

Proof. (1) Fix i, j ∈ Z such that |j − i| ≥ 2. We may assume that i > j. By Theorem 5.5, (a0, ai−j) is not
an IN-pair for (X1, T ). In view of Proposition 2.6(a) and Proposition 2.7(b) this implies that

(ai, aj) is not an IN-pair for (X1, T ). (6.35)

We are going to show that such a pair is neither an IN-pair for (X,G).

By (6.35), there is N ∈ N and a pair of neighborhoods of the points ai, aj such that it has no independence
set of times of length N in (X1, T ). Of course, neither smaller neighbourhoods have such an independence
set. Therefore one can fix εi > 0, εj > 0 and r > 0 such that the following holds.

(i) The closed balls (in the plane π0) B(aj−1, r), B(aj , r) and B(aj+1, r) are pairwise disjoint,

(ii) The closed balls B(ai−1, r), B(ai, r) and B(ai+1, r) are pairwise disjoint,
(iii) For the open balls B(ai, r), B(aj , r) in π0 we have that, for U(ai) = [0, εi) × B(ai, r) and U(aj) =

[0, εj)×B(aj , r),

the pair (U(ai), U(aj)) has no independence set of times of length N in (X1, T ). (6.36)

For other restrictions on the choice of εi, εj and r see below. (In (iii), the shape of U(ai) and U(aj) is due to
the fact that X lives in [0, 1]×π0; to be precise, we should speak on the pair of sets (U(ai)∩X1, U(aj)∩X1),
but we hope that no misunderstanding can arise.) We may also assume that all the six balls from (i) and
(ii) are pairwise disjoint (except for the case i = j + 2 when B(aj+1, r) and B(ai−1, r) coincide) and also
disjoint with the closed r-ball centered at any other point from A. Since we have (EP5), (EP10), (EP12) as
well as (6.26) and its analogues (6.27), (6.28), (6.29), ..., we may also assume that r is small enough so that
the following holds.

(iv) If z ∈ D(t) ∩ U(ai) then ai is the P2-projection of the first or the last point of D(t). In the former
case z /∈ Dend(t) and in the latter case z /∈ Dfront(t). The same is true for U(aj).

By (iv), if Dfront(t) intersects U(ai), then ai = P2(xt). Since the point xt+1 is closer to π0 than xt, it
could happen that though some point z ∈ Dfront(t) is in U(ai), the point xt itself is outside U(ai) (though
xt ∈ [0,∞) × B(ai, r)). A similar undesirable effect can occur for U(aj). However, if Dfront(t) intersects
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U(ai) and xt /∈ U(ai), notice that such t exists only one (if t′ > t and again Dfront(t′) intersects U(ai) then
already xt′ ∈ U(ai)). Similarly for U(aj). Therefore, by an appropriate choice of εi, εj and r we may assume
the following.

(v) If Dfront(t) intersects U(ai) then xt ∈ U(ai). Similarly for U(aj).

Again, by (iv), if Dend(t) intersects U(ai), then ai = P2(xt+1). Since the point xt+1 is closer to π0 than xt,
we then have the following.

(vi) If Dend(t) intersects U(ai) then xt+1 ∈ U(ai). Similarly for U(aj).

Now we are ready to prove that (ai, aj) is not an IN-pair for (X,G). Suppose on the contrary that this is
not the case. Then the pair (U(ai), U(aj)) has arbitrarily long finite independence sets of times in (X,G).
We get a contradiction with (6.35) by proving, for any fixed N ∈ N, the following claim.

Claim: If the pair of sets (U(ai), U(aj)) has an independence set of times of length 2N +4 in (X,G), then
it has an independence set of times of length N in (X1, T ).

Proof of Claim: Suppose that 0 ≤ l−1 < l0 < · · · < l2N+2 and {l−1, l0, . . . , l2N+2} is an independence set
of times of length 2N + 4 for (U(ai), U(aj)) in (X,G). We are going to show that then (U(ai), U(aj)) has
an independence set of times of length N in (X1, T ).

Fix t0 ∈ {i, j}{1,2,...,N}. For any s ∈ {i, j}{1,2,...,N} we can consider

(i, i, s(1), s(2), . . . , s(N), i, i, t0(1), t0(2), . . . , t0(N)) ∈ {i, j}{−1,0,1,2,...,2N+2} (6.37)

and denote

I(s, t0) = (G−l−1U(ai)) ∩ (G−l0U(ai)) ∩ (
N⋂

k=1

G−lkU(as(k)))

∩(G−lN+1U(ai)) ∩ (G−lN+2U(ai)) ∩ (

N⋂

k=1

G−lN+2+kU(at0(k))).

By the assumption, I(s, t0) 6= ∅. In other words,

for every s there exists zs,t0 ∈ X such that zs,t0 ∈ I(s, t0). (6.38)

Notice also that
I(s, t0) ⊆ snake (6.39)

because, apart from the fixed point a∞, the dynamics in the head is ‘clock-wise’ and so a point from the
head cannot visit U(ai) (at least) 4-times, as required by (6.37).

Clearly, {i, j}{1,2,...,N} = S1(t0) ⊔S2(t0) where

S1(t0) := {s ∈ {i, j}{1,2,...,N} : I(s, t0) ∩X1 6= ∅}

and
S2(t0) := {s ∈ {i, j}{1,2,...,N} : I(s, t0) ⊆ snake \X1}.

If s ∈ S2(t0) and zs,t0 ∈ I(s, t0), then there exists a unique ‹m such that zs,t0 ∈ D(‹m) \X1. Then, for
m = ‹m+ l−1, using also the definition of I(s, t0) and the fact that the set D(m) has the first point xm and
the last point xm+1, we get two disjoint possibilities:

(a) Gl−1zs,t0 ∈ D(m) ∩ U(ai), ai = P2(xm+1), or
(b) Gl−1zs,t0 ∈ D(m) ∩ U(ai), ai = P2(xm)

(of course, in (a) and (b) the number m depends on zs,t0 and P2(G
l−1zs,t0) ∈ B(ai, r)). Consider the sets

S2a(t0) := {s ∈ S2(t0) : ∀zs,t0 ∈ I(s, t0) the condition (a) holds}

and
S2b(t0) := {s ∈ S2(t0) : ∃zs,t0 ∈ I(s, t0) such that the condition (b) holds}.

Let s ∈ S2a(t0) and zs,t0 ∈ I(s, t0). In view of the condition (a) and the definition of I(s, t0), we have
GlN+1zs,t0 ∈ D(m+ lN+1 − l−1) ∩ U(ai) for some m. There are two disjoint possibilities:
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(c) GlN+1zs,t0 ∈ Dend(m+ lN+1 − l−1) ∩ U(ai), or
(d) GlN+1zs,t0 ∈ (D(m+ lN+1 − l−1) \Dend(m+ lN+1 − l−1)) ∩ U(ai).

Consider the sets

S2ac(t0) := {s ∈ S2a(t0) : ∀zs,t0 ∈ I(s, t0) the condition (c) holds}

and

S2ad(t0) := {s ∈ S2a(t0) : ∃zs,t0 ∈ I(s, t0) such that the condition (d) holds}.

Clearly, for every t0 ∈ {i, j}{1,2,...,N} we have

{i, j}{1,2,...,N} = S1(t0) ⊔S2ac(t0) ⊔S2ad(t0) ⊔S2b(t0).

We consider four cases.

Case 1: There exists t0 such that {i, j}{1,2,...,N} = S1(t0).

In this case {l1, . . . , lN} is an independence set of times of length N for (U(ai), U(aj)) in (X1, T ) and we
are done.

Case 2: There exists t0 such that {i, j}{1,2,...,N} = S1(t0) ⊔S2b(t0) with S2b(t0) 6= ∅.

Fix such t0. Let s ∈ S2b(t0). Choose zs,t0 ∈ I(s, t0) such that (b) holds for some m. For such s and zs,t0
we get, by (iv), that Gl−1zs,t0 ∈ Dfront(m) ∪Dmiddle(m). Using Lemma 6.3,

Gl0zs,t0 = Gl0−l−1Gl−1zs,t0 ∈ Dfront(m+ l0 − l−1).

Then, by Corollary 6.4, the points Gl0zs,t0 and xm+l0−l−1 travel together through the front parts, i.e. for

every p ≥ 0 both Gp(Gl0zs,t0) and G
p(xm+l0−l−1) belong to Dfront(m+ l0 − l−1 + p). In particular,

Glkzs,t0 = Glk−l0Gl0zs,t0 ∈ Dfront(m+ lk − l−1), k = 1, . . . , N.

Since zs,t0 ∈ I(s, t0), we also have Glkzs,t0 ∈ U(as(k)), k = 1, . . . , N . Thus, Glkzs,t0 is a point of Dfront(m+
lk − l−1) belonging to U(as(k)) and then, by (v),

xm+lk−l−1 ∈ U(as(k)), k = 1, . . . , N.

Then

Glk−l0xm+l0−l−1 = xm+lk−l−1 ∈ U(as(k)), k = 1, . . . , N, (6.40)

whence

X1 ∩
N⋂

k=1

G−(lk−l0)U(as(k)) 6= ∅. (6.41)

We have shown that (6.41) holds for all s ∈ S2b(t0). However, if s ∈ S1(t0) then (6.41) is also true,
because by definition of S1(t0) there is a point zs,t0 ∈ I(s, t0) ∩ X1 and then the point Gl0(zs,t0) belongs

both to the G-invariant set X1 and to the set
⋂N

k=1G
−(lk−l0)U(as(k)). Thus we have (6.41) for all s ∈

S1(t0) ⊔ S2b(t0) = {i, j}{1,2,...,N}. It follows that {l1 − l0, . . . , lN − l0} is an independence set of times of
length N for (U(ai), U(aj)) in (X1, T ) and so we are done also in this case.

Case 3: There exists t0 such that {i, j}{1,2,...,N} = S1(t0) ⊔S2ac(t0) ⊔S2b(t0) with S2ac(t0) 6= ∅.

Fix such t0. Let s ∈ S2ac(t0). By the condition (a) and by (iv), Gl−1zs,t0 ∈ (D(m) \Dfront(m)) ∩ U(ai)
for some m. Hence Gl−1zs,t0 ∈ (Dmiddle(m) ∪ Dend(m)) ∩ U(ai). On the other hand, by condition (c) we
have GlN+1zs,t0 ∈ Dend(m+ lN+1 − l−1) ∩ U(ai). Then by Lemma 6.2 and Lemma 6.3,

Glkzs,t0 ∈ Dend(m+ lk − l−1), k = −1, 0, 1, 2, . . . , N.

Further, since zs,t0 ∈ I(s, t0), we have

Glk−l−1Gl−1zs,t0 = Glkzs,t0 ∈ U(as(k)), k = 1, 2, . . . , N.

Thus, the point Gl−1zs,t0 ∈ Dend(m) has the Glk−l−1 -image (for k = 1, 2, . . . , N) both in Dend(m+ lk − l−1)
and in U(as(k)). By (vi), xm+lk−l−1+1 ∈ U(as(k)). Hence

Glk−l−1xm+1 = xm+lk−l−1+1 ∈ U(as(k)), k = 1, 2, . . . , N.
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It follows that

X1 ∩
N⋂

k=1

G−(lk−l−1)U(as(k)) 6= ∅. (6.42)

Let us summarize. For any s ∈ {i, j}{1,2,...,N} there are the following 3 possibilities.

• If s ∈ S2ac(t0) then, as we have just shown, (6.42) holds.
• If s ∈ S1(t0) then there is zs,t0 ∈ I(s, t0) ∩X1. Then Gl−1zs,t0 ∈ X1 and, by the definition of Is,t0 ,
Glk−l−1(Gl−1zs,t0) = Glk(zs,t0) ∈ U(as(k)) for k = 1, . . . , N . Hence, again we have (6.42).

• If s ∈ S2b(t0) then, as shown in (6.40) in Case 2, for k = 1, . . . , N we have Glk−l0xm+l0−l−1 ∈

U(as(k)). Since G
lk−l0xm+l0−l−1 = Glk−l0(Gl0−l−1(xm)) = Glk−l−1(xm), we get (6.42) again.

Since (6.42) holds for every s ∈ {i, j}{1,2,...,N}, {l1 − l−1, . . . , lN − l−1} is an independence set of times of
length N for (U(ai), U(aj)) in (X1, T ). The proof of Claim in Case 3 is finished.

It remains to consider the last case, which is the negation of the logical disjunction of the first three cases.
It can be formulated as follows.

Case 4: For every t0 ∈ {i, j}{1,2,...,N} there exists s0 ∈ {i, j}{1,2,...,N} such that s0 ∈ S2ad(t0).

Fix any t0 and choose s0 ∈ S2ad(t0). Then there exists zs0,t0 such that the following holds:

(41) zs0,t0 ∈ I(s0, t0).
(42) There exists m ∈ N with P2(xm+1) = ai such that Gl−1zs0,t0 ∈ D(m) ∩ U(ai). Moreover, by (iv),

Gl−1zs0,t0 /∈ Dfront(m).
(43) G

lN+1zs,t0 ∈ (D(m+ lN+1 − l−1) \Dend(m+ lN+1 − l−1)) ∩ U(ai).

By (43),

GlN+1zs0,t0 ∈ (Dfront(m+ lN+1 − l−1) ∪D
middle(m+ lN+1 − l−1)) ∩ U(ai)

and so GlN+2zs0,t0 ∈ D(m+ lN+2 − l−1) ∩ U(ai). Since xm+lN+1−l−1 and xm+lN+2−l−1 are not in the same
jump level, by Lemma 6.3 we in fact have

GlN+2zs0,t0 ∈ Dfront(m+ lN+2 − l−1) ∩ U(ai). (6.43)

Hence, by Corollary 6.4, the points GlN+2zs0,t0 and xm+lN+2−l−1 travel together through the front parts. In
particular,

GlN+2+kzs0,t0 = GlN+2+k−lN+2(GlN+2zs0,t0) ∈ Dfront(m+ lN+2+k − l−1), k = 1, 2, . . . , N.

Further, by (41) and the definition of I(s0, t0) we get

GlN+2+kzs0,t0 ∈ U(at0(k)), k = 1, 2, . . . , N.

By the last two inclusions, (v) gives that xm+lN+2+k−l−1 ∈ U(at0(k)), k = 1, 2, . . . , N . Equivalently,

GlN+2+k−lN+2xm+lN+2−l−1 ∈ U(at0(k)), k = 1, 2, . . . , N

and so

X1 ∩
N⋂

k=1

G−(lN+2+k−lN+2)U(at0(k)) 6= ∅.

Since t0 ∈ {i, j}{1,2,...,N} was arbitrary, {lN+3 − lN+2, lN+4 − lN+2, . . . , l2N+2 − lN+2} is an independence
set of times of length N for (U(ai), U(aj)) in (X1, T ).

(2) The proof is very similar to that of (1). For completeness, we give an outline of it, emphasizing the
differences when compared with the proof of (1). To make the comparison easier, we will use an analogous
notation as in (1). Now we will of course have U(a∞) instead of U(aj). The main difference is that (iv) will
be replaced by (iv’a)-(iv’d).

By Theorem 5.5, (a0, a∞) is not an IN-pair for (X1, T ). In view of Proposition 2.6(a) and Proposi-
tion 2.7(b) this implies that

(ai, a∞) is not an IN-pair for (X1, T ). (6.44)

We are going to show that such a pair is neither an IN-pair for (X,G).
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By (6.44), there is N ∈ N and a pair of neighborhoods of the points ai, a∞ such that it has no independence
set of times of length N in (X1, T ). Therefore one can fix εi > 0, ε∞ > 0 and r > 0 such that the following
holds.

(i’) The closed balls (in the plane π0) B(ai−1, r), B(ai, r) and B(ai+1, r) are pairwise disjoint (and also
disjoint with the closed r-ball centered at any other point aj ∈ A).

(ii’) The closed ball B(a∞, r) is disjoint with the three closed balls in (i’) and there exists K ∈ N such
that aj ∈ B(a∞, r) if and only is |j| ≥ K.

(iii’a) For the open balls B(ai, r), B(a∞, r) in π0 we have that, for U(ai) = [0, εi)×B(ai, r) and V (a∞) =
[0, ε∞)×B(a∞, r),

the pair (U(ai), V (a∞)) has no independence set of times of length N in (X1, T ). (6.45)

For other restrictions on the choice of εi, ε∞ and r see below.

Recall that, by our construction, all the jumps are ‘almost horizontal’ and the jump numbers corresponding
to the starting points of the jumps tend to infinity very fast. Therefore we may assume that r is chosen in
such a way that K is not a jump number, i.e. no jump starts or ends in a point whose P2-projection is aK
or a−K , respectively. Again, taking into account that all jumps are ‘almost horizontal’, one can see that by

shrinking B(a∞, r) appropriately we get an open neighborhood (not necessarily a ball) B̃(a∞) ⊆ B(a∞, r)

of a∞ such that still aj ∈ B̃(a∞) if and only is |j| ≥ K and, moreover,

U(a∞) := [0, ε∞)× B̃(a∞) ⊆ V (a∞)

has the following property.

(iii’b) If D(t) is placed along a jump and D(t) ∩ U(a∞) 6= ∅, then D(t) ⊆ U(a∞).

Since U(a∞) ⊆ V (a∞), it is clear that

the pair (U(ai), U(a∞)) has no independence set of times of length N in (X1, T ). (6.46)

Just as we do in (1), we may also assume that r, ε∞ and U(a∞) are chosen properly so that the following
holds.

(iv’a) If z ∈ D(t) ∩ U(ai) then ai is the P2-projection of the first or the last point of D(t). In the former
case z /∈ Dend(t) and in the latter case z /∈ Dfront(t).

(iv’b) If z ∈ D(t) ∩ U(a∞) and P2(xt) = a−K , then z /∈ Dend(t).
(iv’c) If z ∈ D(t) ∩ U(a∞) and P2(xt+1) = aK , then z /∈ Dfront(t).
(iv’d) If z ∈ D(t) ∩ U(a∞) and P2(xt+1) = aj where j > K or j ≤ −K, then D(t) ⊆ U(a∞).

By (iv’a), if D
front(t) intersects U(ai), then ai = P2(xt). Since the point xt+1 is closer to π0 than xt, it

could happen that the point xt itself is outside U(ai). However, as in (1), we may assume the following.

(v’a) If Dfront(t) intersects U(ai) then xt ∈ U(ai).

Similarly, we can claim the following.

(v’b) If Dfront(t) intersects U(a∞) then xt ∈ U(a∞).

Indeed, if D(t) is placed along a jump, then this follows from (iii’)(b). Now suppose that D(t) is not placed
along a jump, put P2(xt+1) = aj and consider all the possible cases as follows. If j > K or j ≤ −K, then

xt ∈ U(a∞) by (iv’)(d). If j = −(K − 1), we have P2(xt) = a−K ∈ B̃(a∞) and then xt ∈ U(a∞) due to a
slight change of ε∞ if necessary (see the corresponding discussion in (1), just above (v)). The case j = K
is impossible because our assumption that Dfront(t) intersects U(a∞) contradicts (iv’)(c). It remains the
case −(K − 1) < j < K which implies that both j and j − 1 have absolute values less than K and so both

aj , aj−1 /∈ B̃(a∞), whence xt+1, xt /∈ U(a∞) and so D(t) ∩ U(a∞) = ∅, a contradiction.

By (iv’a), if D
end(t) intersects U(ai), then ai = P2(xt+1). Since the point xt+1 is closer to π0 than xt, we

have the following.

(vi’a) If Dend(t) intersects U(ai) then xt+1 ∈ U(ai).

Similarly, we can claim the following.



68 L’UBOMÍR SNOHA, XIANGDONG YE AND RUIFENG ZHANG

(vi’b) If Dend(t) intersects U(a∞) then xt+1 ∈ U(a∞).

Indeed, if D(t) is placed along a jump, then this follows from (iii’)(b). Now suppose that D(t) is not placed
along a jump, put P2(xt+1) = aj and consider all the possible cases as follows. If j > K or j ≤ −K,
then xt+1 ∈ U(a∞) by (iv’)(d). If j = −(K − 1), we have P2(xt) = a−K and (iv’)(b) shows that this

case is impossible. If j = K, then P2(xt+1) = aK ∈ B̃(a∞) and since xt+1 is closer to π0 than xt (and
Dend(t) intersects U(a∞)), this implies xt+1 ∈ U(a∞). Finally, if −(K − 1) < j < K then both j and

j − 1 have absolute values less than K. Thus both aj , aj−1 /∈ B̃(a∞), whence xt+1, xt /∈ U(a∞) and so
D(t) ∩ U(a∞) = ∅, a contradiction.

Now we are ready to prove that (ai, a∞) is not an IN-pair for (X,G). Suppose on the contrary that this is
not the case. Then the pair (U(ai), U(a∞)) has arbitrarily long finite independence sets of times in (X,G).
We get a contradiction with (6.44) by proving, for any fixed N ∈ N, the following claim.

Claim’: If the pair of sets (U(ai), U(a∞)) has an independence set of times of length 2N + 4 in (X,G),
then it has an independence set of times of length N in (X1, T ).

Proof of Claim’: Suppose that 0 ≤ l−1 < l0 < · · · < l2N+2 and {l−1, l0, . . . , l2N+2} is an independence
set of times of length 2N + 4 for (U(ai), U(a∞)) in (X,G). We are going to show that then (U(ai), U(a∞))
has an independence set of times of length N in (X1, T ).

Fix t0 ∈ {i,∞}{1,2,...,N}. For any s ∈ {i,∞}{1,2,...,N} we can consider

(i, i, s(1), s(2), . . . , s(N), i, i, t0(1), t0(2), . . . , t0(N)) ∈ {i,∞}{−1,0,1,2,...,2N+2} (6.47)

and also denote

I(s, t0) = (G−l−1U(ai)) ∩ (G−l0U(ai)) ∩ (

N⋂

k=1

G−lkU(as(k)))

∩(G−lN+1U(ai)) ∩ (G−lN+2U(ai)) ∩ (
N⋂

k=1

G−lN+2+kU(at0(k))).

By the assumption,

for every s there exists zs,t0 ∈ X such that zs,t0 ∈ I(s, t0) (6.48)

and for the same reason as in (1) we have

I(s, t0) ⊆ snake. (6.49)

Clearly, {i,∞}{1,2,...,N} = S1(t0) ⊔S2(t0) where

S1(t0) := {s ∈ {i,∞}{1,2,...,N} : I(s, t0) ∩X1 6= ∅}

and

S2(t0) := {s ∈ {i,∞}{1,2,...,N} : I(s, t0) ⊆ snake \X1}.

We further define ‹m, m and also S2a(t0), S2b(t0) and S2ac(t0), S2ad(t0) as in (1). Then, for every
t0 ∈ {i,∞}{1,2,...,N} we have

{i,∞}{1,2,...,N} = S1(t0) ⊔S2ac(t0) ⊔S2ad(t0) ⊔S2b(t0).

To finish the proof, it is sufficient to consider exactly those four cases as in (1). In each of them, the proof
is the same as in the corresponding case in (1). Of course, instead of {i, j}{1,2,...,N} and (U(ai), U(aj)) one

has to write {i,∞}{1,2,...,N} and (U(ai), U(a∞)), respectively. The list of other differences is:

• in Case 2, instead of (iv) use (iv’a) and instead of (v) use (v’a) and (v’b),
• in Case 3, instead of (iv) use (iv’a) and instead of (vi) use (vi’a) and (vi’b),
• in Case 4, instead of (iv) use (iv’a) and instead of (v) use (v’a).

�
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Recall that in Section 4 dealing with the case S(X) = {0,∞}, namely above Lemma 4.4, we introduced
the sets 〈〈a, b〉〉, 〈〈K0, b〉〉 and ((K0, b〉〉. The sets of the form ((K0, f

m
i 〉〉 were said to be sub-snakes. Now,

when we are working with the case S(X) = {0, log 2}, the head K0 is replaced by the head A0 and the
snake is homeomorphic with the snake from Section 4. Therefore we can again use these notations, with K0

replaced by A0.

With the help of the above Lemma 6.8, we get the following analogue of Lemma 4.25.

Lemma 6.9. For the map G : X → X defined above, in Subsection 6.3, as a continuous extension of the
map T : X1 → X1, the following properties hold.

(a) h∗(G) = log 2.
(b) For every r ∈ N, the set S1

r = 〈〈A0, xr〉〉 is G-invariant and h∗(G|S1
r
) = log 2.

(c) For every m ∈ N, G(D∗
m) = D∗

m+1.

Proof. Trivially, h∗(G) ≥ h∗(T ) = log 2. By Proposition 2.6(c), the elements of IN-tuples lie in Ω(G) = A
and it follows from Lemma 6.8 that there is no IN-triple for G. Hence (a). By the construction of G we
obviously have (c) and also the fact that S1

r = 〈〈A0, xr〉〉 is G-invariant. Since h∗(G) = h∗(T ) = log 2 and
clearly also h∗(T |S1

r ∩X1) = log 2, we get h∗(G|S1

r
) = log 2, which finishes the proof of (b). �

6.6. Properties of continuous selfmaps of X and proof that S(X) = {0, log 2}. As in Section 4, our
continuum X is the union of bricks (now with the point a∞ added). The snake is homeomorphic to that from
Section 4, but the heads are substantially different. In Section 4 the head was just one brick, namely the
Cook continuum K0. Now the head A0 is the necklace of homeomorphic Cook continua Hk , together with
the point a∞. The list of all bricks is: Hk (k ∈ Z), K0

1,K
0
2, . . . ,K

1
1,K

1
2, . . . , . . . . While the construction of

X and the proofs of the properties of G were now much more complicated than in the case S(X) = {0,∞},
fortunately the analogues of the results from Subsection 4.4 on properties of continuous selfmaps of X are
true, with almost the same proofs (for the results involving only the snake this is trivial, but many of the
results involve explicitly or implicitly also the head, i.e. the ifluence of the head on their validity is not
apriori excluded). There are only few differences due to the fact that K0 is replaced by A0. We are going to
describe them.

Standing notation for the rest of Section 6: In the rest of the section, X denotes the
space X constructed above in (6.25) and F denotes a continuous map X → X .

The analogue of Lemma 4.5 is clearly true, with the continuum K0 in the parts (b) and (c) replaced by
any of the continua Hk. What is really important is that the following complete analogue of Lemma 4.6
holds.

Lemma 6.10. If B is a brick then F (B) is either a singleton or a brick homeomorphic to B.

Proof. The proof is basically the same as the proof of Lemma 4.6, with one exception. The Case 1 is now
more complicated, because the head is more complicated. So, let B be a brick, F |B = G and G(B) be a
non-degenerate sub-continuum of the head. We distinguish two possibilities.

If G(B) ⊆ Hi for some i ∈ Z, , we have a brick B (in the snake or in the head) mapped onto a non-
degenerate continuum G(B) in Hi. Due to the just discussed analogue of Lemma 4.5(b), B is not a brick
in the snake. So, B = Hj for some j ∈ Z and since Hj and Hi are copies of the same Cook continuum, we
necessarily have G(B) = Hi and we are done.

Now asssume that

G(B) ⊆ head is not a subset of any of the bricks Hi . (6.50)

We are going to show that this assumption leads to a contradiction.

Since we assume that G(B) is non-degenerate, it intersects the interior of a brick in the head (here we
speak on the interiors in the topology of the head, so the interior H◦

i of Hi is obtained from Hi by removing
the two extremal points). Fix k ∈ Z such that

G(B) ∩H
◦
k contains a point a.
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By (6.50), there is l 6= k such that also G(B) ∩ H
◦
l 6= ∅. Then, since G(B) is connected, it necessarily

contains at least one extremal point of Hk. The set U := G−1(H◦
k) is an open subset of B containing a

point a∗ with G(a∗) = a. Since G(B) contains an extremal point of Hk and G(U) does not, U is a proper
subset of B. Let K be the component of U containing a∗. Since K ⊆ U , we have G(K) ⊆ Hk. By the
Boundary Bumping Theorem, see Theorem 2.10, K contains a point from the boundary of U and since this
point does not belong to the open set U , its G-image is necessarily an extremal point of Hk. Thus K ⊆ B
and G(K) ⊆ Hk are non-degenerate continua, the latter one containing both a and an extremal point of Hk.
Now distinguish two cases.

If B is a brick in the snake then, by our construction of bricks, K and G(K) are copies of disjoint
non-degenerate subcontinua of one planar Cook continuum, which gives a contradiction.

If B = Hs for some s ∈ Z, we get a contradiction as follows. First realize that G(B) contains also an
extremal point of Hk. This is because, by the argument above, B contains a non-degenerate continuum
K such that G(K) ⊆ Hk contains both a non-extremal point and an extremal point of Hk. By (6.4), the
sets B = Hs and Hk are copies, even under similitudes, of the same Cook continuum H0 (recall also that
these similitudes preserve extremal points). Since H0 is Cook, one non-degenerate sub-continuum of H0

is a continuous image of another non-degenerate sub-continuum of H0 if and only if the two sub-continua
coincide. Therefore the fact that G(K) ⊆ Hk contains an extremal point ofHk implies that alsoK ⊆ B = Hs

contains an extremal point of B.

We have shown that if G(B) intersects H◦
k (and we know that in our situation there are at least two

such indices k) then at least one extremal point of B is mapped by G to an extremal point of Hk. As a
consequence we get that G(B) cannot intersect the interiors of three pairwise disjoint continua Hi, because
B has only two extremal points. Hence there exists m ∈ Z such that G(B) ∩ H◦

m = ∅. Fix again k ∈ Z

with G(B) ∩ H◦
k 6= ∅ and denote by r the monotone retract A0 \ H◦

m → Hk sending all the points from
(A0 \H

◦
m) \Hk to the extremal points of Hk. Then Φ := r ◦G : B → Hk is continuous and non-constant

(because G(B) contains a non-degenerate continuum G(K) in Hk, as discussed above). Hence Φ is the
unique homeomorphism from B = Hs onto Hk, in fact Φ = Zk ◦Z−1

s , see (6.4). It follows that for B◦ = H◦
s

we have Φ(B◦) = H◦
k and so obviously G(B◦) = H◦

k, even Φ|B◦ = G|B◦ . Then also Φ|B = G|B and so
G(B) = Hk, a contradiction with (6.50). �

Due to this lemma, also all the other results from Subsection 4.4 basically work for our candidate X for
the equality S(X) = {0, log 2}. It is straightforward to check that the following claims work for our space X
with the same proofs, up to easy modifications, as in Section 4: Corollary 4.7, Corollary 4.8, Corollary 4.9,
Lemma 4.10 (with a small modification in the proof of (a) and with A0 instead of K0 in (f)), Lemma 4.11
(just remember that now m = 0, 1, . . . and not m = 1, 2, . . . , so in (P5) we have now m ≥ 1). Besides
Lemma 6.10, next crucial lemma is the following analogue of Lemma 4.12.

Lemma 6.11. (a) If the snake is not F -invariant then F is constant.
(b) If the set Σ is not F -invariant then F is constant.
(c) If F (A0) = {z0} for some z0 ∈ A0, then F (X) = {z0} and so F is constant.

Proof. The proof is almost the same as that of Lemma 4.12 and so we comment only the differences. First,
where the proof of Lemma 4.12 refers to some lemmas from Subsection 4.4, now we use the discussed
analogues of them. In particular, the proof of (c) does not require any other modifications.

At the very end of the proof of (a), now it is not true that X is the closure of the snake. However, the
whole set A = {ai : i ∈ Z} ∪ {a∞} is in the closure of the snake. Therefore, once we know that the snake is
mapped by F to the point z0 ∈ A0, we also have F (A) = {z0}. In particular, every brick Hk in the head
contains at least two points mapped by F to z0 and so, by the analogue of Lemma 4.10(c), the whole Hk is
mapped to z0. Hence F (X) = {z0}.

Exactly the same argument as above, can be used at the end of the proof of (b) to get F (X) = {z}. �

Further, the analogue of Lemma 4.13 works with the same proof. Moreover, we also have Lemma 4.14.
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Also the results from Subsection 4.5 can be carried over to our space X . Since now the head is A0,
in (4.11) we replace K0 by A0. Then Lemmas 4.16 and 4.17 obviously still work. In particular, we can

consider the induced function “F : “X → “X defined by “F (A) = B when F (A) ⊆ B for A,B ∈ “X .

Recall that just after the proof of Lemma 4.17 we remark that “F (A) = B means that F (A) is a singleton
in B or coincides with B. This is still true, though the case A = B = A0 needs an explanation. The following
lemma shows slightly more.

Lemma 6.12. Let ϕ : A0 → A0 is a continuous map. Then there are the following possibilities.

(1) If ϕ(a∞) ∈ H◦
k for some k ∈ Z, then ϕ is constant.

(2) If ϕ(a∞) = ai for some i ∈ Z, then ϕ is constant.
(3) If ϕ(a∞) = a∞ then ϕ is either constant or surjective.

So, ϕ is either constant or surjective and the space A0 has fixed point property.

Proof. (1) Put z = ϕ(a∞) ∈ H◦
k. By continuity, the whole bricks Hi with |i| very large are also mapped into

H
◦
k, and so, being copies of the Cook continuum Hk, they are necessarily mapped to the point z. Then, for

analogous reasons, also the remaining finitely many bricks are mapped to z.

(2) The bricks Hi with |i| very large are mapped to a small neighbourhood of ai which does not contain
any whole brick. Hence they are mapped to ai. The finitely many other bricks of A0 form a continuum
whose two ‘endpoints’ are mapped to ai. Each of those bricks is mapped either to a point or onto a brick
with sending the first and the last point onto the first and the last point, respectively. It follows that the
only possibility is that they all are mapped to ai.

(3) Let ϕ(a∞) = a∞. Again, each of the bricks is mapped either to a point or onto a brick, with sending
the first and the last point onto the first and the last point, respectively. This rule implies that if ϕ is not
constant, then ϕ(A0) covers all the bricks in A0. �

Let us also remark the difference: If ϕ(K0) = K0, then all the points in K0 are fixed. Now, with K0

replaced by A0 this is not automatically the case, in general we have only Fix(ϕ) ⊆ A0.

Checking next results, we see that Lemma 4.18, Corollary 4.19, Lemma 4.20 and Lemma 4.21 work without
any changes. Also Corollary 4.22 works, with K0 replaced by A0. Then we have the following complete
analogue of Lemma 4.23.

Lemma 6.13. The set Fix(“F ) is nonempty, has the smallest element and the largest element, and is con-

nected. Moreover, if Fix(“F ) has more than one element, then Fix(F ) =
⋃
Fix(“F ).

The proof is the same, just at the end of the proof, instead of saying that if F is identity on the sub-snake
((K0, f

m
i 〉〉 then it is identity also on 〈〈K0, f

m
i 〉〉, we use the following argument: If F is identity on the

sub-snake ((A0, f
m
i 〉〉, it is identity also on the set A, because A is in the closure of that sub-snake. Thus,

every brick Hk in the head contains at least two fixed points. Then obviously all the points in the Cook
continua Hk are fixed (formally, one can use the analogue of Lemma 4.10).

The last result in Subsection 4.5, Corollary 4.24, has to be modified as follows.

Corollary 6.14. If F is not constant, then the set Fix(F ) is either a subset of A0 or of the form 〈〈A0, f
m
i 〉〉

or 〈〈fn
j , f

m
i 〉〉 for some fn

j 4 fm
i .

The proof differs from that of Corollary 4.24 only in the beginning: If F (A0) ⊆ A0 then, by Lemma 6.12,
F has a fixed point in A0. Then, combining (the analogue of) Corollary 4.19 and Lemma 6.13 we get that
either Fix(F ) ⊆ A0 or Fix(F ) = 〈〈A0, f

m
i 〉〉 for some m and i. The rest of the proof is the same as in the

proof of Corollary 4.24.

Let us also remark that in Corollary 6.14, instead of “Fix(F ) is either a subset of A0” one could in fact
write “Fix(F ) is either {a∞}”. This follows from Lemma 6.16(c) below.

We have thus shown that all the results from Subsections 4.4 and 4.5 do work, at least in slightly modified
forms, also for our space X which is a candidate for S(X) = {0, log 2}. We show that this is sufficient for
finishing the proof that really S(X) = {0, log 2}.
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The analogue of Lemma 4.26 works with almost the same proof. (The only modification is needed in the
first paragraph of the proof: Now it is not true that the head is in the closure of the snake. However, the
set A is, and so every brick in the head contains points from the closure of the sub-snake. It follows that
if the sub-snake is mapped by F 2 to p, in view of Lemma 6.10 so is the head.) Further, the analogue of
Lemma 4.27 works even with the same proof. The same is true for the analogue of Lemma 4.28.

Next lemma is quite obvious but for clarity we state it explicitly.

Lemma 6.15. (1) If there exists a ∈ A0 such that F (a) /∈ A0, then F (A0) = F (a).
(2) If there exists b in the snake such that F (b) ∈ A0, then F (X) = F (b).

Proof. (2) is just a reformulation of Lemma 6.11(a). To prove (1), let Hk be the brick containing the point a.
Since the bricks in the snake are not homeomorphic to those in the head, Lemma 6.10 gives F (Hk) = {F (a)}.
For the same reason, the neighboring bricks Hk−1 and Hk+1 are also mapped to F (a). By induction, this is
true for all the bricks in the head and the result follows. �

Then we get the following analogue of Lemma 4.29.

Lemma 6.16. Assume that F is not constant and has no fixed point in the snake.

(a) For every m, jump(m+ 1) ∈ {jump(m)− 1, jump(m)}.
(b) The sequence jump(1), jump(2), . . . is eventually constant.
(c) There exist positive integers r and N such that on S1

r = 〈〈A0, xr〉〉 we have

F |S1
r
= GN |S1

r

where G is the map from Lemma 6.9.

The proof differs from that of Lemma 4.29 only at the very end of it. When we already get that F
and GN coincide on the sub-snake ((A0, xr〉〉, we first deduce that, by continuity, they coincide also on
the set A which is in the closure of the sub-snake. Hence, by Lemma 6.15(1), F (A0) ⊆ A0. For every
k ∈ Z, GN (Hk) = Hk+N . Since F coincides with GN at the extremal points of Hk, by Lemma 6.10 also
F (Hk) = Hk+N . By Lemma 2.12(3), F coincides with GN on Hk. Hence F and GN coincide on S1

r as
required.

Finally, we have the following analogue of Proposition 4.30.

Proposition 6.17. For the one-dimensional continuum X constructed above in (6.25) we have S(X) =
{0, log 2}. Moreover, if F : X → X is a continuous map then h∗(F ) = log 2 if F is non-constant and has no
fixed point in the snake, otherwise h∗(F ) = 0.

Proof. Let F : X → X be a continuous map. If F is constant then h∗(F ) = 0. Now let F be non-constant.

First assume that F has a fixed point in the snake. By Corollary 6.14, Fix(F ) is either of the form
〈〈K0, f

m
i 〉〉 or 〈〈fn

j , f
m
i 〉〉 for some fn

j 4 fm
i . Then, by Lemmas 4.26 and 4.27, there exists a positive integer

N such that FN (X) = Fix(F ). This clearly implies that hA(F ) = 0 for any sequence A and so h∗(F ) = 0
(alternatively, use Proposition 2.7(a)).

Now assume that F has no fixed point in the snake. Then, by Lemma 6.16(c), there exist positive integers
r and N such that on S1

r = 〈〈A0, xr〉〉 we have

F |S1
r
= GN |S1

r

where G is the map from Lemma 6.9. So,

h∗(F ) ≥ h∗(F |S1

r
) = h∗(GN |S1

r
) = h∗(G|S1

r
) = log 2 .

On the other hand, the jumps in Lemma 6.16 are positive integers and so, for some positive integer M ,
FM (X) ⊆ S1

r . Then repeated use of Proposition 2.7(a) gives

h∗(F ) = h∗(F |FM (X)) ≤ h∗(F |S1

r
) = log 2 .

We have shown that, for every continuous map F on X , either h∗(F ) = 0 or h∗(F ) = log 2 and so the
proposition is proved. �
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7. Generalization from log 2 to logm

In this section, we will extend the result of Section 5 and Section 6. We show that for any m ≥ 3, there
exists a space X with S(X) = {0, logm}.

7.1. A map T : X1 → X1 with h∗(T ) = logm for m ≥ 3. To get the system (X1, T ) with h
∗(T ) = logm,

m ≥ 3, one can repeat the construction from Section 5 almost word by word, with just small modifications.
Therefore we comment only differences here. For terminology, the reader is referred to Section 5.

Just as in Section 5, X1 = A ⊔ Y where A = {ai : i ∈ Z} ∪ {a∞} and Y = {x0, x1, . . . } is the trajectory
of x0. Again, T (ai) = ai+1, T a∞ = a∞ and Txi = xi+1, i = 0, 1, . . . . But this time, the trajectory of x0 is
chosen in such a way that the following requirements are fulfilled:

(1’) (a0, a1, a2, . . . , am−1) is an IN-tuple of length m.
(2’) For |j| ≥ m, (a0, aj) is not an IN-pair.
(3’) (a0, a∞) is not an IN-pair.

Similarly as in the beginning of Section 5 (see the text between (5.2) and (5.3)), one can see that to fulfill
these three requirements, it is sufficient to fulfill the following two requirements:

(R1’) For every k, the tuple (Uk(a0), U
k(a1), . . . , U

k(am−1)) has an independence set of times of cardinality
k + 1 .

(R2’) The tuple (U1(a0), U
1(aj)) does not have an independence set of times of cardinality 5 whenever

|j| ≥ m or j = ∞.

Similarly as before, the sequence x0, x1, . . . is described as:

x0, x1, · · · = 1st block, 1st outer gap, 2nd block, 2nd outer gap, . . .

and for every k, the k-th block is a concatenation of pieces and inner gaps:

k-th block = 1st piece, 1st inner gap, 2nd piece, . . . , (mk+1 − 1)st inner gap, (mk+1)-th piece.

A proper choice of pieces will ensure (R1’) and proper choices of inner gaps and outer gaps will ensure (R2’).

In Section 5, i.e. in the case h∗(T ) = log 2, to ensure (R1), for each k there were 2k+1 different pieces.
Now, to ensure (R1’), for each k we need mk+1 pieces P (k, l) and to separate these different pieces we need
more inner gaps ig(k, j) in each block B(k). Denote

F (k) ={0, 1, . . . ,m− 1}{0,1,2,··· ,k} = {sl : 1 ≤ l ≤ mk+1},

s1 = (0, 0, . . . , 0), . . . , smk+1 = (m− 1,m− 1, . . . ,m− 1).
(7.1)

For each k we fix, once and for all, a choice of mk+1 functions sl. Say, let them be ordered from s1 to smk+1

lexicographically (then s1 and smk+1 are constant, as written above).27

For each l, the piece P (k, l) will be a finite sequence of length nk
k + 1 of the form

P (k, l) = xj , xj+1, . . . , xj+nk
1
, . . . , xj+nk

2
, . . . , xj+nk

k
(7.2)

where j = j(k, l) ≥ 0 will depend on both k and l, but nk
1 , . . . , n

k
k only on k and not on l,28 such that

xj ∈ Uk(asl(0)), T
nk
i xj = xj+nk

i
∈ Uk(asl(i)), 1 ≤ i ≤ k . (7.3)

Equivalently, if we put nk
0 := 0, xj ∈

⋂k
i=0 T

−nk
iUk(asl(i)). Since this will be true for each sl, the set

N(k) = {nk
0 = 0, nk

1 , . . . , n
k
k} (7.4)

will be an independence set of times of length k + 1 for (Uk(a0), U
k(a1), . . . , U

k(am−1)).

Just as in Section 5, the piece P (k, l) consists of k shorter sequences, called winds :

W
(k,l)
1 = xj(= xj+nk

0
), xj+1, . . . , xj+nk

1
, . . . , W

(k,l)
k = xj+nk

k−1
, . . . , xj+nk

k
. (7.5)

27Since the functions sl depend both on k nad l, we should in fact write s(k,l). We abuse notation here hoping that no

misunderstanding will arise.
28Therefore we write nk

i
rather than n

(k,l)
i

.
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The wind W
(k,l)
i starts in xj+nk

i−1
∈ Uk(asl(i−1)) and ends in xj+nk

i
∈ Uk(asl(i)).

The pieces and gaps are built analogously as in Section 5. For proving that h∗(T ) is logm (and not
higher), we specify appropriately the independence set of times N(k) = {nk

0 = 0, nk
1 , n

k
2 · · · , n

k
k} , the outer

gap length og(k) and the inner gap lengths ig(k, j), 1 ≤ j ≤ mk+1 − 1. Inductively, we require the following
(for k = 1, 2, . . . ):

(L1’) w1
1 = 3m+ 2 or, equivalently, n1

1 = 3m+ 1.
(L2’) |IG| ≫ | pre(IG)| whenever IG is an inner gap.
(L3’) |OG| ≫ | pre(OG)| whenever OG is an outer gap.
(L4’) |W | ≫ | pre(W )| whenever W is a wind in the first piece of a block. (Recall that the lengths of the

winds in P (k, l) are the same as those in P (k, 1).)

For any k, the inner gaps IG(k, j), 1 ≤ j ≤ mk+1 − 1 and outer gaps OG(k) can be chosen similarly as in
Section 5, only here we need more inner gaps. Making no difference between a (finite) sequence and its set
of values, for the k-th block we have

B(k) =
mk+1−1⋃

j=1

(P (k, j) ∪ IG(k, j)) ∪ P (k,mk+1).

As in Section 5, the set Yk = B(k) ∪OG(k) is called the k-th level of the set

Y =
∞⋃

k=1

(B(k) ∪OG(k)).

The set Y , properly ordered, is the trajectory of the point x0, so Y = {x0, x1, . . . }.

We define P̃ (k, l) , the l-th part in the k-th level, similarly as in Section 5, but with some modification.
Recall that in Section 5, the core of the definition was to make sure that if xi ∈ U1(a0) then xi was contained

in some part. If we denote by y(k,l),0 the first point of P (k, l), then P̃ (k, l) is defined as follows:

• If y(k,l),0 ∈ U1(a0), then set P̃ (k, l) = P (k, l);

• If y(k,l),0 /∈ U1(a0) (i.e. sl(0) 6= 0), then set

P̃ (k, l) = P (k, l) ∪ {xt : j − sl(0) ≤ t ≤ j − 1}

where xj = y(k,l),0.

We have, analogously as in (5.15), that

if xi ∈ U1(a0), then xi ∈ P̃ (k, l) for some k and l. (7.6)

As an analogue of Lemma 5.1, we have the following lemma. The main difference is in (2); recall that in
Lemma 5.1(2) we had t ∈ {nk

c − nk
d − 1, nk

c − nk
d, n

k
c − nk

d + 1}.

Lemma 7.1. Let k > 0, l ∈ {1, . . . ,mk+1}.

(1) The piece P (k, l) is of the form

P (k, l) = xj , xj+1, . . . , xj+nk
1
, . . . , xj+nk

2
, . . . , xj+nk

k
.

If sl ∈ F (k) is the function corresponding to P (k, l), then we can write (here nk
0 = 0)

P̃ (k, l) ∩ U1(a0) = {xj+nk
0−sl(0)

, xj+nk
1−sl(1)

, . . . , xj+nk
k
−sl(k)

}. (7.7)

(2) If two points in P̃ (k, l) ∩ U1(a0) have iterative distance t > 0, then

t ∈ {nk
c − nk

d − (m− 1), nk
c − nk

d − (m− 1) + 1, . . . , nk
c − nk

d + (m− 1)}

for some 0 ≤ d < c ≤ k and no other pair of points in P̃ (k, l) ∩ U1(a0) has the same iterative
distance t.
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Proof. (1) As in (7.2), we have P (k, l) = xj , xj+1, . . . , xj+nk
1
, . . . , xj+nk

2
, . . . , xj+nk

k
. For each c ∈ {0, 1, . . . , k}

we have xj+nk
c
∈ U1(asl(c)) and so

xj+nk
c−sl(c) ∈ U1(a0).

This means that the list of all elements of P̃ (k, l) ∩ U1(a0) is (7.7).

(2) So, if t > 0 and xs, xs+t are two points in P̃ (k, l) ∩ U1(a0), there are 0 ≤ d < c ≤ k such that

xs = xj+nk
d
−sl(d) and xs+t = xj+nk

c−sl(c)

note that sl(c), sl(d) ∈ {0, 1, . . . ,m− 1}, hence

t ∈ {nk
c − nk

d − (m− 1), nk
c − nk

d − (m− 1) + 1, . . . , nk
c − nk

d + (m− 1)}.

If p < q and xp, xq is another pair of points in P̃ (k, l) ∩ U1(a0), i.e. in the list (7.7), then either
xp 6= xj+nk

d
−sl(d) or xq 6= xj+nk

c−sl(c). Since by (L4’) the lengths of the winds in P (k, l) satisfy the inequalities

nk
1 + 1 ≪ nk

2 − nk
1 + 1 ≪ · · · ≪ nk

k − nk
k−1 + 1 ,

the iterative distance q − p of xq and xp is different from t. �

Similarly as in Section 5,
E(k, l) = {xj , xj+nk

1
, . . . , xj+nk

2
}

is the set of the endpoints of the winds in P (k, l). But here we redefine the notion of almost coincidence. By
saying that two points almost coincide , we now mean that their iterative distance is at most m− 1 (rather

than at most 1 as in Section 5). By Lemma 7.1(1), the points of U1(a0) ∩ P̃ (k, l) almost coincide with the
endpoints of the winds.

The following analogue of Lemma 5.2 works with the same proof.

Lemma 7.2. Let s ≥ 0, t > 0 and xs, xs+t ∈ U1(a0). If the points xs and xs+t belong to different blocks,
then they are not U1(a0)-left shiftable.

Analogue to Lemma 5.3, we have the following lemma.

Lemma 7.3. Let s ≥ 0, t > 0 and xs, xs+t ∈ U1(a0) ∩ P̃ (k, l). Then there is no h < 0 such that

xs+h ∈ U1(a0) ∩
⋃k−1

i=1 B(i) and xs+t+h ∈ U1(a0) ∩ P (k, 1).

Proof. The proof is almost the same as that of Lemma 5.3 but for completeness we give it here. Recall that
when we say that two points almost coincide, it means that their iterative distance is at most m− 1.

Let k ≥ 2, otherwise there is nothing to prove. Suppose, on the contrary, that there is h < 0 with that
property (hence s+ h ≥ 0). We have, as in (7.2),

P (k, l) = xj(l), xj(l)+1, . . . , xj(l)+nk
1
, . . . , xj(l)+nk

2
, . . . , xj(l)+nk

k
,

where the set E(k, l) = {xj(l), xj(l)+nk
1
, . . . , xj(l)+nk

k
} is the set of the endpoints of the winds in P (k, l).

Similarly,
P (k, 1) = xj(1), xj(1)+1, . . . , xj(1)+nk

1
, . . . , xj(1)+nk

2
, . . . , xj(1)+nk

k
,

where E(k, 1) = {xj(1), xj(1)+nk
1
, . . . , xj(1)+nk

k
} is the set of the endpoints of the winds in P (k, 1).

Since xs, xs+t ∈ U1(a0) ∩ P̃ (k, l), by Lemma 7.1(1) we know that they almost coincide with the p-th and
the q-th elements in E(k, l), for some p < q. The left shift from xs, xs+t to xs+h, xs+t+h can be performed
as the composition of two shorter left shifts. First, we shift xs, xs+t to points xs+σ, xs+t+σ which almost
coincide with the p-th and the q-th elements in E(k, 1) (this is possible because the lengths of winds in
P (k, l) are the same as in P (k, 1)). Then the point xs+σ is either in P (k, 1) or it is one of the last m − 1
points of OG(k − 1). So we need to shift xs+σ , xs+t+σ still to the left, now finally to xs+h, xs+t+h. Since
OG(k − 1) does not contain points from U1(a0), this shift has to be at least as long as it is the length of
OG(k−1), which is much larger than m−1. Since xs+t+h has to be in U1(a0) and to the left of xs+t+σ, this
second shift (whose length is much larger than m − 1) is of course at least as long as the iterative distance
between (q − 1)-st and q-th elements in E(k, 1) (see Lemma 7.1(1)), meant in approximative sense, i.e. an
error, now definitely not greater than 2(m− 1), is possible when we claim this. This iterative distance is, by
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(L4’), much larger than | pre(W )| where W is the wind whose endpoints are the (q− 1)-st and q-th elements
in E(k, 1). Since xs+σ almost coincides with the p-th element of E(k, 1) and p ≤ q−1, we get that s+h < 0,
a contradiction. �

The following is an analogue of Lemma 5.4. The proof is the same as that of Lemma 5.4, one just needs
to replace the lemmas used in the proof by their analogues discussed above.

Lemma 7.4. Let s ≥ 0, t > 0 and let the points xs, xs+t ∈ U1(a0) be U1(a0)-shiftable, i.e. there exists an
h 6= 0 such that also xs+h ∈ U1(a0) and xs+t+h ∈ U1(a0). Then the following is true.

(1) If xs, xs+t ∈ P̃ (k, i1) for some k and i1, then xs+h, xs+t+h ∈ P̃ (k, i2) for some i2 6= i1.

(2) If xs ∈ P̃ (k, i1), xs+t ∈ P̃ (k, i2) for some k and i1 < i2, then xs+h ∈ P̃ (k, i1), xs+t+h ∈ P̃ (k, i2).
(3) The points xs, xs+t, xs+h, xs+t+h belong to the same block B(k), for some k.

(4) If xs, xs+t ∈ P̃ (k, i) for some k and i, then xs, xs+h are in the “similar positions”, meaning that if
we write, as in (7.7), the point xs in the form

xs = xr+nk
c−si(c) ∈ P̃ (k, i) for some 0 ≤ c ≤ k,

then there exists i′ such that

xs+h = xr′+nk
c−si′ (c)

∈ P̃ (k, i′) with the same 0 ≤ c ≤ k.

Here r, r′ ≥ 0 are such that xr = y(k,i),0, xr′ = y(k,i′),0 are the first points of the pieces P (k, i), P (k, i
′),

respectively, and si, si′ ∈ F (k) are the functions corresponding to the pieces P (k, i), P (k, i′), respec-
tively.

(5) If xs ∈ P̃ (k, i1) and xs+t ∈ P̃ (k, i2) for some k and i1 < i2, then xs, xs+t are in the “similar
positions”.

Finally, as an analogue of Theorem 5.5 we have the following theorem.

Theorem 7.5. The system (X1, T ) has the following properties.

(1’) (a0, a1, a2, . . . , am−1) is an IN-tuple of length m.
(2’) For |j| ≥ m, (a0, aj) is not an IN-pair.
(3’) (a0, a∞) is not an IN-pair.

Hence h∗(T ) = logm.

Proof. The whole proof is almost the same as that of Theorem 5.5. However, now sl(c) ∈ {0, 1, 2, . . . ,m−1}
and so we need to modify the proof of (2) Case 1 (in a similar way we have modified the proof of Lemma 5.1(2)
to get the proof of Lemma 7.1(2)). We are going to describe this modification.

(2’) Just as in the proof of Theorem 5.5(2), it is sufficient to prove this for j ≥ m. So fix j ≥ m and
assume, on the contrary, that (a0, aj) is an IN-pair. It follows that (U1(a0), U

1(aj)) has an independence
set of times of length 5, i.e. there are pairwise distinct positive integers l−1 < l0 < l1 < l2 < l3 such
that {l−1, l0, l1, l2, l3} is an independence set of times for (U1(a0), U

1(aj)). Then, in particular, there exist
pairwise distinct m1,m2,m3,m4 ∈ N such that (notice that in the underlined inclusions we have aj rather
than a0)

xm1+l−1 ∈ U1(a0), xm1+l0 ∈ U1(a0), xm1+l1 ∈ U1(a0), xm1+l2 ∈ U1(a0), xm1+l3 ∈ U1(a0), (7.8)

xm2+l−1 ∈ U1(a0), xm2+l0 ∈ U1(a0), xm2+l1 ∈ U1(a0), xm2+l2 ∈ U1(aj), xm2+l3 ∈ U1(a0), (7.9)

xm3+l−1 ∈ U1(a0), xm3+l0 ∈ U1(a0), xm3+l1 ∈ U1(aj), xm3+l2 ∈ U1(a0), xm3+l3 ∈ U1(a0), (7.10)

xm4+l−1 ∈ U1(a0), xm4+l0 ∈ U1(aj), xm4+l1 ∈ U1(a0), xm4+l2 ∈ U1(a0), xm4+l3 ∈ U1(a0). (7.11)

The same arguments as in the proof of Theorem 5.5 show that the eight points in the first and last columns
are in the same B(k), hence all the points in this 4× 5 table are in B(k). Further, in the right-upper 3× 3
sub-table, all three points in the first row are in the same part, or they are in three different parts. Then we
again consider two cases. Only the proof of Case 1 needs a modification, so we discuss only this case.

Case 1: xm1+l1 , xm1+l2 , xm1+l3 ∈ P̃ (k, i) for some i.
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In this case, by Lemma 7.4(1), we have

xm1+l1 , xm1+l2 , xm1+l3 ∈ P̃ (k, i) (7.12)

xm2+l1 , xm2+l3 ∈ P̃ (k, i′) (7.13)

xm3+l2 , xm3+l3 ∈ P̃ (k, i′′) (7.14)

where i, i′, i′′ are pairwise different (note that all these seven points are in U1(a0)). According to Lemma 7.4(4),
Tm2+l1x0 and Tm1+l1x0 are in the “similar positions”, i.e.

xm1+l1 = xr+nk
d
−si(d) and xm2+l1 = xr′+nk

d
−si′ (d)

for some 0 ≤ d ≤ k (here xr and xr′ are the first points of the pieces P (k, i) and P (k, i′), and si and si′ are

the corresponding functions in F (k)). Further, since xm1+l2 ∈ P̃ (k, i), we have

xm1+l2 = xr+nk
c−si(c) (7.15)

for some 0 ≤ c ≤ k (here d < c and so nk
d < nk

c , because m1+ l1 < m1+ l2, but we do not use this property).
Then

l2 − l1 = m1 + l2 − (m1 + l1) = nk
c − nk

d − (si(c)− si(d)). (7.16)

We are interested in the point xm2+l2 , so let us compute (here finally the modifications start)

m2 + l2 = m2 + l1 + (l2 − l1) = r′ + nk
d − si′(d) + (l2 − l1)

= r′ + nk
c − si′(d)− (si(c)− si(d))

= r′ + nk
c − si′(c) + (si′(c)− si′(d)) − (si(c)− si(d))

∈ {r′ + nk
c − si′(c) + t : −2(m− 1) ≤ t ≤ 2(m− 1)}.

(7.17)

Note that xr′+nk
c
∈ U1(asi′ (c)), whence xr′+nk

c−si′ (c)
∈ U1(a0). Therefore

xm2+l2 ∈

2(m−1)⋃

t=−2(m−1)

U1(at). (7.18)

On the other hand, by (7.9), xm2+l2 ∈ U1(aj) and so −2(m− 1) ≤ j ≤ 2(m− 1). Since in (2’) we assume
j ≥ m, we in fact have that j is an integer in the interval [m, 2(m− 1)].

Recall that by (7.9), xm2+l2 ∈ U1(aj). Then, using (7.17) and the fact that xr′+nk
c−si′ (c)

∈ U1(a0), we
get

(si′(c)− si′(d)) − (si(c)− si(d)) = j ≥ m.

However, we have

si′(c)− si′(d), si(c)− si(d) ∈ {−(m− 1),−(m− 1) + 1, . . . ,m− 1}

and so

si(c)− si(d) ∈ {−(m− 1),−(m− 1) + 1, . . . ,−1}. (7.19)

Let xr′′ be the first point of P (k, i′′) and let si′′ be the function from F (k) which corresponds to P (k, i′′).
Then by the construction of each pieces, see (7.2) and (7.3), we have

xr′′+nk
u−si′′ (u)

∈ U1(a0) for 0 ≤ u ≤ k. (7.20)

Recall that, by (7.8) and (7.10),

xm1+l2 , xm1+l3 ∈ U1(a0) and xm3+l2 , xm3+l3 ∈ U1(a0).

Therefore, by Lemma 7.4(4), xm1+l2 and xm3+l2 are in the “similar positions”. In view of (7.15),

xm3+l2 = xr′′+nk
c−si′′ (c)

.
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Using this and (7.16) and (7.19) and taking into account that the values of si′′ are in {0, 1, . . . ,m− 1}, we
have

m3 + l1 = m3 + l2 − (l2 − l1)

= r′′ + nk
c − si′′(c)− (nk

c − nk
d) + (si(c)− si(d))

= r′′ + nk
d − si′′(d) + (si′′ (d)− si′′(c)) + (si(c)− si(d))

∈ {r′′ + nk
d − si′′(d) + t : −2(m− 1) ≤ t ≤ m− 2}.

Since xr′′+nk
d
−si′′ (d)

∈ U1(a0) by (7.20), it follows that

xm3+l1 ∈ U1(a−2(m−1)) ∪ U
1(a−2(m−1)+1) ∪ · · · ∪ U1(am−2).

However, we have j ≥ m and so this contradicts the fact that, by (7.10), xm3+l1 ∈ U1(aj). �

7.2. A continuum X with S(X) = {0, logm},m ≥ 3. To get a continuum X with S(X) = {0, log 2} in
Section 6, we used an auxiliary system (X1, T ) from Section 5. Now, to get a continuum X with S(X) =
{0, logm} for a given m ≥ 3, we use the same construction, but we replace the auxiliary system (X1, T )
by the system from Theorem 7.5, with h∗(T ) = logm. By joining the consecutive points of the trajectory
x0, x1, . . . by the continua Dm we then get the required continuum X with S(X) = {0, logm}. Indeed, to
prove the following proposition, it is basically sufficient to repeat the proof of Proposition 6.17 word by word.

Proposition 7.6. Let m ≥ 3. For the one-dimensional continuum X described just above we have S(X) =
{0, logm}. Moreover, if F : X → X is a continuous map then h∗(F ) = logm if F is non-constant and has
no fixed point in the snake, otherwise h∗(F ) = 0.

8. Proof of Main Theorem. Analogues in other settings

After a long preparation in previous sections, we are finally ready to prove our Main Theorem (it is
repeated below as Theorem 8.2). We also prove that the same conclusion holds when considering homeo-
morphisms rather than continuous maps, see Theorem 8.3 (Theorem B). The problem is addressed also for
group actions. In Theorem 8.11 (Theorem C) we show that the result works for the actions (by homeomor-
phisms) of the finitely generated groups which have Z as a quotient group. Without the assumption that
the group is finitely generated, the result works with possible exceptions of some sets A. In full generality
this problem remains open. Analogous results for semigroup actions (by continuous maps) are also true, see
Theorem 8.13 (Theorem D).

8.1. Proof of Main Theorem. We already know, from Propositions 4.30, 6.17 and 7.6, that if A has just
two elements, one of them being of course zero, then there exists a one-dimensional continuum XA ⊆ R3

with S(XA) = A. Moroever, from our constructions of these continua XA (and from our results on them)
we know the following facts.

(F1) If A = {0,∞} or A = {0, log k} for k ∈ {2, 3, . . .}, the continuum XA consists of two parts. The first
one (called a head) is a planar continuum. The second one (called a snake) is obtained from just
one sequence xA1 , x

A
2 , . . . (which approaches the first part) by joining any two consecutive points of

the sequence by an infinite chain of appropriately chosen Cook continua. In what follows, the point
xA1 will be called the first point of XA.

(F2) If TA is a continuous selfmap of such a continuum XA and the first point xA1 of XA is fixed for TA
then h∗(TA) = 0 (we have in fact proved that if TA has a fixed point in the snake then h∗(TA) = 0).

(F3) In the construction of each of these sets XA we have used copies of some pairwise disjoint non-
degenerate subcontinua of a planar Cook continuum Q. Since we have only a countable family of
such sets XA (note that so far we have considered only sets A with cardinality 2), we may assume
that an infinite family of pairwise disjoint nondegenerate subcontinua of Q was split into infinitely
many infinite subfamilies and in the constructions of different sets XA we used different subfamilies.
So we may assume that if Q1 and Q2 are subcontinua of Q such that their copies are used in the
constructions of XA1 and XA2 with A1 6= A2 then Q1 and Q2 are disjoint.

The last fact is crucial for the following lemma.
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Lemma 8.1. Let A1 = {0, log k1} and A2 = {0, log k2} for different k1, k2 ∈ N∗ \ {1}. Suppose that XA1

and XA2 , with the first elements xA1
1 and xA2

1 , respectively, are subspaces of a metric space Y such that

XA1 \ {xA1
1 } and XA2 \ {xA2

1 } are disjoint open subsets of Y . Let F : Y → Y be a continuous map and

F (XA1) ∩ (XA2 \ {x
A2
1 }) 6= ∅. Then F (XA1) is a singleton.

Proof. F (XA1) intersects XA2 \ {xA2
1 } in a point p. Suppose, on the contrary, that F (XA1) 6= {p}. Then

the continuum F (XA1) contains a nondegenerate subcontinuum lying in XA2 \ {x
A2
1 }. This nondegenerate

subcontinuum has cardinality c, therefore there is a brick in XA1 mapped onto some nondegenerate subcon-

tinuum lying in XA2 \ {x
A2
1 }. It follows that there is a nondegenerate subcontinuum in a brick of XA1 which

is mapped onto a nondegenerate subcontinuum in a brick of XA2 . However, the Cook continuum Q contains
disjoint homeomorphic copies of these two subcontinua, which contradicts Lemma 2.12. �

We are ready to prove our ultimate result announced in Introduction as Theorem A (Main Theorem).

Theorem 8.2 (Main Theorem). For every set {0} ⊆ A ⊆ logN∗ there exists a one-dimensional continuum
XA ⊆ R3 with S(XA) = A.

Proof. The case A = {0} is trivial, just choose any rigid continuum in R3. If A has cardinality 2, the
existence of XA has already been proved.

So, from now on let A have cardinality at least 3. We are going to describe the continuum XA in this
case. For every k ∈ N∗ \ {1} put A(k) = {0, log k} and consider the continuum XA(k) we have already

constructed in the previous sections. Now choose, in R3, homeomorphic copies of these continua XA(k)

(without changing the notation, i.e. still denoting these copies by XA(k)) such that their diameters tend to

zero and are pairwise disjoint except of the common first point x
A(2)
1 = x

A(3)
1 = · · · = x

A(∞)
1 =: z. What we

get is a compact space looking like a ‘flower’ with infinitely many smaller and smaller ‘petals’ (this will be
our name for the sets XA(k)). To obtain XA, keep just those petals which correspond to the set A, i.e. denote
I = {k ∈ N∗ \ {1} : log k ∈ A} and put XA =

⋃
k∈I XA(k). This is a flower with finitely many or infinitely

many petals (there are at least two petals, because we assume that A has at least three elements). Since
the union of countably many closed one-dimensional sets is one-dimensional, also XA is one-dimensional.
Clearly, it is a continuum.

We need to show that S(XA) = A = {0}∪{log k : k ∈ I}. Since for each k ∈ I the petal XA(k) is a retract
of XA, we clearly have S(XA) ⊇ A. To prove the converse inclusion, fix a continuous map F : XA → XA

and show that h∗(F ) = 0 or log k for some k ∈ I.

Let Iinv and Inot be the sets of all k ∈ I for which XA(k) is F -invariant or is not F -invariant, respectively.
First assume that Inot = ∅. Then F (z) = z. We are going to show that in this case h∗(F ) = 0. Suppose
on the contrary that for some x 6= y in XA, the pair (x, y) is an IN-pair for the whole map F : XA → XA.
Since at least one of the points x and y is different from z, we may assume that x ∈ XA(i) \ {z} (here of
course i ∈ Iinv). Choose open neighbourhoods Ux and Uy (in the topology of XA) of x and y, respectively,
such that Ux ⊆ XA(i) \ {z}. Though it is possible that Uy intersects the complement of XA(i), the F -orbits
of points from this complement do not intersect Ux. Therefore (x, y), an IN-pair for F , is an IN-pair even
for the restriction Fi of F to the set XA(i). Hence h

∗(Fi) > 0, which contradicts the fact (F2).

Now assume that Inot 6= ∅. Denote X inv
A =

⋃
i∈Iinv

XA(i) and Xnot
A =

⋃
n∈Inot

XA(n). By Lemma 8.1,

F (XA(n)) is a singleton whenever n ∈ Inot. Then, since all the sets XA(n) intersect, F (X
not
A ) is a singleton

{q}. If q ∈ A(n0) for some n0 ∈ Inot then XA(n0) would be F -invariant, a contradiction. Therefore q ∈ X inv
A ,

i.e. Iinv 6= ∅. So, XA is the union of two nonempty sets X inv
A and Xnot

A having the point z in common, the
first of them is F -invariant and the second one is mapped by F to the point q ∈ X inv

A . By Theorem 2.6(e),
h∗(F ) = h∗(Finv) where Finv is the restriction of F to the set X inv

A . If Iinv contains just one element k, we
have X inv

A = XA(k) and then h∗(F ) ∈ {0, log k} and we are done. If Iinv contains at least two elements, the

set X inv
A is a flower with at least two petals and by the case considered above (the case Inot = ∅) we get that

h∗(F ) = 0. �
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8.2. Analogue of Main Theorem for homeomorphisms. As an analogue of the set S(X) from (1.3),
for any compact metric space X put

Shom(X) = {h∗(T ) : T is a homeomorphism X → X}.

Our Main Theorem has the following analogue for homeomorphisms (it is in fact Theorem B from Introduc-
tion). The proof needs a construction, due to Hanfeng Li [34], which did not appear in the proof of Main
Theorem.

Theorem 8.3 (Theorem B). For every set {0} ⊆ A ⊆ logN∗ there exists a one-dimensional continuum

X̃A ⊆ R3 with Shom(X̃A) = A.

Proof. The proof is to large extent similar to that of Main Theorem.

The case A = {0} is trivial, any rigid continuum in the plane can be chosen as X̃A. We are going to
consider the nontrivial cases.

Case 1: A has cardinality 2.

First consider the set A = {0,∞}. We begin with the continuum X from Lemma 4.2, see Figure 4.4 and
Proposition 4.30. For our purposes we modify this continuum X as follows.

• The continuum X has the ‘first’ point x1. We add a converging sequence of points x0, x−1, x−2, . . .
with

P2(xj) = P2(x1), j = 0,−1,−2, . . . and P1(x1) < P1(x0) < P1(x−1) < P1(x−2) < . . . .

We denote the limit of this sequence by x−∞ and we add also this point to X .
• For m ∈ N, the points xm and xm+1 in X are joined by the continuum Dm from (4.9), see also

Figure 4.3. We replace the (non-homeomorphic) continua Dm, m ∈ N, by homeomorphic continua

D̃m,m ∈ N, each of them being a homeomorphic copy of, say,D1. Further, also form = 0,−1,−2, . . .
we join xm and xm+1 by a continuum D̃m which is again a homeomorphic copy of D1. So, now all

the continua D̃m, m ∈ Z, are homeomorphic and they are copies of D1. We may of course assume
that the continua D̃m are pairwise disjoint, except that two consecutive continua have one point in
common. This can of course be done in such a way that we still have properties analogous to those
in Lemma 4.1. In particular, the sequence of Cook continua which forms D̃m ‘goes’ from xm to xm+1

and not in the opposite direction, and the diameters of D̃m tend to zero as |m| → ∞.

These modifications yield a one-dimensional continuum X̃{0,∞}, see Figure 8.1. The point x−∞ will be called

the starting point of X̃{0,∞}.

x1

x2

x3

D̃1

D̃2

D̃3

K0

x0 x−1 x−∞

D̃0 D̃−1

1

Figure 8.1. X̃{0,∞} = K0 ⊔
⋃

m∈Z
D̃m ⊔ {x−∞}.

Denote by G̃{0,∞} : X̃{0,∞} → X̃{0,∞} the homeomorphism which maps D̃m onto D̃m+1, m ∈ Z (and so

is the identity on K0 ∪ {x−∞}). In particular, G̃{0,∞} restricted to the set K0 ∪ {x1, x2, x3, . . . } coincides
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with the map T from Subsection 3.1 (provided C0 is chosen to be K0). Since we have shown there that

h∗(T ) = ∞, we necessarily have h∗(G̃{0,∞}) = ∞.

On the other hand, let G : X̃{0,∞} → X̃{0,∞} be any homeomorphism. Taking into account the structure

of X̃{0,∞}, G is the identity on K0. Suppose it is not the identity on the whole of X̃{0,∞}. Then, since

each D̃m is homeomorphic to D1 and D1 is the closure of a ‘concatenation’ of pairwise non-homeomorphic
Cook continua, there exist k ∈ N, m ∈ Z and n ∈ Z \ {0} such that some interior point of the k-th Cook

continuum in D̃m is mapped by G to an interior point of the k-th Cook continuum in D̃m+n. Hence G maps

the k-th Cook continuum in D̃m onto the k-th Cook continuum in D̃m+n. Then it is not difficult to show

that G(D̃m) = D̃m+n and in fact that G is the n-th iterate of G̃{0,∞} on the whole of X̃{0,∞}. We have

thus shown that the only homeomorphisms on X̃{0,∞} are just all the iterates of G̃{0,∞}. This together with

h∗(G̃{0,∞}) = ∞ and the fact that h∗(ϕn) = h∗(ϕ) whenever ϕ is a homeomorphism and n 6= 0, imply that

Shom(X̃{0,∞}) = {0,∞}.

Notice that for every homeomorphism on X̃{0,∞} the starting point x−∞ of X̃{0,∞} is a fixed point.

Now consider the set A = {0, logm} where m ≥ 2. The construction of X̃{0,logm} is the same as above

construction of X̃{0,∞}, the only difference is that now we begin with the continuum X from Section 6 if
m = 2 or Section 7 if m ≥ 3. For this X we have S(X) = {0, logm} and we modify it similarly as above,

to get X̃{0,logm}. Again, all the homeomorphisms of X̃{0,logm} are just the iterates of one distinguished

homeomorphism G̃{0,logm} which maps D̃m onto D̃m+1, m ∈ Z. It follows from Section 6 if m = 2 or
Section 7 if m ≥ 3 that the restriction of this homeomorphism to the union of the head and the ‘forward’
part of the snake (lying between x0 and the head) has the supremum topological sequence entropy equal to
logm. Using Proposition 2.6(c), one can see that adding the ‘backward’ part of the snake does not change

it, i.e. h∗(G̃{0,logm}) = logm. Then the proof that Shom(X̃{0,logm}) = {0, logm} is completely analogous to

the above proof that Shom(X̃{0,∞}) = {0,∞}.

Again, remember that similarly as above, for every homeomorphism on X̃{0,logm} the naturally defined

starting point of X̃{0,logm} is a fixed point.

Finally, before going to Case 2, note that in Case 1 we have constructed countably many continua
X̃{0,logm}, m ∈ {2, 3, . . .} ∪ {∞}, and for the construction of each of them we have used only countably
many Cook continua. Therefore we may assume that we have chosen countably many disjoint subcontinua of
a Cook continuum in the plane, then we have divided them into countably many disjoint countable families,
and different families have been used to construct different spaces X̃{0,logm}, still keeping one of those families
unused, i.e. as a reservoir of Cook continua for further use. To express this fact we will, though not very
precisely, just say that the spaces X̃{0,logm} are constructed by using different families of Cook continua.

Case 2: A has cardinality ≥ 3.29

For every m ∈ {2, 3, . . .} ∪ {∞} consider the continuum X̃{0,logm} we have already constructed in Case 1
above. Since we will work with many such continua simultaneously, we will now use double indices; for every
m we will write

X̃{0,logm} = {xm,−∞} ∪
⋃

k<0

D̃m,k

︸ ︷︷ ︸
D̃−

m

∪ D̃m,0 ∪
⋃

k>0

D̃m,k ∪ headm

︸ ︷︷ ︸
D̃+

m

.

Here xm,−∞ is the starting point of X̃{0,logm}, headm is the head of X̃{0,logm} (such as the set K0 in

Figure 8.1, where m = ∞) and recall that the continuum D̃m,0 with first point xm,0 and last point xm,1 is
the union of a sequence of different Cook continua, together with one limit point (which is the last point

xm,1). The other sets D̃m,k, k ∈ Z \ {0}, are homeomorphic copies of D̃m,0. The first point of D̃m,k+1

coincides with the last point of D̃m,k for all k. Recall also that the homeomorphism group of X̃{0,logm} is

isomorphic to Z, with the generator G̃{0,logm} sending Dm,k to Dm,k+1 for all k. For every homeomorphism

on X̃{0,logm}, the starting point xm,−∞ is a fixed point and the set headm is invariant.

29The construction in this case was suggested by Hanfeng Li.



82 L’UBOMÍR SNOHA, XIANGDONG YE AND RUIFENG ZHANG

Consider numbers 0 = c1 < c2 < c3 < . . . with limm→∞ cm = 1. The sets [0, 1]2 × (cm, cm+1) will be

called layers , see Figure 8.2. For every m ∈ {∞} ∪ {2, 3, . . .} we choose a copy of X̃{0,logm}, still denoted
by the same symbol, and a continuum Cm, satisfying the following conditions, see Figure 8.3:

• X̃{0,logm} lies in the layer [0, 1]2 × (cm, cm+1) if m is finite, X̃{0,∞} lies in the layer [0, 1]2 × (c1, c2);

• the projections, into the x, y-plane, of the first point xm,0 and the last point xm,1 of D̃m,0 coincide
with the points [1, 1] and [0, 1], respectively;

• the continuum D̃m,0 is in the εm-neighborhood of the straight line segment whose endpoints are the

first point and the last point of D̃m,0, and εm → 0 as m→ ∞;

• the diameters of D̃−
m and D̃+

m tend to zero as m→ ∞;
• Cm is a (copy of a) Cook continuum from the reservoir mentioned at the end of Case 1, and for

different m’s these continua are different (non-homeomorphic);

• Cm contains the starting point xm,−∞ of X̃{0,logm} and the point w = [0, 0, 1], and lies in the
εm-neighborhood of the straight line segment joining these two points, with εm → 0 as m→ ∞;

• for m ∈ {∞} ∪ {2, 3, . . .}, the continua

Lm = Cm ∪ X̃{0,logm}

are pairwise disjoint, except that each of them contains the point w.

c1

x

y

z

c2

c3

... ...

1

1

1

Figure 8.2. A layer.

x

y

z

D̃m,0

w = (0, 0, 1) v = (0, 1, 1)

u = (1, 1, 1)

D̃−
m

D̃+
mCm

xm,−∞

xm,0

xm,1

cm

cm+1

Figure 8.3. The continuum Lm.

Consider further the points u = [1, 1, 1] and v = [0, 1, 1] and denote by [u, v] the straight line segment from
u to v. Similarly, let [w, u] be the straight line segment from w to u. Notice that, in the Hausdorff metric,

the continua Cm converge to [w, u] and the continua D̃m,0, as well as the continua X̃{0,logm}, converge to
[u, v].

Now finally define

X̃A =

®⋃
{Lm : 2 ≤ m ≤ ∞ and logm ∈ A}, if A is finite,

⋃
{Lm : 2 ≤ m ≤ ∞ and logm ∈ A} ∪ [w, u] ∪ [u, v], if A is infinite.

(8.1)

Clearly, X̃A is a one-dimensional continuum. Notice that it is still a kind of a ‘flower’, with central point w
and ‘petals’ [w, u] ∪ [u, v] (if A is infinite) and Lm (for 2 ≤ m ≤ ∞ such that logm ∈ A), but now it is a
more complicated flower than that from the proof of Theorem 8.2, since in the case of infinite A the petals
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Lm converge to the petal [w, u] ∪ [u, v]. Notice also that X̃A has at least two petals, since A has cardinality
at least three.

We need to show that Shom(X̃A) = A. Trivially, Shom(X̃A) ∋ 0. Fix m ∈ {2, 3, . . .}∪{∞} with logm ∈ A

and a homeomorphism Gm on X̃A such that it is the identity on X̃A \ X̃{0,logm} and on X̃{0,logm} coincides

with the distinguished homeomorphism G̃{0,logm}, the generator of the homeomorphism group of X̃{0,logm}.

Note that xm,−∞ is a fixed point for this generator, so Gm is well defined. Since h∗(G̃{0,logm}) = logm, we

obviously have h∗(Gm) = logm. We have thus shown that Shom(X̃A) ⊇ A.

To prove that also Shom(X̃A) ⊆ A, let H : X̃A → X̃A be any homeomorphism different from the identity.

We are going to show that h∗(H) ∈ A (for identity it is trivial). Since the petals Lm of the space X̃A are
constructed by using different families of Cook continua, each of them is H-invariant (hence, if A is infinite,
also [w, u] ∪ [u, v] is H-invariant). Moreover, H is obviously the identity on Cm (hence, if A is infinite, also

on [w, u]) and is a km-th iterate of G̃{0,logm} on X̃{0,logm}.

Suppose that the set of those m’s for which km > 0 is infinite (i.e. there is a sequence of layers Lm with

km > 0, which converges to [w, u] ∪ [u, v]). For every such m, the set D̃m,−km
(which is a subset of D̃−

m)

is mapped by H onto the set D̃m,0 whose diameter is at least 1. Since diameters of D̃−
m tend to zero as

m → ∞, we have a contradiction with uniform continuity of H . (Alternately, one can argue as follows.

If km > 0 then H(xm,0) ∈ D̃+
m and since we have infinitely many such m’s, the fact that the diameters

of D̃+
m tend to zero and the continuity of H imply that H(u) = v. However, we have already shown that

H(u) = u, a contradiction.) Similarly, we get a contradiction with uniform continuity if km < 0 for infinitely
many m’s. (Or, one can show that in such a case we would have H(v) = u which is a contradiction because

H(u) = u and H is a homeomorphism.) Thus we conclude that H is identity on the whole space X̃A except

of finitely many petals Lm; more precisely, except of finitely many continua X̃{0,logm} (there is at least
one such continuum, because H is different from the identity). Since these continua are pairwise disjoint

and Shom(X̃{0,logm}) = {0, logm}, we get that h∗(H) equals the maximum of logm for such m’s. Hence
h∗(H) ∈ A. �

Remark 8.4. The reader might be curious why, in Case 2, we did not use the simpler construction with a
‘standard’ flower with petals, exactly as in the proof of Theorem 8.2. In fact, it is obvious that such a flower
can be used if A is finite. One can show that it works also when A si infinite and closed with respect to
the supremum. However, it does not work in other cases, i.e. when A is infinite and ∞ /∈ A. Indeed, let A
consist of 0 and numbers log ki for some 2 ≤ k1 < k2 < . . . (note that supi=1,2,... log ki = ∞ /∈ A). Consider

the flower FA whose petals are Xki
= X̃{0,log ki}, i = 1, 2, . . . . Then FA admits a homeomorphism H such

that it fixes the central point of the flower, every petal Xki
is H-invariant and the restriction Hi of H to

that petal has h∗(Hi) = log ki. By (2.1) we easily get h∗(H) = ∞ and so

Shom(FA) = A ∪ {∞} 6= A.

So, due to such sets A a more sophisticated construction was needed.

8.3. Analogues of Main Theorem for group actions and semigroup actions. By a dynamical system
we now mean a triple (X,G,Φ), where X is a compact metric space, G is a topological group and Φ is an
action of G on X , i.e. a continuous map Φ: G ×X → X such that Φ(s,Φ(t, x)) = Φ(st, x) for all s, t ∈ G
and Φ(e, x) = x for every x ∈ X , where e is the neutral element of the group G. For each s ∈ G, the acting
map Φs : X → X defined by Φs(x) := Φ(s, x) =: sx can easily be proved to be a homeomorphism. To define
Φ is the same as to define all Φs. We also say that Φ is a G-action (on the space X). In the sequel, when
speaking on G-actions, we always assume that G has discrete topology. Then, to check the continuity of a
map Φ: G×X → X , it is sufficient to check the continuity of all Φs.

Note that the topological sequence entropy is developed in the literature for a single continuous map, but
we can also work in the framework of a dynamical system (X,G,Φ). Following Goodman [18] and Kerr-Li
[30], for a sequence σ = {sn}n∈Z+ in G we define the topological sequence entropy of (X,G,Φ) with respect
to σ and a finite open cover U of X by

hσ(G,U ,Φ) = lim sup
n→∞

1

n
logN

(
n−1∨

i=0

s−1
n U

)
, (8.2)
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where N (·) denotes the minimal cardinality of a subcover. Then the sequence entropy with respect to σ is
defined by hσ(X,G,Φ) = supU h

σ(G,U ,Φ), where U runs over all finite open covers of X . Again, by [28,
Theorem A.1], we can define the supremum topological sequence entropy

h∗(X,G,Φ) = sup{hσ(X,G,Φ): σ = {sn}n∈Z+ is a sequence in G}. (8.3)

Definition 8.5. Let (X,G,Φ) be a dynamical system and Ã = (A1, . . . , Ak) be a tuple of subsets of X. We

say that a subset J ⊆ G is an independence set for Ã (or that Ã has the independence set J) if for any
nonempty finite subset I ⊆ J , we have ⋂

s∈I

s−1Aσ(s) 6= ∅

for any function σ : I → {1, . . . , k}. If such a set J is finite and has p elements, we also say that it is an
independence set, or independence set of times, of length p.

Definition 8.6. Consider a tuple x̃ = (x1, . . . , xk) ∈ Xk. If for every product neighbourhood U1 × · · · × Uk

of x̃ the tuple (U1, . . . , Uk) has arbitrarily long finite independence sets, then the tuple x̃ is called an IN-tuple
in (X,G,Φ).

As before we may define the sequence entropy tuples, see [30] for details. We have the following proposition
proved in [30, Theorem 5.9].

Proposition 8.7. Let (x1, . . . , xk) be a tuple in Xk \∆k with k ≥ 2. Then (x1, . . . , xk) is a sequence entropy
tuple if and only if it is an IN-tuple.

Now for a dynamical system (X,G,Φ) we have, by [28, Theorem A.3], that

h∗(X,G,Φ) = sup{logn : there is an intrinsic sequence entropy tuple of length n} (8.4)

and, in view of Proposition 8.7, we can also write

h∗(X,G,Φ) = sup{logn : there is an intrinsic IN-tuple of length n}. (8.5)

Finally, for a fixed topological group G and a fixed compact metric space X we put

SG(X) = {h∗(X,G,Φ): Φ is an action of G on X}. (8.6)

We emphasize that in the left side of the definition (8.6), G is a fixed group.

In the sequel we will use simple but useful observations from the following two lemmas.

Lemma 8.8. Consider the well known one-one correspondence between homeomorphisms on X and Z-
actions on X; the Z-action Φϕ with the acting maps (Φϕ)m = ϕm, m ∈ Z, corresponds to the homeomor-
phism ϕ. Then

h∗(ϕ) = h∗(X,Z,Φϕ). (8.7)

Proof. We show that every IN -tuple in (X,Z,Φϕ) in the sense of Definition 8.6 is an IN -tuple in (X,ϕ) in
the sense of Definition 2.4 (the converse is trivial since Z+ ⊆ Z).

Assume that x̃ = (x1, . . . , xk) is an IN-tuple in (X,Z,Φϕ). Let U1×· · ·×Uk be the product neighbourhood
of x̃ and let J = {l1, l2, . . . , lt} ⊆ Z be an independence set of length t for (U1, . . . , Uk). If lj ≥ 0 for
j = 1, 2, . . . , t, then J is also the independence set of length t for (U1, . . . , Uk) in (X,ϕ). If some of the

integers lj is negative, there exists m > 0 such that lj +m ≥ 0 for all j = 1, 2, . . . , t. Let l̃j = lj +m and

J̃ = {l̃j : j = 1, 2, . . . , t}. For any function σ : J → {1, . . . , k}, we define σ̃ : J̃ → {1, . . . , k} by σ̃(l̃j) = σ(lj),
j = 1, 2, . . . , t. Since

t⋂

j=1

ϕ−ljUσ(lj) =

t⋂

j=1

(Φϕ)−ljUσ(lj) 6= ∅,

we also have
t⋂

j=1

ϕ−l̃jUσ̃(l̃j)
=

t⋂

j=1

ϕ−(lj+m)Uσ(lj) = ϕ−m

(
t⋂

j=1

ϕ−ljUσ(lj)

)
6= ∅,

this implies that J̃ is an independence set of length t for (U1, . . . , Uk) in (X,ϕ). Hence x̃ = (x1, . . . , xk) is
an IN-tuple in (X,ϕ). �
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Lemma 8.9. Let (X,G1,Φ) and (X,G2,Ψ) be dynamicall systems.

(1) Assume that for every s ∈ G1 there exists t ∈ G2 with Φs = Ψt. Then h∗(X,G1,Φ) ≤ h∗(X,G2,Ψ).
(2) Assume that for every s ∈ G1 there exists t ∈ G2 with Φs = Ψt and for every t ∈ G2 there exists

s ∈ G1 with Ψt = Φs. Then h∗(X,G1,Φ) = h∗(X,G2,Ψ).

Proof. Due to symmetry, it is sufficient to prove (1). By the assumption, for every sequence σ = {sn}n∈Z+

in G1 there is a sequence τ = {tn}n∈Z+ in G2 such that Φsn = Ψtn for every n. Then hσ(X,G1,Φ) =
hτ (X,G2,Ψ). It follows that h∗(X,G1,Φ) ≤ h∗(X,G2,Ψ). �

Based on the above observations, we get the following proposition.

Proposition 8.10. Let X be a compact metric space.

(a) Shom(X) = SZ(X).
(b) Let G1, G2 be topological groups such that there is a surjective group homomorphism κ : G2 → G1.

Then SG2(X) ⊇ SG1(X).
(c) Let G be a topological group such that there is a surjective group homomorphism G → Z. Then for

every set {0} ⊆ A ⊆ logN∗ there exists a one-dimensional continuum X̃A ⊆ R3 with SG(X̃A) ⊇ A.

Proof. (a) This follows from (8.7) and the one-one correspondence discussed above in Lemma 8.8.

(b) Fix h∗(X,G1,Φ) ∈ SG1(X). To prove that h∗(X,G1,Φ) ∈ SG2(X), it is sufficient to find a G2-action
Ψ on X with h∗(X,G1,Φ) = h∗(X,G2,Ψ).

The acting maps of Φ are homeomorphisms Φs : X → X , s ∈ G1. To define Ψ, for t ∈ G2 put Ψt = Φκ(t).
Since the topology in G2 is discrete, κ is continuous. Since also Φ is continuous, we get that Ψ is continuous.
Since κ is a homomorphism, it is straightforward to check that then Ψ is a G2-action on X .

Since κ is surjective, for every s ∈ G1 there is t ∈ G2 with κ(t) = s and so Ψt = Φκ(t) = Φ(s). On
the other hand, for every t ∈ G2 we have s := κ(t) ∈ G1 and Ψt = Φκ(t) = Φs. By Lemma 8.9 then
h∗(X,G1,Φ) = h∗(X,G2,Ψ).

(c) For a given set {0} ⊆ A ⊆ logN∗, let X̃A be the space defined in the proof of Theorem 8.3. Then

Shom(X̃A) = A. To finish the proof, use (b) and (a) to get SG(X̃A) ⊇ SZ(X̃A) = Shom(X̃A). �

The following theorem on group actions is an analogue of our Main Theorem and Theorem 8.3 but it
deals only with special kinds of groups (it is Theorem C from Introduction).

Theorem 8.11 (Theorem C). Let G be a topological group such that there is a surjective group homomor-
phism G→ Z. Then for every set {0} ⊆ A ⊆ logN∗ with A finite or ∞ ∈ A, there exists a one-dimensional

continuum X̃A ⊆ R3 with SG(X̃A) = A. If in addition G is also finitely generated, then such a continuum
exists for every set {0} ⊆ A ⊆ logN∗.

Proof. Fix a set A such that {0} ⊆ A ⊆ logN∗. Let X̃A be the space defined in the proof of Theorem 8.3
and used also in the proof of Proposition 8.10(c). In view of this proposition it remains to check whether

SG(X̃A) ⊆ A.

Let Φ: G× X̃A → X̃A be a G-action on X̃A. It can be viewed as a group homomorphism from G into the
group H(X̃A) of all self-homeomorphisms of X̃A; the set {Φs : s ∈ G} is a subgroup of H(X̃A). So, when

computing h∗(X̃A, G,Φ), we can view G as a subgroup of H(X̃A). More precisely, by Lemma 8.9(2) we have

h∗(X̃A, G,Φ) = h∗(X̃A, {Φs : s ∈ G},Ψ) (8.8)

where Ψ is an action of the group {Φs : s ∈ G} on the space X̃A defined by Ψ(Φs, x) = Φ(s, x) = Φs(x), i.e.
ΨΦs

= Φs.

Case 1: A has cardinality 2.

Aassume that A = {0, logm}, m ∈ N∗, i.e. X̃A = X̃{0,logm}. Then the total homeomorphism group

H(X̃A) = {(G̃{0,logm})
n : n ∈ Z}, where G̃{0,logm} is the distinguished homeomorphism from the proof of

Theorem 8.3. Since {Φs : s ∈ G} is a subgroup of this (infinite cyclic) group, there are two possibilities.
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(1) The first possibility is that {Φs : s ∈ G} = {Id |X̃A
}. Then h∗(X̃A, G,Φ) = 0 ∈ A.

(2) The second possibility is that {Φs : s ∈ G} = {(G̃d
{0,logm})

n : n ∈ Z} for some integer d > 0. Then,

by Lemma 8.9(2),

h∗(X̃A, {Φs : s ∈ G},Ψ) = h∗(X̃A, {(G̃
d
{0,logm})

n : n ∈ Z},Ψ) = h∗(X̃A,Z,Θ) (8.9)

with Θ being a Z-action on X̃A defined by Θ(n, x) = Ψ((G̃d
{0,logm})

n, x) = Ψ(Φs, x), i.e. Θn = ΨΦs
,

where s is any of those elements of G for which Φs = (G̃d
{0,logm})

n. Moreover, by (8.7) we then have

h∗(X̃A,Z,Θ) = h∗(G̃d
{0,logm}) = h∗(G̃{0,logm}) = logm. (8.10)

Combining this with (8.8) and (8.9), we finally get h∗(X̃A, G,Φ) = logm.

We have thus shown that if A = {0, logm}, m ∈ N∗, then SG(X̃A) = {0, logm} = A.

Case 2: A has cardinality ≥ 3.

So, X̃A is a ‘flower’ with finitely or infinitely many ‘petals’, namely with the petals Lm for all 2 ≤ m ≤ ∞
such that logm ∈ A and, if A is infinite, then also with the ‘limit’ petal [w, u] ∪ [u, v].

Recall that if T is a homeomorphism on X̃A, then every petal is T -invariant (so, every petal is invariant
for the action Φ) and T is different from the identity only on the union of finitely many pairwise disjoint

sets X̃{0,log k}.

Subcase 2a: A = {0} ∪ {log ki : i = 1, 2, . . . , l} is a finite set (possibly containing ∞).

Then X̃A =
⋃l

i=1 Lki
. For the given action Φ, there are two possibilities.

(1) The first possibility is that for every s ∈ G, Φs is the identity on X̃A. Then

h∗(X̃A, G,Φ) = 0 ∈ A.

(2) The second possibility is that there exist some petals Lj1 , . . . , Ljt with {j1, . . . , jt} ⊆ {k1, . . . , kl}
such that only for j ∈ {j1, . . . , jt} we have {Φs|Lj

: s ∈ G} 6= {Id |Lj
}. We conclude that if

(x1, . . . , xn) is an IN-tuple for Φ, then x1, . . . , xn ∈ Lm for some m ∈ {j1, . . . , jt}. Moreover, by the

construction we know that in such a case even x1, . . . , xn ∈ X̃{0,logm}. Further, using (8.8) and the

fact that SG(X̃{0,logm}) = {0, logm}, we obtain

h∗(Lm, G,Φ|Lm
) = h∗(Lm, {Φs|Lm

: s ∈ G},Ψ|Lm
) = logm.

It follows that h∗(X̃A, G,Φ) = maxti=1 h
∗(Lji , {Φs|Lji

: s ∈ G},Ψ|Lji
) = maxti=1 log ji ∈ A.

We have shown that in this subcase SG(X̃A) ⊆ A, as required.

Subcase 2b: A is an infinite set with ∞ ∈ A.

It follows from the construction of X̃A and the fact that the petals are invariant for the action Φ, that

• each of the IN-tuples of Φ lies in one of the petals,

i.e. in Lm with logm ∈ A or in the limit petal [w, u]∪ [u, v]. One can say more. Since every homeomorphism

on X̃A is identity on
⋃

logm∈ACm ∪ [w, u] (see Figure 8.3),

• the segment [w, u] does not contain any IN-pair.

Further, we claim that

• the segment [u, v] does not contain any IN-tuple of length ≥ 4.

To see this, suppose on the contrary that this is not the case. Then there are two different points c1, c2 in
the ‘interior’ of [u, v] which form an IN-pair. However, every homeomorphism T : X̃A → X̃A is identity on
[u, v] and if it sends an interior point of some set Dm,0 to an interior point of this set (note also that it
cannot be mapped into another petal) then T is necessarily the identity on Dm,0. This already shows that
points from a small neighborhood of c1 cannot visit a small neighborhood of c2 under the action Φ. This is
a contradiction with the the assumption that (c1, c2) is an IN-pair.
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Suppose that for the fixed action Φ we have h∗(X̃A, G,Φ) = log t /∈ A. Hence t is finite and t ≥ 2. Let
(x1, . . . , xt) be an intrinsic IN-tuple for Φ. It lies in a petal.

If there exists m with logm ∈ A such that this tuple lies in Lm, then obviously all the points x1, . . . , xt
belong to the same set X̃{0,logm}. Then we have t ≤ m because SG(Lm) = SG(X̃{0,logm}) = {0, logm} and

we have t 6= m because log t /∈ A. Hence m > t. It follows that h∗(X̃A, G,Φ) ≥ logm > log t, a contradiction
with our assumption.

If the points x1, . . . , xt ∈ [w, u]∪ [u, v], then they all have to lie in [u, v] and so t < 4. By the definition of

an IN-tuple and the construction of X̃A (see Figure 8.3 and note that A is infinite now), we can find some
petal Lm with logm ∈ A and m > 4 such that {Φs|Lm

: s ∈ G} 6= {Id |Lm
}. Then we get

h∗(X̃A, G,Φ) ≥ h∗(Lm, {Φs|Lm
: s ∈ G},Ψ|Lm

) = logm > log 4 > log t,

and this is again a contradiction with our assumption. This finishes the proof that SG(X̃A) ⊆ A.

Finally, assume that G is finitely generated. We just need to consider the case when A is infinite with
∞ 6∈ A. Assume that g1, g2, . . . , gn ∈ G is the list of all generators of G. For the given action Φ, there are
two possibilities.

(1) The first possibility is that Φgi = Id |X̃A
, i = 1, 2, . . . , n. This implies that {Φs : s ∈ G} = {Id |X̃A

}

and then h∗(X̃A, G,Φ) = 0 ∈ A.
(2) The second possibility is that there exists a nonempty subset J ⊆ {1, 2, . . . , n} such that for every

j ∈ J we have Φgj 6= Id |X̃A
. However, as we know, each of these finitely many homeomorphisms

Φgj , j ∈ J is different from the identity only on the union of finitely many pairwise disjoint sets

X̃{0,log k}. It follows that there exists a finite set M ⊆ N∗ with logM ⊆ A such that

{Φs|Lj
: s ∈ G} 6= {Id |Lj

} if and only if j ∈M.

Using the same argument as above (when A is a finite set), we obtain

h∗(X̃A, G,Φ) = max
i∈M

log i ∈ logM ⊆ A.

Hence SG(X̃A) ⊆ A. This ends the proof of the theorem. �

We add some remarks.

Let G be a finite group. Then, for any action Φ, the set {Φs : s ∈ G} is finite and so, for any sequence
σ = {sn}n∈Z+ in G and any finite open cover U , the quantity in (8.2) is zero. Hence SG(X) = {0} for any
space X .

If we wish to consider groups consisting of elements of finite order, i.e. torsion groups, the following
example is instructive.

Example 8.12. Let X be the space in Figure 3.1. Define f1 : X → X by f1(xi) = xi+1, i = 1, 2, . . . , k1 − 1,
f1(xk1) = x1 and f1|X\{x1,x2,...,xk1

} = Id |X\{x1,x2,...,xk1
}. So, the first block is the ‘natural’ periodic orbit of

period k1 (where ‘natural’ means that every point xi in this block is mapped to its ‘successor’ xi+1, modulo
the number of points in the block), all the other points of X are fixed for f1. Similarly, also for any integer
n ≥ 2 we can define a homeomorphism fn : X → X such that the n-th block is the ‘natural’ periodic orbit
of period kn − kn−1 and fn is identity on the rest part of the space X. Now let G be the group generated by
{f1, f2, f3, . . . } and Φ be the natural action. It follows from the construction of the space X and the maps
fi that (X,G,Φ) has IN -tuples of arbitrary lengths; in fact every finite subset of the countable infinite set
{e10, e

2
0, . . . } forms an IN-tuple. Thus h∗(X,G,Φ) = ∞.

Finally, consider semigroups rather than groups.

Let P be a topological semigroup with identity. One can consider P -actions on X . The difference with
the group actions is that now the acting maps are just continuous maps (not necessarily homeomorphisms).
This gives more freedom in constructing P -actions, therefore it is not surprising that if we repeat the above
considerations for P -actions rather than for group actions, we get analogous results. Without repeating
basically the same definitions, notations and arguments as above, we just say here that now SZ+(X) = S(X)
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(compare this with Proposition 8.10(a)) and that we have the following theorem (it is Theorem D from
Introduction).

Theorem 8.13 (Theorem D). Let P be a topological semigroup with identity such that there is a surjective
semigroup homomorphism P → Z+. Then for every set {0} ⊆ A ⊆ logN∗ with A finite or ∞ ∈ A, there
exists a one-dimensional continuum XA ⊆ R3 with SP (XA) = A. If in addition P is also finitely generated,
then such a continuum exists for every set {0} ⊆ A ⊆ logN∗.

To prove this theorem, the space XA can be the space defined in the proof of Theorem 8.2, i.e. the flower
with a central point, whose petals are continua X{0,logm} with 2 ≤ m ≤ ∞ such that logm ∈ A.

9. Questions

To end the paper we formulate some open problems.

9.1. The set S(X) for the pseudoarc and the pseudocircle. In the continuum theory, the pseudoarc
and the pseudocircle are very important examples of planar continua. The dynamics on them is also more
and more studied. Let us mention at least the interesting question whether every continuous map of the
pseudo-arc has either infinite entropy or zero entropy, see [11], cf. Barge’s question Q19 in [46].

Question 9.1. What is S(X) if X is the pseudoarc or the pseudocircle?

9.2. The set S(X) if X admits a positive entropy map. We have constructed a continuum X with
S(X) = {0,∞}. Notice that this continuum admits only continuous selfmaps with zero topological entropy.

Question 9.2. Can a continuum/space X with S(X) = {0,∞} admit a continuous selfmap with positive
topological entropy?

9.3. The set Smin(X) for the 2-torus and other continua. If a compact metric space X admits a
minimal map (i.e. a continuous map with every orbit dense), put

Smin(X) = {h∗(T )| T : X → X is minimal}.

If X is finite, then Smin(X) = {0}. If X is a Cantor set then for each n ∈ N it admits a minimal selfmap T
with h∗(T ) = logn, see [36, Example 2], and it is also known that a Cantor set admits minimal systems with
positive entropy; therefore Smin(X) = logN∗. If X is a circle then Smin(X) = {0} since the minimal maps
on the circle are just the maps topologically conjugate to irrational rotations, and the topological sequence
entropy is an invariant of topological conjugacy. However, already for the torus the question is nontrivial.

Question 9.3. Is it true that if T2 is the 2-dimensional torus then Smin(T
2) = logN∗?

9.4. Continua XA as attractors? Recall that, due to Handel [21], the pseudocircle is known to be an
attracting minimal set for a C∞ diffeomorphism in the plane. Our continua XA do not admit minimal
maps. However, the following question essentially suggested by Benjamin Weiss is still challenging.

Question 9.4. If a continuum XA is embedded in a manifold M , does there exists a dynamics on M such
that XA is an attractor? Is it at least true that a Cook continuum in the plane can be an attractor for a
continuous selfmap of the plane?

9.5. Possible sets of values of topological entropy. The present paper deals with possible sets of values
of supremum topological sequence entropy. One can consider an analogous problem for the usual topological
entropy. If X is a nonempty compact metric space, consider the set

Ent(X) = {h(T ) : T is a continuous map X → X}.

Of course, the set Ent(X) always contains 0. It is also closed with respect to multiples, meaning that if
α ∈ Ent(X) then nα ∈ Ent(X) for n = 1, 2 . . . . Apparently, the techniques from our paper can be useful for
answering, at least partially, the following problem.

Question 9.5. What are the possibilities for Ent(X)? Is it true that for every set {0} ⊆ A ⊆ [0,∞] which
is closed with respect to multiples there exists a compact metric space X with Ent(X) = A?
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9.6. Group/semigroup actions case. Our Theorems 8.11 and 8.13 deal only with special kinds of groups
and semigroups, respectively. We would like to know the answer to the following question (and the answer
to its analogue for semigroup actions).

Question 9.6. How to determine all groups G such that for every set {0} ⊆ A ⊆ logN∗, there exists a
space/a continuum XA with SG(XA) = A?
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