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Abstract
We develop a numerical method suitable for gravitational collapse based on Cauchy
evolution with an ingoing characteristic boundary. Unlike similar methods proposed
recently (Ripley; Bieri et al. in Class Quantum Grav 37:045015, 2020), the numerical
grid remains fixed during the evolution and no points need to be removed or added.
Increasing coordinate refinement of the central region as the field collapses is achieved
solely through the choice of spatial gauge and particularly its boundary condition. We
apply this method to study critical collapse of a massless scalar field in spherical
symmetry using maximal slicing and isotropic coordinates. Known results on mass
scaling, discrete self-similarity and universality of the critical solution (Choptuik in
Phys Rev Lett 70:9, 1993) are reproduced using this considerably simpler numerical
method.
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collapse
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1 Introduction

Critical phenomena in gravitational collapse are one of the most remarkable discover-
ies made through numerical methods applied to Einstein’s field equations of general
relativity. Since Choptuik’s groundbreaking study of a massless scalar field coupled
to the Einstein equations in spherical symmetry [1], similar phenomena have been
discovered for a variety of matter models and even in vacuum, see [2] for a review
article. Briefly, the idea is to choose a smooth one-parameter family of initial data
such that in the future Cauchy development of such data, a black hole forms for large
parameter values and the field disperses to flat spacetime for small parameter values.
We are interested in the threshold between these two final states and the associated
critical solution. In what has been termed Type II critical collapse, the black hole
mass becomes infinitesimally small as the threshold, obeying a universal scaling law,
and the critical solution is discretely self-similar and universal, i.e. independent of the
particular one-parameter family of initial data chosen. (There is also Type I critical
collapse in certain models, where the black hole mass is finite at the threshold and the
critical solution is stationary or time-periodic).

It is this discrete self-similarity of near-critical evolutions that makes the problem
so hard numerically: the solution repeats itself on smaller and smaller spatial scales,
in shorter and shorter time intervals. Choptuik [1] implemented an adaptive mesh
refinement algorithm [3] in order to be able to resolve the increasingly smaller length
scales of the solution.

Alternate methods to tackle the same problems have subsequently been developed,
e.g. formulations in double null coordinates with [4] and without [5] adaptive mesh
refinement, although in the latter case grid points had to be added during the evolution
in order to maintain accuracy.

Recently Bieri, Garfinkle and Yau [6] proposed a general method for Cauchy evo-
lution in numerical relativity whereby the boundary of the finite spatial computational
domain is expanded along a spacelike direction at each time step. Additional initial
data must be specified on this surface. The advantage is that with such a setup, no
outer boundary conditions need to be imposed because all the constant-time slices
lie within the domain of dependence of the initial slice and the additional “tilted”
spacelike surface. This proposal thus avoids the long-standing problem of imposing
boundary conditions along a finite timelike surface in general relativity [7]. Other
alternatives to this problem include Cauchy-characteristic matching [8], evolution on
hyperboloidal slices compactified towards future null infinity [9–11] and the regular
conformal field equations [12,13].
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Related to Bieri et al’s scheme is the “excision method” proposed by Ripley [14],
whereby the computational domain is excised along a surface that is spacelike or
tangent to an ingoing characteristic of the boundary on the initial slice. Again, no
boundary conditions need to be impose at the outer boundary because in this case all
characteristics leave the computational domain. This method appears to be well suited
to gravitational collapse problems. A disadvantage is that grid points are lost during
the evolution due to the excision procedure so that one will have to add grid points in
the interior in order to maintain accuracy.

The method developed in the present paper is similar to Ripley’s in that the outer
boundary of the spatial computational domain is an ingoing characteristic. However,
no grid points are excised; instead merely the spatial coordinates are changed as time
proceeds.

In the Arnowitt–Deser–Misner (ADM) formulation of general relativity [15], the
time vector field ∂/∂t is decomposed as1

(
∂
∂t

)a = αna + βa, (1)

where na = −α∇at is the unit future-directed timelike normal, α is the lapse function
and βa the shift vector (which is spatial, naβa = 0). This means that a point with
spatial coordinates xi on the spatial slice at time t correponds to the point with spatial
coordinates xi −β idt on the slice at time t+dt if we drag it along the timelike normal.

Consider now a shift vector field of the form

β i = cxi (2)

where c is a constant w.r.t. the spatial coordinates xi . Hence identified points on the
spatial slices will change coordinates according to

xi → (1 − c dt)xi (3)

as time increases from t to t + dt , so if we choose c < 0 then the coordinates “zoom
in” isotropically towards the origin. The significance of (2) is that it is a homogeneous
solution to the spatial isotropic gauge condition in spherical symmetry, Eq. (11) below,
where βr = rβ so (2) corresponds to β = c = const. The value of the constant c will
be fixed by the boundary condition on the shift in the isotropic gauge condition. For a
suitable value of this (in general time-dependent) constant, the outer boundary can be
made an ingoing characteristic (or spacelike) so that no boundary conditions on the
evolved fields are needed.

We supplement the isotropic spatial gauge condition with a maximal slicing con-
dition. The advantage of such a slicing as compared with the polar slicing used by
Choptuik [1] is that the coordinates remain regular at the apparent horizon when it
forms, which allows for a more accurate determination of its location and mass.

This article is organised as follows. In Sect. 2 we set up our model problem of a
massless scalar field in spherical symmetry, and we state the gauge conditions and

1 We use abstract index notation with indices a, b, . . . ranging over the spacetime coordinates t, r , θ, ϕ

and indices i, j, . . . ranging over the spatial coordinates r , θ, ϕ.
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their boundary conditions appropriate for our ingoing boundary method. In Sect. 3
we provide details on the numerical methods we use to solve the field equations.
The numerical results are contained in Sect. 4. We set up two families of initial data,
describe ourmethod to tune to the critical parameter and to choose an appropriate outer
boundary radius, and we present results on the mass scaling, discrete self-similarity
and universality of the critical solution. In Sect. 5 we summarise, discuss potential
challenges of the method and future applications.

2 Formulation of themodel

2.1 Choice of gauge and variables

In spherical symmetry and isotropic coordinates, the spacetime metric takes the form

ds2 = −(α2 −ψ4r2β2)dt2 +2rβψ4dt dr +ψ4
[
dr2 + r2(dθ2 + sin2 θ dϕ2)

]
. (4)

We imposemaximal slicing and hence the extrinsic curvature has only one independent
component in spherical symmetry:

Ki
j = diag(Kr

r ,− 1
2K

r
r ,− 1

2K
r
r ). (5)

For reasons discussed shortly, we define a rescaled quantity

K̂ r
r := r−2ψ6Kr

r . (6)

The massless scalar field Φ itself does not enter the equations but only its first deriva-
tives

ξ̂ := r−1ψ2Φ ′, 
̂ := ψ4α−1(Φ̇ − rβΦ ′), (7)

where here and in the following a dash denotes a partial derivative w.r.t. r and a dot
w.r.t. t .

The fundamental variables α, β,ψ, K̂ r
r , ξ̂ and 
̂ depend on t and r only, and the

powers of r in their definitions have been chosen so that they are all even functions of
r with finite nonzero limits at the origin r = 0.

2.2 Field equations

The relevant components of the Einstein equations Rab = κ∇a∇bΦ, where Rab is the
spacetime Ricci tensor and κ = 8π in geometric units, are the momentum constraint

r K̂ r
r
′ + 5K̂ r

r + κπ̂ ξ̂ = 0 (8)

and the Hamiltonian constraint

ψ ′′ + 2r−1ψ ′ + 3
16ψ

−7(r2 K̂ r
r )

2 + 1
8κψ−3(
̂2 + r2ξ̂2) = 0. (9)
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When linearising (9) about a given background solution ψ , the coefficient of the
undifferentiated term proportional to ψ is manifestly negative because of the negative
powers ofψ in (9). If this was not the case then non-unique oscillatory solutions might
exist; see [16,17] for further discussion of this issue. This is the reason for the choice
of the powers of ψ in (6) and (7).

The maximal slicing condition implies the following equation for the lapse,

α′′ + 2α′(r−1 + ψ−1ψ ′) − α
[
κψ−4
̂2 + 3

2ψ
−8(r2 K̂ r

r )
2
]

= 0, (10)

and preservation of the isotropic form of the metric (4) yields

β ′ − 3
2rαψ−6 K̂ r

r = 0. (11)

The equation of motion for the scalar field ∇a∇aΦ = 0 reduces to the pair of
first-order equations

˙̂
ξ = rβξ̂ ′ + (3β + 2αψ−6r2 K̂ r

r )ξ̂ + αψ−2r−1
̂′

+ψ−3r−1(ψα′ − 4αψ ′)
̂, (12)
˙̂

 = rβ
̂′ + (2β + αψ−6r2 K̂ r

r )
̂ + αψ−2r ξ̂ ′ + ψ−2(rα′ + 3α)ξ̂ . (13)

There are redundant evolution equations forψ and K̂ r
r that can be used to monitor

the accuracy of the code; the first will also be needed to specify boundary conditions:

ψ̇ = rβψ ′ + 1
2βψ + 1

4r
2αψ−5 K̂ r

r , (14)

˙ˆ r
rK = rβ K̂ r

r
′ + 5β K̂ r

r + 3
2αr

2ψ−6 K̂ r
r
2 − 2

3ψ
2r−1(r−1α′)′

− 4
3αψr−1(r−1ψ ′)′ + 4r−2ψ ′(αψ ′ + 2

3ψα′) − 2
3καψ−2ξ̂2. (15)

2.3 Boundary conditions

A crucial feature of our method is the choice of gauge boundary conditions. We want
the outer boundary to be ingoing null or spacelike, which corresponds to setting

β
.= −ν r−1ψ−2α (16)

with ν ≥ 1, where
.= means equality at the outer boundary r = rmax. For the results

presented in Sect. 4 we will always choose ν = 1 corresponding to the boundary being
null, although we will briefly discuss making ν a time-dependent function in Sect. 5.

Since there are no ingoing characteristics at the outer boundary with this choice, the
evolution Eqs. (12) and (13) for the scalar field do not require any boundary conditions.
We specify Dirichlet boundary conditions on ψ for the Hamiltonian constraint (9) by
evolving (14) at the outer boundary. The momentum constraint (8) does not require a
boundary condition as this is already fixed by demanding the solution to be regular at
the origin.
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What remains to be specified is an outer boundary condition on the lapse α for the
maximal slicing condition (10). Freezing the lapse to its flat value α = 1 is not a good
idea since this will lead to unacceptably large slice stretching as the physical size of
the grid shrinks and the lapse collapses in the centre as the singularity is approached.
Instead we simply advect the lapse along the shift at the outer boundary, as in the first
terms of all the evolution equations:

α̇
.= rβα′. (17)

Another way of phrasing this is to extrapolate (in time) the value of the lapse at the
outer boundary r = rmax on the slice at time t + dt from its value at the identified
radius on the slice at time t , which according to (3) is at (r +rβdt)r=rmax < rmax (note
β < 0 at r = rmax).

3 Numerical methods

3.1 Evolution scheme

Given data at time t , we first evolve the scalar field variables ξ̂ and 
̂ to the next
timestep t+Δt using (12) and (13).At the advanced time the radial ordinary differential
equations (ODEs) (8)–(11) are solved in this order for K̂ r

r , ψ, α and β (notice they
form a hierarchy). Dirichlet boundary values for ψ and α are supplied by evolving
(14) and (17) at the outer boundary along with the other evolution equations, and the
boundary condition for β is (16).

3.2 Discretisation

We use a fixed non-uniform radial grid at points ri = f (xi ), where

f : [0, 1] → [0, rmax], f (x) = reff x + (rmax − reff)x
3 (18)

is a cubicmap from numerical to physical coordinates. Here reff ≤ rmax can be thought
of as an “effective” radius the grid would have if the same resolution as close to the
origin was used all the way to the outer boundary. We typically choose reff ≈ 1

2rmax. It
should be noted that a non-uniform grid is not essential for our method to work, it just
saves computational resources since the distribution of grid points is better adapted
to the features of the solution, which has its largest gradients close to the origin. We
could just as well take reff = rmax corresponding to a uniform grid. With respect to
the numerical coordinate x , the grid is equidistant and staggered at the origin:

xi = (i + 1
2 )h, i = 0, 1, . . . , N , h = (N + 1

2 )
−1.

We use N = 500 grid points for the simulations presented in Sect. 4. The grid remains
unchanged during the evolution.
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We use centred fourth-order finite differences to discretise the equations in r . Near
the origin the finite-difference stencils are modified according to the known (even)
r -parity of all the evolved variables. Near the outer boundary (fourth-order) backward
finite differences are used.

3.3 ODE solvers

Following the method of lines, the evolution equations are integrated forward in time
using a standard fourth-order Runge–Kutta method. Sixth-order Kreiss–Oliger dis-
sipation [18] is added to the right-hand sides of the evolution equations in order to
maintain numerical stability (a small coefficient ≈ 0.1 is found to be sufficient).

The radial ODEs are solved using a direct band-diagonal solver at each substep of
the Runge–Kutta method.

Since the size of the metric functions α, β and ψ changes drastically during the
evolution, it is important to adapt the size of the time step Δt in order not to violate
the Courant–Friedrichs–Lewy (CFL) condition for numerical stability. At each time
step, we compute the characteristic speeds of the scalar wave equation

v±(r) = −rβ ± ψ−2α (19)

and set the time step size according to

Δt = λ min
i=1,...,N

ri − ri−1

max(|v+(ri )|, |v−(ri )|) . (20)

The CFL condition states 0 < λ < 1, and we typically choose λ = 1
2 .

3.4 Termination criteria

We terminate a simulation when either a black hole forms (i.e. the evolution is super-
critical) or the field disperses to flat spacetime (i.e. the evolution is subcritical).

Formation of a black hole is detected by looking for an apparent horizon (outermost
marginally outer trapped surface). This is an r = const surface whose outgoing null
expansion vanishes,

θ+ = 2(ln R),a�
a = 0, (21)

where
R = rψ2 (22)

is the areal radius and �a is an outward-pointing radial null vector. In our variables
(21) is equivalent to

rψ ′ + 1
2ψ + 1

4r
3ψ−3 K̂ r

r = 0. (23)

The radius rAH of the apparent horizon is the largest zero of this equation, and the
associated mass is

M = 1
2 R|r=rAH . (24)

123



  117 Page 8 of 15 O. Rinne

It is this mass computed from the apparent horizon that will enter the scaling law in
Sect. 4.3.Assuming cosmic censorship holds, formation of an apparent horizon implies
the existence of an event horizon containing the apparent horizon in its interior.

We consider an evolution to be subcritical if the maximum (w.r.t. r ) of the scalar
curvature

R = κψ−8
[
(r ξ̂ )2 − 
̂2

]
(25)

drops below some fraction (typically 5%) of its maximum value attained during the
evolution.

4 Numerical results

4.1 Initial data and bisection

We consider two very different families of initial data for the scalar field:
(i) data that would be exactly ingoing in a flat metric (ψ = α = 1, β = 0),

Φ = A exp

[

−1

2

(
r − r0

σ

)2
]

, ξ̂ = r−1Φ ′, 
̂ = r−1(rΦ)′, (26)

and (ii) data that are centred at the origin and initially at rest,

Φ = A exp

[
−1

2

( r

σ

)2]
, ξ̂ = r−1Φ ′, 
̂ = 0. (27)

We fix the parameters σ = 1 and (for the ingoing family) r0 = 10, and we take the
amplitude A as the critical parameter. For large values of A the solution forms a black
hole whereas for small values it disperses. We use the bisection method to find an
approximation to the critical amplitude A∗.

4.2 Choosing the outer boundary radius

A typical Penrose diagram of a supercritical evolution close to the critical point is
shown in Fig. 1. It becomes obvious from this diagram that the success of our method
will depend on a good choice of the radius rmax of the outer boundary on the initial
spatial slice.

If this is taken to be too large, rmax = r2 in Fig. 1, then despite the fact that the outer
boundary is an ingoing characteristic, the apparent horizon forms at a very small radius
compared to the radius of the outer boundary. We terminate the bisection scheme if
the radius of the apparent horizon in the supercritical evolutions gets too small, say
rAH < 0.01 rmax, and start over with a smaller value of rmax.

If on the other hand the initial boundary radius is chosen too small, rmax = r1
in Fig. 1, then the field escapes from the spatial domain before the apparent horizon
forms. In a numerical evolution of this type we observe that the bulk of the scalar
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Fig. 1 Penrose diagram of a typical near-critical spacetime. Shown are the initial spatial slice at t = 0 and
a number of subsequent spatial slices and their ingoing null boundaries for two different initial boundary
radii r1 and r2 as discussed in the main text. On the last slice the apparent horizon (AH) forms, which at
later times converges to the event horizon (EH) of the black hole. Spacetime is close to the Type II critical
solution roughly in the shaded region

field moves out of the domain but the scalar curvature (25) remains large, unlike in a
subcritical evolution. If this happens, we terminate the bisection scheme and repeat it
with a larger value of rmax.

Essentially this adds an outer bisection loop (for rmax) to the inner one (for A). In
practice, one does not have to repeat the A-bisection all the way from the start because
one can use a somewhat smaller A-interval of the previous rmax-iteration as the initial
interval for the A-bisection at the improved value of rmax.

Using this procedure we determine r (i)
max = 15.421875 for the ingoing family and

r (i i)
max = 5.64 for the centred family. (For comparison, the near-critical ADMmasses are
M (i)

ADM = 0.27 and M (i i)
ADM = 0.41.) Being able to observe the mass scaling (Sect. 4.3)

does not require such a precise choice of rmax, while for the echoing behaviour of the
critical solution (Sect. 4.4) more accuracy is needed. (About three echos were visible
in the simulations reported here.)

To provide some idea of how the physical size of the grid changes during a sim-
ulation, we plot in Fig. 2 the areal radius Rmax of the outer boundary as a function
of the number of time steps n for a near-critical evolution. The exponential decrease
of Rmax with n is well adapted to the expected discrete self-similarity of the critical

Fig. 2 Left: areal radius Rmax as a function of the number of time steps n. Right: coordinate time t (solid
curve) and proper time at the origin T0 (dashed curve) as functions of n
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solution, which repeats itself on smaller and smaller scales. Also shown in Fig. 2 are
the coordinate time t and proper time at the origin

T0(t) =
∫ t

0
α(t̃, 0)dt̃ (28)

as functions of the number of time steps n. The latter approaches the accumulation
time T ∗

0 of the critical solution.

4.3 Mass scaling

In Fig. 3 we plot the apparent horizon mass M versus the distance A − A∗ to the
critical amplitude for a series of supercritical evolutions. In a double-logarithmic plot
this forms a straight line with a periodic wiggle:

ln(M) = γ ln(A − A∗) + Ψ [ln(A − A∗)] + const, (29)

as first observed numerically in [1,19] and predicted from a perturbative analysis of
the critical solution in [19,20]. According to this analysis, the period� of the function
Ψ is related to the echoing exponent Δ (cf. Sect. 4.4) via Δ = 2�γ . The values of
the mass scaling exponent γ and the echoing exponent Δ obtained from a fit to our
numerical data are shown in Table 1 and are in good agreement with the predicted
values. It should be noted that Δ can be determined more accurately from the echoing
behaviour of the near-critical solution (Sect. 4.4).

Fig. 3 Apparent horizon mass
M versus critical parameter
distance A − A∗ in a
double-logarithmic plot for a
series of supercritical evolutions
of the ingoing family (+) and
best fit using the function
f (x) = c0 + c1x + c2
cos(c3 + c4x) (solid curve)

Table 1 Mass scaling exponent γ and echoing exponent Δ fitted from the numerical values of the mass for
the two initial data families, and their predictions from a perturbative analysis of the critical solution [20]

Fit ingoing family (i) Fit centred family (ii) Prediction

γ 0.3744 ± 0.0017 0.3738 ± 0.0027 0.374 ± 0.001

Δ 3.419 ± 0.033 3.442 ± 0.058 3.4453 ± 0.0005
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4.4 Discrete self-similarity and universality of the critical solution

Variables that are scale invariant display discrete self-similarity in near-critical evolu-
tions. One such scale-invariant variable for the scalar field is

X := rΦ ′ = r2ψ−2ξ̂ . (30)

Discrete self-similarity is best described in terms of logarithmic coordinates

τ := ln(T ∗
0 − T0), ρ := ln R, (31)

where T ∗
0 is the accumulation time of the critical solution. The conjecture, first dis-

covered numerically in [1], is that for the critical solution (indicated by the star), any
scale-invariant variable such as X (30) obeys

X∗(ρ − Δ, τ − Δ) = X∗(ρ, τ ), (32)

where Δ is the echoing exponent.
In Fig. 4 we plot X (i)(ρ, τ ) for a near-critical evolution of the ingoing family as a

function of ρ at two different times τ , and we overlay X (i)(ρ −Δ, τ −Δ) in the same
plots, usingΔ = 3.44. The accumulation time T ∗

0 has been determined by minimising
the norm of the difference between both functions at one fixed time τ . The fact that
the curves nearly coincide provides strong support of the echoing property (32). We
can also see in Fig. 4 that the solution is well resolved numerically both at the original
time τ and at the time of the echo τ −Δ, when the spatial scale has shrunk by a factor
eΔ ≈ 31.

Finally we investigate if the critical solution is universal, i.e. independent of the
particular one-parameter family of initial data. In Fig. 5 we again plot X (i)(ρ, τ ) for a
near-critical evolution of the ingoing family as a function of ρ at two different times τ ,

Fig. 4 Discrete self-similarity: the scale-invariant variable X (i)(τ, ρ) for a near-critical evolution of the
ingoing family is plotted as a function of ρ at two different times τ = −1.8 (left) and τ = −3.1 (right)
as a solid curve with dots at every tenth grid point. In the same plots, we also show X (i)(τ − Δ, ρ − Δ)

as a function of ρ with plus symbols (+) at every tenth grid point. The echoing exponent is taken to be
Δ = 3.44

123
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Fig. 5 Universality: the scale-invariant variable X (i)(τ, ρ) for a near-critical evolution of the ingoing family
is plotted as a function of ρ at two different times τ = −1.8 (left) and τ = −3.1 (right) as a solid curve with
dots at every tenth grid point. In the same plots, we also show X (i i)(τ −δ, ρ−δ) for a near-critical evolution
of the centred family with plus symbols (+) at every tenth grid point. The same (family-dependent) constant
offset δ = 0.245 is used in both plots

but this time we overlay X (i i)(ρ − δ, τ − δ) for a near-critical evolution of the centred
family, where δ is an overall family-dependent scale chosen such that the norm of
the difference between the two solutions is minimal at one fixed τ . The fact that the
curves nearly coincide also at a different time τ with the same constant offset δ strongly
supports the conjecture that the critical solution is universal, as already argued in [1].

5 Discussion

Wepresented a numericalmethod for gravitational collapse based onCauchy evolution
with an ingoing null boundary. The method is similar in spirit to the excision method
of Ripley [14] but differs in that no grid points are removed from the computational
domain; rather, the grid remains fixed and only the coordinates are adapted along
with the evolution. This is achieved by adding a linear term to the shift vector that
causes the coordinates to “zoom in” isotropically towards the centre. This linear term
is a homogeneous solution to the isotropic spatial gauge condition. Another impor-
tant ingredient is the treatment of the lapse function. We propose to use an advection
equation for the lapse along the shift vector at the outer boundary in order to pro-
vide boundary values for the slicing condition (in our case, maximal slicing). This
corresponds to interpolating the lapse from the previous time step and minimises the
amount of slice stretching as the lapse collapses towards zero in the high curvature
region in the centre.

We worked out the method in detail for the model problem of a massless scalar
field coupled to the Einstein equations in spherical symmetry. Known results on criti-
cal behaviour [1] are reproduced: the mass-scaling relation including its fine structure
[19,20], the discrete self-similarity (echoing) of the critical solution and its universal-
ity among different families of initial data. This demonstrates that the method is well
suited to studying critical phenomena in gravitational collapse, while being consider-
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ably simpler than more commonly used methods that typically employ adaptive mesh
refinement.

A price one has to pay for the simplicity of the method is that the outer boundary
radius rmax of the initial data slice needs to be chosen carefully so that a sufficiently
large region of spacetime where the evolution is close to the critical solution can be
explored. We optimised rmax using an outer bisection loop depending on the outcome
of the standard inner bisection along the critical parameter. One might wonder if this
makes the method overly computationally expensive. Certainly in spherical symmetry
this is not the case as a single evolution takes less than five minutes on a laptop even
close to the critical point. Furthermore one does not have to restart the bisection for the
critical parameter from the beginning for each rmax iteration; instead, a smaller interval
from the previous bisection can be used as an improved initial guess. Whether the
method is competitive in axisymmetry or without any spacetime symmetries remains
to be seen.

We have tried to alleviate the need for fine-tuning rmax by equipping the algorithm
with a control system similar to the one described in [21]: make ν in (16) time depen-
dent and steer it so that a typical feature of the solution such as the minimum of the
outgoing expansion (21) remains approximately at a constant coordinate radius. The
larger the value of ν, the stronger the magnifying effect. For this to work, rmax must
be chosen somewhat larger than its optimal value for a null boundary, and ν must be
taken somewhat larger than 1 initially, so that the control system has enough room
to do its job. While performing reasonably well at early times, we have found such a
control system to be ineffective in halting the rapid escape of the scalar field from the
domain that often occurs just before an apparent horizon forms if the initial rmax was
chosen too small or the control system kept ν too large for too long a time. One should
note that ν must not get smaller than 1, otherwise the boundary becomes timelike and
boundary conditions for the evolved fields are needed.

Let us finally comment on other gauge conditions and less restrictive spacetime
symmetries. In axisymmetry there is the well-known quasi-isotropic (or isothermal)
gauge in which the spatial metric takes the form (compare (4))

(3)ds2 = φ4e2η/3(dr2 + r2dθ2 + e−2ηr2 sin2 θ dϕ2). (33)

This has been used in much numerical work, including the first study of critical
behaviour in vacuum axisymmetric gravitational collapse by Abrahams and Evans
[22], as well as e.g. [17,23–25]). The quasi-isotropic gauge condition admits homo-
geneous solutions analogous to the isotropic gauge condition in spherical symmetry,
and our method can be carried over with very few modifications. Work along these
lines is in progress.

It is conceivable that our method can be made to work with other classes of spatial
gauge conditions as well. Any elliptic shift condition such as the minimal strain or
minimal distortion conditions [26] requires boundary conditions, and the freedom in
choosing the boundary data can be used to make the outer boundary an ingoing null
surface. Evolutionary shift conditions such as the hyperbolic Gamma-driver condition
employed in some of the first successful binary black hole merger simulations [27]
require initial conditions, and they could also be modified by adding lower-order
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terms, which could be used to a similar effect. These are interesting questions for
further research.

Finally it should be stressed that this ingoing boundarymethod or the relatedmethod
of Ripley [14] are not limited to studying critical collapse. One can also start with a
standard Cauchy evolution with timelike boundary (where of course boundary condi-
tions must be imposed) and switch to the ingoing boundary method at a certain time.
Combinations with the outgoing boundary method of Bieri et al. [6] are also possible.
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