Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cross sections and NO product state distributions resulting from substrate mediated photodissociation of NO2 adsorbed on Pd(111)

MPG-Autoren
/persons/resource/persons252305

Hasselbrink,  Eckart
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons254952

Jakubith,  S.
Fritz Haber Institute, Max Planck Society;

/persons/resource/persons252307

Nettesheim,  Stefan
Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21498

Ertl,  Gerhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.457913.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hasselbrink, E., Jakubith, S., Nettesheim, S., Wolf, M., Cassuti, A., & Ertl, G. (1990). Cross sections and NO product state distributions resulting from substrate mediated photodissociation of NO2 adsorbed on Pd(111). The Journal of Chemical Physics, 92(5), 3154-3169. doi:10.1063/1.457913.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-2EE4-4
Zusammenfassung
Ultraviolet irradiation of NO2 adsorbed on top of a NO saturated Pd(111) surface causes the photodissociation of NO2/N2O4 and results in the desorption of NO molecules. This process has been studied using excitation energies between 3.5 and 6.4 eV. At a photon energy of 6.4 eV, a cross section of 3×10−18 cm2 is found. Using laser‐induced fluorescence to detect the desorbed NO molecules, fully state‐resolved data detailing the energy channeling into different degrees of freedom has been obtained. Two desorption channels are found, one characterized by nonthermal state populations, and one showing accommodation to the surface. The yield of the fast channel shows a marked increase above 4 eV photon energy. The slow channel is interpreted as being due to NO molecules which, after formation, undergo a trapping–desorption process. A polarization experiment indicates that the photodissociation is initiated by excitation of metal electrons rather than direct absorption by the adsorbate.