Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intermolecular interactions in optical cavities: An ab initio QED study

MPG-Autoren
/persons/resource/persons180973

Schäfer,  C.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons226551

Ronca,  E.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Instituto per i Processi Chimico Fisici del CNR (IPCF-CNR);

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;
Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

5.0039256.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)

qed_si.pdf
(Ergänzendes Material), 2MB

Zitation

Haugland, T. S., Schäfer, C., Ronca, E., Rubio, A., & Koch, H. (2021). Intermolecular interactions in optical cavities: An ab initio QED study. The Journal of Chemical Physics, 154(9): 094113. doi:10.1063/5.0039256.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-8A21-8
Zusammenfassung
Intermolecular bonds are weak compared to covalent bonds, but they are strong enough to influence the properties of large molecular systems. In this work, we investigate how strong light–matter coupling inside an optical cavity can modify intermolecular forces and illustrate the varying necessity of correlation in their description. The electromagnetic field inside the cavity can modulate the ground state properties of weakly bound complexes. Tuning the field polarization and cavity frequency, the interactions can be stabilized or destabilized, and electron densities, dipole moments, and polarizabilities can be altered. We demonstrate that electron–photon correlation is fundamental to describe intermolecular interactions in strong light–matter coupling. This work proposes optical cavities as a novel tool to manipulate and control ground state properties, solvent effects, and intermolecular interactions for molecules and materials.