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ABSTRACT
Drug efficacy depends on its capacity to permeate across the cell membrane. We consider the prediction of passive drug–membrane per-
meability coefficients. Beyond the widely recognized correlation with hydrophobicity, we additionally consider the functional relationship
between passive permeation and acidity. To discover easily interpretable equations that explain the data well, we use the recently proposed
sure-independence screening and sparsifying operator (SISSO), an artificial-intelligence technique that combines symbolic regression with
compressed sensing. Our study is based on a large in silico dataset of 0.4 × 106 small molecules extracted from coarse-grained simulations.
We rationalize the equation suggested by SISSO via an analysis of the inhomogeneous solubility–diffusion model in several asymptotic acidity
regimes. We further extend our analysis to the dependence on lipid-membrane composition. Lipid-tail unsaturation plays a key role but sur-
prisingly contributes stepwise rather than proportionally. Our results are in line with previously observed changes in permeability, suggesting
the distinction between liquid-disordered and liquid-ordered permeation. Together, compressed sensing with analytically derived asymp-
totes establish and validate an accurate, broadly applicable, and interpretable equation for passive permeability across both drug and lipid-tail
chemistry.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053931

I. INTRODUCTION
Passive lipid-membrane permeation is and remains of great

relevance for pharmaceutical applications and an improved physic-
ochemical understanding of small-sized molecules in complex bio-
logical materials.1,2 The technological implications of the problem
have sustained the need for experiment- and simulation-free pre-
diction of passive permeation, which are rapid, inexpensive, and
accurate.3,4 Various types of surrogate models have been proposed
over the years, with the field having adopted machine learning early
on.5 While modern deep-learning approaches take advantage of
unchallenged model expressivity to offer unprecedented prediction
accuracy, they suffer from two important drawbacks:

1. Overfitting: The size of chemical space of drug-like molecules
is overwhelmingly large (∼1060 compounds).6 Deep surro-
gate models need large numbers of parameters to establish

complex relationships. Unfortunately, the body of experi-
mentally available data is minuscule compared to the size
of chemical space. This can lead to surrogate models that
shift dangerously upon addition/removal of small numbers
of compounds in the training set. The problem is aggra-
vated by databases that are often proprietary, preventing
broad availability and reproducibility. Relying on different
measurement batches tends to also accentuate systematic
errors.

2. Lack of interpretability: Surrogate models are oftentimes
black-box techniques that typically cloud why a certain pre-
diction has been made. Deep neural networks exhibit an over-
whelming number of parameters and rely on highly non-
linear hierarchical functions, making them nearly impossible
to conceptually grasp.7 Quantitative structure–activity rela-
tionship (QSAR) models can build multivariate models, but
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the combination of too many descriptors will lead to similar
difficulties. Beyond predicting individual datapoints, we seek
to gain further insight. Insight is essential, for instance, as a
stepping stone to solving the inverse problem, thereby estab-
lishing structure–property relationships and enabling com-
pound design.

In this work, we address these points using a combination
of approaches. Critically, we address overfitting by relying on
large datasets applied to simple models. Instead of experimental
approaches, we base our study on in silico measurements, taking
advantage of the rapid rise in high-throughput molecular dynam-
ics simulations.8 All-atom simulations offer a gold standard in
terms of simulation-based permeability modeling that can reach
exquisite correlation against experimental reference, but their over-
whelming computational costs unfortunately limit studies to tens
of compounds.9–11 Here, instead, we use an approach based on
particle-based coarse-grained (CG) simulations, making use of the
transferable Martini model.12–15 The Martini model sacrifices some
chemical resolution but retains the essential driving force, mainly
the partitioning coefficient of a chemical group between different
phases. This allows the CG approach to recover excellent accuracy,
1.4 kcal/mol along a potential of mean force (PMF), translating
to 1 log10 unit in the permeability coefficient, validated across an
extensive set of structurally distinct compounds against both atom-
istic simulations and experimental measurements.16 Critically, the
accuracy of the CG model is accompanied by a three-orders-of-
magnitude speedup compared to atomistic simulations. The high-
throughput coarse-grained (HTCG) simulations offer unprecedent-
edly large databases of permeability coefficients: Menichetti et al.
reported results for 511 427 compounds.16 The ability to screen over
so many compounds results mainly from the transferable nature
of the coarse-grained model—many molecules map to the same
set of CG beads, which effectively reduces the size of chemical
space.17 The benefits for an efficient computational-screening proce-
dure outweigh the impinged degeneracy, as indicated by the above-
mentioned accuracy. Overall, the database contains a nearly exhaus-
tive subset of small organic molecules in the range of 30–160 Da,
thereby ensuring a dense coverage of the chemical space in this sub-
set. A deeper analysis of this large database is the subject of this
study.

As for the data-driven model, we explicitly avoid building and
using a black-box model and instead turn to learning an equation.
In particular, we will rely on recently proposed data-driven tech-
niques to discover equations.18,19 Equations relevant to physical
problems often display simplifying properties, such as symme-
tries or separability, easing both their data-driven discovery
and generalization beyond the training set. Several studies have
demonstrated the ability to (re)discover physics equations.20,21

Generalization capabilities are critical, because typical training
datasets are minuscule relative to the size of chemical compound
space, such that overfitting can easily prevail. How do we discover
simple equations from the data? To this end, we follow Occam’s
razor and limit the complexity of the equations we consider.
The combination of descriptors through various mathematical
operators will lead to an overwhelming number of trial equations,
many of which may fit the data similarly well. Following ideas
from compressed sensing, we select simple equations by applying
the ℓ0 regularization. Identifying simple equations benefits both

generalization aspects and also interpretability, i.e., rationalizing the
derived equation.

Passive drug permeation measures the propensity of a solute
to spontaneously cross a lipid membrane. In this paper, we exclude
transporter-mediated uptake to focus solely on thermal diffusion.22

Upon doing so, the solute interacts with a great variety of physico-
chemical environments—from an aqueous phase to a hydrophobic
membrane core. Permeation is quantified by means of its coefficient,
P, as the steady state flux of the solute across the soft interface. Early
on, Meyer23 and Overton24 modeled passive permeation as diffu-
sion across a homogeneous slab via P = KD/σ, where K and D are
the water/membrane partitioning coefficient and diffusivity of the
compound, respectively, and σ is the thickness of the bilayer core.
K is typically approximated by a simpler proxy, namely, the parti-
tioning coefficient between water and octanol. Water/octanol parti-
tion, or more generally hydrophobicity, has long been identified as
strongly correlating with membrane permeability.25 Notable refine-
ments to the homogeneous Meyer–Overton rule include the inho-
mogeneous solubility–diffusion model (ISDM), estimating the per-
meability coefficient via an integral over the membrane extension, z,
of its PMF, G(z), as

P−1
= ∫ dz R(z) = ∫ dz

exp[βG(z)]
D(z)

, (1)

where R(z) and β = 1/kBT correspond to the associated resistiv-
ity and the inverse temperature, respectively.26 The competition
between different protonation states naturally follows the sum of
inverse resistivities, analogous to the total resistance in a paral-
lel electrical circuit.10 PMFs are shifted according to the difference
between the solution’s pH and the compound’s acid dissociation
constant, pKa. In the following, we take the perspective of a neu-
tral compound, which can deprotonate (acidic, apKa) or protonate
(basic, bpKa). Knowledge of the PMF(s) and the diffusivity thereby
fully determines the permeability coefficient. Unfortunately, these (i)
are so far only available by computational techniques and (ii) typi-
cally require extensive calculations (∼105 CPU-h per system at an
atomistic resolution).9,11

Even at a CG resolution, Eq. (1) still requires free-energy calcu-
lations to determine the PMF. The objective of this study is to gain
further insight into the key physical determinants of the permeabil-
ity coefficient. Beyond the widely known effect of hydrophobicity,
we focus on incorporating the role of acidity via the compound’s
protonation state.27 The role of acidity is crucial, partly because
of the sheer number of ionizable drugs: they make ≈62% of the
World Health Organization’s list of essential drugs.28,29 It has long
been hypothesized that the neutral form of an ionizable drug is
the only contributor to its permeability, known as the pH–partition
hypothesis.30,31 However, this hypothesis is limiting for two rea-
sons. First, permanently charged compounds are known to perme-
ate lipid membranes.32,33 Second, differences between a compound’s
pKa and the surrounding pH can lead to a protonation-coupled
permeation mechanism, which calls for the combined contribu-
tions of the neutral and ionized forms.34,35 Clearly, the role of
acidity is expected to couple with hydrophobicity. Establishing a
functional relationship connecting the two quantities is the objec-
tive of this work. To this end, we rely on modern data-driven
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techniques to discover an equation. Relating acidity to the perme-
ability coefficient would not only help establishing rapid estimates
for ionic compounds but also offer insight into the coupling of
these physicochemical properties that are valid for a wide class of
compounds.

Limitations in the number of candidate descriptors and
correlations between features have recently been addressed by
sure-independence screening and sparsifying operator (SISSO),36,37

which is an artificial-intelligence technique that combines symbolic
regression with compressed sensing.38–40 SISSO provides a data-
driven framework to discover equations—mathematical relations
between input variables that best correlate with the target property.
We will discuss several equations of various complexities to illustrate
the balance between accuracy and interpretability. We root the sim-
plest variant in the underlying physics by comparison against analyt-
ical acid–base asymptotic regimes. This simple model incorporating
both hydrophobicity and acidity allows us to easily extend our anal-
ysis to different lipid membranes starting from limited information.
From the knowledge of neutral species alone, we predict the change
in passive permeability in various lipid membranes. We finally dis-
cuss the change in permeability in the context of membrane-phase
behavior.

II. METHODS
A. Database of drug–membrane thermodynamics

Our analysis is based on the passive-permeability database pro-
vided by Menichetti et al.16 Reference information includes the
water/octanol partitioning free energy (ΔGW→Ol), acid dissociation
constant for acids and bases (apKa and bpKa), and simulation-
based permeability coefficient (expressed by its order of magnitude,
log10 P) for solutes through a single-component bilayer made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC). The water/octanol
partitioning free energies were predicted using the neural network
ALOGPS,41 and acid dissociation constants pKa were predicted from
ChemAxon Marvin.42 Filtering of the Generated DataBase (GDB)43

for compounds that mapped to a one- or two-bead coarse-grained
Martini representation, i.e., a monomer or a dimer, led to 511 427
small organic molecules (30–160 Da). Enhanced-sampling molec-
ular dynamics simulations yielded the PMFs for both neutral and
(de)protonated species, and Eq. (1) was used to compute the perme-
ability coefficient, P. The diffusivity profile was not extracted from
coarse-grained simulations but instead from previous atomistic
studies taking advantage of its relatively small chemical dependence
and its logarithmic impact on the permeability.10 The pKa of a chem-
ical group can be either acidic (apKa) or basic (bpKa), and in that,
a neutral compound can either deprotonate or protonate (see the
supplementary material for definitions). While the ionization con-
stant of conjugated acid/base pairs typically lies between 10−2 and
1016, we considered compounds with pKa values between −10 and
20.44 This led to a dataset of 418 828 compounds used as part of this
work. A follow-up work to Menichetti et al. provided PMFs for the
same set of neutral Martini small molecules in different phospho-
choline (PC) lipid membranes: 1,2-diarachidonoyl-sn-glycero-3-PC
(DAPC); 1,2-dilinoleoyl-sn-glycero-3-PC (DIPC); 1,2-dilauroyl-sn-
glycero-3-PC (DLPC); 1,2-dioleoyl-sn-glycero-3-PC (DOPC); 1,2-
dipalmitoyl-sn-glycero-3-PC (DPPC); and 1-palmitoyl-2-oleoyl-sn-
glycero-3-PC (POPC).45

B. Learning algorithm
To learn about an interpretable model of passive permeability,

we used SISSO, as implemented in Ref. 46. SISSO aims at establish-
ing a functional relationship, y = f (Φ), between n primary features,
Φ0 = {ϕ1, ϕ2, . . . , ϕn}, and a target property, y, based on N train-
ing compounds. SISSO assumes that y can be reliably expressed as
a linear combination of non-linear, but closed-form, functions of
primary features. To construct these non-linear functions, SISSO
recursively applies a set of user-defined unary and binary oper-
ators [we used {+, −, ×, ÷, exp, log, ()−1, ()2, ()3, 3

√
(),
√
()}]

on the primary features and builds up sets of candidate features.
Φq denotes the set of candidate features at each level of recursion
q. The number of candidate features in Φq increases sharply with
the increase in the recursion level q, the number of operators used,
and the number of primary features n. For each q, SISSO iteratively
selects subsets of candidate features that have the largest linear cor-
relations with the target y and then with the subsequent residuals,
i.e., each portion of y that is captured by the previous iterations
(see Ref. 37). The number of iterations in this procedure, which
equals the number of terms in the linear expansion of f (Φ), and
hereby denoted as the dimension of the model, is controlled by a
sparsifying ℓ0 regularization. For each q and number of dimensions,
SISSO selects the model with the smallest root mean-squared error
(RMSE). We also quantify model performance using the maximum
absolute error (MaxAE) and the square of the Pearson correlation
coefficient, r2.

C. Feature construction and training
We apply SISSO to three easily accessible and interpretable pri-

mary features: the water/octanol partitioning free energy, ΔGW→Ol,
and the acid dissociation constants apKa and bpKa as provided
by Menichetti et al.16 We thereby seek a refinement or cor-
rection to the commonly used model based on hydrophobicity
alone.25 The mean absolute errors associated with the ΔGW→Ol
and pKa predictions (0.36 kcal/mol41 and 0.86 units,47 respectively)
make them reliable primary descriptors. To avoid constructing fea-
tures with different units, we multiply the partitioning free energy
by the inverse temperature: βΔGW→Ol using T = 300 K follow-
ing Menichetti et al.16 Starting with the set of primary features
Φ0 = {βΔGW→Ol, apKa, bpKa}, we consider the construction of sec-
ondary features for up to two iterations (i.e., q = 2), where Φ1 and Φ2
consist of roughly 30 and 2000 features, respectively. We limit the
SISSO screening size to 500 and consider up to three-dimensional
descriptors. We train on 10% of the available data (see the
supplementary material for the input script) and use the remaining
90% for hold-out evaluation. We draw these train/test sets uniformly
at random, without replacement. To reduce variance, we report
the average performance over ten independently drawn train/test
sets. Ouyang et al.36 emphasized that SISSO works reliably when
the number of materials in a training set, N, sufficiently exceeds
the number of candidate features. In particular, SISSO requires
N ≥ kd ln(#Φ), where k ∼ 1–10, d is the dimension, and #Φ is the
size of the feature space. For Φ2, the relevant feature space used
to train our model, the relation requires N ≥ 10 ⋅ 2 ⋅ ln(2 ⋅ 103

)

≃ 150. By training our models with only 10% of the dataset (∼42 000
compounds), SISSO is well within a regime to provide meaningful
and consistent results.
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III. RESULTS AND DISCUSSIONS
A. Learning permeability models

Table I contains the four models considered in this work: (i)
f Hyd is a baseline hydrophobicity model, which linearly correlates
with water/octanol partitioning free energy; and (ii)–(iv) f 1D to
f 3D linearly correlate with one to three secondary feature(s) iden-
tified by SISSO. For each model, cm

i correspond to non-zero coeffi-
cients for model m and index i, reported in Table I. For all models,
ΔGW→Ol takes on a central role, as expected by the performance
of the baseline. The simplest SISSO model, f 1D

= c1D
0 + c1D

1 (apKa
− bpKa − 2βΔGW→Ol), is remarkably robust: it is systematically iden-
tified as the best performing 1D model across all ten training sets.
Given that we trained on only 10% (∼42 000 compounds) of the
dataset, this highlights this model’s performance compared to all
other candidates (see the supplementary material for a list of can-
didate one-dimensional models). The stability of the model—given
such a small training fraction—speaks for the robustness of the
equation. Its improved accuracy compared to the baseline will be
evaluated further down.

We also report more complex 2D and 3D models in Table I.
While we will show below that these yield even better accuracy com-
pared to f 1D, they are specifically tailored to the training set used:
f 2D and f 3D are ranked as the best model in eight and five out of the
ten training sets, meaning that other models of similar complexity
closely compete.

B. Model performance
We now turn to the performance of these four models. Table I

reports their RMSE, MaxAE, and squared Pearson correlation coef-
ficient, r2, averaged over the test sets. Going from the baseline to
more complex SISSO models, the systematic decrease in the RMSE
is accompanied by an increase in the correlation coefficient. On
the other hand, the maximum absolute error does show a clear
minimum for f 1D. This offers a first hint at the appealing balance
between generalization and interpretability of the 1D SISSO model.
The performance of these four models is depicted in Fig. 1 for the
entire dataset, where we report each model against reference values.
Going from the baseline to SISSO models of increasing complexity,
the distribution does lean increasingly toward the y = x correlation

FIG. 1. Performance of the four permeability models against the reference for the
dataset of 418 K small molecules: (a) baseline hydrophobicity model f Hyd and
(b)–(d) 1D to 3D data-driven SISSO models. See Table I for their expressions.

line. The presence of horizontal stripes in Fig. 1 results from the
degenerate use of CG mappings for many molecules.17 This arti-
fact is most notable for f Hyd, which solely relies on hydrophobicity,
whereas the others have chemically specific acidity information. For
the 2D and 3D models, we also point out outliers at the lowest per-
meability values. Figure S1 of the supplementary material shows
the distribution of compounds: these low-permeability values are
scarcely populated, both in algorithmically and synthesized com-
pound databases.16 Here, they represent only 0.07% of the dataset,
and our uniform sampling of training points likely brought in only
few of them. They likely result from poor extrapolation behavior
of the 2D and 3D models, which notably include powers of two of
several variables.

To better understand the performance of each model, we ana-
lyze their errors in greater detail. Figure 2(a) shows the distribution

TABLE I. Permeability models, descriptor coefficients, and model performance: RMSE, MaxAE (both in log10 units of the permeability coefficient), and r2. The models considered
are baseline hydrophobicity model, f Hyd, as well as SISSO with up to three feature dimensions: f 1D, f 2D, and f 3D. Compared to the baseline, SISSO systematically leads to
more accurate models. Descriptor coefficients and performance metrics are averaged over training and test sets, respectively. All standard errors are small and reported in the
supplementary material.

Model c0 c1 c2 c3 RMSE MaxAE r2

f Hyd
= cHyd

0 +cHyd
1 βΔGW→Ol −3.444 −0.648 1.53 11.82 0.64

f 1D
= c1D

0 +c1D
1 (apKa − bpKa − 2βΔGW→Ol) −5.419 0.163 1.40 6.35 0.70

f 2D
= c2D

0 +c2D
1 (

3
√

βΔGW→Ol + βΔGW→Ol − apKa) −5.753 −0.487 −0.017 1.06 8.28 0.83
+c2D

2 (apK2
a + bpK2

a )

f 3D
= c3D

0 +c3D
1 (βΔGW→Ol − apKa) −7.101 −0.614 −0.001 −0.018 0.94 8.19 0.86

+c3D
2 (bpK2

a (apKa + bpKa))

+c3D
3 (apK2

a + (βΔGW→Ol)
2
)
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FIG. 2. Absolute error analysis. (a) Error (in log10 units) distribution for all models. Error decomposed as a function of (b)–(e) apKa and (f)–(i) bpKa. Stronger acids/bases
are shown in darker colors.

of absolute error. The large dataset at our disposal allows us to eval-
uate more than four orders of magnitude of this distribution. The
comparison between f Hyd and f 1D proves insightful: while they are
remarkably close up to errors of 5 log10 units, the baseline then dis-
plays a significant hump, while the SISSO 1D model keeps decaying
monotonously. Both models rely on βΔGW→Ol, which explains the
remarkable agreement early on, while the stark difference between
the two curves is entirely due to the effect of acidity. This is con-
firmed by a further decomposition of the error as a function of
acidity, showing that f Hyd leads to larger errors for stronger acids
and bases [panels (b) and (f)], while SISSO 1D significantly reduces
the error in this regime [panels (c) and (g)].

In comparison, the more complex SISSO 2D and 3D display a
shift in the error distribution toward lower errors [Fig. 2(a)] com-
pared to the 1D model. At low probability, however, we observe a
significant change in the slope of the decay, indicating worse perfor-
mance for a small number of outliers. This is also illustrated when
decomposing the error in terms of acidity in Panels (d)–(i): while
the overall performance improves, we identify more outliers. These
outliers mostly lie at low-permeability values (reminiscent of Fig. 1)
and for strong apKa or bpKa. Poor performance at large acidity
values could take place if these were absent of the small training
fraction.

C. Validation against atomistic simulations
The SISSO models should naturally be prone to systematic

errors inherent to the training dataset. While we expect our sys-
tematic integration of the ISDM permeability coefficient [Eq. (1)]
to ensure robust functional relationships, systematic errors in the
parameters are likely to affect the fitting coefficients. Reference
permeability values were extracted from computationally efficient
coarse-grained computer simulations at the cost of force-field accu-
racy. Still, a comparison of the coarse-grained simulations against
atomistic computer simulations had indicated an excellent agree-
ment of 1 log10 unit across a limited set of small molecules.16

Here, we compare the performance of the four permeability mod-
els against the atomistic simulations of Carpenter et al.10 This set of

12 organic compounds covers a range of molecular weights that goes
significantly beyond our training set: an average of 243 Da and up to
319 Da, comparable to that of real drugs, given that more than 60%
of drugs have molecular weight below 300 Da.48 On the other hand,
our training HTCG database only contained compounds up to 160
Da. This thus presents a challenging test for the generalizability of
the SISSO models.

Figure 3 shows the absolute error against atomistic simulations
across all 12 small molecules and for our four models. For each
model, we display the error as a function of both apKa and bpKa. The
baseline model yields absolute errors between 1 and almost 4 log10
units. While larger errors correlate with strong acids, they do not
seem to correlate with larger bases. Unlike Fig. 2, the minuscule set
of atomistic compounds prevents us from drawing conclusions that
would hold across any significant subset of chemical space. Turning
to SISSO 1D, we observe a small but notable decrease in perfor-
mance, where the mean absolute error (MAE) increases from 1.55
to 2.03 log10 units. The MAE, however, decreases against the base-
line when considering the more complex SISSO 2D and 3D: 0.87
and 1.33 log10 units, respectively. The non-monotonic decrease in
the MAE with increasing complexity in Figs. 3(b)–3(d) suggests the
role of the small validation dataset considered. Overall though, the
incorporation of acidity does lead to an improved reproduction of
the permeability coefficient. It validates the SISSO-derived equations
on permeability coefficients derived using independent methods and
outside the chemical space of the training data.

D. Acid–base asymptotes
The analysis so far highlights how model complexity impacts

accuracy. Missing from the analysis so far is the consideration
of interpretability. The two one-dimensional models—the baseline
and SISSO 1D—highlight a simple mechanism as to the functional
dependence of the permeability coefficient on both hydrophobicity
and acidity. Focusing on SISSO 1D specifically, we rewrite the model
in terms of two contributions,

f 1D
= c1D

0 + c1D
1 [(apKa − βΔGW→Ol) + (−bpKa − βΔGW→Ol)]. (2)
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FIG. 3. Absolute error (in log10 units) against atomistic simulations for 12 reference small molecules.10 The error is displayed for all four models and as a function of (a)–(d)
apKa and (e)–(h) bpKa.

Figure 4 displays the permeability coefficient as a function of
these two contributions. The symmetric contribution of βΔGW→Ol
in the two terms of Eq. (2) indicates that the baseline hydrophobic-
ity model manifests itself along the diagonal. Notably, missing from
the diagonal behavior are the dark vertical and horizontal basins.
They localize at apKa − βΔGW→Ol ∼ 0 and −bpKa − βΔGW→Ol ∼ −15
and represent strong-acid and strong-base regimes. In what follows,
we provide an asymptotic rationalization of the functional form of
Eq. (2).

FIG. 4. SISSO 1D model of passive permeability. The decomposition of the sec-
ondary feature in two axes highlights the role of hydrophobicity (along the diagonal)
compared to acidity (vertical and horizontal).

To rationalize Eq. (2), we first outline the role of our three pri-
mary descriptors in the ISDM model [Eq. (1)]. Figure 5 illustrates the
well-known interplay between PMF and acidity, in particular, how
the latter shifts the PMFs of the neutral and (de)protonated species.
In the following, we will denote the PMFs of the neutral, protonated,
and deprotonated species as GN(z), GB(z), and GA(z), respectively.

The difference between apKa or bpKa and pH dictates the
propensity for the PMFs to cross each other. The ISDM relies
on a total resistivity [defined in Eq. (1)], RT, such that R−1

T (z)
= R−1

N (z) + R−1
B (z) + R−1

A (z), analogous to the total resistance in a
parallel electric circuit.

The PMFs of the neutral, protonated, and deprotonated species
can be linked in water, thanks to their apKa and bpKa values, as well
as the pH of the environment, through the following equations:

β−1
(pH − apKa) ln 10 = GN(∞) −GA(∞), (3)

β−1
(pH − bpKa) ln 10 = GB(∞) −GN(∞), (4)

where G(∞) indicates that the compound is located in bulk water.
Equations (3) and (4) effectively link the difference between the
pH of the environment with the pKa of the compound to a shift
in the PMFs. Without loss of generality, we will shift all free ener-
gies such that zero corresponds to the most favorable compound
in bulk water. Equations (3) and (4) allow us to explicitly link pKa
information with the total resistivity

R−1
T (z) = D(z)[e−β(GN(z)−GN(∞)) + e−β(GB(z)−GB(∞))

+ e−β(GA(z)−GA(∞))], (5)
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FIG. 5. Sketch of the permeation mechanism in three regimes: (a) strong acid,
(b) neutral compound, and (c) strong base. The curves display the neutral
(orange solid curve), acidic (green dashed curve), and basic (pink dotted curve)
PMFs. The blue area under the effective PMF directly links to the permeability
coefficient.

where we assume that all protonation states yield identical diffusiv-
ity.16 Because Eq. (5) takes on a relatively complex form, we will
consider only asymptotic regimes:

● Neutral compounds entail no strong acid or base char-
acteristic, i.e., apKa ≫ pH and bpKa ≪ pH, such that
the compound is effectively unable to (de)protonate, and
GN(∞) = 0. Equation (5) can be simplified to RT(z)
≈ D−1

(z) exp[βGN(z)].49

● Strong acids consist of solutes that display at least
one functional group for which apKa ≪ pH. For neu-
tral pH (≈7), this would correspond to apKa < 4. We set
GA(z →∞) = 0. In this regime, the third exponential in
Eq. (5) would dominate the other two, leading to RT(z)
≈ D−1

(z) exp[βGN(z) + (pH − apKa) ln 10].
● Strong bases would display at least one functional

group, where bpKa ≫ pH. For neutral pH, this would
correspond to bpKa > 10. We set GB(z →∞) = 0.
Using a similar argument, Eq. (5) would be dom-
inated by the second exponential, leading to
RT(z) ≈ D−1

(z) exp[βGN(z) − (pH − bpKa) ln 10].

The total resistivities still require integration over the reac-
tion coordinate z, which we simplify to the largest contribution of
the PMF.11 The effective resistivity model is equivalent to choos-
ing the lowest PMF at any value of z: Geff(z) = miniGi(z), where
i runs over the neutral, protonated, and deprotonated species. In
addition, the dominating contribution of the effective permeabil-
ity will come from its maximum value, corresponding to a posi-
tion z∗ = arg max

z
Geff(z). Assuming that the largest contribution of

the permeability arises from the total resistivity at z∗, we obtain P
≈ R−1

T (z
∗
). This yields the following acid–base asymptotic regimes:

log10P ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log10D(z∗) −
β

ln 10
GN(z∗) − pH + apKa if apKa ≪ pH

log10D(z∗) −
β

ln 10
GN(z∗) + pH − bpKa if bpKa ≫ pH

log10D(z∗) −
β

ln 10
GN(z∗) if apKa ≫ pH and bpKa ≪ pH.

(6)

To numerically test Eq. (6), we identify datapoints corre-
sponding to the three asymptotic regimes: the neutral compounds
(apKa > 10 and bpKa < 4), strong acids (0 < apKa < 4 and bpKa
< 4), and strong bases (10 < bpKa < 14 and apKa > 10). For simplic-
ity, we only considered non-zwitterionic compounds. We assume
that log10 D(z) yields no significant, chemically specific effect and
uniformly shifts the permeability coefficient across the chemical
space of compounds considered. Figure 6 shows the agreement
between Eq. (6) and the reference permeability coefficients. All
show strong linear correlation for neutral compounds (r2

= 0.998),
strong acids (r2

= 0.959), and strong bases (r2
= 0.986). These results

numerically validate the asymptotes of Eq. (6).
More importantly, the asymptotes provide a physically moti-

vated rationale for the two contributions of Eq. (2): apKa

− βΔGW→Ol and −bpKa − βΔGW→Ol. We first note that ΔGW→Ol is
related to GN(z∗). The depth at which the effective PMF is the
highest, z∗, will almost always be close to the membrane midplane:
z∗ ≈ 0. The main exception to this is hydrophobic compounds for
which the highest point in the PMF is in water [Fig. 5(c)]. Further-
more, G(z∗ = 0), which corresponds to the transfer free energy from
water to the membrane midplane, has been shown to linearly relate
to the water/octanol partitioning free energy, ΔGW→M ∝ ΔGW→Ol.50

This connects GN(z∗) present in Eq. (6) to ΔGW→Ol in Eq. (2). We
then observe that the asymptotes and Eq. (2) have the same signs and
exponents of apKa and bpKa. For an acidic or a basic compound,
if we consider the compound-specific pKa and substitute ΔGW→Ol
by the compound’s GN(z∗) in the relevant among the two contri-
butions of Eq. (2), we indeed recover one of the asymptotes. As
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FIG. 6. Simple asymptotic estimates [Eq. (6)] against reference permeability coefficients at neutral pH. (a) Neutral compounds, (b) strong acids, and (c) strong bases.

for neutral compounds, GN(z∗) is the only relevant quantity while
estimating permeability.

E. Drug–membrane permeability across membranes
The following paragraphs analyze how drug–membrane

permeability changes according to membrane composition. We
hypothesize that the functional form of SISSO 1D is applicable
to other lipid membranes and use it as a starting point. We take
advantage of the above-mentioned asymptotic regimes to limit the
amount of information needed from new membranes. The regime of
neutral compounds described in Eq. (6) can be used advantageously
because it only requires information on neutral PMFs. We rely
on the dataset of Hoffmann et al., which precisely contains PMF
information—but no permeability—in various membranes and only
for neutral compounds.45 We specifically analyze the change in
permeability when turning to phosphocholine (PC) membranes
made of different lipids, varying in both the tail length and level of
unsaturation.

Figure 7 shows the relation of −βGN(z
∗
)—the dominant term

for the permeability of neutral compounds [Eq. (6)]—between the
original membrane used in this work, DOPC, and others. All curves
follow a line, indicating that the asymptotic regime for neutral com-
pounds of Eq. (6) holds for all membranes. We find two families
of lines with different intercepts: DLPC, DPPC, and POPC show an
intercept with DOPC that is roughly 0, while DIPC and DAPC have
an intercept that is ∼1.4.

To better understand these results, we first recall that GN(z∗)
corresponds to the highest value of the neutral PMF. We can safely
ignore contributions of the charged PMFs such that GN(z∗) denotes
the highest point of the effective PMF. The excellent agreement
between DLPC and DPPC indicates that the tail length (3 and 4
beads long, respectively) does not impact the permeability. This is
expected, given that the tail length is only expected to change the
length, but not the height, of the hydrophobic plateau. On the other
hand, the further agreement between them and POPC and DOPC
indicates a lack of dependence on tail saturation for these lipids
(1 and 2 unsaturated beads, respectively). Remarkably, the shift in
the intercept appears only for DIPC and DAPC—lipids that exhibit
more unsaturations: 4 and 8, respectively. Notably, they display the

same shift in −βGN(z
∗
). As such, the level of unsaturation is a

determining factor but does not gradually impact −βGN(z
∗
).

Interestingly, previous Martini studies of ternary membranes
with DPPC and cholesterol have shown that DIPC and DAPC
strongly phase separate into a liquid-disordered (Ld) phase.51–53

Inconsistent conclusions were drawn from different studies with
DOPC, pointing to a thermodynamic drive that is weak at best.52,54,55

As for POPC, there is no sign of phase transition.52 The results
on Fig. 7 mirror these trends: we find a clear shift of −βGN(z

∗
),

depending on the ability of the membrane to form an Ld domain.
The Ld-domain formation of course hinges on the presence of
DPPC and cholesterol, which are notably absent from our refer-
ence simulations.45 The trends are surprising in that they show
a dependence on lipid-tail unsaturation that is stepwise rather
than proportional. While we defer a more detailed study to future
work, we suggest the role of the entropic character of the lipid-tail
fluctuations.

Other studies before us have reported a clear change in per-
meability between Ld and Lo domains: Ghysels et al. used both

FIG. 7. Variation of −βGN(z∗) between the original membrane, DOPC, and
others. Note the shift between (i) DLPC, DPPC, and POPC and (ii) DIPC and
DAPC.
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atomistic simulations and electron paramagnetic resonance spec-
troscopy experiments on the permeation of water and oxygen and
found a permeability ratio of P(Ld)/P(Lo) ≈ 3.56 Here, the CG sim-
ulations yield a shift in −βGN(z

∗
), which translates into a ratio of

the permeability coefficients of ≈ 25. Our estimates are thus within
one log10 unit of the results of Ghysels et al. for their specific com-
pounds. The mechanism remains to be clearly identified, although
this could be consistent with the proposed role of local membrane
surface density (i.e., its propensity to form transient holes).57

To summarize, our use of single-component lipid mem-
branes only allows us to speculate the shift in Fig. 7. The link
to Lo/Ld-domain formation is in line with prior atomistic simu-
lations and experiments for specific compounds.56 In the broader
context, our results could help generalize their results across the
chemical space of drugs. The results also suggest simple additive
corrections to our effective equation when considering different
membranes.

IV. CONCLUSIONS
We propose to learn the functional relationship between

hydrophobicity and acidity as a simple surrogate for passive mem-
brane permeability. Our approach, combining symbolic regression
and compressed sensing, is data-driven and interpretable and based
on large databases of high-throughput coarse-grained simulations.
Sure-Independence Screening and Sparsifying Operator (SISSO)
builds a hierarchy of models of increasing complexity. Models prove
increasingly accurate, yet more complex models are more prone
to discrepancies for a few outliers. Our SISSO 1D model offers
improved accuracy compared to the hydrophobicity baseline and yet
excellent interpretability. We identify the simple and interpretable
equation f 1D

= c1D
0 + c1D

1 (apKa − bpKa − 2βΔGW→Ol), where apKa
and bpKa characterize acidity, ΔGW→Ol is the water/octanol parti-
tioning coefficient, and c1D

0 and c1D
1 are the only two fitting para-

meters. We rationalize the model by an analysis of the asymptotic
regimes of the inhomogeneous solubility–diffusion model (ISDM).
The asymptotes are validated numerically and confirm the SISSO
1D equation, implicitly testifying to the accuracy of the underlying
HTCG resolution. Broad agreement numerically validates the use
of a single bulk hydrophobicity measure to effectively replace the
potential of mean force, which has been exploited by others before.11

Importantly, the interplay of hydrophobicity together with acidity
leads to a significant improvement in the model accuracy of the
SISSO 1D equation for ionizable groups. The SISSO equations show
improvements over a challenging set of compounds that are much
larger than the training set. Critically, our work refines the common
role of hydrophobicity in passive permeation to relate it functionally
with acidity.

The separation of the ISDM in asymptotic regimes allows us
to build drug-permeability models across membranes with limited
information only. Using only the potential of mean force of neu-
tral solutes, we infer the change in permeability for membranes
with lipids of varying tail length and level of unsaturation. We
observe a surprising change in permeability coefficient: lipid-tail
unsaturation contributes stepwise rather than proportionally. Our
findings are in line with recent atomistic simulations and electron
paramagnetic resonance spectroscopy experiments, highlighting the
distinction between lipids primarily involved in liquid-disordered

(Ld) and liquid-ordered (Lo) domains. The approach offers a data-
driven, interpretable analysis of drug–membrane passive permeabil-
ity across both drugs and membranes.

SUPPLEMENTARY MATERIAL

See the supplementary material for definitions of dissociation
constants (apKa and bpKa), the distribution of compounds across
permeability, Table I along with the error values, the list of best one-
dimensional descriptors, and the SISSO input script.
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