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ScienceDirect
Learning, or the process of acquiring knowledge and skill,

allows humans to shape and adapt to their environments during

development. Researchers have long theorized that the

principal brain processes behind learning resemble a

recruitment process. The brain initially explores an expanded

pool of candidate neural circuits. Based on outcomes, the most

promising candidate circuit is selected for refinement. Partly

fuelled by new methods, the last decade of research on

learning-related functional and structural changes in rodents

has supported this theory, and, more recently, related evidence

has started to emerge from human studies. We emphasize the

need for formal theories and neurocomputational modelling of

cortical plasticity to guide work on open issues, such as the link

between functional and structural changes.

Addresses
1Department of Psychology, University of Gothenburg, Gothenburg,

Sweden
2Aging Research Center, Department of Neurobiology, Care Sciences,

and Society, Karolinska Institutet and Stockholm University, Stockholm,

Sweden
3Center for Lifespan Psychology, Max Planck Institute for Human

Development, Berlin, Germany
4Max Planck UCL Centre for Computational Psychiatry and Ageing

Research, Berlin, Germany, and London, United Kingdom
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Introduction
An astonishing ability to acquire skills, such as reading

and writing, playing a musical instrument or flying an

airplane, is the basis of humankind’s most impressive

achievements. This ability also plays a key role in devel-

opment. Learning, that is, the process of acquiring knowl-

edge and skill, tailors humans to their environments, and

vice versa. In modern societies, skill learning, for example

during schooling, is crucially important for matching
www.sciencedirect.com 
individuals to the needs of the society and the labour

market [1] and it affects lifelong well-being and health

[2]. At the same time, skill acquisition exerts a transfor-

mative force on the environment, both in evolutionary

and historical time [3,4]. Understanding and enhancing

learning is thus of great individual and societal

importance.

Researchers have long theorized that the brain mechanisms

behind learning and learning-influenced brain development

resemble a job recruitment process [5��,6,7,8,9��,10–13].
Faced with a mismatch between its goal and capacity

[14], such as when the fingers simply refuse to nicely form

the piano chord that a music piece requires, the brain initially

sets out to test an expanded pool of candidate neural circuits

forperforming the job(expansionand exploration).  Based on

the outcomes of these tests, the most promising candidate

circuit is then chosen (selection) for further training (refine-

ment). Partly fuelled by new methods, such as two-photon

microscopy, the last decade of research in rodents has

consolidated this theory, and in the last couple of years

related evidence has started to emerge from human studies.

Here we review this work, focusing in particular on motor

learning. We end with a discussion of open issues for this

expansion, exploration, selection, and refinement theory of

learning. We also note that understanding the neural signals

and triggers of plasticity and stability during learning may

turn out to be highly informative of mechanisms regulating

states of heightened plasticity during development, such as

in sensitive periods (see also [5��,15]).

Changes in Behaviour during Motor Learning
Several aspects of motor learning make it to a good model

of skill learning. Motor paradigms are well suited for

studies on many species, resulting in complementary

information from many methods. Experience-dependent

and repetition-mediated improvements in complex motor

tasks (e.g., playing an instrument) have origins in many

types of learning. Declarative and implicit learning sup-

port goal and action selection, and interact with learning

at the level of action execution, to improve speed, preci-

sion, and consistency of movements [16–21]. Manifesta-

tions of motor skills, such as for example a beautifully

executed pass of a ball during a football match, are in this

sense not only about the smooth, precise, and reliable

execution of movements, but also about the timely selec-

tion of the appropriate target and movement from a range

of options. Performance on complex motor tasks typically
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shows rapid improvements and high variability early in

practice, followed by a protracted period of slower devel-

oping refinements towards task execution with little

variability. This pattern is well characterized and quali-

tatively quite consistent across individuals and tasks,

although the rate and exact shape of learning of course

may vary [18,22–24].

Changes in Brain Activity During Motor
Learning
Given the multiple processes involved in learning of

motor skill, it is not surprising that a large network of

brain regions is involved. Regions include for example the

prefrontal cortex, supplementary motor area, pre-motor

cortex, somatosensory cortex, cerebellum, basal ganglia,

hippocampus, and posterior parietal cortex [16,19].

Rodent studies also show primary motor cortex involve-

ment in motor skill learning [25], but this is a less common

finding in humans [26,27], probably because many human

learning paradigms usually tap more into action selection

than execution [16]. That is, the typical human paradigm,

such as learning to rapidly press a short sequence of keys

with the fingers of your dominant hand, requires very

little in terms of improved quality of execution of novel

motor coordination.

Studies of rodents show that cortical representations of

limbs and movements initially expand [28,29] and then

renormalize during learning [30]. For example, rats have

been reported to show expanded cortical maps after three

days of skilled reaching training, but after eight days of

training the expansions waned without any accompanying

reductions in performance [30]. Related studies of sen-

sory learning show that the expansion is beneficial for

learning but not necessary for maintaining skill. For

example, Reed and colleagues [31] reported that nucleus

basalis stimulation–tone pairing in the rat was accompa-

nied by cortical map extension in the auditory cortex. The

rats were then trained in an auditory discrimination task,

and improved discrimination learning was observed in

animals with an expanded cortical map. Importantly, the

map expansion faded over the following weeks although

discrimination performance was unaffected. Thus, the

expansion of the maps was related to learning but it was

not the substrate of memory [8]. Although behavioural

paradigms often are different, a few functional Magnetic

Resonance Imaging (MRI) and brain stimulation studies

of humans also show increases of activity [32,33] in

primary areas that are followed by decreases during

learning [34–37]. The dominant finding from human

studies is, nevertheless, a learning-related decrease of

activity outside primary regions [26,33,38]. Related find-

ings suggest a general migration of execution-related

activity from cortical regions to striatal regions, and

migration within striatal regions, possible signalling more

automatic and less controlled execution [39,40].
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Importantly, studies of rodents show larger trial-to trial

variability of local brain activity patterns earlier than later

in learning. This work suggests that many different

circuits of excitatory neurons within the motor cortex

are activated early in learning, but that stable use of a

devoted neural circuit characterizes performance later in

learning [41�]. The nature of the association between

changes in trial-to-trial variability of activity patterns and

cortical map expansion is elusive [25,41�]. It may be that

increases in trial-to-trial variability are underlying the

increases in activity extent that is sometimes seen on

the aggregate level, but also that expansion allows for a

larger area and thus more neural ensembles to be acti-

vated. Findings suggesting that reductions in regional

inhibitory activity may play a role in these processes

might support the latter option [9��,25,42]. This cascade

of local processes in the primary cortices may be initiated

when the system encounters a large mismatch between its

goal and capacity [14]. One possibility is that this mis-

match is signalled by dopamine prediction errors from

striatum and ventral tegmental area and opens a window

for exploration in more primary regions [9��,43–45]. The

early trial-to-trial variability of activity patterns has been

proposed to signify exploration of possible network states

[23,46], with the interpretation that initial variability may

provide a pool of circuits from which the optimal one can

be selected through system-level feedback mechanisms,

such as striatum-mediated reinforcement learning or cer-

ebellum-based sensory prediction errors [6,8,9��,23]. This

notion shares much of its potential and limits with the

exploration-exploitation dynamics discussed in the rein-

forcement learning literature [47].

Changes in Brain Structure during Motor
Learning
Learning-related changes in brain activity are accompanied

by changes in structure. For example, synaptic density in

the rodent motor cortex initially increases and then

decreases during learning. Novel synapses rapidly form

in the motor cortex of rodents during motor learning

[48–50], but with continuedtraining thegrowthof dendritic

spines (a proxy for synapses) is followed by stabilization of

the new spines and removal of old spines, and overall spine

density almost reverts to pre-training levels [51,52,53�].
Synaptic remodelling occurs both in deep [52] and superfi-

cial [41�] layers of the motor cortex. The probabilities of

deletion of old synapses and formation of new ones are

typically thought of as locally governed by the rules of

Hebbian and homeostatic plasticity [9��]. Clearly, synaptic

structural remodelling coincides with changes in variability

ofactivitypatterns [41�],buthowthis localprocess relates to

system-level learning mechanisms (e.g., reinforcement

learning) remains unclear. It is likely that outcome-medi-

ated exploration and selection of neural circuits interact

with these local processes [9��].
www.sciencedirect.com
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Figure 1
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Illustration of the expansion, exploration, selection, and refinement theory of learning.
More recent studies of learning-related changes in human

brain structure also show increase followed by renormaliza-

tion. Using primarily T1-weighted Magnetic Resonance

Imaging (MRI), several researchers have observed experi-

ence-dependent increases in regional estimates of human

brain volume and cortical thickness in adulthood [7,54,55].

More recently, Wenger and colleagues [56��] acquired

18 T1-weighted structural magnetic resonance images over

a seven-week period, during which 15 right-handed adult

human participants practiced left-handed writing and

drawing. This behavioural paradigm was selected to tap

into those dexterity-requiring fine-motor continuous-

sequence movements that are likely to tax the primary

motor cortex and thus be closer to the animal paradigm than

many other typical paradigms used for human motor learn-

ing. The images were analysed with voxel-based mor-

phometry (VBM), which results in estimates of local grey

matter probability (a mixed measure of cortical area and

thickness togetherwith local tissuecomposition).After four

weeks, increases of grey matter probability were observed

in both left and right primary motor cortices relative to a

control group; three weeks later, these differences were,

however, no longer reliable. Time-series analyses showed

that the estimates of grey mater probability in the primary

motor cortices increased during the first four weeks of

learning to write and draw with the left hand, and then

partially renormalized during continued practice [56��].
The microstructural alterations underlying these changes

are unknown and likely to be of many types [57]. Learning-

related changes in myelination have for example recently
www.sciencedirect.com 
been shown to play key roles in motor learning [58–61]. Yet,

synaptic remodelling has been demonstrated to be one

possible candidate [62,63], providing an empirically

untested but entirely possible link between the recent

human findings and those in the rodent.

The Expansion, Exploration, Selection, and
Refinement theory
The findings reviewed above have been previously

synthesised in related ways by several researchers

[8,9��,10,12,13] including ourselves [5��,6,7]. Driven by

a large mismatch between the expected goal behaviour

and its actual execution, a task-relevant cortical area

expands. In this area, noise and strategic behavioural

exploration results in trial-to-trial variability on activa-

tions of different neural circuits that can approximate the

goal behaviour. Different actions are probed and different

motor patterns to achieve the same goal occur. Trial-to-

trial behavioural variability (Figure 1A) and variability of

neural activity patterns (Figure 1B) are therefore large.

This broad activity in turn induces structural brain

changes, such as formation of synapses (schematically

illustrated in Figure 1C). Via outcome-mediated trial-

and-error learning (e.g., reinforcement learning;

Figure 1B) the best-performing circuit is then selected.

After circuit selection, neural activity as well as neural and

behavioural variability decreases (Figure 1A and B). Syn-

aptic remodelling in the selected neural circuit continues

to occur in a subsequent repetition-based refinement of

task execution, but novel and pre-existing structure in
Current Opinion in Behavioral Sciences 2020, 36:163–168
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unselected circuits retracts (Figure 1C). The initial

expansion of the ensemble is thus beneficial for learning

because it provides a large pool of circuits from which to

make an optimal selection, but memory of skill is con-

solidated in the selected circuitry. At the aggregate level

of measurements of human brain structure (e.g., volume

or synaptic density), this process is reflected in growth

followed by retraction (Figure 1D). The exploration

process is enabled by activity-dependent growth of neural

structure, most of which retracts after the best circuit for

the job has been selected.

Future Directions
In its current form, the expansion, exploration, selection, and

refinement theory is a first step toward a more mechanistic

understanding of experience-dependent adaptation of brain

circuits. A pressing task for future research is to endow this

theory with the computational machinery that is needed to

arrive at physiologically grounded and formally tractable

quantitative predictions. Computational simulations, which

have been successful for instance in guiding working mem-

ory research [64], will be pivotal to link the multiple levels

involved [65], from neuron to macroscopic imaging and

behavioural measurements. While plasticity has been an

active field of research with in silico models of spiking

neurons[66], and also at a more abstract level within the

machine learning and artificial intelligence domains [67],

more comprehensive models that relate behavioural and

neuroimagingempiricaldata toneuroplasticchanges inbrain

circuitry are still lacking, in particular for human learning.

Notably, little is known about how experience-dependent

alterations predict behavioural improvements. In contrast to

the information-rich imagingmethodstomeasurechanges in

the brain, which are bound to get even more sophisticated

with wider availability of 7 T MRI scanners and more

reliable acquisition sequences [68], and a broader repertoire

of positron emission tomography tracers, most studies have

resorted to relatively simple, unidimensional measures of

performance (e. g. movement time). Structural and func-

tional plasticity human studies would benefit from a higher

emphasis on developing carefully controlled behavioural

paradigms [69], simultaneously capturing multiple facets

of behavioural change at different timescales.

Many questions remain. Which are the signals that

trigger the expansion reflected in structural and functional

neuroimaging measurements? Besides the aforementioned

dopaminergic modulatory signalling mediating the rein-

forcement of actions, g-aminobutyric acid (GABA) signal-

ling is likely to play an important role in the initial stages of

neuroplastic transformation, as evidenced by observed

reductions in GABA concentration within primary sensori-

motor cortex in motor sequence tasks, with higher GABA

concentrations in early learning stages being associated

with poorer learning [70]. This suggests a role for the

balance between excitation and inhibition in promoting

a plastic state that favours initial expansion and subsequent
Current Opinion in Behavioral Sciences 2020, 36:163–168 
exploration, and is reminiscent of the regulation of critical

periods by maturing gabaergic parvalbumin-positive (PV)

inhibitory neurons in early childhood [71,72]. Likewise,

there must exist signals triggering the end of exploration

and stabilization of representations (refinement). In the

case of development, we know that perineuronal nets are

important to halt plasticity to close critical periods [72], but

it is less clear which factors may activate stabilization in skill

acquisition, with the ensuing retraction of structure and

decreases in neural activity. Overall, much remains to be

elucidated concerning how the tension between stability

and plasticity is regulated and how it relates to mechanisms

in place to prevent catastrophic interference (the erasure of

previously learned patterns when new ones are acquired to

support novel movements, [73]), the cornerstone of contin-

ual learning.

A final task will be to translate our conclusions about

motor skill acquisition to more general principles of

learning. In any case, if we aspire to influence human

learning, developing a detailed model of neuroplasticity

processes is a sine qua non.

Conclusions
The last decade of research in rodents has supported the

expansion, exploration, selection, and refinement theory

of motor execution learning. Related evidence has started

to emerge from human studies, but such data remains

scarce. Many more studies are needed to consolidate this

theory of human learning. Open issues also remain for the

core theoretical processes that are assumed. The link

between system-level learning processes and the local

learning-related changes is elusive, the link between

functional and structural changes remains to be detailed,

and the processes linking changes in the variability of

activity patterns with changes at the aggregate level have

not been unveiled yet. Nevertheless, in the presence of

ever more detailed data at neural and behavioural levels

of analyses, we propose that new insights into mecha-

nisms of skill acquisition will require a greater reliance on

formal theory and neurocomputational modelling.
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