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Organisms rely on mechanosensing mechanisms to adapt to changes
in their mechanical environment. Fluid-filled network structures not
only ensure efficient transport but can also be employed for mecha-
nosensation. The lacunocanalicular network (LCN) is a fluid-filled net-
work structure, which pervades our bones and accommodates a cell
network of osteocytes. For the mechanism of mechanosensation, it
was hypothesized that load-induced fluid flow results in forces that
can be sensed by the cells. We use a controlled in vivo loading ex-
periment on murine tibiae to test this hypothesis, whereby the
mechanoresponse was quantified experimentally by in vivo micro-
computed tomography (μCT) in terms of formed and resorbed bone
volume. By imaging the LCN using confocal microscopy in bone vol-
umes covering the entire cross-section of mouse tibiae and by calcu-
lating the fluid flow in the three-dimensional (3D) network, we could
perform a direct comparison between predictions based on fluid
flow velocity and the experimentally measured mechanoresponse.
While local strain distributions estimated by finite-element analysis
incorrectly predicts preferred bone formation on the periosteal sur-
face, we demonstrate that additional consideration of the LCN archi-
tecture not only corrects this erroneous bias in the prediction but
also explains observed differences in the mechanosensitivity be-
tween the three investigated mice. We also identified the presence
of vascular channels as an important mechanism to locally reduce
fluid flow. Flow velocities increased for a convergent network struc-
ture where all of the flow is channeled into fewer canaliculi. We
conclude that, besides mechanical loading, LCN architecture should
be considered as a key determinant of bone adaptation.

bone adaptation | mechanobiology | fluid flow | lacunocanalicular
network | in vivo μCT

Fluid-filled network structures are used in many organisms for
transport and signaling by making use of their excellent per-

vasion of tissues, while requiring only a limited volume. A variety
of tissues and organs use fluid flow in networks to sense the me-
chanical environment, thereby contributing to their morphogene-
sis, active maintenance, and adaptation to changing demands (1).
Important examples include the formation of the circulation and
nervous system (2, 3), both the rapid and long-term adaptation of
the lungs (4), and the adaptation of bone to mechanical loads
(5–7). Important distinguishing characteristics between networks
are the mechanical flexibility of the walls of their channels and their
network architecture. The cardiovascular circulation is an example
of a tree-like network with channels repeatedly branching, which
induces constraints on the diameters of the vessels for an efficient
flow distribution (8). The circulation network is not static but can
adapt its network architecture, for example, by maintaining or dis-
connecting arterial side branches based on locally sensed blood flow
velocities (2). The multifunctionality of fluid-filled networks is in-
teresting from an evolutionary viewpoint, since most likely the
functions were not established at the same point in time (9). Their
potential has also been explored in man-made so-called vascular

materials, where the fluid-filled network should impart self-healing
properties to the material (10, 11).
In bone, fluid flow occurs in the lacunocanalicular network

(LCN), a porous network of micrometer-sized lacunae con-
nected by roughly 300-nm-wide canals, called canaliculi (12, 13).
The lacunae accommodate the cell bodies of osteocytes, while
their cell processes run within the canaliculi. The pericellular
space between the cell membrane and the mineralized bone
tissue is filled by a proteoglycan-rich matrix (glycocalyx) and by
an interstitial fluid. Deformations occurring through the bone
matrix are too small to be directly sensed by bone cells since
bone has a high stiffness, compared to cells, of roughly 10 GPa.
Therefore, a strain amplification mechanism involving the in-
terstitial fluid was proposed (12). The fluid flow hypothesis states
that external loading deforms the bone including the porous
network. The deformation of the porous network induces a flow
of the fluid through the LCN toward or away from free bone
surfaces (14). With typical loading frequencies (such as walking)
being in the 1-Hz range, the load-induced fluid flow should not
be imagined as a substantial fluid transport, but rather as fluid
oscillating back and forth. The oscillating fluid flow results in
drag forces on osteocytes that are sufficiently strong to trigger a
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mechanoresponse (15). Important findings in favor of the fluid
flow hypothesis are as follows: 1) osteocytes are the most mecha-
nosensitive cells in bone (16, 17), in particular to pulsatile fluid flow
(18) with their cell processes sensing shear forces (19); the primary
cilium could act as an additional mechanosensor for fluid flow (20);
2) dynamic loads induce fluid displacement through the LCN
in vivo (21); 3) theoretical models predict load-induced fluid flow
velocities of magnitudes, which osteocytes respond to in vitro (22);
4) specific detection mechanisms have been proposed, which stress
the importance of the glycocalyx with its tethering fibers for the
transmission of forces to cell processes (23). In addition, the cell
process is attached by integrins to canalicular projections, which are
infrequent, discrete locations along the canalicular wall (19, 24, 25).
While important progress was made in characterizing molec-

ular and cellular aspects of bone’s mechanotransduction, the
connection between mechanical stimulation of the bone and its
mechanoresponse in the form of bone formation and resorption
is still not satisfactorily established. The challenge is to define a
mechanical stimulus, which can be spatially correlated to loca-
tions of bone formation and resorption. The most successful
attempts until now have been based on strain-related mechanical
stimuli (26, 27). In a recent mouse study, strain energy density
and fluid flow velocity were used as predictor for the mecha-
noresponse in the tibia (28). The spatial fluid velocity pattern was
calculated based on a continuum model without considering the
LCN architecture and, therefore, reflects only the strain state. The
calculated fluid flow could not explain the higher mechanores-
ponse observed at the endosteal surface compared to the periosteal
surface (28–30). It is obvious that mechanical strain and load-
induced fluid flow through a network-like structure are very dif-
ferent physical quantities. Since the fluid flow through the LCN is
challenging to assess experimentally, computational models are
frequently employed to calculate flow velocities through the
canaliculi. However, the network architectures of these models
were either restricted to small parts of the network (like one lacuna
and emerging canaliculi) (31) or unrealistically regular (32–34).
Recent advances in imaging technology allow one to image and
analyze the three-dimensional (3D) architecture of the LCN in
much larger bone volumes. It was shown that the LCN architecture
is spatially very heterogeneous (35–37) and changes with age
(38–40). Combining such 3D imaging of the LCN with fluid flow
calculations predicted substantial differences in the mechanores-
ponsiveness between different osteon types in human cortical
bone (41).
The aim of this study is to test the fluid flow hypothesis by

taking into account the architecture of the LCN and to predict
where bone is formed or resorbed after mechanical stimulation.
In three mice, the response to a controlled mechanical loading
was quantified in terms of newly formed and resorbed bone on
both the inner endocortical and the outer periosteal surfaces of
the tibiae using time-lapse in vivo micro-computed tomography
(μCT) following the protocol of Birkhold et al. (42). In the tibiae
of the same mice, the LCN was imaged in bone volumes covering
whole cross-sections of the tibiae. Circuit theory was then used to
calculate the load-induced fluid flow through the LCN. As a re-
sult, this integration of mathematical modeling with experimental
techniques allows us to perform a direct spatial correlation be-
tween predicted mechanoresponse based on fluid flow patterns in
the actual LCN architecture and the measured mechanoresponse.
The detailed strategy to achieve our aim is based on the combi-

nation of six different experimental and computational techniques:
1) in vivo axial compressive loading of the mouse tibia to provide a
well-defined anabolic loading regime (43), while 2) time-lapse
in vivo μCT was used to monitor bone (re)modeling events over
15 d (42). 3) Local strain during the loading experiments was cal-
culated using finite-element (FE) modeling (44). 4) The LCN was
imaged in 3D using confocal microscopy after rhodamine staining.
5) A conversion of image data into a mathematical network was

performed using a custom software (36). 6) Circuit theory was ap-
plied to calculate the load-induced fluid flow in each of the millions
of imaged canaliculi (45), and a mechanical stimulus was inferred
(41), which is used as a predictor of the mechanoresponse of
the tibia.

Results
Structural Heterogeneity of the Mouse LCN. The tibiae of three
26-wk-old female C57BL/J6 mice underwent 2 wk of controlled
loading, and the LCN within these tibiae was imaged afterward.
The 3D structure obtained by confocal imaging of the LCN in
whole cross-sections of the tibia (Fig. 1A) revealed a heterogeneity
of the LCN with regions of looser (Fig. 1B) and denser network
(Fig. 1C) (for videos of the full image stacks, see clsm_mouse1/2/
3.avi in ref. 46). A quantitative analysis of the network density in
terms of canalicular density, Ca.Dn, (i.e., total length of canaliculi

Fig. 1. (A) Sixteen confocal laser-scanning microscopy (CLSM) image stacks
stitched together amounting to a volume of 1,000 × 1,200 × 50 μm3 and
covering the complete cross-section of the tibia. Due to the rhodamine
staining, osteocyte lacunae and canaliculi are clearly visible. For reasons of
presentation, a single 2D section of the 3D image is shown. (B) Enlargement
of a region close to the periosteal surface with a loose network of low
connectivity comprising vascular channels (green arrows). Some lacunae are
marked with thin red arrows. (C) Enlargement of a region close to the
periosteal surface with a dense, ordered, and well-connected LCN architec-
ture. Newly formed bone as a response to mechanical stimulation (to the
Right) is highly stained and, therefore, appears bright white.
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per unit volume) resulted in an average value of 0.27 μm/μm3

(Table 1). The frequency histogram (Fig. 2 A, Bottom) shows a
broad bell-shaped distribution with a SD of 0.12 μm/μm3. A map
of the spatial distribution of Ca.Dn (Fig. 2A) reveals that regions of
low network density can be found in a band-like structure, which
runs eccentrically in the cortex. Regions with a roughly 10-fold
difference in network density can be found adjacent to each other.
Evaluation of the pore volume fraction (i.e., contribution of lacunae
and vascular channels to the porosity) (Fig. 2B) demonstrate that
regions of high porosity spatially correlate with low network density
regions (Fig. 2 A and B).

Bone Formation and Resorption as Response to Mechanical Loading.
The registration of two in vivo μCT images (time lapse between
measurements 15 d) provided information about where and how
much bone was formed or resorbed on the endocortical and peri-
osteal surfaces. Most bone formation is found at posterior sites
(Fig. 3A, blue), much less in the anterior direction. Hardly any new
bone is formed along the medial and lateral axis, while these are the
locations where resorption was observed (Fig. 3A, red).

Strain Distribution and Load-Induced Fluid Flow Pattern through LCN.
Based on a high-resolution ex vivo μCT scan and the experi-
mental in vivo loading conditions, a FE model was used to cal-
culate the bulk strain distributions of the whole tibia (Fig. 3B)
(44). Since the tibia undergoes bending, the anterior region is
under tension, while the posterior region is compressed. The
highest strains are found close to the outer, periosteal surface
with compressive strains larger than tensile strains (Fig. 3B). We
combined this information about local strain rates with the im-
aged 3D network architecture to calculate the fluid flow velocity
through each individual canaliculus employing circuit theory (see
Materials and Methods for model details). The resulting fluid flow
pattern has an interesting “hybrid” character (Fig. 3C). The
pattern clearly reflects features of the strain distribution such as
the low fluid flow around the mechanically neutral medial–
lateral direction. However, some important features cannot be
explained by strains and, therefore, have to be attributed to the
LCN architecture: Examples are the high fluid flow velocities
close to the endocortical surface at the posterior side or regions
of low fluid flow at the anterior side of the tibia (Fig. 3C). Re-
gions with low network density are spatially associated with low
flow velocities.

Predictors for Bone (Re)Modeling: Fluid Flow through LCN Compared
to Strain. The result of the in vivo μCT experiments measuring
the amount of bone formed or resorbed averaged over the three
investigated mice is shown in Fig. 4 (black line). The schematic
represents a transverse section through the midshaft of the
mouse tibia. The amount of formed bone and resorbed bone

(Fig. 4, black line entering the yellow ring) is not depicted to
scale for reasons of clarity. The measured mechanoresponse is
compared with the predictions from strain alone (pink line) and
from load-induced fluid flow (green line). At the periosteal sur-
face, the prediction from strain is overestimating the mechanor-
esponse at the posterior side. Quantification of the difference
between prediction and measurement as a root-mean-square error
(RMSE) gives a value of 18.5 μm for using strain as predictor and
10.0 μm predicted by fluid flow. At the endocortical surface, the
error is only slightly improved for fluid flow as predictor and a
substantial part of the error can be attributed to a poor prediction
of resorption (RMSE = 13.2 μm for strain; 11.5 μm for fluid flow)
(see Table 1 for all values).
Since the LCN exhibits architectural differences for the indi-

vidual animals, the prediction quality has to be assessed on the
basis of the specific animals. Fig. 5 summarizes the outcome of
the in vivo μCT experiment (Fig. 5B) and the predictions of the
mechanoresponse for strain (Fig. 5A) and fluid flow (Fig. 5C) for
all three investigated mice. The angle on the x axis specifies the
position at the surface (Fig. 3B). The two lines in all plots refer to
the endocortical and the periosteal surface, respectively. In
Fig. 5B, the value on the y axis denotes the thickness of the formed/
resorbed bone, where a binning angle of 2° was used followed by
30° triangular moving average. This thickness is defined as the total
formed/resorbed volume divided by the surface area and is positive/
negative for predominant formation/resorption. The sine wave-like
curves show that formation is strongest around 190° (posterior
direction) with a second smaller maximum at about 10° (anterior
direction) and small minima (corresponding to resorption) in be-
tween (i.e., at bone’s neutral axes). Two observations can be made:
1) The mechanoresponse is similar on both surfaces with a trend to
higher values at the endocortical surface; 2) the mechanoresponse
in the three mice is substantially different, with mouse 1 showing
the strongest response, followed by mouse 3 and mouse 2. Fig. 5C
shows the evaluation of the fluid flow velocity through the LCN
close to the surface (see Materials and Methods for details), plotted
similarly as the (re)modeling response. Also, the average flow ve-
locities show the rough sine wave curves with maxima and minima
at positions similar to the (re)modeling response with the strongest
maximum again at roughly 190°. The flow velocities are similar
for both surfaces, but different for different animals: Mouse 1
displays the largest values for the fluid flow velocities, while
mouse 2 has markedly the slowest fluid flow. It is important to
contrast these results for the fluid flow with results for the local
absolute strain rate close to the surface (Fig. 5A and see Ma-
terials and Methods for details). Since the shape of the tibia and
the region of evaluation were very similar, the resulting curves
for the strains at the endocortical and periosteal surfaces are
almost identical for the three animals. In all mice, the maximum

Table 1. Values of structural parameters and prediction quality

Mouse 1 Mouse 2 Mouse 3 Averaged

Canalicular density, Ca.Dn, μm/μm3 0.27 ± 0.12 0.27 ± 0.11 0.26 ± 0.11 0.27 ± 0.12
Pore volume fraction, μm3/μm3 2.6 ± 3.8 2.0 ± 3.0 1.8 ± 2.6 2.1 ± 3.2
RMSE values of predictors, μm

Fluid flow velocity: endocortical 21.8 13.7 12.8 11.5
Strain: endocortical 24.3 10.3 13.0 13.2
Fluid flow velocity: periosteal 16.7 9.0 15.0 10.0
Strain: periosteal 18.5 23.0 22.0 18.5

Values for the canalicular density and the pore volume fraction for all three mice (mean density ± SD of all
7.4 × 7.4 × 7.4-μm3 subvolumes) and values averaged over all three mice. Root-mean-square error (RMSE) assesses
the prediction quality between the experimental mechanoresponse (Fig. 5B) and the prediction based on strain

only (Fig. 5A) and fluid flow (Fig. 5C). The RMSE was calculated as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPN

i¼1ðpredictedi �measurediÞ2Þ=N
q

with N = 180, and is given in micrometers. For the average, the prediction from strain/fluid flow was first
averaged over all three mice, and then the RMSE was calculated.
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strain rate was higher at the periosteal surface by about 35%
compared to the endocortical surface.

Discussion
In this study, we first structurally described the architecture of
the LCN in mice tibiae after 2 wk of mechanical loading. Then
the network information was used for a functional interpretation
by calculating the fluid flow through the LCN, predicting local
strains in the bone using FE analysis, and measuring the bone’s
mechanoresponse (sites of formed, resorbed, and quiescent bone).
Compared to human osteonal bone (36), the LCN of mice is more
than three times denser with an average value of the canalicular
density of 0.27 μm/μm3. Noteworthy is the strong spatial hetero-
geneity of the network (47–49) with an intracortical band of loose
network and high porosity within the tibial cross-section. This

band correlates spatially with the woven bone found in murine
bone and islands of calcified cartilage, which are thought to be a
remnant of early life (47, 50). This heterogeneity implies a caveat
when reporting changes in the network architecture of mice due to
disease or treatment. Only a 3D mapping of large bone volumes
yields reliable values for parameters characterizing the LCN
architecture.
The key message of this study is that the prediction of bone’s

mechanoresponse is improved by considering the architecture of
the LCN compared to relying on the local mechanical strain
only. The network architecture crucially influences the fluid flow
through the LCN and, consequently, the mechanical stimulation
of the osteocytes. Consideration of the LCN architecture leads to
qualitatively different results than taking into account strain
alone. We found that fluid flow through the LCN allows one to

Fig. 2. Structural heterogeneity of the lacunocanalicular network (LCN) within the tibial cross-section averaged over the imaging depth of 50 μm. (A) Map of
the canalicular density (Ca.Dn, total length of canaliculi per unit volume). (B) Map of the pore density (i.e., volume of both lacunae and vascular canals per
unit volume). Below, frequency distributions are shown for both quantities with x-axis ticks as lines.

Fig. 3. (A) Outcome of the in vivo μCT experiment showing where in the diaphyseal region of the tibia, bone was formed or resorbed in response to
mechanical loading (blue denotes newly formed bone, red resorbed bone, and yellow quiescent bone; 2D cross-section of an imaged 3D volume). (B) Spatial
distribution of the peak strains induced by the in vivo loading experiment calculated using FE modeling. Green colors correspond to tensile, and violet to
compressive strains. The figure also introduces the angular coordinate system used to indicate locations at the endocortical and periosteal surfaces. The
anterior direction is at 15°, and angles increase counterclockwise. (C) Pattern of fluid flow velocities through the LCN. Based on the loading conditions from B
and the 3D network architecture of Fig. 1A, the fluid flow velocity is calculated in each canaliculus using circuit theory. The fluid flow velocity information of
all of the canaliculi was rendered in a 3D image stack. For reasons of presentation, this 3D image is averaged over the imaging depth to obtain the shown flow
pattern. Results shown are for mouse 1 (Fig. 5).

32254 | www.pnas.org/cgi/doi/10.1073/pnas.2011504117 van Tol et al.
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predict the sites of bone formation correctly in individual ani-
mals and on different bone surfaces (endocortical vs. periosteal).
Independent of the predictor, the model acts on a common
length scale, which is defined by the size of a typical finite ele-
ment (>10 μm). With the number of lacunae (∼2,300) similar to
the number of FEs (∼2,750), this common length scale allows an
alternative comparison between the two predictors calculating
the lacunar pressure in two different ways (SI Appendix, Fig. S5
and Supplementary material): The lacunar pressure considering
the LCN is compared with the case of closed-off lacunae, in
which the lacunar pressure corresponds to the strain for a
compressible fluid. Moreover, our analysis allows to identify
mechanisms of how the local network architecture modulates the
velocity of the local fluid flow. A mechanism to locally reduce the
fluid flow is the structural incorporation of vascular channels
while the bone is laid down (Fig. 1B). The fluid flow patterns
(Fig. 3A) demonstrate how vascular channels can act as addi-
tional sinks/sources, and thereby shield the nearby bone surface
from fluid flow. Although this shielding effect of vascular canals
was already hypothesized based on continuous FE modeling
(51), our data confirm how the exact position of the vascular
canals and the interplay with the LCN architecture affect bone
(re)modeling. The interpretation of fluid flow through networks
is based on the principle that fluid flows predominantly through
the path of least resistance among a set of alternative paths
within networks. Since vascular channels are located especially
near regions with a less dense and less connected LCN (and,
therefore, of high flow resistance) (Fig. 1B), the path toward
these vascular channels is the preferred flow path, thereby
reinforcing their “shielding effect.” A very different mechanism
is responsible for the high flow velocities close to surfaces
exhibiting a strong mechanoresponse. Here, when approaching

the bone surface, the network converges, with the fluid flow
being “funneled” into fewer canaliculi (Fig. 1C). The (practi-
cally) incompressibility of the fluid causes an acceleration of the
fluid, once a reduced number of canaliculi are available.
A topic that has been largely neglected by bone researches,

because it is so hard to address, is the problem of signal inte-
gration: How are the biological signals, which are produced by
various osteocytes as a response to fluid flow, then added up and
transported to the surface of the bone to orchestrate the be-
havior of osteoblasts and osteoclasts after mechanotransduction?
In the scope of our model, we therefore asked, how should the
averaging over the fluid flow velocities in the LCN be performed
to obtain a good predictor for bone’s mechanoresponse? Our
analysis allows us also to speculate on this point. In our fluid flow
analysis, the predictive power of the bone’s mechanoresponse is
best, when the weighted average of the flow velocity (Materials
and Methods) is restricted to canaliculi only tens of micrometers
away from the bone surface (i.e., for the evaluation of Fig. 5 A
and C, R = 15 μm was chosen in Eq. 1;Materials and Methods). If
the mechanosensitivity is largely restricted to network contribu-
tions close to the surface, this would have important implications
for bone adaptation. The continuous bone apposition at the
periosteal surface in mice and humans (52) could be used for a
continuous adaptation of the network architecture to modulate
the flow through it. A feedback mechanism has been hypothe-
sized based on the experimental finding that the osteocyte den-
sity correlates with bone apposition rate (53, 54). Also, the strong
heterogeneity in LCN architecture in mice can be associated with
differences in bone formation rate (55). For example, this could
explain why some surfaces have a more sensitive “funneling LCN
architecture” (Fig. 1C).
The intricacy of the LCN architecture makes model assump-

tions necessary. Even with the restriction of the imaging depth to
roughly 50 μm, the imaged volume of the mouse tibia contains
∼4.5 million canaliculi. The 3D network architecture of the
canaliculi in this 50-μm-thick volume is illustrated in 3D ren-
dered videos (see Network_animation_mouse1.avi in ref. 46).
Standard confocal microscopy cannot resolve the diameter of the
canaliculi. Consequently, the annulus region, in which fluid can
flow, was assumed to have a cross-sectional area of 0.045 μm2 for
all canaliculi. The fluid does not flow freely through this annular
space but is substantially impeded by its fibrous filling. As a
consequence, the dependency of the fluid flow velocity on the
unknown dimensions of the annular space is limited (12). SI
Appendix, Supplementary material includes additional simulation
results demonstrating the robustness of our fluid flow predictions
with respect to a random variability of canalicular permeabilities.
The large number of canaliculi also restricts the accuracy of the
fluid flow calculations compared to previous works, which ana-
lyzed the fluid flow through single lacunae with their adjacent
canaliculi (31, 56) or within single canaliculi (57, 58). In partic-
ular, our model does not consider any interplay between the fluid
flow and the shape of osteocyte bodies. Not only these fluid
simulations, but also microfinite-element calculations (59) and
experimental strain measurements (60) show local heterogene-
ities in the flow and strain, respectively, due to specifics of the
lacunar and canalicular shape. On these submicrometer length
scales future modeling approaches have to incorporate relevant
ultrastructural information on the organization of bone lamellae
and mineralized collagen fibers (61).
The fluid flow is also predicted based on the LCN architecture

before the mechanoresponse of new bone formation and re-
sorption. In reality, the adaptation process is more dynamic, so
that the first bone (re)modeling would already have an influence
on the fluid flow pattern. Additionally, osteocytes may be even
able to actively manipulate the permeability of certain canaliculi,
for example by perilacunar/canalicular remodeling (62) and/or
obstructing the fluid flow with their cell processes. Such an active

Fig. 4. Result of in vivo μCT measurements in terms of bone formation and
resorption after 2 wk of controlled loading of the tibia. The tibial cross-
section is represented schematically as a circular annulus (yellow). The
black line denotes the amount of resorbed bone (line entering yellow cor-
tex) and formed bone (depiction not to scale). The pink line denotes the
prediction of the mechanoresponse based on strain only; the green line is
the prediction based on load-induced fluid flow, which considers not only
the loading condition but also the architecture of the lacunocanalicular
network (LCN). Strain rate and fluid flow velocity were integrated over re-
gions close to the surface (Materials and Methods) to obtain a single value.
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control of the fluid flow would allow indirect communication
between osteocytes (63). Our approach can be justified by the
assumption that there is a time delay between mechanosensing
and actuation in terms of bone formation and resorption. Con-
sequently, to predict bone’s mechanoresponse, one should ana-
lyze the mechanical stimulation in its recent past. The time-
consuming analysis was limited to three mouse tibiae only. Based
on our results, we suggest designing further studies including larger
sample cohorts to enable a thorough statistical analysis. Efficient
progress in our understanding of bone’s mechanobiology could also
be made by extending the analysis to the trabecular bone com-
partment (26), different bones in the mouse, larger bone volumes
(64), and different small animals. The strength of our model ap-
proach is that an assessment of fluid flow in the whole network can
be performed, although the large number of canaliculi poses a
challenge to computational resources available nowadays. The re-
sult of the analysis are patterns of fluid flow velocity with a striking
spatial heterogeneity (Fig. 3A), especially when compared to the
smooth strain patterns (Fig. 3B).
While fluid flow is an excellent predictor of bone formation,

this holds much less for resorption. A valid prediction is that no
resorption was found when the average fluid flow velocity at the
surface is above 5 μm/s. However, the resorption at the periosteal
surfaces was noticeably less compared to the endocortical sur-
faces, despite the surfaces having very similar fluid velocities. We
want to provide four possible reasons for shortcomings of model
predictions: 1) Especially for the case of resorption, it has been
proposed that microdamage in the bone could act to trigger the
process (65–67); 2) since similar endocortical bone resorption is
also observed in the nonloaded limb (42), this could be a re-
sponse uncoupled to mechanics and related to shape changes of
the whole tibia (64). A future fluid flow analysis as proposed in
this study on the nonloaded limb is important to confirm that the
obtained findings can be extended to bones under physiological

loading. 3) To understand details of mechanotransduction, a
more microscopic viewpoint than taken here is necessary, to
consider the role of integrins (25) and the glycocalyx (14, 68–70).
4) Although this study focuses on biomechanical aspects of bone
adaptation, we do not want to give the wrong impression that
molecular and cell biological aspects should take a back seat. In
the end, cells must be available and they have to comprehend
and execute instructions that are provided by mechanical stim-
ulation. Metaphorically speaking, our point of view for bone’s
mechanosensitivity is that the LCN is the hardware, on which the
biological software can play.
Future work using the approach of the present study should

corroborate the potential of applying the fluid flow hypothesis to
predict the mechanoresponse of bone. A straightforward exten-
sion is to analyze different anatomical locations, mouse strains,
mouse ages, diseases that lead to deterioration of the LCN, or
other small rodents. A fascinating question is how much the LCN
architecture can explain differences in the mechanoresponse of
different bones in the human skeleton. For example, our skull
does not get resorbed despite a low mechanical loading (71).
Also, it is known that in general the LCN architecture changes
with age (40). It should be tested whether these changes can be
responsible for the decrease in mechanoresponse with age (27,
42, 72). More challenging will be to determine the influence of
LCN architecture and fluid flow on bone development and
growth. The difficulty is to untie the feedback loops that couple
mechanical stimulation, bone growth, and the constant addition
of new canalicular network. Finally, an evolutionary perspective
on the LCN raises some fundamental questions. The existence of
fish, which through evolutionary selection have neither osteo-
cytes nor a LCN (73), suggest that mechanosensation was not the
primary function of the osteocytes. Since it seems not a futile
undertaking to image the LCN in fossil bones (35), these ancient

Fig. 5. Evaluation of absolute surface strain rate (A), (re)modeling thickness (B), defined as new bone thickness minus resorption cavity depth, and surface
fluid flow velocity (C) for all three investigated mice (see Fig. 3B for definition of angles). Strain rate and fluid flow velocity were integrated over regions close
to the surface (Materials and Methods) to obtain a single value. (A) Strain rates at the endocortical surface (dotted line) are lower compared to the periosteal
surface (solid line), and the spatial distribution and peak values are very similar between mice. (B) The mechanoresponse shows individual differences in bone
(re)modeling, with mouse 2 showing less (re)modeling compared to the two other mice. (C) Also surface fluid velocity was found to be lower in mouse 2,
while for all animals the flow velocities show similar distributions on the endocortical and periosteal surfaces.
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bone samples could tell us the exciting story of how a new
function was introduced into our bones.

Materials and Methods
In Vivo Mechanoresponse Experiment and 3D Dynamic In Vivo Morphometry.
Two weeks of controlled loading was applied on the left tibia of three
skeletally mature (26-wk-old) female C57BL/J6 mice (The Jackson Laboratory)
to provoke a bone (re)modeling response (43). The loading protocol (74) and
time-lapse imaging method (75) have been previously reported in detail and
are only briefly described here. The loading protocol consisted of 216 cycles/
d, 5 d/week, with a 4-Hz triangular waveform. A load of −11 N was applied
to induce a peak strain of +1,200 μe, based on previous in vivo strain gauging
(74). In vivo μCT scans with a voxel size of 10.5 μm were taken of the mid
diaphysis, covering 5% of the tibia length on day 0 and 15 (VivaCT 40;
Scanco). Animal experiments were carried out according to the policies and
procedures approved by the local legal representative (LAGeSo Berlin,
G0168/13). μCT images of the same bone, acquired at different time points,
were geometrically aligned in a common coordinate system using a 3D rigid
registration algorithm with normalized mutual information as the optimi-
zation criterion. The voxels in the fused dataset can then be classified as
newly formed, resorbed, or quiescent bone (Fig. 3C). The local mechanical
strains induced within the bone during the controlled loading experiment
were determined using animal specific FE models (Abaqus, Dassault Systemes
Simulia). FE models were developed using ex vivo μCT scan (Skyscan 1172;
Bruker; 9.91-μm isotropic voxel size) of full tibiae. Material properties were
assumed linear elastic, but spatially heterogeneous based on the linear at-
tenuation coefficients extracted from the ex vivo scans and validated by syn-
chrotron computed tomography measurements (see ref. 44 for model details).

Sample Preparation, Confocal Laser-Scanning Microscopy, and LCN Analysis.
Confocal laser-scanning microscopy (CLSM) was used after rhodamine
staining to image the LCN in whole cross-sections of the mouse tibiae. Tibia
samples with only their knee and ankle joints removed were immersed in an
ethanol solution with rhodamine 6G for 24 h. This was repeated three times
with a fresh rhodamine 6G solution and then embedded in poly(methyl
methacrylate) (PMMA) using our previously established protocol (76). The
bone was kept wet with ethanol until the PMMA embedding process was
finished to prevent crack formation. Based on high-resolution ex vivo μCT
scans (5-μm voxel size; SCANCO μCT 50; SCANCO Medical) to define the re-
gion of interest, the embedded bones were cut transversally using a dia-
mond wire saw equipped with a 50-μm-thick wire and a stereo microscope
(DWS.100; Diamond WireTec) and polished. With rhodamine (molecular
size, <2 nm) penetrating all accessible porosities in the sample and attaching
at surfaces, the LCN and vascular channels can be imaged in 3D using CLSM
(Leica SP8) (6, 47). An image resolution of 370 nm was obtained with a 40×
oil immersion lens (Leica, HCX PL APO 40× NA 1.25 oil). Since under these
imaging conditions the field of view (0.4 mm) is smaller than the size of a
tibial cross-section (about 1.2 mm), 16 image stacks covering the whole cross-

section were taken and then stitched using the ImageJ software tool Big-
Stitcher (77). This tool allowed an accurate alignment of canaliculi to ensure
their continuity between different image stacks. With an updated version of
our custom-made Python software Tool for Image and Network Analysis
(TINA) (available in ref. 78), the image dataset was automatically segmented
into canaliculi, lacunae, and vascular channels and then converted into a
mathematical network consisting of edges (representing canaliculi) and
nodes (representing all intersections between canaliculi, including lacunae
and vascular channels) (Fig. 6). This network was further analyzed using
NetworkX 1.7 (79). The canalicular density (Ca.Dn) was evaluated for (8 μm)3

big subvolumes as total length of canaliculi per unit volume. The pore
density for these subvolumes was calculated as volume of both lacunae and
vascular channels per unit volume.

Simulation of the Load-Induced Fluid Flow through the LCN. Circuit theory
based on Kirchhoff’s first law was used to calculate the fluid flow velocity in
each canaliculus of the network (for details of the model and parameter
values used, see ref. 41). Describing the topology of the network by the
directed edge-node incidence matrix Aji, with elements equal to 1 (or −1) if
edge j points toward (or away from) node i, and otherwise 0, conservation of
fluid in the network (Kirchhoff’s first law) can be written as ∑jAjiqj = fi with

qj, the volumetric flow rate through the edge j, and fi, the source/sink
contribution to the flow of node i. Exploiting the definition of the incidence
matrix leads to Δpj = ∑iAjipi, where Δpj denotes the pressure difference
over edge j, and pi, the pressure at node i. Darcy’s law relates the pressure
difference and volumetric flow rate within each edge, qj = CjjΔpj. The en-
tries in the conductivity matrix Cjj can be estimated following the approach
of Weinbaum et al. (12), which takes into account that the fluid can only
flow in the annulus between osteocyte process and canaliculus wall and that
this space is filled with a fibrous matrix. The hypothesis of load-induced fluid
flow implies that each node under compression/tension is a source/sink of
fluid, respectively. The rate of fluid volume contributed by node i, i.e., the
value of fi, is calculated as the product between two quantities: 1) the vol-
ume of the porosity corresponding to node i, which equals half of the vol-
ume of all of the canaliculi connected to the node plus the volume of the
lacuna in case that the node represents a lacuna; 2) the local mechanical
volumetric strain rate, which can be estimated from the tibia loading pro-
tocol in combination with FE calculations. Combination of Kirchhoff’s first
law, Darcy’s law together with the values for fi, the volumetric flow rate qj in
each edge j can be calculated, which can be easily converted into an average
velocity in the canaliculus j, vj, since qj = vjAwith A, the cross-sectional area
of the annulus region between cell process and canaliculus wall. This aver-
age velocity is linearly related to the shear force on the cell membrane of
osteocytes (12). The final step remaining is “to integrate” this information
about fluid flow velocities to obtain a predictor for the mechanoresponse at
the bone surfaces. First, both the endocortical and periosteal surface are
discretized in 180 arc-shaped elements each covering an angle of 2°. For
each element, a weighted mean of the fluid flow velocity in all canaliculi,

Fig. 6. Different stages of the image analysis methods of confocal laser-scanning microscopy (CLSM) data. After thresholding of CLSM raw data with a fixed
threshold, segmentation (based on bulkiness and local change in curvature by “expanding” the lacunae into the canaliculi) allows a separation between
canaliculi (red tubes) and lacunae (orange blobs) (36). Skeletonization converts the image into a mathematical network with edges representing canaliculi
(blue lines) and nodes representing intersection between canaliculi (green spheres) and lacunae.
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which are located in the “wedge” of 2° opening angle, was calculated. The
weighting follows the idea introduced by Mullender and Huiskes (80) that
contributions closer to the surface are more important than farther away
from it. Using an exponential weighting, the quantity that should predict
the mechanoresponse of loaded bone in an element of the endocortical or
periosteal surface was defined as follows:

⎛⎜⎜⎜⎜⎜⎝∑
j

lj

⎞⎟⎟⎟⎟⎟⎠
−1
∑
j

vj lj exp[(rjR)], [1]

with lj, the length of the canaliculus j, and rj, the distance from the bone surface
to canaliculus j; weighted averaging is executed over all canaliculi within the
wedge of 2° opening angle. For the presentation of the results, a 30° triangular
moving average was used to smoothen the angular dependence. Since the value
of R is unknown, a parameter study was performed with the result that the
mechanoresponse could be well predicted for 3 < R < 30 μm with an average
RMSE below 12 μm. For the results of Fig. 4, the choice was R = 15 μm.

Data Availability. Rawmicroscopy data have beendeposited in theOpenAccess
Data Repository of theMax Planck Society (https://edmond.mpdl.mpg.de/imeji/
collection/0fK7DWn6fkD13hs). All study data are included in the article and
SI Appendix.
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