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1 Introduction

1.1 From linear model-driven control to
data-driven control

In many branches of engineering, in order to satisfy ac-
curacy requirements, the models under consideration might
have large dimension and, hence, are difficult to use for con-
trol design, numerical simulations or analysis. That is why,
it is of critical importance to find reliable reduced-order
surrogate models instead. The latter may then be used in
place of the original one. In this first case, model reduction
typically refers to a class of methodologies used for reducing
the computational complexity of large-scale models of dy-
namical systems. The goal generally is to approximate the
original model with a smaller and simpler one, having the
same structure and similar response characteristics as the
original. For an overview of model reduction methods, we
refer the reader to the books of [3, 4, 7]. Moreover, in some
applications, a mathematical description of the system is

not always available or involves even more complex equa-
tions. This is the case when dynamical models are described
e.g. by a dedicated simulator, from which the input-output
map is not available but can be evaluated. In this second
case, instead of relying on equations derived from physical
laws, one can infer properties and a model directly from
the data, which can be done by model approximation, see
e.g. [4]. In both cases, model reduction and approxima-
tion play the pivotal enabler role for model-driven control
design.

When considering the case in which only a simulator, or
an experimental test benchmark are accessible, instead of
following the model-driven approach, one may need to use a
Data-Driven Control (DDC) design rationale instead. One
substantial advantage of this control tuning family is that it
provides a controller tailored to the considered system, and
skips the modeling phase1. Among the multiple data-driven
control design approaches, we mention Virtual Reference

1Note that, in many applications, the model only serves the control
design and analysis, and can practically always be amended.
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Feedback Tuning (VRFT), introduced by [8]. The latter is
particularly easy to deploy and is considered in this work.
We also refer the reader to [10], for comparisons between
model-driven and data-driven control or to [13], for a data-
driven frequency-domain approach. Following the VRFT
philosophy, belonging to the model reference methods, the
control design problem is recast as an identification/data-
driven approximation one.

1.2 Control design via data-driven
approximation

The Loewner Data-Driven Control (L-DDC) algorithm, orig-
inally introduced in [15], is a model reference technique
based on frequency-domain data. Extensions of L-DDC in-
clude dealing with stability, reference model selection and
controller validation (see e.g. [14]). Recently, a hybrid ver-
sion has also been proposed by [19]. The Loewner Frame-
work (LF) is a data-driven model identification and reduc-
tion technique that was originally introduced in [16]. Using
only measured data, it directly constructs surrogate models,
by employing low computational effort. For a tutorial paper
on LF for linear systems, we refer the reader to [6]. An ex-
tension that uses time-domain data is given in [18], while an
extension for certain classes of nonlinear systems, e.g. de-
scribed by bilinear models, is given in [5]. The Adaptive-
Antoulas-Anderson (AAA) algorithm, originally introduced
in [17], is a data-driven rational approximation method that
combines interpolation (as does LF), and also least squares
fitting. AAA can also be used as a LTI modeling method
since it yields a reduced-order rational function that can be
interpreted as the transfer function of the surrogate reduced
order model (ROM). The AAA algorithm has recently ex-
tended for modeling of parametrized dynamics in [9], and
for approximation of matrix-valued functions in [11]. Fi-
nally, the Vector-Fitting (VF) method is based solely on
least squares approximation, and can be also applied for
surrogate modeling design.

1.3 Paper contribution and structure

In this paper, the L-DDC approach is for the first time ex-
tended and compared with the VF and AAA procedures,
leading to both VF-DDC and AAA-DDC control design
methods. This comparison, presented by means of an infinite-
dimensional irrational model representing a linear partial
differential equation set, highlights the properties of each
technique. We believe that this first contribution may serve
practitioners in choosing an approach accordingly to the
setup. Secondly, based on the usage of mixed interpola-
tion/least squares approaches detailed in what follows, we
also propose an approach to deal with the noise on the

collected data and the variability of the expected perfor-
mances. This is a first step toward an uncertain framework
for this class of data-driven approximation DDC tuning ap-
proaches.

The paper is organized as follows: Section 2 recalls the
standard DDC problem and suggests an extension for cases
with uncertainty. Section 3 then provides a complete re-
view of the three data-driven identification methods con-
sidered here: LF, AAA and VF. Practical considerations
are specifically pointed to provide as much self-contained
reading as possible. Section 4 then illustrates the three al-
gorithms proposed, first on an academic finite-order linear
model, and afterwards on a more complex model. This is
ruled by linear partial differential equations, representing
a transport equation phenomena. Conclusions and future
research directions are discussed in Section 5.

2 Problem formulation

2.1 Frequency-domain DDC (standard)
rationale

The DDC approach discussed in this paper is based on the
original contribution of [8], which was recently extended
to the frequency-domain, in [14]. As depicted in Figure 1,
the system to be controlled is described by H. This latter
is considered as unknown while frequency-domain input-
output data are accessible such that, for pulsation ωi ∈ R+,
i = 1, . . . , n (n ∈ N),

Φi =
y(ıω)

u(ıω)
, (1)

where ı =
√
−1 and, u and y refer to the Fourier transform

signal of u and y, respectively. Note that Φi = H(ıωi) holds
in the ideal noise-free case. Then, function M represents
the so-called objective closed-loop transfer function. This
latter defines the expected response that the user needs to
impose to the system when the controller is inserted in the
looped architecture considered.

K H

M

ur e y ε

Figure 1: Data-driven control problem formulation: M is
the reference model (objective) and K the con-
troller to be designed.
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The objective is to find a controller K minimizing the
difference between the resulting closed-loop and the refer-
ence model M. This is made possible through the definition
of the so-called ideal controller K?, being the LTI controller
that would give the desired reference model frequency-domain
behavior, if inserted in the closed-loop. This latter is de-
fined as follows:

K?(ıωi) = Φ−1
i M(ıωi)(I −M(ıωi))

−1. (2)

Finding a controller K that fits K?(ıωi) can be consid-
ered to be an identification problem. In this work, this
latter is considered through the lens of both data-driven in-
terpolatory, and of least squares methods. This is done by
comparing the methods LF, AAA, and VF, being purely in-
terpolatory, interpolatory + least squares, and purely least
squares methods, respectively (see also Section 3).

2.2 Frequency-domain DDC uncertain
rationale

The K? controller is uniquely defined by the sought-after
objective closed-loop function M. However, in practical
applications, the following issues need to be taken into con-
sideration. First, system’s data Φi may be corrupted by
noise, thus Φi = H(ıωi) + ni, where ni ∈ R represents the
noise affecting the data2. Second, the objective function M
is not necessarily unique, and may be instead described by
a set of objective functions {Mj}ns

j=1 (deemed as functional
for the considered process). The problem is then restated
as (with i = 1, . . . , n and j = 1, . . . , ns):

K?(ıωi) = Φ−1
i Mj(ıωi)(I −Mj(ıωi))

−1. (3)

Relation (3) will be used to address uncertainty or robust-
ness issues. Here, one seeks again for controller K that fits
K?(ıωi). Given this extended uncertainty problem, we next
provide a review of the considered frequency-domain identi-
fication and approximation techniques: LF, AAA and VF.
Each of these methods will then be embedded in Algorithm
1 of [14], resulting in L-DDC, AAA-DDC and VF-DDC.

3 Data-driven identification

3.1 Loewner framework (LF) interpolation

In this section, the Loewner framework is recalled for the
multi-input multi-output (MIMO) case. For a complete
description, we refer the reader to [6], and to [1] for in-
sight in the rectangular case. Under mild considerations,

2Note that in experimental setup, noise directly comes from the sen-
sor accuracy while in the simulator-based case, it may come from
the numerical Fourier transform and simulator variability.

the Loewner approach is a data-driven method aimed at
building a rational descriptor LTI dynamical model Hm of
dimension m which interpolates given complex data, here
generated by a model H. Let the left (or row) data be given
together with the right (or column) data, as below

(µj , l
H
j ,v

H
j )

for j = 1, . . . ,m

}
and

{
(λi, ri,wi)

for i = 1, . . . ,m
, (4)

where vHj = lHj H(µj) and wi = H(λi)ri, with lj ∈ Cny×1,

ri ∈ Cnu×1, vj ∈ Cnu×1 and wi ∈ Cny×1. In addition, the
set of distinct interpolation points {zk}2mk=1 ⊂ C is split up
into two equal subsets (λi, µj ∈ C), i.e

{zk}2mk=1 = {µj}mj=1 ∪ {λi}mi=1. (5)

The method then consists in building the Loewner matrix
L ∈ Cm×m and shifted Loewner matrix Ls ∈ Cm×m defined
as follows, for i = 1, . . . ,m and j = 1, . . . ,m:

[L]j,i =
vHj ri − lHj wi

µj − λi
=

lHj
(
H(µj)−H(λi)

)
ri

µj − λi
,

[Ls]j,i =
µjv

H
j ri − λilHj wi

µj − λi
=

lHj
(
µjH(µj)− λiH(λi)

)
ri

µj − λi
.

(6)

Then, the model Hm given by the descriptor realization,

Sm :

{
Emδ {x(·)} = Amx(·) +Bmu(·)

y(·) = Cmx(·) , (7)

where Em = −L, Am = −Ls, [Bm]k = vHk and [Cm]k = wk

(for k = 1, . . . ,m), with the related transfer function

Hm(ξ) = Cm(ξEm −Am)−1Bm, (8)

interpolates H at the given driving frequencies and direc-
tions defined in (4), i.e satisfies the conditions

lHj Hm(µj) = lHj H(µj)
Hm(λi)ri = H(λi)ri

. (9)

Note that “(·)” denotes the time-domain variable consid-
ered in (7); this can either be “(t)” for continuous-time
models (t ∈ R+), or “[q]” for discrete-time models (q ∈ Z).
Similarly, in (7) “δ {·}” stands as the shift operator be-
ing either δ{x(t)} = ẋ(t) in the continuous-time case, and
δ{x(q)} = x[q + 1] in the discrete-time one. Note also that
in (8), ξ represents the associated Laplace complex variable
ξ = s in the continuous-time case, and the forward shift
ξ = z in the discrete-time one.

Assuming that the number 2m of available data is large
enough, then it was shown in [16] that a minimal model
Hn of dimension n < m (that still interpolates the data)
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can be computed with a projection of (7) provided that the
following holds for k = 1, . . . , 2m

rank(zkL−Ls) = rank([L,Ls]) = rank([LH ,LsH ]H) = n,
(10)

where zk are as in (5). In that case, let Y ∈ Cm×n be
the matrix containing the first n left singular vectors of
[L,Ls] and X ∈ Cm×n the matrix containing the first n
right singular vectors of [LH ,LsH ]H . Then,

En = Y HEmX, An = Y HAmX,

Bn = Y HBm, Cn = CmX,
(11)

is a realization of the model Hn, given as,

Hn(ξ) = Cn(ξEn −An)−1Bn, (12)

with the same structure as (8), encoding a minimal McMil-
lan degree equal to rank(L). The quadruple given by Sn :
(En, An, Bn, Cn, 0) is a descriptor realization of Hn. Note
that if n in (10) is greater than rank(L), then Hn can ei-
ther have a direct-feedthrough term or a polynomial part.
Finally, the number n of singular vectors composing Y and
X used to project the system Hn in (11) may be decreased
to r < n at the cost of imposing an approximate inter-
polation of data, leading to the reduced model r-th order
rational model.This allows a trade-off between complexity
of the resulting model and accuracy of the interpolation.

3.2 The AAA algorithm

The AAA algorithm, originally proposed in [17], represents
an adaptive extension of the interpolation-based method
introduced in [2]. It is a robust, fast and effective method
that was mainly used for scalar rational interpolation appli-
cations. AAA is a multi-step algorithm, that computes at
step ` a rational approximant of order (`, `) in barycentric
representation. In this note we discuss a slightly modified
version from that in [17], in the sense that the approximant
at step ` is strictly proper, i.e of order (`− 1, `). Addition-
ally, as for the Loewner method, we will enforce real-valued
models. Finally, we restrict the presentation to the SISO
case (the MIMO case was addressed in [11]).

As in (5), we consider at step ` ≥ 1 the data splitting:

data points : {zk}2mk=1 = {νj}`j=1 ∪ {ηi}2m−`
i=1 ,

data values : {fk}2mk=1 = {hj}`j=1 ∪ {gi}2m−`
i=1 .

(13)

Note that in the representation given in (13), the values
fk represent the measurements evaluated at the points zk,
while hj and gi are the ones evaluated at νj , and respec-
tively at ηi. The rational interpolant H`, obtained after `

iterations of the AAA algorithm, has the form

H`(ξ) =

∑`
j=1

α
(`)
j hj

ξ−νj

1 +
∑`
j=1

α
(`)
j

ξ−νj

, (14)

with nonzero barycentric weights α
(`)
j ∈ C, pairwise distinct

support points νj ∈ C, and function values hj . Based on the
representation in (14), interpolation is enforced at the first
subset of data points {νj}`j=1, i.e H`(νj) = hj for 1 ≤ j ≤
`. In order to completely determine the approximant H`,

one needs to also find the barycentric weights α
(`)
1 , . . . , α

(`)
` .

This is done by solving a least squares problem. Finally, the
next support point is chosen by means of a greedy selection.

Let τ be the desired tolerance for data approximation
and let n denote the target dimension. The modified AAA
algorithm can be summarized as follows:

1. Initialization step
Set ` = 0, Ω(0) := Ω, and H0(ξ) = 1

2m

∑2m
k=1 fk.

2. While max
1≤k≤2m

∣∣∣fk −H`(zk)
∣∣∣ > τ and ` < n

3. do ` = `+ 1.

4. Find ν` ∈ Ω(`−1) so that ν` = argmax
1≤k≤2m

|fk−H`−1(zk)|,

with H`(s) as in (14). Set h` := H(ν`), and also
Ω(`) := Ω(`−1) \ {ν`}.

5. Compute weights α
(`)
1 , . . . , α

(`)
` to minimize the devi-

ation in the measurements, i.e solve the problem

min
α

(`)
1 ,...,α

(`)
`

2m∑
k=1

(H`(zk)− fk)2. (15)

6. Instead of solving the nonlinear problem in (15), one
solves a linearized problem by substituting H` in (14):

min
α(`)

2m∑
k=1

∑̀
j=1

(
(fk − hj)α(`)

j

zk − νj
+ fk

)2

⇔ ‖Lα(`) + f‖22,

(16)

where L ∈ C2m×` with Lk,j =
fk−hj

zk−νj is a Loewner

matrix, while α(`) ∈ C`, and f ∈ C2m.

7. Compute the solution to (16) as α(`) = −L#f , where
L# ∈ C`×2m is the pseudo-inverse of matrix L.
end
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It is to be noted that a realization Sn : (In, An, Bn, Cn, 0)
of an order (n− 1, n) of the AAA reduced-order model can
be expressed as follows

An = diag(ν1, . . . , νn)−BneTn ,

Bn =
[
α
(n)
1 . . . α

(n)
n

]T
, Cn =

[
h1 . . . hn

]
,

where en =
[
1 · · · 1

]T
and An is rank-1 perturbation of

a diagonal matrix (composed of the chosen support points).

3.3 Vector fitting (VF)

Vector fitting, originally introduced in [12], is an effective
approximation method used for constructing rational ap-
proximants designed to fit given frequency response mea-
surements. The method is based on least squares approxi-
mation of the data values by a rational function, using an
iterative reallocation of the approximants’ poles. VF com-
putes a rational function in pole-residue format given by

Hn(ξ) =

n∑
k=1

γk
ξ − ζk

=
N(ξ)

D(ξ)
.

The approximation problem is formulated as follows

min
γk,ζk

2m∑
k=1

(Hn(zk)− fk)2 ⇒ min
γk,ζk

2m∑
k=1

(
N(zk)

D(zk)
− fk

)2

. (17)

Since the poles ζk enter nonlinearly in (17), this again rep-
resents a nonlinear problem. Instead of solving this, one
introduces an iterative algorithm that is initiated by choos-
ing the degree n of the rational approximant and an initial

guess for the poles {ζ(0)1 , . . . , ζ
(0)
n }. At iteration step j ≥ 0,

the goal is to determine the parameters c
(j)
i and d

(j)
i that

solve the linearized problem (the poles are excluded from
the variable set)

min
c
(j)
i ,d

(j)
i

2m∑
k=1

(N (j)(zk)−D(j)(zk)fk)2

⇔ min
c
(j)
i ,d

(j)
i

( n∑
i=1

c
(j)
i

zk − ζ(j−1)
i︸ ︷︷ ︸

N(j)(ξ)

−
(

1 +

n∑
i=1

d
(j)
i

zk − ζ(j−1)
i︸ ︷︷ ︸

D(j)(ξ)

)
fk

)2

.

The problem formulated above is linear and can be hence
solved directly. Afterwards, the next set of poles, given by

{ζ(j)1 , . . . , ζ
(j)
d }, is computed as the roots of the numerator

of D(j)(ξ) by solving a linear eigenvalue problem. The iter-
ation continues until a convergence criterion is satisfied (the
poles are the same up to a tolerance value). This procedure
naturally leads to a realization Sn : (In, An, Bn, Cn, Dn).

It is to be noted that VF is a non-interpolatory method.
Additionally, note also that the degree of the approximant
computed with VF is fixed, while for AAA it increases with
each iteration.

4 Numerical examples

By following the DDC setup presented in Section 2, one
naturally extends L-DDC to AAA-DDC and VF-DDC al-
gorithms. In this section, these procedures are applied for
two numerical use cases to construct a controller, as on Fig-
ure 1, that tracks some closed-loop performances. First, a
simple rational model is considered in Section 4.1, and sec-
ond, in Section 4.2, a more challenging irrational infinite-
dimensional model is involved.

4.1 Academic example

In this first academic example, we consider a continuous-
time rational LTI model H described by the following real-
ization (E,A,B,C,D) = (1,−1, 0.5, 1, 0). The input-output
open-loop data Φi are collected for n = 60 pulsations points
ωi sampled from 10−2 to 102 with a logarithmic spacing.
The objective function is first set to M(s) = 1

s2/p2+2s/p+1

(with p = 1). By considering the ”standard” case in [14],
one seeks a controller that fits the ideal one defined by
(2). Based on the rank conditions given in Section 3.1, the
Loewner procedure indicates that a controller with order 2
is sufficient to match the behavior. By applying the three
procedures in Section 3, the following 2-nd order controllers
are computed:

Kloe(s) =
2s+ 2

s2 + 2s− 4.441 · 10−16
,

Kaaa(s) =
2s+ 2

s2 + 2s− 2.602 · 10−16
,

Kvf(s) =
2s+ 2

s2 + 2s+ 1.327 · 10−16
,

(18)

which all ensure stable closed-loops and exactly lead to the
performances dictated by M.

Next, instead of using an unique function M(s), one uses
a family of objective functions with similar form given by
Mj(s), where j = 1, . . . , ns (ns = 6) and p is varied as p =
[1, 1.1, 1.2, 1.3, 1.4, 1.5]. This corresponds to the so-called
”uncertain” case treated in (3). Then, as the number of
samples n of Φi remains constant, the pulsation grid is split
in ns sub-grids (the way to systematically subdivide is still
an open question). Applying the three control algorithms
leads then to the results given in Figure 2, obtained with
2-nd order controllers given as:

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2020-12-01
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Kloe(s) =
1.405s+ 0.0002368

s2 + 0.0003097s− 2.114 · 10−5
,

Kaaa(s) =
1.469s+ 0.0004291

s2 + 0.0005025s− 4.687 · 10−5
,

Kvf(s) =
0.03021s2 + 1.012s+ 0.01233

s2 + 0.01114s+ 3.072 · 10−5
.

(19)

In the ”standard” case, when one single objective is sought,
all methods provide a similar controller. However, the Loewner
approach is the only one able to a priori detect the correct
order. In the ”uncertain” case, when the family of objec-
tive behaviors Mj is set, all three methods show to perform
well (see Figure 2). Interestingly, L-DDC and AAA-DDC
are very similar. This can be justified by the choice of the
AAA interpolation points, located in the high-gain range
(low frequencies) of the controller objective. Indeed, in this
specific case, as the controller integral action represents the
most important energy, it is not surprising that both L-
DDC and AAA-DDC focus mostly on it. As expected, the
VF-DDC based on least squares fit provides a compromise.
This aspect will further be discussed in Section 4.2.

4.2 Transport phenomena use-case

4.2.1 Original problem description

The second example involves a one-dimensional transport
equation controlled at its left boundary. This phenomena
is represented by a linear PDE with constant coefficients,
as described in (20).

∂ỹ(x, t)

∂x
+ 2x

∂ỹ(x, t)

∂t
= 0 (transport equation)

ỹ(x, 0) = 0 (initial condition)

ỹ(0, t) =
1√
t
∗ ũf (0, t) (boundary control)

ω2
0

s2 +mω0s+ ω2
0

u(0, s) = uf (0, s) (actuator model),

(20)
where x ∈ [0 L] (L = 3) is the space variable, t the time
variable and s, the Laplace one. Then, ω0 = 3 and m = 0.5
are the input actuator parameters. The scalar input of the
model is the vertical force applied at the left boundary,
i.e at x = 0. We denote the input ũ(0, t) in the time domain
or u(0, s) in the Laplace domain. Similarly, the output at lo-
cation x is given as ỹ(x, t) for the time domain and y(x, s) in
Laplace domain. Such a transport equation may be used to
represent a simplified one-dimensional wave equation used
in telecommunications, traffic jam prevention, etc.

4.2.2 Equivalent irrational transfer function

By applying the Laplace transform to the transport equa-
tion, one obtains

∂y(x, s)

∂x
+ 2x (sy(x, s)− ỹ(x, 0)) = 0, (21)

for which the solution can be given in closed-form by

y(x, s) = a(s)e
∫
−2xsdx = a(s)e−x

2s.

The boundary condition ỹ(0, t) =
1√
t
∗ ũf (t) is transformed

into y(0, s) =

√
π√
s
uf (s), and hence we have that a(s) =

√
π√
s
uf (s). The transfer function from input u(0, s) to out-

put y(x, s) reads

y(x, s) =

√
π√
s
e−x

2s ω2
0

s2 +mω0s+ ω2
0

u(0, s)

= G(x, s)u(0, s).

(22)

Relation (22) links the (left boundary) input to the out-
put through an irrational transfer function G(x, s) for any
x value3. For illustration purpose, let us now consider that
one single sensor is available, and is located at xm = 1.9592
along the x-axis4. The transfer from the same input u(0, s)
to yxm

(s) = y(xm, s) is then given by

yxm
(s) = H(s)u(0, s), (23)

where H is now a one output one input transfer function.

4.2.3 Control objective and design

The transport phenomena of H is irrational, delayed and
has a limit of stability singularity. The objective of the
control is to stabilize and provide some closed-loop per-
formances. The considered measurements Φ are computed
from H(ıωi), for n = 100 pulsations ωi collected between
10−2 and 101.5 with a logarithmic spacing. Following the
control architecture of Figure 1, the data-driven control
methods presented are now evaluated. Without entering
into details, due to the system physical limitations, the
considered reference model M is an input delayed model
with oscillatory behavior5, filtered with a first order model

3Interestingly, the exact time-domain solution of (20), along x, is

given by ỹ(x, t) = ũt−x2

f /
√
t, where ũf is the output of the second

order actuator transfer function, in response to u.
4In the rest of the paper, x will be discretized with 50 points from 0

to L = 3, and xm has been chosen to be located at x(b50× 2/3c).
5The M transfer, together with the code will be provided in the final

version of the paper.
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Figure 2: Uncertain case (from top left to bottom right): Bode gain, step response, Bode phase and controller gain.

1/(s/p+ 1) with different parameters p = 0.1 (in the ”stan-
dard” case) and p = pj (for 5 linearly-spaced pj between
0.05 and 0.2) in the ”uncertain” one. Similarly to the pre-
vious case, considering the ”standard” problem, the L-DDC
methods indicates that a 14-th order controller is enough to
achieve the desired performances. Inserting the controller in
the closed-loop then leads to the results depicted in Figure
3. Here again, L-DDC provides the exact expected perfor-
mances.

As rooted on this first result, the ”uncertain” case is now
treated and leads to results presented in Figure 4. In this
second case, noise is also added on the collected data, con-
sidering Φi(1 + ni) instead of Φi (where ni is a randomly
generated number between 0 and 0.5).

In both the ”standard” and ”uncertain” cases, the system
is stabilized, using only data. This is achieved while avoid-
ing the modeling step and/or a dedicated work on the PDE
simulator. Each of the L-DDC, AAA-DDC and VF-DDC
methods provide satisfactory performances. The Loewner-
driven one has a considerable practical advantage, by pro-
viding the controller order. Moreover, it shows also to pro-
vide a good compromise between all Mj . Here, the VF-
DDC appears to be more robust when addressing a family

of objective functions Mj , which is not surprising. AAA-
DDC represents an interesting trade-off between the two ap-
proaches as it blends interpolation-based and least squares
methods.

5 Conclusion

In this paper, the frequency-domain L-DDC rationale is
revisited, first with two additional identification methods,
leading to the AAA-DDC and VF-DDC algorithms. These
two algorithms provide the user with alternative solutions,
representing a trade-off between interpolation and least squares
approximation. In addition, the original identification prob-
lem is extended to handle a family of objective functions.
This allows dealing both with robustness issues, and with
allowing additional degrees of freedom. Due to space limi-
tations, a complete comparison is not set here, but mostly
pointed out to. This comparison and identification methods
adaptation will be addressed in future works. As for most
DDC methods, stability assessment still remains an open
issue. In addition, the reference model selection is still a
topic for further research. Future works will address this.
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Figure 3: Standard case (from top left to bottom right): Bode gain, step response, Bode phase and controller gain.
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