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Abstract

The first paper of this series presents a discretely entropy stable discontinuous Galerkin (DG) method
for the resistive magnetohydrodynamics (MHD) equations on three-dimensional curvilinear unstructured
hexahedral meshes. Compared to other fluid dynamics systems such as the shallow water equations or the
compressible Navier-Stokes equations, the resistive MHD equations need special considerations because of the
divergence-free constraint on the magnetic field. For instance, it is well known that for the symmetrization
of the ideal MHD system as well as the continuous entropy analysis a non-conservative term proportional
to the divergence of the magnetic field, typically referred to as the Powell term, must be included. As a
consequence, the mimicry of the continuous entropy analysis in the discrete sense demands a suitable DG
approximation of the non-conservative terms in addition to the ideal MHD terms.

This paper focuses on the resistive MHD equations: Our first contribution is a proof that the resistive
terms are symmetric and positive-definite when formulated in entropy space as gradients of the entropy
variables, which enables us to show that the entropy inequality holds for the resistive MHD equations. This
continuous analysis is the key for our DG discretization and guides the path for the construction of an
approximation that discretely mimics the entropy inequality, typically termed entropy stability. Our second
contribution is a detailed derivation and analysis of the discretization on three-dimensional curvilinear
meshes. The discrete analysis relies on the summation-by-parts property, which is satisfied by the DG
spectral element method (DGSEM) with Legendre-Gauss-Lobatto (LGL) nodes. Although the divergence-
free constraint is included in the non-conservative terms, the resulting method has no particular treatment of
the magnetic field divergence errors, which might pollute the solution quality. Our final contribution is the
extension of the standard resistive MHD equations and our DG approximation with a divergence cleaning
mechanism that is based on a generalized Lagrange multiplier (GLM).

As a conclusion to the first part of this series, we provide detailed numerical validations of our DGSEM
method that underline our theoretical derivations. In addition, we show a numerical example where the
entropy stable DGSEM demonstrates increased robustness compared to the standard DGSEM.

Keywords: resistive magnetohydrodynamics, entropy stability, discontinuous Galerkin spectral element
method, hyperbolic divergence cleaning, curvilinear hexahedral mesh, summation-by-parts

1. Introduction

The resistive magnetohydrodynamic (MHD) equations are of great interest in many areas of plasma,
space and astrophysics. This stems from a wide range of applications such as electromagnetic turbulence in
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conducting fluids, magnetically confined fusion for power generation, modeling the action of dynamos and
predicting the interaction of the solar wind with planets or moons. The governing equations are able to
describe both dense and thin plasmas that are time-dependent and include motions with a wide range of
temporal and spatial scales, e.g., compressible MHD turbulence. In addition, the resistive MHD equations
exhibit a mixed hyperbolic-parabolic character depending on the strength of the viscous and resistive effects.
Another important property, in a closed physical system, is the second law of thermodynamics, i.e., the
evolution of the entropy. In the absence of resistivity and viscosity, that is for the ideal MHD model, and for
smooth solutions, the entropy of the system is an additional conserved quantity, although not explicitly built
into the mathematical model. Further, in the presence of shocks, the second law of thermodynamics becomes
the entropy inequality, e.g. [31], which guarantees that entropy is always dissipated with the correct sign. It
is assumed that the additional resistive terms have a pure entropy dissipative effect as well. But, to the best
of our knowledge, no continuous entropy analysis of the resistive MHD equations has been presented in the
literature yet and it is unclear if the entropy inequality holds for the resistive MHD equations. Thus, our first
contribution in this work is to complete the continuous entropy analysis for the resistive MHD equations. A
complication regarding this analysis of MHD models is the involution, that is, the divergence-free constraint
of the magnetic field [2, 30]

→
∇ ·

→
B = 0. (1.1)

The condition (1.1) is an additional partial differential equation (PDE) not explicitly built into the re-
sistive MHD equations similar to the entropy inequality. However, it is well known that an additional
non-conservative PDE term proportional to the divergence-free constraint is necessary for the entropy anal-
ysis of the ideal MHD equations, see e.g. Godunov [30]. There are different variants in how to construct such
non-conservative terms, e.g. Brackbill and Barnes [4], Powell [46] and Janhunen [36]. On the continuous
level, adding a non-conservative term scaled by (1.1) is a clever way of adding zero to the model. However,
for numerical approximations, there are known stability and accuracy issues that differ between the three
types of non-conservative terms [49].

Mimicking the continuous entropy analysis in the discrete sense is a promising way to enhance the
robustness of the resulting numerical approximation. A numerical scheme that satisfies a discrete entropy
inequality is often referred to as an entropy stable scheme. Note that, entropy stability is insufficient to
give strict non-linear stability, as the continuous and the discrete entropy analysis both assume positivity of
the solution and its approximation, respectively. For instance, this assumption can break when simulating
strong shocks with a high-order entropy stable method. It is an ongoing research focus how to extend
entropy stable high order schemes to full non-linear stability. However, in practice, entropy stable high
order discontinuous Galerkin (DG) schemes show enhanced robustness compared to their standard variants
for fluid dynamics problems with weak shocks and especially for compressible (under-resolved) turbulence,
e.g. [5, 7, 9, 22, 29, 47, 56], as entropy stability provides the desired in-built de-aliasing. At the end of this
work, we will show that these positive properties carry over to magnetized fluid dynamics. Entropy stable
methods for ideal MHD equations have been studied by many authors, e.g. [2, 8, 12, 48, 57, 58]. We note that
there is recent work on entropy stable DG methods applied to the ideal MHD equations by Rossmanith [48],
Gallego-Valencia [25] and most notably the recent work by Liu et al. [43], who introduced an entropy stable
DG discretization on Cartesian meshes of the non-conservative PDE term proportional to the divergence-
free constraint. Our second contribution is an alternative explanation of the entropy stable discretization of
the non-conservative term and its extension to fully three-dimensional curvilinear unstructured hexahedral
meshes. The geometric flexibility offered by unstructured curvilinear meshes is needed to decompose, e.g.,
a domain around a spherical object without singularities [15] or a torus-shaped Tokamak reactor [34].
Herein we consider a nodal discontinuous Galerkin method on unstructured hexahedral grids, as it is able
to handle curved elements in a natural way while providing high computational efficiency [32]. The key to
discrete entropy stability on curvilinear meshes is to mimic the integration-by-parts property with the DG
operators and satisfy the metric identities. This enables the construction of DG methods that are entropy
stable without the assumption of exact evaluation of the variational forms. Discrete integration-by-parts, or
summation-by-parts (SBP), is naturally obtained when using the Legendre-Gauss-Lobatto (LGL) nodes in
the nodal DG approximation [27]. Furthermore, recent work showed that it is possible to construct nodal DG
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discretizations with LGL nodes that are discretely entropy stable for the viscous terms of the Navier-Stokes
equations when using the gradients of the entropy variables instead of the gradients of the conservative or
primitive variables [5, 28]. We use our first contribution in this paper, the proof that the coefficient matrices
of the resistive terms are symmetric and positive semi-definite in terms of the entropy gradients, in order to
apply the proof presented in Gassner et al. [28], yielding the result that a Bassi-Rebay (BR1) type scheme
[3] is entropy stable for the resistive MHD equations.

As noted, an important difference to the construction of entropy stable DG schemes for non-magnetized
fluid dynamics is the necessity to include the divergence-free constraint as a non-conservative PDE term for
the continuous and discrete entropy analysis. However, it is well known in the MHD numerics community
that even if the initial conditions of a problem satisfy (1.1), it is not guaranteed that the discrete evolution
of the magnetized fluid will remain divergence-free in the magnetic field without additional mechanisms.
Therefore, many numerical techniques have been devised to control errors introduced into the divergence-
free constraint by a numerical discretization. These include the projection approach described e.g. in
Brackbill and Barnes [4], the method of constrained transport introduced by Evans and Hawley [19] and
the generalized Lagrange multiplier (GLM) hyperbolic divergence cleaning technique originally proposed
for the ideal MHD equations by Dedner et al. [11]. A thorough review of the behavior and efficacy of
these techniques, except hyperbolic divergence cleaning, is provided by e.g. Tóth [54]. Due to its relative
ease of implementation and computational efficiency we are most interested in the method of hyperbolic
divergence cleaning. However, the current work is also concerned with constructing entropy stable numerical
approximations. Recent work by Derigs et al. [14] modified the additional GLM divergence cleaning system
in such a way that the resulting ideal GLM-MHD system is consistent with the continuous entropy analysis
and provides in-built divergence cleaning capabilities. The novel entropy stable GLM-MHD system in [14]
includes the Powell non-conservative term and a non-conservative GLM term in the energy equation, which
is necessary for Galilean invariance. Our third contribution focuses on the extension of the entropy stable
discontinuous Galerkin spectral element method (DGSEM) for the resistive MHD equations to include this
variant of the entropy stable GLM-MHD system. The resulting DGSEM method is high order accurate,
discretely entropy stable on curvilinear elements and has an inbuilt GLM divergence cleaning mechanism.

The remainder of this paper is organized as follows: In Sec. 2, the continuous entropy analysis of the
three-dimensional resistive GLM-MHD equations is presented, which demonstrates that the model indeed
satisfies the entropy inequality and that the resistive terms can be recast into a symmetric and positive semi-
definite form. Next, we introduce the DGSEM on curvilinear hexahedral elements in Sec. 3. Furthermore, we
prove the entropy stability of the numerical approximation in Sec. 4 by discretely mimicking the continuous
entropy analysis with special attention given to the metric terms, GLM divergence cleaning and the resistive
terms. Finally, in Sec. 5 we validate the theoretical findings by numerical tests and demonstrate the increased
robustness of the scheme. The final section contains concluding remarks.

2. Continuous entropy analysis

In general, we consider systems of conservation laws in a domain Ω ⊂ R3 defined as

ut +
→
∇ ·

↔
f = 0, (2.1)

where u denotes the vector of conserved variables and
↔
f the multidimensional flux vector. These definitions

allow for a compact notation that will simplify the analysis, i.e., we define block vectors with the double
arrow as

↔
f =

 f1
f2
f3

 , (2.2)

and the spatial gradient of a state as

→
∇u =

 ux
uy
uz

 . (2.3)
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The gradient of a spatial vector is a second order tensor, written in matrix form as

→
∇→
v =


∂v1
∂x

∂v1
∂y

∂v1
∂z

∂v2
∂x

∂v2
∂y

∂v2
∂z

∂v3
∂x

∂v2
∂y

∂v3
∂z

 (2.4)

and the divergence of a flux written as a block vector is defined as
→
∇ ·

↔
f = (f1)x + (f2)y + (f3)z . (2.5)

The dot product of two block vectors is defined by

↔
f · ↔g =

3∑
i=1

fi
Tgi, (2.6)

and the dot product of a block vector with a spatial vector is a state vector

→
g ·

↔
f =

3∑
i=1

gifi. (2.7)

2.1. Resistive GLM-MHD equations
The equations that govern the evolution of resistive, conducting fluids depend on the solution as well as

its gradient [16, 20, 55]. We outline the variant of the resistive GLM-MHD equations that is consistent with
the continuous entropy analysis as developed in Derigs et al. [14]. The normalized resistive GLM-MHD
equations defined in the domain Ω ⊂ R3 read as

ut +
→
∇ ·

↔
fa(u)−

→
∇ ·

↔
fv(u,

→
∇u) + Υ = r (2.8)

with the state vector u = (%, %
→
v,E,

→
B,ψ)T and the advective flux, which we split into three terms, the Euler,

ideal MHD and GLM contributions,

↔
fa(u) =

↔
fa,Euler +

↔
fa,MHD +

↔
fa,GLM =



%
→
v

%(
→
v

→
v T ) + pI

→
v
(

1
2% ‖

→
v‖2 + γp

γ−1

)
0
→
0


+



→
0

1
2‖

→
B‖2I −

→
B

→
BT

→
v ‖

→
B‖2 −

→
B
(

→
v ·

→
B
)

→
v

→
BT −

→
B

→
v T

→
0


+



→
0

0

chψ
→
B

chψI

ch
→
B


(2.9)

and the viscous flux

↔
fv(u,

→
∇u) =



→
0

τ

τ
→
v −

→
∇T − µR

(
(

→
∇×

→
B)×

→
B
)

µR

(
(

→
∇

→
B)T −

→
∇

→
B
)

→
0


. (2.10)

Here, %, →
v = (v1, v2, v3)T , p, E are the mass density, fluid velocities, pressure and total energy, respectively,

→
B = (B1, B2, B3)T denotes the magnetic field components and I the 3 × 3 identity matrix. Furthermore,
the viscous stress tensor reads [41]

τ = µNS((
→
∇→
v )T +

→
∇→
v )− 2

3
µNS(

→
∇ · →v )I, (2.11)
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and the heat flux is defined as
→
∇T = −κ

→
∇
(
p

R%

)
. (2.12)

The introduced constants µNS, µR, κ,R > 0 describe the viscosity from the Navier-Stokes equations, resis-
tivity of the plasma, thermal conductivity and the universal gas constant, respectively. In particular, the
constants µNS and µR are first-order transport coefficients that describe the kinematic viscosity and the
diffusivity of the magnetic field [59]. We close the system with the ideal gas assumption, which relates the
total energy and pressure

p = (γ − 1)

(
E − 1

2
% ‖→v‖2 − 1

2
‖

→
B‖2 − 1

2
ψ2

)
, (2.13)

where γ denotes the adiabatic coefficient.
The system (2.8) contains the GLM extension indicated by the additional field variable ψ, which controls

the divergence error by propagating it through the physical domain with the wave speed ch, away from its
source. We also introduce a non-conservative term and a source term. The non-conservative term Υ is
related to the thermodynamic properties of (2.8) as it ensures the entropy conservation for the advective
part of the system outlined in the next section. In particular, we split the non-conservative term into two
parts Υ = ΥMHD + ΥGLM with

ΥMHD = (
→
∇ ·

→
B)φMHD =

(→
∇ ·

→
B
)(

0 , B1 , B2 , B3 ,
→
v ·

→
B , v1 , v2 , v3 , 0

)T
, (2.14)

ΥGLM =
↔
φGLM ·

→
∇ψ = φGLM

1

∂ψ

∂x
+ φGLM

2

∂ψ

∂y
+ φGLM

3

∂ψ

∂z
, (2.15)

where
↔
φGLM again is a 27 block vector with

φGLM
` = (0 , 0 , 0 , 0 , v`ψ , 0 , 0 , 0 , v`)

T
, ` = 1, 2, 3. (2.16)

As presented in [14], the first non-conservative term ΥMHD is the well-known Powell term [46], and the
second term ΥGLM results from Galilean invariance of the full GLM-MHD system [14]. We note, that both
terms are zero in the continuous case and thus (2.8) reduces to the original resistive MHD equations.

The second purely algebraic source term r on the right hand side of the resistive GLM-MHD system
solely provides additional damping of the divergence error [11, 14], if desired, and is

r = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −αψ)
T
, (2.17)

with α ≥ 0.

2.2. Thermodynamic properties of the system
In order to discuss the thermodynamic properties of the resistive GLM-MHD equations (2.8) we translate

the concepts of the first and second law of thermodynamics into a mathematical context. To do so, we first
exclusively examine the advective and non-conservative term proportional to (1.1). The ideal GLM-MHD
equations satisfy the first law of thermodynamics, because the evolution of the total fluid energy is one of
the conserved quantities. This is true for any choice of the vector Υ because (1.1) is assumed to hold in the
continuous analysis. But, on the discrete level, this is not the case as noted by many authors [14, 36, 46, 54].
However, the mathematical description of the second law of thermodynamics is more subtle, because the
entropy is not explicitly built into the system. Thus, we require more formalism and utilize the well-developed
entropy analysis tools for hyperbolic systems, e.g. [31, 45, 50]. As such, we define a strongly convex entropy
function that is then used to define an injective mapping between state space and entropy space. Note that
we adopt the mathematical notation of a negative entropy function as is often done, e.g. [31, 52]. Once the
advective terms are accounted for in entropy space, we present the first main contribution of this work: The
resistive terms are indeed consistent with the second law of thermodynamics.

For the ideal and the resistive GLM-MHD equations, a suitable entropy function is the thermodynamical
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entropy density divided by the constant (γ − 1) for convenience

S(u) = − %s

γ − 1
with s = ln

(
p%−γ

)
, (2.18)

where s is the thermodynamic entropy [42] with the physical assumptions %, p > 0. From the entropy
function we define the entropy variables to be

w =
∂S

∂u
=

(
γ − s
γ − 1

− β ‖→v‖2 , 2βv1, 2βv2, 2βv3, − 2β, 2βB1, 2βB2, 2βB3, 2βψ

)T
(2.19)

with β = %
2p , which is proportional to the inverse temperature.

For smooth solutions, it is known that when we contract the ideal GLM-MHD equations without viscous
fluxes nor any source term r on the right hand side by the entropy variables (2.19) we obtain the entropy
conservation law [14]

∂S

∂t
+

→
∇ ·

→
f S = 0, (2.20)

where the entropy fluxes are defined as
→
f S =

→
vS. (2.21)

Additionally, as it will be necessary in later derivations and the proof of discrete entropy stability, we
define the entropy flux potential to be

→
Ψ := wT

↔
fa −

→
f S + θ

→
B, (2.22)

where we introduce notation for the Powell term from (2.14) contracted into entropy space, which is

θ = wTφMHD = 2β(
→
v ·

→
B). (2.23)

We note, that the GLM part of the non-conservative term in (2.15) cancels internally, when contracted in
entropy space, i.e.

wTΥGLM = wT
↔
φGLM ·

→
∇ψ =

→
0 ·

→
∇ψ = 0. (2.24)

Remark 1. As introduced in (2.9), we split the advective flux part into three terms to simplify the derivations
and keep track of the individual contributions. This will be especially useful in the discrete entropy analysis,
where we aim to mimic the continuous derivations. Hence, we analogously split the total entropy flux
potential

→
Ψ into Euler, ideal MHD and GLM components

→
Ψ =

→
ΨEuler +

→
ΨMHD +

→
ΨGLM, (2.25)

where
→
ΨEuler = wT

↔
fa,Euler −

→
f S , (2.26)

→
ΨMHD = wT

↔
fa,MHD + θ

→
B, (2.27)

→
ΨGLM = wT

↔
fa,GLM. (2.28)

Furthermore, e.g. in case of shock discontinuities, the solution satisfies the following entropy inequality

St +
→
∇ · (→

vS) ≤ 0, (2.29)

which is the mathematical description of the second law of thermodynamics for the ideal GLM-MHD equa-
tions. Next, we account for the resistive terms to demonstrate the entropy behavior for the resistive GLM-
MHD equations. To do so, we require a suitable representation of the resistive terms to discuss how they
affect (2.29).

Lemma 1 (Entropy representation of viscous and resistive fluxes).
The viscous and resistive fluxes of the resistive GLM-MHD equations in (2.10) can be expressed by gradients
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of the entropy variables as
↔
fv(u,

→
∇u) = K

→
∇w (2.30)

with a block matrix K ∈ R27×27 that is symmetric and positive semi-definite, i.e,

qTKq ≥ 0, ∀q ∈ R27. (2.31)

Proof. We consider the viscous and resistive fluxes of the resistive GLM-MHD system in (2.10)
↔
fv(u,

→
∇u) = [fv1 , f

v
2 , f

v
3 ]
T
. (2.32)

Using the vector of entropy variables from (2.19)

w = (w1, . . . , w9)T , (2.33)

we find the following relations:
→
∇v` = − 1

w5

→
∇w1+` +

w1+`

w2
5

→
∇w5 ,

→
∇B` = − 1

w5

→
∇w5+` +

w5+`

w2
5

→
∇w5 , ` = 1, 2, 3 ,

→
∇
(
p

%

)
=

1

w2
5

→
∇w5 .

With some algebraic effort we can determine the matrices Kij ∈ R9×9, (i, j = 1, 2, 3) to express the viscous
fluxes in terms of matrices times the gradients of entropy variables:

fv1 = K11
∂w

∂x
+ K12

∂w

∂y
+ K13

∂w

∂z
(2.34)

fv2 = K21
∂w

∂x
+ K22

∂w

∂y
+ K23

∂w

∂z
(2.35)

fv3 = K31
∂w

∂x
+ K32

∂w

∂y
+ K33

∂w

∂z
(2.36)

We collect all these 9× 9 block matrices into the matrix K ∈ R27×27

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 , (2.37)

which clearly yields
↔
fv =

↔
fv(u,

→
∇u) = K

→
∇w. (2.38)

For clarification, we present the first matrix

K11 = 1
w5



0 0 0 0 0 0 0 0 0

0 − 4µNS

3 0 0 4µNSw2

3w5
0 0 0 0

0 0 −µNS 0 µNSw3

w5
0 0 0 0

0 0 0 −µNS
µNSw4

w5
0 0 0 0

0 4µNSw2

3w5

µNSw3

w5

µNSw4

w5
− 4µNSw

2
2

3w2
5
− µNSw

2
3

w2
5
− µNSw

2
4

w2
5

+ κ
Rw5
− µRw

2
7

w2
5
− µRw

2
8

w2
5

0 µRw7

w5

µRw8

w5
0

0 0 0 0 0 0 0 0 0

0 0 0 0 µRw7

w5
0 −µR 0 0

0 0 0 0 µRw8

w5
0 0 −µR 0

0 0 0 0 0 0 0 0 0



. (2.39)

The other matrices K12, . . . ,K33 are explicitly stated in Appendix A. It is straightforward to verify that the
matrix K is symmetric by inspecting the block matrices listed in (2.39) and (A.1) - (A.8) where the following
relationships hold

K11 = KT11, K22 = KT22, K33 = KT33, K12 = KT21, K13 = KT31, K23 = KT32. (2.40)
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To show that the matrix K is positive semi-definite is more involved. We first note that it is possible to
split the matrix (2.37) into the viscous terms associated with the Navier-Stokes equations and the resistive
terms of the magnetic fields that arise in the resistive GLM-MHD equations. We exploit this fact and rewrite
the total diffusion matrix into two pieces

K = KNS + KRMHD, (2.41)

where all terms with µNS are put in KNS and all terms with µR are in KRMHD. It is easy to verify that
the NS and RMHD block matrices are symmetric, as both satisfy (2.40). A further convenience is that the
Navier-Stokes part, KNS, is known to be positive semi-definite [17]

qTKNSq ≥ 0, ∀q ∈ R27. (2.42)

Thus, all that remains is to demonstrate that the additional resistive dissipation matrix, KRMHD, is positive
semi-definite. To do so, we examine the eigenvalues of the system. We use the computer algebra system
Maxima [44] to find an explicit expression of the eigenvalues to be

λRMHD
0 = 0, λRMHD

1 =
2µRp

%
, λRMHD

2 =
µRp

(
‖

→
B‖2 + 2

)
%

, multiplicity: {24, 1, 2}. (2.43)

Under the physical assumptions that p, % > 0 and µR ≥ 0 we see that the eigenvalues (2.43) of the matrix
KRMHD are all non-negative. Hence, the block matrix K is symmetric and positive semi-definite.

With the ability to rewrite the viscous fluxes as a linear combination of the entropy variable gradients,
we can summarize our first result:

Theorem 1 (Entropy inequality for the resistive GLM-MHD equations).
Solutions of the resistive GLM-MHD equations (2.8) with the non-conservative terms (2.14), (2.15) and
α ≥ 0 in (2.17) satisfy the entropy inequality∫

Ω

St dV +

∫
∂Ω

(
→
f S · →n)−wT (

↔
fv · →n) dS ≤ 0. (2.44)

Proof. We start by contracting the resistive GLM-MHD system (2.8) with the entropy variables:

wTut + wT
(→
∇ ·

↔
fa(u) + Υ

)
= wT

→
∇ ·

↔
fv(u,

→
∇u) + wT r. (2.45)

From the definition of the entropy variables we have

wTut =

(
∂S

∂u

)T
ut = St. (2.46)

Next, for clarity, we separate the advective flux into Euler, ideal MHD and GLM parts
↔
fa(u) =

↔
fa,Euler +

↔
fa,MHD +

↔
fa,GLM. (2.47)

The Euler terms generate the divergence of the entropy flux, e.g., [31]

wT
(→
∇ ·

↔
fa,Euler

)
=

→
∇ ·

→
f S , (2.48)

the ideal MHD and non-conservative term cancel, e.g., [2, 43]

wT
(→
∇ ·

↔
fa,MHD + ΥMHD

)
= 0 (2.49)

and the GLM terms vanish as shown in [14]

wT
(→
∇ ·

↔
fa,GLM + ΥGLM

)
= 0. (2.50)

The damping source term for the GLM divergence cleaning is zero in all but its ninth component, so we
see

wT r = −2αβψ2. (2.51)
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We have

St +
→
∇ ·

→
f S = wT

→
∇ ·

↔
fv − 2αβψ2. (2.52)

Our summation-by-parts DG discretization introduced later is based on a variational formulation of the
problem and our goal is to mimic the continuous derivations in the discrete sense. Thus, we seek an integral
statement of the continuous entropy inequality. To do so, we integrate over the domain Ω, apply Gauss’ law
to the entropy flux divergence, and apply integration-by-parts to the viscous and resistive flux contributions
to obtain∫

Ω

St dV +

∫
∂Ω

(
→
f S · →n)−wT (

↔
fv · →n) dS = −

∫
Ω

(
→
∇w)T

↔
fv dV−

∫
Ω

2αβψ2 dV. (2.53)

Using the representation of the viscous flux in entropy variable gradients from Lemma 1, the viscous and
resistive flux contribution in the domain become

−
∫
Ω

(
→
∇w)T

↔
fv dV = −

∫
Ω

(
→
∇w)TK

→
∇w dV ≤ 0. (2.54)

Assuming the damping parameter α ≥ 0 and a positive temperature, i.e. β > 0, the contribution of the
damping term to the total entropy evolution is guaranteed negative −2αβψ2 ≤ 0, which finalizes the proof
of Theorem 1.

Corollary 1. If we consider a closed system, e.g. periodic boundary conditions, Theorem 1 shows that the
total entropy is a decreasing function∫

Ω

St dV ≤ 0. (2.55)

In summary, we have demonstrated that the resistive GLM-MHD equations satisfy an entropy inequality.
To do so, we separated the advective contributions into Euler, ideal MHD and GLM pieces and considered the
viscous contributions separately, which served to clarify how each term contributed to the entropy analysis.
A major result is that it is possible to rewrite the resistive terms of the three-dimensional system in an
entropy consistent way to demonstrate that those terms are entropy dissipative. We will use an identical
splitting of the advective and diffusive terms in the discrete entropy stability proofs in Sec. 4 to directly
mimic the continuous analysis.

3. Curved split form discontinuous Galerkin approximation

In this section, we briefly introduce the building blocks of our entropy stable DGSEM with LGL nodes
on three-dimensional curvilinear hexahedral meshes.

3.1. Mapping the Equations
First, we subdivide the physical domain, Ω, into Nel non-overlapping and conforming hexahedral el-

ements, Eν , ν = 1, 2, . . . , Nel, which can have curved faces if necessary to accurately approximate the
geometry [32]. We create a transformation →

x =
→
X(

→
ξ) to map computational coordinates,

→
ξ = (ξ, η, ζ)T , in

the reference element E = [−1, 1]3 to physical coordinates →
x = (x, y, z)T , for each element, e.g. [21, 38]

and use this mapping to transform the governing equations (2.8) into reference space. From the element
mapping we define the three covariant basis vectors

→
ai =

∂
→
X

∂ξi
, i = 1, 2, 3, (3.1)

and (volume weighted) contra-variant vectors

J
→
a i =

→
aj × →

ak , (i, j, k) cyclic , (3.2)
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where the Jacobian of the transformation is given by

J =
→
ai · (→aj × →

ak) , (i, j, k) cyclic. (3.3)

The basis vectors and Jacobian values will vary on curved elements, but still, the divergence of a constant
flux vanishes in the reference cube, i.e., the contra-variant vectors satisfy the metric identities [37]

3∑
i=1

∂
(
Jain

)
∂ξi

= 0 , n = 1, 2, 3 . (3.4)

We note, that our discrete entropy analysis reveals that the proper discretization of the metric identities is
crucial.

In order to express the transformation of the gradient and divergence operators, we define two different
matrices dependent on the metric terms

M =

 Ja1
1 I9 Ja2

1 I9 Ja3
1 I9

Ja1
2 I9 Ja2

2 I9 Ja3
2 I9

Ja1
3 I9 Ja2

3 I9 Ja3
3 I9

 , M =

 Ja1
1 Ja2

1 Ja3
1

Ja1
2 Ja2

2 Ja3
2

Ja1
3 Ja2

3 Ja3
3

 (3.5)

with the 9 × 9 unit matrix I9, as 9 is the size of the GLM-MHD system. Applying these matrices, the
transformation of the gradient of a state or a scalar is

→
∇xu =

 ux
uy
uz

 =
1

J
M

 uξ
uη
uζ

 =
1

J
M

→
∇ξu ,

→
∇xh =

1

J
M

→
∇ξh , (3.6)

and the transformation of the divergence is
→
∇x · ↔g =

1

J

→
∇ξ ·

(
MT↔

g
)
,

→
∇x ·

→
h =

1

J

→
∇ξ ·

(
MT

→
h
)
. (3.7)

It is common to define contravariant block vectors and contravariant spatial vectors, e.g.
↔
g̃ = MT↔

g =
↔
gM ,

→

h̃ = MT
→
h . (3.8)

For the discretization of the viscous and resistive terms we introduce the gradient of the entropy variables
as an additional unknown ↔

q. Applying the transformations to the divergence and the gradient, we get the
transformed resistive GLM-MHD equations

Jut +
→
∇ξ ·

↔

f̃a +
(→
∇ξ ·

→

B̃
)
φMHD +

↔

φ̃GLM ·
→
∇ξψ =

→
∇ξ ·

↔

f̃v (u,
↔
q) + Jr

J
↔
q = M

→
∇ξw.

(3.9)

The next step is the weak formulation of the transformed equations (3.9), for which we multiply by
test functions ϕ and

↔
ϑ. Next, we use integration by parts for the flux divergence as well as for the non-

conservative term to arrive at

〈Jut,ϕ〉+

∫
∂E

ϕT
{↔

fa −
↔
fv
}
· →n ŝdS−

〈↔

f̃a,
→
∇ξϕ

〉
+

∫
∂E

ϕTφMHD(
→
B · →n)ŝdS−

〈 →

B̃,
→
∇ξ(ϕTφMHD)

〉
+

∫
∂E

ϕT (
↔
φGLM · →n)ψŝdS−

〈
ψ,

→
∇ξ · (ϕT

↔

φ̃GLM)
〉

= −
〈↔

f̃v,
→
∇ξϕ

〉
+ 〈Jr,ϕ〉

〈
J

↔
q,

↔
ϑ
〉

=

∫
∂E

wT
(↔
ϑ · →n

)
ŝdS−

〈
w,

→
∇ξ ·

(
MT

↔
ϑ
)〉

.

(3.10)

Here, we introduced the inner product notation on the reference element for state and block vectors

〈u,v〉 =

∫
E

uTv dξdηdζ and
〈↔
f ,

↔
g
〉

=

∫
E

3∑
i=1

fTi gi dξdηdζ (3.11)
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as well as the surface element ŝ and the outward pointing unit normal vector →
n in physical space. In

particular, these are defined for all faces of the reference element as

ξ = ±1 : ŝ(η, ζ) :=
∣∣J→
a1(±1, η, ζ)

∣∣ , →
n(η, ζ) := ±J→

a1(±1, η, ζ)/ŝ(η, ζ)

η = ±1 : ŝ(ξ, ζ) :=
∣∣J→
a2(ξ,±1, ζ)

∣∣ , →
n(ξ, ζ) := ±J→

a2(ξ,±1, ζ)/ŝ(ξ, ζ)

ζ = ±1 : ŝ(ξ, η) :=
∣∣J→
a3(ξ, η,±1)

∣∣ , →
n(ξ, η) := ±J→

a3(ξ, η,±1)/ŝ(ξ, η) .

(3.12)

It is important to note, that under the assumption of a conforming mesh, the surface element ŝ is continuous
across the element interface and the normal vector only changes sign.

3.2. Spectral element approximation
Details on the general DGSEM algorithm are available in the literature, e.g. in the book by Kopriva [38]

and in Hindenlang et al. [33].
For a local approximation with polynomial degree N , we define N +1 LGL nodes and weights, ξi and ωi,

i = 0, . . . , N on the unit interval [−1, 1] and span the one-dimensional nodal Lagrange basis functions `i(ξ).
The one-dimensional functions are extended to the three-dimensional reference element by a tensor product
ansatz. We approximate the state vector, flux vectors, etc. with polynomial interpolation on the LGL nodes
denoted by capital letters. Alternatively, we write the interpolation of a function g through those nodes as
G = IN(g). Moreover, these local polynomial approximations of degree N are used to define the discrete
derivative operator. In one spatial dimension, the derivative matrix reads as

Dij :=
∂`j
∂ξ

∣∣∣∣
ξ=ξi

, i, j = 0, . . . , N. (3.13)

Integrals in the variational form are approximated by the same LGL quadrature rule. Due to the collocation
of the LGL polynomial approximation ansatz and the quadrature (3.19), the mass matrix is discretely
orthogonal. In one spatial dimension, the mass matrix is

M = diag(ω0, . . . , ωN ). (3.14)

As mentioned above, this particular choice of the DG derivative operator yields the SBP property

(MD) + (MD)T = Q+QT = B, (3.15)

where we introduce the notation of the SBP matrix, Q, as well as the boundary matrix

B = diag(−1, 0, . . . , 0, 1). (3.16)

We stress again, that the SBP property is crucial for the stability proofs presented in this work. Furthermore,
we note, that it is also important for our proofs on curvilinear meshes, that the mass matrix, also known
as the norm matrix in the language of SBP finite difference methods, is diagonal. Additionally, the proper
computation of the metric terms is crucial to guarantee that the discrete metric identities hold

3∑
i=1

∂IN
(
Jain

)
∂ξi

= 0, n = 1, 2, 3. (3.17)

This is ensured if the metric terms are computed as curl, i.e.,

Jain = −x̂i · ∇ξ ×
(
IN(Xl∇ξXm)

)
, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic. (3.18)

This definition ensures free stream preservation discretely and has already been shown to be important for
numerical stability, e.g. [28, 40, 56].

Tensor product extension is used to approximate integrals in multiple spatial dimensions. As such we
express the discrete inner product between two functions f and g in three space dimensions as

〈f, g〉N =

N∑
n,m,l=0

fnmlgnmlωnωmωl ≡
N∑

n,m,l=0

fnmlgnmlωnml, (3.19)

where fnml = f (ξn, ηm, ζl), etc.
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A consequence of the SBP property is a discrete extended Gauss Law [39]. That is, for any V = IN(v)〈→
∇ξ ·

↔

F̃, V
〉
N

=

∫
∂E,N

V T
(↔

F̃ · n̂
)

dS−
〈↔

F̃,
→
∇ξV

〉
N

=

∫
∂E,N

V T
(↔
F · →n

)
ŝdS−

〈↔

F̃,
→
∇ξV

〉
N
, (3.20)

which we can apply to mimic integration-by-parts in the continuous derivations. Here, the discrete surface
integral is also defined via LGL quadrature, and the integrand is transformed with the collocated surface
metrics from (3.12), yielding∫
∂E,N

V T
(↔

F̃ · n̂
)

dS =

∫
∂E,N

V T

(
3∑
i=1

(
J

→
a i ·

↔
F
)
n̂i

)
dS

≡
N∑

j,k=0

ωjk

[
V T

(↔
F · →n

)
ŝ
]ξ=±1

ηj ,ζk
+

N∑
i,k=0

ωik

[
V T

(↔
F · →n

)
ŝ
]η=±1

ξi,ζk
+

N∑
i,j=0

ωij

[
V T

(↔
F · →n

)
ŝ
]ζ=±1

ξi,ηj

=

∫
∂E,N

V T
(↔
F · →n

)
ŝdS .

(3.21)

Next, we replace the Jacobian, the metric terms as well as the solution vector, its time derivative, the
fluxes, the test functions and source term by polynomial interpolations in (3.10), to obtain the discrete weak
form of the DGSEM〈
IN(J) Ut,ϕ

〉
N

+

∫
∂E,N

ϕT {Fan − Fvn} ŝdS−
〈↔

F̃a,
→
∇ξϕ

〉
N

+

∫
∂E,N

ϕTΦMHDBnŝdS−
〈 →

B̃,
→
∇ξ(ϕTΦMHD)

〉
N

+

∫
∂E,N

ϕTΦGLM
n ψŝdS−

〈
ψ,

→
∇ξ · IN

(
ϕT

↔

Φ̃GLM
)〉

N
= −

〈↔

F̃v,
→
∇ξϕ

〉
N

+
〈
IN(J) R,ϕ

〉
N

〈
IN(J)

↔
Q,

↔
ϑ
〉
N

=

∫
∂E,N

WT
(↔
ϑ · →n

)
ŝdS−

〈
W,

→
∇ξ · IN

(
MT

↔
ϑ
)〉

N
,

(3.22)

where we introduced compact notation for normal quantities, e.g., the normal flux in physical space Fn =(↔
F · →n

)
.

Due to the discontinuous nature of our local polynomial ansatz, values at the element interfaces are not
uniquely defined. The elements are coupled through the boundary terms by way of numerical fluxes, which
we denote as Fa,∗n , Fv,∗n and W∗. For now, we postpone the selection of these numerical flux functions to the
next sections. The non-conservative terms also couple elements through the boundary. However, for now,
as the definition of the non-conservative terms at the boundary is not unique, we denote these unknowns at
the element interface by

(
ΦMHDBn

)
♦ and

(
ΦGLM
n ψ

)
♦ to obtain〈

IN(J) Ut,ϕ
〉
N

+

∫
∂E,N

ϕT {Fa,∗n − Fv,∗n } ŝdS−
〈↔

F̃a,
→
∇ξϕ

〉
N

+

∫
∂E,N

ϕT
(
ΦMHDBn

)
♦ŝdS−

〈 →

B̃,
→
∇ξ
(
ϕTΦMHD

)〉
N

+

∫
∂E,N

ϕT
(
ΦGLM
n ψ

)
♦ŝdS−

〈
ψ,

→
∇ξ · IN

(
ϕT

↔

Φ̃GLM
)〉

N
= −

〈↔

F̃v,
→
∇ξϕ

〉
N

+
〈
IN(J) R,ϕ

〉
N

〈
IN(J)

↔
Q,

↔
ϑ
〉
N

=

∫
∂E,N

W∗,T
(↔
ϑ · →n

)
ŝdS−

〈
W,

→
∇ξ · IN

(
MT

↔
ϑ
)〉

N
.

(3.23)

Applying the discrete extended Gauss law (3.20) to the flux and non-conservative terms of the first equation
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in (3.23) gives the strong form of the DGSEM, which we use in this work to approximate solutions of the
resistive GLM-MHD equations〈

IN(J) Ut,ϕ
〉
N

+
〈→
∇ξ · IN

(↔

F̃a
)
,ϕ
〉
N

+

∫
∂E,N

ϕT {(Fa,∗n − Fan)} ŝdS

+
〈
ΦMHD

→
∇ξ · IN

( →

B̃
)
,ϕ
〉
N

+

∫
∂E,N

ϕT
{(

ΦMHDBn
)
♦ −ΦMHDBn

}
ŝdS

+
〈↔

Φ̃GLM ·
→
∇ξIN(ψ) ,ϕ

〉
N

+

∫
∂E,N

ϕT
{(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
}
ŝdS

=
〈→
∇ξ · IN

(↔

F̃v
)
,ϕ
〉
N

+

∫
∂E,N

ϕT {Fv,∗n − Fvn} ŝdS +
〈
IN(J) R,ϕ

〉
N

〈
IN(J)

↔
Q,

↔
ϑ
〉
N

=

∫
∂E,N

W∗,T
(↔
ϑ · →n

)
ŝdS−

〈
W,

→
∇ξ · IN

(
MT

↔
ϑ
)〉

N
.

(3.24)

3.3. Split form approximation
The entropy stable discretization of the flux divergence term is based on the works of Fisher et al. and

Carpenter et al. [5, 23, 27]. We follow the notation introduced in [28, 29] and present a split form DG
approximation, where we have two numerical fluxes, one at the surface and one inside the volume. The
special split form volume integral reads

→
∇ξ · IN

(↔

F̃a
)
≈

→
D·

↔

F̃a,# = 2

N∑
m=0

Dim
(↔
Fa,#(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
+ 2

N∑
m=0

Djm
(↔
Fa,#(Uijk,Uimk) ·

{{
J

→
a 2
}}
i(j,m)k

)
+ 2

N∑
m=0

Dkm
(↔
Fa,#(Uijk,Uijm) ·

{{
J

→
a 3
}}
ij(k,m)

)
(3.25)

for each point i, j, k of an element. Here we introduce the two-point, symmetric volume flux
↔
Fa,# and the

arithmetic mean of the metric terms. The arithmetic mean in each spatial direction is written compactly,
e.g., using the notation in the ξ−direction gives

{{·}}(i,m)jk =
1

2

(
(·)ijk + (·)mjk

)
. (3.26)

In a similar fashion, the volume contributions of the non-conservative terms are approximated by

ΦMHD
→
∇ξ · IN

( →

B̃
)
≈ ΦMHD

→
DNC

div ·
→

B̃ =

N∑
m=0

Dim
(
ΦMHD
ijk

( →
Bmjk ·

{{
J

→
a 1
}}

(i,m)jk

))
+

N∑
m=0

Djm
(
ΦMHD
ijk

( →
Bimk ·

{{
J

→
a 2
}}
i(j,m)k

))
+

N∑
m=0

Dkm
(
ΦMHD
ijk

( →
Bijm ·

{{
J

→
a 3
}}
ij(k,m)

))
,

(3.27)
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and
↔

Φ̃GLM ·
→
∇ξIN(ψ) ≈

↔

Φ̃GLM ·
→
DNC

gradψ =

N∑
m=0

Dim
((
J

→
a 1
ijk ·

↔
ΦGLM
ijk

)
ψmjk

)
+

N∑
m=0

Djm
((
J

→
a 2
ijk ·

↔
ΦGLM
ijk

)
ψimk

)
+

N∑
m=0

Dkm
((
J

→
a 3
ijk ·

↔
ΦGLM
ijk

)
ψijm

)
,

(3.28)

which introduces compact notation for the discrete divergence and gradient on the non-conservative terms.
We will show in the discrete entropy proofs, that it is important to separate the derivative on the magnetic
field components and the metric terms. Next, we address the discretization of the viscous terms in the
resistive MHD equations. The volume contributions are computed in a standard DGSEM way, e.g. [33], as

→
∇ξ · IN

(↔

F̃v
)
≈

→
DS·

↔

F̃v =

N∑
m=0

Dim
(
F̃v1

)
mjk

+

N∑
m=0

Djm
(
F̃v2

)
imk

+

N∑
m=0

Dkm
(
F̃v3

)
ijm

, (3.29)

where the metric terms are included in the transformed viscous fluxes F̃vl , l = 1, 2, 3. Inserting the volume
discretizations (3.25), (3.27), (3.28) and (3.29) into (3.24) we obtain the split form DGSEM:〈

IN(J) Ut,ϕ
〉
N

+
〈→
D·

↔

F̃a,#,ϕ
〉
N

+

∫
∂E,N

ϕT {Fa,∗n − Fan} ŝdS

+
〈
ΦMHD

→
DNC

div ·
→

B̃,ϕ
〉
N

+

∫
∂E,N

ϕT
{(

ΦMHDBn
)
♦ −ΦMHDBn

}
ŝdS

+
〈↔

Φ̃GLM ·
→
DNC

gradψ,ϕ
〉
N

+

∫
∂E,N

ϕT
{(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
}
ŝdS

=
〈→
DS·

↔

F̃v,ϕ
〉
N

+

∫
∂E,N

ϕT {Fv,∗n − Fvn} ŝdS +
〈
IN(J) R,ϕ

〉
N

〈
IN(J)

↔
Q,

↔
ϑ
〉
N

=

∫
∂E,N

W∗,T
(↔
ϑ · →n

)
ŝdS−

〈
W,

→
∇ξ · IN

(
MT

↔
ϑ
)〉

N
.

(3.30)

4. Entropy stable DG scheme for resistive GLM-MHD

Much work in the numerics community has been invested over the years to develop approximations of
non-linear hyperbolic PDE systems that remain thermodynamically consistent, e.g. [8, 24, 27, 53, 56, 58].
This began with the pioneering work of Tadmor [50, 51] to develop low-order finite volume approximations.
Extension to higher spatial order was recently achieved in the context of DG methods for the compressible
Navier-Stokes equations [5, 29] as well as the ideal MHD equations [25, 43]. Remarkably, Carpenter et al.
showed that the conditions to develop entropy stable approximations at low-order immediately apply to
high-order methods provided the derivative approximation satisfies the SBP property [5, 22, 23].

In order to retain entropy stability, we start with the derived split form DG approximation (3.30) and
contract into entropy space by replacing the first test function with the interpolant of the entropy variables
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and the second one with the interpolant of the viscous fluxes to obtain:〈
IN(J) Ut,W

〉
N

= −
〈→
D·

↔

F̃a,#,W
〉
N
−
〈
ΦMHD

→
DNC

div ·
→

B̃,W
〉
N
−
〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

+
〈
IN(J) R,W

〉
N

−
∫

∂E,N

WT [Fa,∗n − Fan] ŝdS−
∫

∂E,N

WT
[(

ΦMHDBn
)
♦ −ΦMHDBn

]
ŝdS−

∫
∂E,N

WT
{(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
}
ŝdS

+
〈→
DS·

↔

F̃v,W
〉
N

+

∫
∂E,N

WT [Fv,∗n − Fvn] ŝdS

〈
IN(J)

↔
Q,

↔

F̃v
〉
N

=

∫
∂E,N

W∗,T
(↔
Fv · →n

)
ŝdS−

〈
W,

→
DS·

↔

F̃v
〉
N

(4.1)

Here, we have intentionally arranged the advective plus non-conservative volume parts, the advective plus
non-conservative surface parts and the viscous parts of the first equation into separate rows.

The time derivative term in (4.1) is the rate of change of the entropy in the element. Assuming that the
chain rule with respect to differentiation in time holds (time continuity), we use the contraction property of
the entropy variable (2.46) at each LGL node within the element to see that on each element ν = 1, . . . , Nel

we have〈
IN(J) Ut,W

〉
N

=

N∑
i,j,k=0

JijkωiωjωkW
T
ijk

dUijk

dt
=

N∑
i,j,k=0

Jijkωijk
dSijk
dt

=
〈
IN(J)St, 1

〉
N
. (4.2)

To obtain the time derivative of the total discrete entropy we sum over all elements

dS

dt
≡

Nel∑
ν=1

〈JνSνt , 1〉N . (4.3)

The final goal of this section is to demonstrate the entropy stability of the contracted DG approximation
(4.1) for the resistive GLM-MHD system. That is, we want the discrete total entropy in a closed system
(periodic boundary conditions) to be a decreasing function

dS

dt
≤ 0. (4.4)

To get the result (4.4) we examine each row in the first equation of (4.1) incrementally. In Sec. 4.1, we
demonstrate the behavior of the advective and non-conservative volume as well as interface contributions.
Throughout this section, we highlight how the metric terms and the GLM divergence cleaning parts affect
the approximation. Then, in Sec. 4.2, we assess the contribution of the viscous and resistive terms by using
the results of Lemma 1 and a proof of entropy stability for the BR1 scheme presented in Gassner et al. [28].

4.1. Analysis of the advective parts
This section focuses on the advective parts in the contracted DG approximation (4.1). First, we select

the specific form of the advective interface and volume numerical fluxes in Sec. 4.1.1. In the next section,
4.1.2, we show that the volume contributions of the entropy conservative flux of the Euler terms become the
entropy flux at the surfaces, the ideal MHD terms cancel and the GLM terms vanish. By splitting the entropy
conservative flux into three terms we explicitly see how the discrete contraction into entropy space mimics
the results of the continuous analysis, i.e., (2.48), (2.49) and (2.50). Next, with the knowledge that the
volume contributions move to the interfaces, Sec. 4.1.3 addresses all the surface contributions and we select
the form of the coupling for the non-conservative terms. By summing over all the elements and applying
the definition of the entropy conservative fluxes we cancel all the remaining advective and non-conservative
terms for a closed system (periodic boundary conditions).
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4.1.1. Numerical advective fluxes
A consistent, symmetric numerical flux function, which is entropy conservative for the ideal GLM-MHD

equations, is derived in the finite volume context [14] and serves as the backbone for the high-order entropy
stable DGSEM considered in this work. First, we define the notation for the jump operator, arithmetic and
logarithmic means between a left and right state, aL and aR, respectively

JaK := aR − aL, {{a}} :=
1

2
(aL + aR), aln := JaK / Jln(a)K , (4.5)

where a numerically stable procedure to evaluate the logarithmic mean is given in [35]. We present the
entropy conserving (EC) numerical flux in the first spatial direction to be

fEC
1 (uL,uR) =



%ln {{v1}}
%ln {{v1}}2 − {{B1}}2 + p+ 1

2

(
{{B1B1}}+ {{B2B2}}+ {{B3B3}}

)
%ln {{v1}} {{v2}} − {{B1}} {{B2}}
%ln {{v1}} {{v3}} − {{B1}} {{B3}}

fEC
1,5

ch {{ψ}}
{{v1}} {{B2}} − {{v2}} {{B1}}
{{v1}} {{B3}} − {{v3}} {{B1}}

ch {{B1}}


(4.6)

with

fEC
1,5 =fEC

1,1

[
1

2(γ − 1)βln
− 1

2

({{
v2

1

}}
+
{{
v2

2

}}
+
{{
v2

3

}}) ]
+ fEC

1,2 {{v1}}+ fEC
1,3 {{v2}}+ fEC

1,4 {{v3}}

+ fEC
1,6 {{B1}}+ fEC

1,7 {{B2}}+ fEC
1,8 {{B3}}+ fEC

1,9 {{ψ}} −
1

2

( {{
v1B

2
1

}}
+
{{
v1B

2
2

}}
+
{{
v1B

2
3

}} )
+ {{v1B1}} {{B1}}+ {{v2B2}} {{B1}}+ {{v3B3}} {{B1}} − ch {{B1ψ}}

(4.7)

and

p =
{{%}}

2 {{β}} .

This particular choice of flux satisfies the discrete entropy conservation condition [8, 14, 25, 43]

JwKT fEC
` (uL,uR) = JΨ`K− {{B`}} JθK , ` = 1, 2, 3 (4.8)

with the entropy flux potential
→
Ψ (2.22) and the contracted non-conservative state vector θ (2.23).

Moreover, in the presence of shocks or discontinuities, we must add dissipation to the interface fluxes in
terms of the entropy variables to ensure we do not violate the entropy inequality (2.29). In order to create
such an entropy stable scheme, we use the EC flux in (4.6) as a baseline flux and add a general form of
numerical dissipation at the interfaces to get an entropy stable (ES) numerical flux that is applicable to
arbitrary flows

↔
f ES · →n =

↔
f EC · →n− 1

2
ΛH JwK , (4.9)

where H is the entropy Jacobian and Λ the dissipation matrix. Note that for strong shocks or high Mach
number flows a careful evaluation of the dissipation matrix at the interface is needed, e.g. [13, 57]. It is
straightforward to derive similar EC and ES fluxes for the y− and z−directions. Full details can be found
in [14].

In the contracted DG approximation (4.1) we select both the two point volume fluxes
↔
Fa,# and the

advective surface fluxes Fa,∗n to be the EC fluxes
↔
Fa,#(Uijk,Umjk) =

↔
f EC(Uijk,Umjk) , Fa,∗n =

↔
FEC · →n =

↔
f EC(UL,UR) · →n , (4.10)

whereas the latter can also include stabilization terms as in (4.9).
Again, as in the continuous analysis, we split the advective EC numerical flux function into three com-
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ponents
↔
FEC =

↔
FEC,Euler +

↔
FEC,MHD +

↔
FEC,GLM, (4.11)

as well as the appropriate entropy conservation conditions for the numerical flux functions at each surface
LGL node,

JWKT
↔
FEC,Euler =

r→
ΨEuler

z
, (4.12)

JWKT
↔
FEC,MHD =

r→
ΨMHD

z
−
{{ →
B
}}

JθK , (4.13)

JWKT
↔
FEC,GLM =

r→
ΨGLM

z
, (4.14)

where we use the previously defined split entropy flux potential (2.25). Respectively, (4.12) contains the
hydrodynamic contributions, (4.13) contains the magnetic field parts and (4.14) contains the GLM compo-
nents.

4.1.2. Volume contributions
Next, we focus on the advective volume discretizations as well as on the non-conservative volume terms

in the first row of (4.1). Using (4.11) we split the advective fluxes to determine the contributions from
the Euler, MHD and GLM parts, separately. Since the contribution of the curvilinear Euler components
has been investigated in the DG context, see e.g. [5, 28], we address the curvilinear ideal MHD and GLM
parts first. Due to the inclusion of the complete three-dimensional curved framework, both proofs are quite
lengthy and, thus, can be found in the appendices.

Lemma 2 (Entropy contribution of the curvilinear ideal MHD volume terms).
The curvilinear volume contributions of the ideal MHD equations in (4.1) cancel in entropy space. That is,〈→

D·
↔

F̃EC,MHD,W
〉
N

+
〈
ΦMHD

→
DNC

div ·
→

B̃,W
〉
N

= 0. (4.15)

Proof. See Appendix B.

Remark 2. In the proof we use the SBP property (3.15) repeatedly as well as the discrete version of the
MHD entropy potential condition (4.13). Moreover, a crucial condition to obtain the desired result on curved
elements is that the discrete metric identities (3.17) are satisfied.

Lemma 3 (Entropy contribution of the curvilinear GLM volume terms).
The curvilinear GLM volume contributions of (4.1) reduce to zero in entropy space. That is,〈→

D·
↔

F̃EC,GLM,W
〉
N

+
〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

= 0. (4.16)

Proof. See Appendix C.

Remark 3. Again, the most important requirements for the proof are the SBP property (3.15), the discrete
GLM entropy flux condition (4.14) and the discrete metric identities (3.17).
Remark 4. If we also take the damping source term of the GLM divergence cleaning into account, the
statement of Lemma 3 becomes an inequality, i.e.

−
〈→
D·

↔

F̃EC,GLM,W
〉
N
−
〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

+
〈
IN(J) R,W

〉
N
≤ 0, (4.17)

since 〈
IN(J) R,W

〉
N

= −
N∑

i,j,k=0

Jijkωijk
(
2αβijkψ

2
ijk

)
≤ 0, (4.18)
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for α, βijk ≥ 0. This result corresponds to discrete entropy stability instead of conservation and will be
excluded for the following discussion of the remaining advective parts.

All together, this leads us to the following result:

Corollary 2 (Entropy contribution of the curvilinear advective volume terms).
For each element the sum of all curvilinear advective volume contributions plus the non-conservative volume
terms in (4.1) yields〈→

D·
↔

F̃EC,W
〉
N

+
〈
ΦMHD

→
DNC

div ·
→

B̃,W
〉
N

+
〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

=

∫
∂E,N

(→
FS · →n

)
ŝdS. (4.19)

Proof. Again we first split the volume flux in Euler, MHD and GLM parts according to (4.11). From Lemmas
2 and 3 we know, that the curvilinear MHD and GLM volume terms together with the non-conservative
terms vanish. Moreover, we know from [22, 28], that the volume contributions of the Euler components
become the entropy flux evaluated at the boundary〈→

D·
↔

F̃EC,Euler,W
〉
N

=

∫
∂E,N

(→
FS · →n

)
ŝdS, (4.20)

which is equivalent to the steps (2.48) and (2.53) in the continuous analysis with
→
FS being the discrete

evaluation of the entropy flux.

The results of Lemmas 2, 3 and Corollary 2 demonstrate that many of the volume contributions cancel in
entropy space and the remaining terms move to the interfaces of the contracted DG approximation. Thus,
in the next section we include this additional interface contribution containing the entropy fluxes.

4.1.3. Surface contributions
We are now prepared to examine the advective surface terms of the contracted DG approximation (4.1)

incorporating the now known additional surface part that comes from the volume terms due to the result
of Corollary 2. On each element the surface terms are given in compact notation as

Γν =

∫
∂Eν ,N

WT
[
FEC
n − Fan

]
ŝdS+

∫
∂Eν ,N

WT
[(

ΦMHDBn
)
♦ −ΦMHDBn

]
ŝdS

+

∫
∂Eν ,N

WT
[(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
]
ŝdS +

∫
∂Eν ,N

(→
FS · →n

)
ŝdS.

(4.21)

To determine the total surface contributions from the advective and non-conservative terms in the contracted
DG approximation (4.1) we sum over all elements, ν = 1, . . . , Nel similar to Gassner et al. [28]. We introduce
notation for states at the LGL node of the one side of the interface between two elements to be a primary “−”
and complement the notation with a secondary “+” to denote the value at the LGL nodes on the opposite
side. This allows us to define the orientated jump and the arithmetic mean at the interfaces to be

J·K = (·)+ − (·)−, {{·}} =
1

2

(
(·)+ + (·)−

)
. (4.22)

When applied to vectors, the average and jump operators are evaluated separately for each vector component.
The physical normal vector →

n is then defined uniquely to point from the “−” to the “+” side, so that
→
n = (

→
n)− = −(

→
n)+.

We consider the discrete total entropy evolution in a closed system and thus focus on fully periodic
domains, so that all interfaces in the domain have two adjacent elements. We investigate the total surface
contributions from (4.21) term by term. The sum over all elements for the first term generates jumps in
the fluxes and entropy variables, where we also use the uniqueness of the numerical surface flux function,
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FEC
n =

↔
FEC · →n, yielding

Nel∑
ν=1

∫
∂Eν ,N

WT
(↔
FEC −

↔
Fa
)
· →n ŝdS = −

∑
faces

∫
N

(
JWKT

(↔
FEC · →n

)
−

r
WT

↔
Fa

z
· →n
)
ŝdS. (4.23)

Next, we examine the behavior of the GLM part of the entropy conservative flux at the interfaces that
come from (4.21). Also, we account for the surface contribution of the GLM non-conservative term (2.15).

Lemma 4 (Entropy contribution of GLM surface terms).
The contribution from the GLM part of the entropy conservative scheme vanishes at element interfaces, i.e.,∫

N

(
JWKT

↔
FEC,GLM −

r
WT

↔
Fa,GLM

z)
· →n ŝdS = 0. (4.24)

For the non-conservative term surface contribution we define the interface coupling as(
ΦGLM
n ψ

)
♦ =

((↔
ΦGLM

)−
· →n
)
{{ψ}} (4.25)

to ensure that the associated non-conservative terms from (4.21) vanish locally at each element face.

Proof. The proof of (4.24) follows directly from the definition of the GLM components of the entropy
conservative flux (4.14)(

JWKT
↔
FEC,GLM −

r
WT

↔
Fa,GLM

z)
· →n =

(
JWKT

↔
FEC,GLM −

r→
ΨGLM

z)
· →n = 0. (4.26)

To demonstrate the behavior of the non-conservative term on each element face we examine the appropriate
part from (4.21) and substitute the coupling term (4.25) at a single interface to find

WT
[(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
]

=
(
W−)T [((↔

ΦGLM
)−
· →n
)
{{ψ}} −

((↔
ΦGLM

)−
· →n
)
ψ−
]

=

([(
W−)T (↔

ΦGLM
)−]

· →n
)

1

2

(
ψ+ − ψ−

)
=

([(
W−)T (↔

ΦGLM
)−]

· →n
)

1

2
JψK .

(4.27)

It is straightforward to verify that each part of
(↔
ΦGLM

)−
contracts to zero in entropy space, i.e.,(

W−)T (ΦGLM
`

)−
= 0, ` = 1, 2, 3, (4.28)

such that

WT
[(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
]

=

([(
W−)T (↔

ΦGLM
)−]

· →n
)

1

2
JψK

=
(

→
0 · →n

) 1

2
JψK

= 0.

(4.29)

Thus, the surface contribution of the GLM non-conservative terms directly vanish at each element face.

Before we investigate the remaining contributions of the Euler and ideal MHD components, we define(
ΦMHDBn

)
♦ and examine the contribution of the second term from (4.21). What we will find is that the

surface contribution of the MHD non-conservative terms generates an additional boundary term that cancels
an extraneous term left over from the analysis of the ideal MHD part of the advective fluxes.

Lemma 5 (Discretization of the non-conservative ideal MHD surface term).
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For the second term in (4.21) we define(
ΦMHDBn

)
♦ =

(
ΦMHD

)− {{ →
B
}}
· →n, (4.30)

to obtain the total contribution of the non-conservative ideal MHD surface terms
Nel∑
ν=1

∫
∂Eν ,N

WT
((

ΦMHDBn
)
♦ −ΦMHDBn

)
ŝdS =

∑
faces

∫
N

{{θ}}
r →
B

z
· →n ŝdS. (4.31)

Proof. We first substitute the definition (4.30) into the second term of (4.21), where, for clarity, we explicitly
state that values from the current element Eν to be primary (“−”), since →

n is outward pointing∫
∂Eν ,N

WT
((

ΦMHDBn
)
♦ −ΦMHDBn

)
ŝdS =

∫
∂Eν ,N

(
W−)T ((ΦMHD

)− {{ →
B
}}
−
(
ΦMHD

)− →
B−
)
·→n ŝdS. (4.32)

Note that the values of W and ΦMHD in the contribution (4.32) are evaluated from the current element, so
we have a discrete version of the property (2.23)(

W−)T (ΦMHD
)−

= θ−. (4.33)

Thus,∫
∂Eν ,N

(
W−)T ((ΦMHD

)− {{ →
B
}}
−
(
ΦMHD

)− →
B−
)
· →n ŝdS =

∫
∂Eν ,N

θ−
({{ →

B
}}
−

→
B−
)
· →n ŝdS. (4.34)

Next, we expand the arithmetic mean to get∫
∂Eν ,N

θ−
({{ →

B
}}
−

→
B−
)
· →n ŝdS =

1

2

∫
∂Eν ,N

θ−
( →
B+ −

→
B−
)
· →n ŝdS. (4.35)

The total surface contribution of (4.35) requires delicate consideration due to the inherent non-uniqueness
of the non-conservative term at the interface. Each interface actually contributes twice to the contracted
DG approximation and it is important to choose, again, a unique normal vector for each interface →

n. The
sum over all elements gives for an arbitrary interface contribution of the integrand

1

2

(
θ−
( →
B+ −

→
B−
)
· →n
)

+
1

2

(
θ+
( →
B− −

→
B+
)
· (−→

n)
)

= {{θ}}
r →
B

z
· →n , (4.36)

yielding the desired result
Nel∑
ν=1

∫
∂Eν ,N

WT
((

ΦMHDBn
)
♦ −ΦMHDBn

)
ŝdS =

∑
faces

∫
N

{{θ}}
r →
B

z
· →n ŝdS. (4.37)

Remark 5. The prescription of non-conservative surface contributions for high-order DG methods have been
previously investigated by Cheng and Shu [10] in the context of the Hamilton-Jacobi equations. Recently,
these methods from the Hamilton-Jacobi community have been applied to approximate the solution of the
ideal MHD equations at high-order on two-dimensional Cartesian meshes [25, 43]. The current work built
upon these previous results to fully generalize the extension of the non-conservative surface contributions into
the three-dimensional, unstructured, curvilinear hexahedral mesh framework and re-contextualize the non-
conservative surface term discretization based on specific non-conservative numerical surface approximations.

The sum over all elements on the third term in (4.21) generates a jump in the entropy fluxes
Nel∑
ν=1

∫
∂Eν ,N

(→
FS · →n

)
ŝdS = −

∑
faces

∫
N

r →
FS

z
· →n ŝdS. (4.38)
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Now, with the results of Lemmas 4 and 5 as well as the results (4.23) and (4.38) we can address the remaining
contributions of the Euler and ideal MHD components at the surface:

Corollary 3 (Entropy contributions of total advective surface terms).
Summing over all elements in (4.21) shows that the contribution of the curvilinear advective and non-
conservative terms on the surface cancel, meaning

Nel∑
ν=1

Γν = 0. (4.39)

Proof. We note that from Lemma 4 we have accounted for the cancellation of the GLM terms. Similar to
the volume term analysis in Corollary 2 we again separate the contributions of the Euler and ideal MHD
terms. It is immediate that the Euler terms drop out from the definition of the entropy flux potential for
the Euler part (2.26) and the separation of the entropy conserving flux condition (4.12)(

JWKT
↔
FEC,Euler −

r
(W)

T ↔
Fa,Euler

z
+

r →
FS

z)
· →n =

(
JWKT

↔
FEC,Euler −

r→
ΨEuler

z)
· →n = 0. (4.40)

For the ideal MHD contributions we make use of the entropy flux potential (2.27) to write(
JWKT

↔
FEC,MHD −

r
WT

↔
Fa,MHD

z)
· →n =

(
JWKT

(↔
FEC,MHD

)
−

r→
ΨMHD

z
+

r
θ

→
B

z)
· →n

=
(
JWKT

(↔
FEC,MHD

)
−

r→
ΨMHD

z
+ JθK

{{ →
B
}}

+ {{θ}}
r →
B

z)
· →n,

(4.41)

where we use a property of the jump operator

JabK = {{a}} JbK + {{b}} JaK . (4.42)

We see that the first three terms on the last line of (4.41) are the entropy conservative flux condition of the
magnetic field components (4.13) and cancel. This leaves the remainder term

−
∑
faces

∫
N

(
JWKT

↔
FEC,MHD −

r
WT

↔
Fa,MHD

z)
· →nŝdS = −

∑
faces

∫
N

{{θ}}
r →
B

z
· →nŝdS. (4.43)

This term is identical to the surface contribution of the non-conservative term from Lemma 5 but with
opposite sign. Thus the final two terms cancel and we get the desired result

Nel∑
ν=1

Γν = 0. (4.44)

4.2. Analysis of the viscous and resistive parts
Lastly, since the discussion of the curvilinear advective and non-conservative parts is now complete, we

focus on the resistive parts, namely the last row of the first equation in (4.1). Again, we first have to select
appropriate numerical fluxes at the interfaces. Thus, we use the computationally simple Bassi-Rebay (BR1)
type approximation [3] in terms of the discrete entropy variables and gradients [28]

Fv,∗n =
{{↔

Fv
}}
· →n, W∗ = {{W}} . (4.45)

With the results from the previous section we are able to prove the main result of this work,

Theorem 2 (Discrete entropy stability of the curvilinear DGSEM for the resistive GLM-MHD equations).
The curvilinear DGSEM for the resistive GLM-MHD equations (3.30) with(

ΦGLM
n ψ

)
♦ =

((↔
ΦGLM

)−
· →n
)
{{ψ}},

(
ΦMHDBn

)
♦ =

(
ΦMHD

)− {{ →
B
}}
·→n, Fa,∗n =

↔
Fa,# ·→n =

↔
FEC ·→n

(4.46)
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and the viscous interface fluxes (4.45) is entropy stable, i.e. for a closed system (periodic boundary condi-
tions) the discrete total entropy is a decreasing function in time

dS̄

dt
≤ 0. (4.47)

Proof. From Corollaries 2 and 3 we know that the volume, surface and non-conservative terms of the
advective portions of the resistive GLM-MHD equations cancel in entropy space. The remaining parts of
the contracted DG approximation are〈

IN(J) Ut,W
〉
N

=
〈→
DS·

↔

F̃v,W
〉
N

+

∫
∂E,N

WT (Fv,∗n − Fvn) ŝdS +
〈
IN(J) R,W

〉
N
,

〈
IN(J)

↔
Q,

↔

F̃v
〉
N

=

∫
∂E,N

W∗,T
(↔
Fv · →n

)
ŝdS−

〈
W,

→
DS·

↔

F̃v
〉
N
.

(4.48)

We consider the first term of the second equation and insert the alternate form of the viscous flux rewritten
in terms of the gradient of the entropy variables as in the continuous analysis (2.38). We use the known
property that the viscous and resistive coefficient matrix K is symmetric positive semi-definite for the resistive
MHD equations to see that〈

IN(J)
↔
Q,

↔

F̃v

〉
N

=
〈
IN(J)

↔
Q,K

↔
Q
〉
N

> min
E,N

(IN(J))
〈↔
Q,K

↔
Q
〉
N
≥ 0, (4.49)

Next, we insert the second equation of (4.48) into the first and use the estimate (4.49) to get〈
IN(J) Ut,W

〉
N
≤
∫

∂E,N

(
WT (Fv,∗n − Fvn) + W∗,TFvn

)
ŝdS +

〈
IN(J) R,W

〉
N

(4.50)

From Remark 4 we know, that we can also ignore the discrete damping source term without violating the
inequality. After summing over all elements we can replace the left hand side by the total entropy derivative
according to (4.2) and obtain

dS

dt
≤ −

∑
faces

∫
N

(
JWKT Fv,∗n −

r
WT

↔
Fv

z
· →n+ (W∗)

T
r↔
Fv

z
· →n
)
ŝdS. (4.51)

In Gassner et al. [28] it is shown that for the BR1 choice (4.45) all the surface terms in (4.51) vanish
identically to zero if periodic boundary conditions are considered, yielding our desired result

dS

dt
≤ 0, (4.52)

which shows that the discrete total entropy is decreasing in time, i.e. that the DGSEM for the resistive
GLM-MHD equations is entropy stable.

Remark 6. It is desirable to introduce additional upwind-type dissipation for advection dominated problems
through the choice of the numerical advection fluxes by replacing the EC fluxes at element interfaces with
e.g. the ES fluxes (4.9).

5. Numerical verification

In this section, we present numerical tests to validate the theoretical findings of the previous sections. We
start with a demonstration of the high-order accuracy for the resistive GLM-MHD system by a manufactured
solution and the entropy conservation for the ideal GLM-MHD system, both on curved meshes. Next, we
verify the GLM divergence cleaning capability of the scheme. Finally, we provide an example, in which
every piece of the presented numerical solver is exercised, to demonstrate the increased robustness and
applicability of the entropy stable DG approximation for the resistive GLM-MHD equations. Specifically,
we use a three-dimensional, viscous version of the well-known Orszag-Tang vortex, e.g. [18] to show the

22



value of the entropy stable framework in conjunction with GLM hyperbolic divergence cleaning in providing
numerical stability.

All numerical computations in this work are performed with the open source, three-dimensional curvilin-
ear split form DG framework for the resistive MHD equations FLUXO (www.github.com/project-fluxo).
FLUXO is written in modern Fortran and its non-blocking pure MPI parallelization shows excellent strong
and weak scaling on modern HPC architectures. The three-dimensional high order meshes for the simula-
tions are generated with the open source tool HOPR (www.hopr-project.org). All simulation results are
obtained with an explicit five stage, fourth order accurate low storage Runge-Kutta scheme [6], where a
stable time step is computed according to the adjustable coefficient CFL∈ (0, 1], the local maximum wave
speed, the viscous eigenvalues, and the relative grid size, e.g. [26]. Unless otherwise stated, we set the
damping parameter α = 0 and the GLM propagation speed ch to be proportional to the maximum advective
wave speed.

5.1. Curved periodic meshes
In this work, all numerical results are obtained on fully periodic curved meshes. The discussion on entropy

stable boundary conditions for the resistive MHD equations is ongoing research. To generate the curved
mesh, we first define the high order element nodes on a standard cartesian mesh with periodic boundary
conditions, in the space variables →

χ = (χ1, χ2, χ3)T . The curved mesh is then generated by applying a
transformation function to all high order nodes mapping them to physical space →

x defined by

x` = χ` + 0.1 sin(πχ1) sin(πχ2) sin(πχ3) , ` = 1, 2, 3 . (5.1)

As shown in Figure 1, two mesh types will be considered throughout this section. Type (a) with flat periodic
boundaries and curved element faces inside, using →

χ ∈ [0, 1]3 and type (b) with curved element interfaces,
using →

χ∈ [−0.6, 1.4]×[−0.8, 1.2]×[−0.7, 1.3], being still fully periodic and conforming.

(a)
→
χ∈ [0, 1]3

(b)
→
χ∈ [−0.6, 1.4]×[−0.8, 1.2]×[−0.7, 1.3]

Figure 1: Two types of fully periodic curved meshes, shown for 43 elements, generated via the transformation function (5.1).

5.2. High-Order Convergence on 3D Curvilinear Meshes
In order to verify the high-order approximation of the entropy stable DG discretization (3.30) for the

resistive GLM-MHD system (2.8), we run a convergence test with the method of manufactured solutions.
To do so, we assume a solution of the form

u =
[
h, h, h, 0, 2h2 + h, h,−h, 0, 0

]T with h = h(x, y, z, t) = 0.5 sin(2π(x+ y + z − t)) + 2. (5.2)
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The main advantage of this choice is, that it is symmetric and spatial derivatives cancel with temporal
derivatives, i.e.

hx = hy = hz = −ht. (5.3)

Hence, the additional residual for the resistive GLM-MHD system reads

ut +
→
∇ ·

↔
fa(u)−

→
∇ ·

↔
fv(u,

→
∇u) =



hx
hx + 4hhx
hx + 4hhx

4hhx
hx + 12hhx − 6µR(h2

x + hhxx)− 6µNShxx/Pr
hx − 3µRhxx
−hx + 3µRhxx

0
0


(5.4)

for γ = 2 and Pr= 0.72. In order to solve the inhomogeneous problem, we subtract the residual from the
approximate solution in each Runge-Kutta step. Moreover, we run the test case up to the final time T =1.0
and we set µNS = µR = 0.005. For all computations we use mesh type (b) from Figure 1 with a varying
number of elements.

Finally, we obtain the convergence results illustrated in Tables 1 and 2 that confirm the high-order
accuracy of the scheme on curvilinear meshes in three spatial dimensions. The errors of v2 and B2 are
similar to the ones of v1 and B1 and, thus, not presented in the tables.

Nel L2(%) L2(v1) L2(v3) L2(p) L2(B1) L2(B3) L2(ψ)

43 1.62E-01 1.74E-01 1.42E-01 3.42E-01 1.19E-01 1.65E-02 2.03E-02
83 6.11E-03 8.38E-03 6.13E-03 1.59E-02 3.51E-03 2.18E-03 1.19E-03
163 2.40E-04 5.02E-04 3.40E-04 1.18E-03 1.39E-04 1.09E-04 6.06E-05
323 1.93E-05 2.51E-05 1.54E-05 7.42E-05 7.56E-06 2.80E-06 3.40E-06

avg EOC 4.34 4.25 4.39 4.06 4.65 4.18 4.18

Table 1: L2-errors and EOC of manufactured solution test for resistive GLM-MHD and N=3.

Nel L2(%) L2(v1) L2(v3) L2(p) L2(B1) L2(B3) L2(ψ)

43 1.11E-01 1.66E-01 1.06E-01 2.76E-01 7.50E-02 5.95E-02 1.87E-02
83 2.49E-03 5.01E-03 3.96E-03 1.17E-02 2.39E-03 2.02E-03 8.44E-04
163 7.88E-05 1.45E-04 1.04E-04 3.92E-04 5.84E-05 4.52E-05 3.03E-05
323 2.75E-06 3.51E-06 2.44E-06 1.17E-05 1.46E-06 7.18E-07 1.50E-06

avg EOC 5.10 5.18 5.13 4.84 5.21 5.45 4.54

Table 2: L2-errors and EOC of manufactured solution test for resistive GLM-MHD and N=4.

We note, if we apply an entropy conservative approximation to this test case, the convergence order would
exhibit an odd/even effect depending on the polynomial degree. This phenomenon of optimal convergence
order for even and sub-optimal convergence order for odd polynomial degrees has been previously observed
for entropy conservative DG approximations, e.g. [27, 29].

5.3. Entropy Conservation on 3D Curvilinear Meshes
Next, we demonstrate the discrete entropy conservation of the newly proposed method, both with and

without the GLM terms. As such, we deactivate the numerical dissipation introduced by the interface
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stabilization terms (4.9) and set µNS = µR = 0 to remove the resistive terms, because entropy conservation
only applies to the ideal equations.

We choose mesh type (b) from Figure 1 with a resolution of 73 =343 elements. As well-resolved smooth
solutions would result in very small changes of total entropy anyway, we purposely select a more challenging
test case initializing a moving spherical blast wave in a constant magnetic field. The inner and outer states
are given in Table 3 and are blended over a distance of approximately δ0 with the blending function

u =
uinner + λuouter

1 + λ
, λ = exp

[
5

δ0
(r − r0)

]
, r = ‖→x− →

xc‖ . (5.5)

The parameters are →
xc = (0.3, 0.4, 0.2), r0 = 0.3, δ0 = 0.1 and we set γ= 5/3. A visualization of the initial

state is shown in Figure 3.

% v1 v2 v3 p B1 B2 B3 ψ

inner 1.2 0.1 0.0 0.1 0.9 1.0 1.0 1.0 0.0

outer 1.0 0.2 −0.4 0.2 0.3 1.0 1.0 1.0 0.0

Table 3: Inner and outer primitive states for the entropy conservation test.

We know, that the entropy conservative scheme is essentially dissipation-free by construction. There-
fore, even in the case of discontinuous solutions, the only dissipation introduced into the approximation is
through the time integration scheme. Hence, we can use the error in the total entropy as a measure of the
temporal convergence of the method. In particular, the total entropy at time t is computed in the discrete
approximation by (4.2). We know that by reducing the CFL number, the dissipation of the time integration
scheme decreases and entropy conservation is captured more accurately, e.g. [24]. Figure 2 confirms this
precise behavior, for N =4 and N =5 using a fourth order Runge-Kutta time integrator. For small enough
time steps, the EC scheme conserves entropy discretely up to numerical roundoff even for this discontinuous
test case. The same behavior is observed for the EC scheme without the GLM terms. We also demonstrate,
that the entropy change for the entropy stable scheme including additional dissipation through the numerical
surface fluxes is independent of the time step.

ES N=4
EC N=4
EC N=5
∼(Δt)4.2

E
n

tr
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Figure 2: Log-log plot of entropy change from the initial entropy S0 to S(t = 0.5), over the timestep.

As the EC scheme has virtually no built-in dissipation, all EC simulations crash due to negative pressure,
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independently of the CFL number, after T ≈ 0.72, 0.61 for N = 4, 5 respectively. In Figure 3, the N = 4
simulation results at T = 0.5 of the EC and ES scheme are visualized and clearly underline the difference
between the EC and the ES results, although dissipation is only added at the element interfaces.

Figure 3: Entropy conserving test of ideal GLM-MHD equations for N =4: Pressure distribution, left at initialization, the
EC scheme in the middle at T = 0.5 and the ES scheme on the right.

In all simulations, we use the discretely divergence-free metric terms computed via the discrete curl form
[37], a necessary condition pointed out in the entropy conservation proofs. We note that, when using the
N = 4 EC scheme with cross-product metrics instead, the discrete entropy conservation property is broken
with an absolute entropy change > 10−8 and even with the wrong sign for CFL numbers ≤ 0.4.

5.4. GLM Divergence Cleaning
In order to demonstrate the reduction of the divergence error in the magnetic field, we use a maliciously

chosen non-divergence-free initialization in Ω = [0, 1]
3 defined by a Gaussian pulse in the x−component of

the magnetic field proposed in [1]:

%(x, y, 0) = 1, E(x, y, 0) = 6, B1(x, y, 0) = exp

(
−1

8

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

0.02752

)
.

The other initial values are set to zero and the boundaries are periodic. Again we set γ = 5/3 and turn off
physical viscosity. In Figure 4 we illustrate the time evolution of the normalized discrete divergence error
measured in terms of ‖

→
∇ ·

→
B‖L2(Ω) for N = 3 and mesh type (a) with 203 elements. Here, we show the

simulation results of the ideal GLM-MHD approximation, in which the divergence error is solely propagated
through the domain. However, due to the periodic nature of the boundaries, it is known that the divergence
errors will simply advect back into the domain [11] with only minimal damping due to the high-order nature
of the DG scheme. As such, we provide a study comparing the no divergence cleaning case (ch = 0) against
the GLM with additional damping and varying the value of α in (2.17). We see in Figure 4 that without
GLM divergence cleaning the simulation even crashes at t ≈ 3.4 and for α > 0 the divergence error decays
over time.

5.5. Robustness test
Lastly, we use the Orszag-Tang vortex to demonstrate the increased robustness of the entropy stable

approximation including GLM divergence cleaning. To do so, we use a three-dimensional extension of this
test case proposed by Elizarova and Popov [18] as well as consider a viscous version of the standard test
problem, similar to Altmann [1]. This test is particularly challenging because the initial conditions are
simple and smooth, but evolve to contain complex structures and energy exchanges between the velocity
and magnetic fields.
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Figure 4: Temporal evolution of the normalized discrete L2 error in the divergence-free condition for N = 3 in each spatial
direction on 203 curved elements.

% v1 v2 v3 p B1 B2 B3 ψ
25

36π − sin(2πz) sin(2πx) sin(2πy) 5
12π − 1

4π sin(2πz) 1
4π sin(4πx) 1

4π sin(4πy) 0.

Table 4: Initial condition the the 3D Orzag-Tang vortex in in primivtive variables.

The domain is Ω = [0, 1]3 with periodic boundary conditions and the initial data is given in Table 4. We
choose γ = 5/3 and a Prandtl number of Pr=0.72, and set the viscosity and resistivity parameters to

µNS = 10−3, µR = 6× 10−4 (5.6)

which correspond to a kinematic Reynolds number (Re) of 1000 and a magnetic Reynolds number (Rem)
of approximately 1667. The initial conditions evolve to a final time of T = 0.5. The simulation uses a
polynomial order N=7 in each spatial direction on a 10×10×10 element internally curved hexahedral mesh,
Fig. 1(a).

We successfully run the entropy stable DGSEM for the resistive GLM-MHD equations up to the final
time. The magnetic energy, 1

2‖
→
B‖2, is visualized in Fig. 5 for the initialization, time T =0.25 as well as the

final time T =0.5. Further, we find that the standard DGSEM, e.g. [33], for this resistive GLM-MHD model
crashes at T ≈0.42 due to the generation of negative pressure values. Also, we shrank the time step for the
entropy stable as well as the standard DG runs and find the same numerical stability results. This reinforces
that the numerical instabilities in the approximate flow are caused by errors other than those introduced
by the time integration scheme. These results demonstrate the strong benefits of using an entropy stable
formulation for such a complex configuration.

6. Conclusions

In this work, we have presented a novel entropy stable nodal DG scheme for the resistive MHD equations
including GLM divergence cleaning on curvilinear unstructured hexahedral meshes. First, we have analyzed
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Figure 5: Visualization of the time evolution of the magnetic energy for the three-dimensional viscous Orszag-Tang vortex
with polynomial order N=7 in each spatial direction on a 10×10×10 internally curved hexahedral mesh, e.g. Fig. 1(a). The
upper left part of the mesh is not shown to visualize interior element boundaries.

the continuous entropic properties of the underlying system in order to demonstrate that the resistive GLM-
MHD equations satisfy the entropy inequality. This also provided guidance for the semi-discrete analysis.
We carefully have split the different terms in the DGSEM and investigated the individual discrete entropy
contributions step by step.

We have validated our theoretical analysis with several numerical results. In doing so, we have introduced
the open source framework FLUXO (www.github.com/project-fluxo) that implements a high-order, en-
tropy stable, nodal DGSEM for the resistive GLM-MHD equations. In particular, we have shown with the
method of manufactured solutions, that the entropy stable DGSEM solver described in this work is high-order
accurate on curvilinear meshes. Next, we have verified the entropy conservative nature as well as the GLM
divergence cleaning of the underlying scheme for the ideal part of the equations, also on three-dimensional
curvilinear meshes. Finally, the last numerical test of a three-dimensional viscous Orszag-Tang vortex re-
veals that the entropy stable discretization with hyperbolic divergence cleaning significantly improves the
robustness compared to the standard DGSEM.
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Appendix A. Dissipation matrices for entropy variables

In this section we explicitly state the missing block matrices necessary to define the diffusion terms for
the entropy stable approximation of the resistive GLM-MHD equations from Lemma 1:

K12 =
1

w5



0 0 0 0 0 0 0 0 0

0 0 2µNS

3 0 − 2µNSw3

3w5
0 0 0 0

0 −µNS 0 0 µNSw2

w5
0 0 0 0

0 0 0 0 0 0 0 0 0

0 µNSw3

w5
− 2µNSw2

3w5
0 −µNSw2w3

3w2
5

0 0 0 0

0 0 0 0 µRw6w7

w2
5

−µRw7

w5
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 −µRw6

w5
µR 0 0 0

0 0 0 0 0 0 0 0 0



(A.1)

K13 =
1

w5



0 0 0 0 0 0 0 0 0

0 0 0 2µNS

3 − 2µNSw4

3w5
0 0 0 0

0 0 0 0 0 0 0 0 0

0 −µNS 0 0 µNSw2
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Appendix B. Proof of Lemma 2 (Entropy contribution of the curvilinear ideal MHD volume
terms)

In this section we show that the volume contributions of the ideal MHD equations and the non-
conservative terms cancel in entropy space. In order to do so, we first expand each of the volume contribution
from the advective terms〈→

D·
↔

F̃EC,MHD,W
〉
N

=

N∑
i,j,k=0

ωijkW
T
ijk

[
2

N∑
m=0

Dim
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

+ 2

N∑
m=0

Djm
(↔
FEC,MHD(Uijk,Uimk) ·

{{
J

→
a 2
}}
i(j,m)k

)

+ 2

N∑
m=0

Dkm
(↔
FEC,MHD(Uijk,Uijm) ·

{{
J

→
a 3
}}
ij(k,m)

)]
(B.1)

and the non-conservative term〈
ΦMHD

→
DNC

div ·
→

B̃,W
〉
N

=

N∑
i,j,k=0

ωijkW
T
ijk

[
N∑
m=0

DimΦMHD
ijk

( →
Bmjk ·

{{
J

→
a 1
}}

(i,m)jk

)

+

N∑
m=0

DjmΦMHD
ijk

( →
Bimk ·

{{
J

→
a 2
}}
i(j,m)k

)

+

N∑
m=0

DkmΦMHD
ijk

( →
Bijm ·

{{
J

→
a 3
}}
ij(k,m)

)]
.

(B.2)

We then focus on the ξ−direction term of the volume integral approximations, which greatly simplifies the
analysis (as the other directions are done in an analogous manner). The sum of (B.1) can be written in
terms of the SBP matrix (3.15), Qim = ωiDim,

N∑
i,j,k=0

ωijkW
T
ijk2

N∑
m=0

Dim
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

=

N∑
j,k=0

ωjk

N∑
i=0

WT
ijk

N∑
m=0

2ωiDim
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

=

N∑
j,k=0

ωjk

N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
.

(B.3)
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We use the summation-by-parts property 2Qim = Qim − Qmi + Bim, perform a reindexing of i and m to
subsume the Qmi term and use the facts that

↔
FEC,MHD(Uijk,Umjk) and the average operator of the metric

term
{{
Ja1

}}
(i,m)jk

are symmetric with respect to the index i and m to rewrite the ξ−direction contribution
to the volume integral approximation as

N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
=

N∑
i,m=0

WT
ijk (Qim −Qmi + Bim)

(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

=

N∑
i,m=0

Qim(Wijk −Wmjk)
T
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
+ BimWT

ijk

(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
.

(B.4)

Because the proof at hand only concerns ideal MHD terms, we are only concerned with the entropy
conservation condition (4.13), which we use to replace the first terms in (B.4) with

(Wijk −Wmjk)
T

FEC,MHD
` (Uijk,Umjk) =

(
ΨMHD
`

)
ijk
−
(
ΨMHD
`

)
mjk
− 1

2

(
(B`)ijk + (B`)mjk

)
(θijk − θmjk)

(B.5)

for ` = 1, 2, 3.
Furthermore, note that the entries of the boundary matrix B are only non-zero when i = m = 0 or

i = m = N , so

BimWT
ijkF

EC,MHD
` (Uijk,Umjk) = Bim

((
ΨMHD
l

)
ijk
− θijk (B`)ijk

)
(B.6)

for ` = 1, 2, 3.
We substitute (B.5) and (B.6) into the final line of (B.4) to find

N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,MHD(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
=

N∑
i,m=0

Qim
([

→
ΨMHD
ijk −

→
ΨMHD
mjk −

1

2

( →
Bijk +

→
Bmjk

)
(θijk − θmjk)

]
·
{{
J

→
a 1
}}

(i,m)jk

)
+ Bim

([→
ΨMHD
ijk − θijk

→
Bijk

]
·
{{
J

→
a 1
}}

(i,m)jk

)
.

(B.7)

We next examine the terms of the sum (B.7) systematically from left to right. Now, because the derivative
of a constant is zero (i.e. the rows of Q sum to zero),

N∑
i,m=0

Qim
(→

ΨMHD
ijk ·

{{
J

→
a 1
}}

(i,m)jk

)
=

1

2

N∑
i=0
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ΨMHD
ijk ·

(
J

→
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)
ijk
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Qim +
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2

N∑
i,m=0

Qim
(→

ΨMHD
ijk ·

(
J

→
a 1
)
mjk

)

=
1

2

N∑
i,m=0

Qim
(→

ΨMHD
ijk ·

(
J

→
a 1
)
mjk

)
.

(B.8)

Next, on the second term, we use the summation by parts property (3.15), reindex on the Qmi term, and
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the symmetric property of the arithmetic mean to rewrite

−
N∑

i,m=0

Qim
(→

ΨMHD
mjk ·

{{
J

→
a 1
}}

(i,m)jk

)
= −

N∑
i,m=0

(Bim −Qmi)
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ΨMHD
mjk ·
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J
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}}

(i,m)jk

)
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N∑
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ijk ·
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J
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}}

(i,m)jk

)
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N∑
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Bim
(→

ΨMHD
ijk ·
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J

→
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}}

(i,m)jk

)
+

N∑
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ΨMHD
ijk ·
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J

→
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}}

(i,m)jk
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i,m=0

Bim
(→

ΨMHD
ijk ·
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J
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}}

(i,m)jk

)
+

1

2

N∑
i,m=0

Qim
(→

ΨMHD
ijk ·

(
J

→
a 1
)
mjk

)
,

(B.9)

where, again, one term in the second arithmetic mean drops out due to consistency of the matrix Q.
We come next to the terms involving

→
B and θ in (B.7). We leave these terms grouped for convenience

and first expand to find
N∑

i,m=0

Qim
([
−1

2

( →
Bijk +

→
Bmjk

)
(θijk − θmjk)

]
·
{{
J

→
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}}

(i,m)jk

)
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θijk
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Bmjk

]
·
{{
J

→
a 1
}}

(i,m)jk

)
.

(B.10)

We examine each term from (B.10): for the first term we use the consistency of Q, the second term is left
alone, the third term makes a reindexing of i and m, and the fourth term applies the SBP property to obtain

−1

2

N∑
i,m=0

Qim
([
θijk

→
Bijk + θijk
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Bmjk − θmjk

→
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J
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}}
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J
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J
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}}

(i,m)jk

)
.

(B.11)

Next, we use the SBP property on the Qmi term in the second sum of (B.11) and reindex i and m in the
third term to get

−1

2

N∑
i,m=0

Qim
([
θijk

→
Bijk + θijk
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Bmjk − θmjk

→
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]
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J
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}}
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4
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J
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)
mjk
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2
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J
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}}
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)
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2

N∑
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J

→
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}}

(i,m)jk

)
.

(B.12)

It is clear now that the terms with the boundary matrix, B, combine from the second and third terms of
(B.12). Also, the i term of the Qim piece of the third term cancels due to consistency (similar to (B.8)).
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The remaining part of the third term then combines with the first term arriving at

−1

2

N∑
i,m=0

Qim
([
θijk

→
Bijk + θijk

→
Bmjk − θmjk

→
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N∑
i,m=0

Qimθijk
( →
Bijk ·

(
J

→
a 1
)
mjk

)
−

N∑
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)

+
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(i,m)jk

)
.

(B.13)

Combining the results of (B.8), (B.9), and (B.13), we rewrite (B.7) to have

N∑
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ijk

N∑
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J

→
a 1
}}

(i,m)jk

)
= −

N∑
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)
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J
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}}

(i,m)jk

)
.

(B.14)

Conveniently, several terms in (B.14) cancel to leave

N∑
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WT
ijk

N∑
m=0
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J
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}}
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=
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ijk ·
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)
−
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J
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}}

(i,m)jk

)
.

(B.15)

We are now prepared to revisit the contributions from the non-conservative volume terms (B.2), which
read in the ξ−direction as

N∑
i,j,k=0

ωijkW
T
ijk

N∑
m=0

DimΦMHD
ijk

( →
Bmjk ·
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J
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=
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=
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ijk
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J
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}}
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)

=

N∑
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N∑
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J
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}}

(i,m)jk

)
,

(B.16)

where we use the definition of the SBP matrix and the property (2.23) contracting the non-conservative
term into entropy space. Comparing the result (B.16) and the last term of (B.15) we see that they cancel
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when added together. Thus, the contribution in the ξ−direction is

N∑
j,k=0

ωjk

N∑
i=0

WT
ijk

[
N∑
m=0

2Qim
(↔
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(B.17)

Summarized, the total contribution of the ξ−direction of (B.1) and (B.2) in the volume term is
N∑

i,j,k=0

ωijkW
T
ijk2

N∑
m=0

Dim
([↔
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)
,

(B.18)

where we returned the polynomial derivative matrix due to the property Qim = ωiDim.
Similar results hold for the η− and ζ−directions of the volume integral approximations leading to〈→
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〉
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N∑
m=0

Djm
([

→
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N∑
m=0

Dkm
([

→
ΨMHD
ijk − 1

2
θijk

→
Bijk

]
·
(
J

→
a 3
)
ijm

)
.

(B.19)

Regrouping these volume terms we have shown that〈→
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=

N∑
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(B.20)

which gives the desired result (4.15), provided the metric identities are satisfied discretely, i.e., that
N∑
m=0

Dim
(
Ja1

n

)
mjk

+Djm
(
Ja2

n

)
imk

+Dkm
(
Ja3

n

)
ijm

=

3∑
l=1

∂

∂ξl
IN
(
Jaln

)
= 0 (B.21)

for n = 1, 2, 3 at all LGL nodes i, j, k = 0, . . . , N within an element.

37



Appendix C. Proof of Lemma 3 (Entropy contribution of the curvilinear GLM volume terms)

In this section, we demonstrate that the GLM volume contributions of (3.30) reduce to zero in entropy
space, i.e,〈→

D·
↔

F̃EC,GLM,W
〉
N

+
〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

= 0. (C.1)

We begin with the term arising from the
↔

F̃EC,GLM. Similar to the proof in Appendix B, we first expand
each of the volume contributions〈→

D·
↔

F̃EC,GLM,W
〉
N

=

N∑
i,j,k=0

ωijkW
T
ijk

[
2

N∑
m=0

Dim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

+ 2

N∑
m=0

Djm
(↔
FEC,GLM(Uijk,Uimk) ·

{{
J

→
a 2
}}
i(j,m)k

)

+ 2

N∑
m=0

Dkm
(↔
FEC,GLM(Uijk,Uijm) ·

{{
J

→
a 3
}}
ij(k,m)

)]
.

(C.2)

Again, focus is given to the ξ−direction term, as the other spatial directions follow from an analogous
argument. The sum can be written in terms of the SBP matrix (3.15), Qim = ωiDim,

N∑
i,j,k=0

ωijkW
T
ijk2

N∑
m=0

Dim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

=

N∑
j,k=0

ωjk

N∑
i=0

WT
ijk

N∑
m=0

2ωiDim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

=

N∑
j,k=0

ωjk

N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
.

(C.3)

We apply the summation-by-parts property 2Qim = Qim −Qmi + Bim, perform a reindexing of i and m to
subsume the Qmi term and use the symmetry with respect to the index i and m of

↔
FEC,GLM(Uijk,Umjk)

and the average operator of the metric term
{{
Ja1

}}
(i,m)jk

to rewrite the ξ−direction contribution as

N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
=

N∑
i,m=0

WT
ijk (Qim −Qmi + Bim)

(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)

=

N∑
i,m=0

Qim (Wijk −Wmjk)
T
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
+ BimWT

ijk

(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
.

(C.4)

The current proof only contains GLM terms, so we are only concerned with the entropy conservation
condition (4.14), which we use to replace the first terms in (C.4) with

(Wijk −Wmjk)
T

FEC,GLM
` (Uijk,Umjk) =

(
ΨGLM
`

)
ijk
−
(
ΨGLM
`

)
mjk

, ` = 1, 2, 3 . (C.5)

Furthermore, recall that the entries of the boundary matrix B are only non-zero when i = m = 0 or
i = m = N , thus

BimWT
ijkF

EC,GLM
` (Uijk,Umjk) = Bim

(
ΨGLM
`

)
ijk

, ` = 1, 2, 3. (C.6)
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We substitute (C.5) and (C.6) into the final line of (C.4) to find
N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}

(i,m)jk

)
=

N∑
i,m=0
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ΨGLM
ijk −

→
ΨGLM
mjk

]
·
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J

→
a 1
}}

(i,m)jk

)
+ Bim

(→
ΨGLM
ijk ·

{{
J

→
a 1
}}

(i,m)jk

)
.

(C.7)

We individually examine the terms of the sum (C.7) from left to right. Due to the consistency of the SBP
matrix (i.e. the rows of Q sum to zero),

N∑
i,m=0

Qim
(→

ΨGLM
ijk ·

{{
J

→
a 1
}}

(i,m)jk

)
=

1

2

N∑
i=0
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ijk ·

(
J

→
a 1
)
ijk

) N∑
m=0
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1

2

N∑
i,m=0
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(→

ΨGLM
ijk ·

(
J

→
a 1
)
mjk

)

=
1

2

N∑
i,m=0

Qim
(→

ΨGLM
ijk ·

(
J

→
a 1
)
mjk

)
.

(C.8)

On the second term, we apply the summation by parts property (3.15), reindex on the Qmi term, and utilize
the symmetric property of the arithmetic mean to rewrite

−
N∑

i,m=0

Qim
(→

ΨGLM
mjk ·

{{
J

→
a 1
}}

(i,m)jk

)
= −

N∑
i,m=0

(Bim −Qmi)
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ΨGLM
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J
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}}
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)

= −
N∑
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(Bim −Qim)
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ΨGLM
ijk ·
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J

→
a 1
}}

(i,m)jk

)

= −
N∑

i,m=0

Bim
(→

ΨGLM
ijk ·

{{
J

→
a 1
}}

(i,m)jk

)
+

N∑
i,m=0

Qim
(→

ΨGLM
ijk ·

{{
J

→
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}}

(i,m)jk
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= −
N∑

i,m=0

Bim
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ΨGLM
ijk ·

{{
J

→
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}}

(i,m)jk

)
+

1

2
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i,m=0

Qim
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ΨGLM
ijk ·

(
J

→
a 1
)
mjk

)
,

(C.9)

where, again, one term in the second arithmetic mean drops out due to consistency of the matrix Q.
Substituting the results (C.8) and (C.9) into (C.7) we find the terms containing the boundary matrix,

B, cancel and the remaining terms combine to become
N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,GLM(Uijk,Umjk) ·
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J
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a 1
}}

(i,m)jk
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J
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)
mjk

)
(C.10)

Thus, the total contribution in the ξ−direction in found to be
N∑

j,k=0

ωjk

N∑
i=0

WT
ijk

N∑
m=0

2Qim
(↔
FEC,GLM(Uijk,Umjk) ·

{{
J

→
a 1
}}
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J
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a 1
)
mjk

) (C.11)

where we reintroduce the derivative matrix instead of the SBP matrix from the property Qim = ωiDim.

39



Similar results hold for the η− and ζ−directions of the GLM volume integral approximations leading to〈→
D·

↔

F̃EC,GLM,W
〉
N

=

N∑
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a 3
)
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)
.

(C.12)

Regrouping these volume terms we have shown that〈→
D·

↔

F̃EC,GLM,W
〉
N

=

N∑
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1,ijk
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(C.13)

which makes this term vanish, provided the metric identities are satisfied discretely, i.e., that
N∑
m=0

Dim
(
Ja1

n

)
mjk

+Djm
(
Ja2

n

)
imk

+Dkm
(
Ja3

n

)
ijm

= 0 (C.14)

for n = 1, 2, 3 at all LGL nodes i, j, k = 0, . . . , N within an element.
Next, we verify that the non-conservative GLM volume term vanishes. So, we consider the following〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

=

N∑
i,j,k=0

ωijkW
T
ijk
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N∑
m=0
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(C.15)

We factor out the
↔
ΦGLM term because it has no m dependence to find〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

=

N∑
i,j,k=0

ωijk

(
WT
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↔
ΦGLM
ijk
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·
[
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]
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(C.16)

As in the continuous case (2.24), (WT
ijk

↔
ΦGLM
ijk ) = 0 holds point-wise, leading to the desired result〈↔

Φ̃GLM ·
→
DNC

gradψ,W
〉
N

= 0. (C.17)
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