
Learning with Kernels

Bernhard Schölkopf

Max-Planck-Institut für biologische Kybernetik
72076 Tübingen, Germany

bs@tuebingen.mpg.de

B. Schölkopf, Canberra, February 2006

Roadmap

• Elements of Statistical Learning Theory

• Kernels and feature spaces

• Support vector algorithms and other kernel methods

• Applications

B. Schölkopf, Canberra, February 2006

Roadmap of Today

• Informal introduction to ideas of machine learning

• Learning theory: Uniform convergence

B. Schölkopf, Canberra, February 2006

Learning and Similarity: some Informal Thoughts

• input/output sets X ,Y
• training set (x1, y1), . . . , (xm, ym) ∈ X × Y
• “generalization”: given a previously unseen x ∈ X , find a suit-

able y ∈ Y
• (x, y) should be “similar” to (x1, y1), . . . , (xm, ym)

• how to measure similarity?

– for outputs: loss function (e.g., for Y = {±1}, zero-one loss)

– for inputs: kernel

B. Schölkopf, Canberra, February 2006

Similarity of Inputs

• symmetric function

k : X × X → R

(x, x′) �→ k(x, x′)
• for example, if X = R

N : canonical dot product

k(x, x′) =
∑N

i=1
[x]i[x

′]i
• if X is not a dot product space: assume that k has a represen-

tation as a dot product in a linear space H, i.e., there exists a
map Φ : X → H such that

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
.

• in that case, we can think of the patterns as Φ(x),Φ(x′), and
carry out geometric algorithms in the dot product space (“fea-
ture space”) H.

An Example of a Kernel Algorithm

Idea: classify points x := Φ(x) in feature space according to which
of the two class means is closer.

c+ :=
1

m+

∑
yi=1

Φ(xi), c− :=
1

m−
∑
yi=−1

Φ(xi)

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c

.

Compute the sign of the dot product between w := c+ − c− and
x − c.

An Example of a Kernel Algorithm, ctd. [56]

f (x) = sgn

⎛
⎝ 1

m+

∑
{i:yi=+1}

〈Φ(x),Φ(xi)〉−
1

m−
∑

{i:yi=−1}
〈Φ(x),Φ(xi)〉+b

⎞
⎠

= sgn

⎛
⎝ 1

m+

∑
{i:yi=+1}

k(x, xi) −
1

m−
∑

{i:yi=−1}
k(x, xi) + b

⎞
⎠

where

b =
1

2

⎛
⎝ 1

m2−

∑
{(i,j):yi=yj=−1}

k(xi, xj) − 1

m2
+

∑
{(i,j):yi=yj=+1}

k(xi, xj)

⎞
⎠ .

• provides a geometric interpretation of Parzen windows

• the decision function is a hyperplane. Will it generalize well?

B. Schölkopf, Canberra, February 2006

An Example of a Kernel Algorithm, ctd.

• Demo

• Exercise: derive the Parzen windows classifier by computing the
distance criterion directly

B. Schölkopf, Canberra, February 2006

Statistical Learning Theory

1. started by Vapnik and Chervonenkis in the Sixties

2. model: we observe data generated by an unknown stochastic
regularity

3. learning = extraction of the regularity from the data

4. the analysis of the learning problem leads to notions of capacity
of the function classes that a learning machine can implement.

5. support vector machines use a particular type of function class:
classifiers with large “margins” in a feature space induced by a
kernel.

[72, 73]

B. Schölkopf, Canberra, February 2006

Example: Regression Estimation

y

x

•Data: input-output pairs (xi, yi) ∈ R × R

•Regularity: (x1, y1), . . . (xm, ym) drawn from P(x, y)

• Learning: choose a function f : R → R such that the error,
averaged over P, is minimized.

• Problem: P is unknown, so the average cannot be computed
— need an “induction principle”

Example: Pattern Recognition

B. Schölkopf, Canberra, February 2006

Pattern Recognition

Learn f : X → {±1} from examples

(x1, y1), . . . , (xm, ym) ∈ X×{±1}, generated i.i.d. from P(x, y),

such that the expected misclassification error on a test set, also
drawn from P(x, y),

R[f] =

∫
1

2
|f (x) − y)| dP(x, y),

is minimal (Risk Minimization (RM)).

Problem: P is unknown. −→ need an induction principle.

Empirical risk minimization (ERM): replace the average over
P(x, y) by an average over the training sample, i.e. minimize the
training error

Remp[f] =
1

m

∑m

i=1

1

2
|f (xi) − yi|

B. Schölkopf, Canberra, February 2006

Risk minimization [69]

• Regression estimation. RM: minimize

R[f] =

∫
(f (x) − y)2 dP(x, y)

— leads to the regression y(x) =

∫
y dP(y|x).

ERM gives least mean squares: minimize∑
i
(f (xi) − yi)

2

• Density estimation. RM: minimize

R[f] =

∫
(− log p(x)) dP(x)

ERM gives maximum likelihood estimation: maximize∑
i

log p(xi) = log(
∏
i

p(xi))

Convergence of Means to Expectations

Law of large numbers:

Remp[f] → R[f]

as m→ ∞.

Does this imply that empirical risk minimization will give us the
optimal result in the limit of infinite sample size (“consistency”
of empirical risk minimization)?

No.
Need a uniform version of the law of large numbers. Uniform over
all functions that the learning machine can implement.

B. Schölkopf, Canberra, February 2006

Consistency and Uniform Convergence

Risk

Function class

R

Remp

f f fopt m

R[f]

R [f]emp

B. Schölkopf, Canberra, February 2006

The Importance of the Set of Functions

What about allowing all functions from X to {±1}?
Training set (x1, y1), . . . , (xm, ym) ∈ X × {±1}
Test patterns x̄1, . . . , x̄m̄ ∈ X ,
such that {x̄1, . . . , x̄m̄} ∩ {x1, . . . ,xm} = {}.

For any f there exists f∗ s.t.:
1. f∗(xi) = f (xi) for all i
2. f∗(x̄j) �= f (x̄j) for all j.

Based on the training set alone, there is no means of choosing
which one is better. On the test set, however, they give opposite
results. There is ’no free lunch’ [32, 82].
−→ a restriction must be placed on the functions that we allow

B. Schölkopf, Canberra, February 2006

Restricting the Class of Functions

Two views:

1. Statistical Learning (VC) Theory: take into account the ca-
pacity of the class of functions that the learning machine can
implement

2. The Bayesian Way: place Prior distributions P(f) over the
class of functions

B. Schölkopf, Canberra, February 2006

Detailed Analysis

• loss ξi := 1
2|f (xi) − yi| in {0, 1}

• the ξi are independent Bernoulli trials

• empirical mean 1
m

∑m
i=1 ξi (by def: equals Remp[f])

• expected value E [ξ] (equals R[f])

B. Schölkopf, Canberra, February 2006

Chernoff’s Bound

P

⎧⎨
⎩
∣∣∣∣∣∣
1

m

m∑
i=1

ξi − E [ξ]

∣∣∣∣∣∣ ≥ ε

⎫⎬
⎭ ≤ 2 exp(−2mε2)

• here, P refers to the probability of getting a sample ξ1, . . . , ξm
with the property

∣∣∣ 1
m

∑m
i=1 ξi − E [ξ]

∣∣∣ ≥ ε (is a product mea-

sure)

Useful corollary: Given a 2m-sample of Bernoulli trials, we have

P

⎧⎨
⎩
∣∣∣∣∣∣
1

m

m∑
i=1

ξi −
1

m

2m∑
i=m+1

ξi

∣∣∣∣∣∣ ≥ ε

⎫⎬
⎭ ≤ 4 exp

(
−mε

2

2

)
.

B. Schölkopf, Canberra, February 2006

Chernoff’s Bound, II

Translate this back into machine learning terminology: the prob-
ability of obtaining an m-sample where the training error and test
error differ by more than ε > 0 is bounded by

P
{∣∣Remp[f] − R[f]

∣∣ ≥ ε
} ≤ 2 exp(−2mε2).

• refers to one fixed f

• not allowed to look at the data before choosing f , hence not
suitable as a bound on the test error of a learning algorithm
using empirical risk minimization

B. Schölkopf, Canberra, February 2006

Two Observations

• denote the minimizer of R by fopt,
and the minimizer of Remp by fm.
Then we have in particular

R[fm] − R[fopt] ≥ 0

and
Remp[fopt] −Remp[fm] ≥ 0.

• For consistency, would like the LHS of both to converge to 0 in
probability.

• If the sum of the two converges to 0, we are done.

B. Schölkopf, Canberra, February 2006

The sum of these two inequalities satisfies

0 ≤ R[fm] −R[fopt] +Remp[fopt] − Remp[fm]

= R[fm] −Remp[fm] +Remp[fopt] − R[fopt]

≤ sup
f∈F

(R[f] − Remp[f]) + (Remp[fopt] − R[fopt]).

• second half of RHS: fopt is fixed (independent of training sam-
ple), hence by Chernoff: for all ε > 0,

lim
m→∞P{|Remp[fopt] − R[fopt]| > ε} = 0

(“convergence in probability”)

B. Schölkopf, Canberra, February 2006

• If the first half of RHS also converges to zero (in probability),
i.e.,

lim
m→∞P{ sup

f∈F
(R[f] − Remp[f]) > ε} = 0,

for all ε > 0, then

R[fm] −R[fopt] → 0

Remp[fopt] − Remp[fm] → 0

in probability — in this case, empirical risk minimization can
be seen to be consistent.

B. Schölkopf, Canberra, February 2006

Uniform Convergence (Vapnik & Chervonenkis)

Necessary and sufficient conditions for nontrivial consistency of
empirical risk minimization (ERM):
One-sided convergence, uniformly over all functions that can be
implemented by the learning machine.

lim
m→∞P{ sup

f∈F
(R[f] − Remp[f]) > ε} = 0

for all ε > 0.

• note that this takes into account the whole set of functions that
can be implemented by the learning machine

• this is hard to check for a learning machine

Are there properties of learning machines (≡ sets of functions)
which ensure uniform convergence of risk?

B. Schölkopf, Canberra, February 2006

How to Prove a VC Bound

Take a closer look at P{supf∈F(R[f] −Remp[f]) > ε}.
Plan:

• if the function class F contains only one function, then Cher-
noff’s bound suffices:

P{ sup
f∈F

(R[f] −Remp[f]) > ε} ≤ 2 exp(−2mε2).

• if there are finitely many functions, we use the ’union bound’

• even if there are infinitely many, then on any finite sample
there are effectively only finitely many (use symmetrization
and capacity concepts)

B. Schölkopf, Canberra, February 2006

The Case of Two Functions

Suppose F = {f1, f2}. Rewrite

P{ sup
f∈F

(R[f] − Remp[f]) > ε} = P(C1
ε ∪ C2

ε),

where

Ciε := {(x1, y1), . . . , (xm, ym) | (R[fi] − Remp[fi]) > ε}
denotes the event that the risks of fi differ by more than ε.
The RHS equals

P(C1
ε ∪ C2

ε) = P(C1
ε) + P(C2

ε) − P(C1
ε ∩ C2

ε)

≤ P(C1
ε) + P(C2

ε).

Hence by Chernoff’s bound

P{ sup
f∈F

(R[f] − Remp[f]) > ε} ≤ P(C1
ε) + P(C2

ε)

≤ 2 · 2 exp(−2mε2).

The Union Bound

Similarly, if F = {f1, . . . , fn}, we have

P{ sup
f∈F

(R[f] − Remp[f]) > ε} = P(C1
ε ∪ · · · ∪ Cnε),

and

P(C1
ε ∪ · · · ∪ Cnε) ≤

n∑
i=1

P(Ciε).

Use Chernoff for each summand, to get an extra factor n in the
bound.

Note: this becomes an equality if and only if all the events Ciε
involved are disjoint.

B. Schölkopf, Canberra, February 2006

Infinite Function Classes

• Note: empirical risk only refers to m points. On these points,
the functions of F can take at most 2m values

• for Remp, the function class thus “looks” finite

• how about R?

• need to use a trick

B. Schölkopf, Canberra, February 2006

Symmetrization

Lemma 1 (Vapnik & Chervonenkis (e.g., [69, 20]))
For mε2 ≥ 2 we have

P{ sup
f∈F

(R[f]−Remp[f]) > ε} ≤ 2P{ sup
f∈F

(Remp[f]−R′
emp[f]) > ε/2}

Here, the first P refers to the distribution of iid samples of
size m, while the second one refers to iid samples of size 2m.
In the latter case, Remp measures the loss on the first half of
the sample, and R′

emp on the second half.

B. Schölkopf, Canberra, February 2006

Shattering Coefficient

• Hence, we only need to consider the maximum size of F on 2m
points. Call it N (F , 2m).

• N (F , 2m) = max. number of different outputs (y1, . . . , y2m)
that the function class can generate on 2m points — in other
words, the max. number of different ways the function class can
separate 2m points into two classes.

• N (F , 2m) ≤ 22m

• if N (F , 2m) = 22m, then the function class is said to shatter
2m points.

B. Schölkopf, Canberra, February 2006

Putting Everything Together

We now use (1) symmetrization, (2) the shattering coefficient, and
(3) the union bound, to get

P{sup
f∈F

(R[f] −Remp[f]) > ε}
≤ 2P{sup

f∈F
(Remp[f] −R′

emp[f]) > ε/2}
= 2P{(Remp[f1] −R′

emp[f1]) > ε/2 ∨. . .∨ (Remp[fN (F ,2m)] −R′
emp[fN (F ,2m)]) > ε/2}

≤
N (F ,2m)∑
n=1

2P{(Remp[fn] − R′
emp[fn]) > ε/2}.

B. Schölkopf, Canberra, February 2006

ctd.

Use Chernoff’s bound for each term:∗

P

⎧⎨
⎩ 1

m

m∑
i=1

ξi −
1

m

2m∑
i=m+1

ξi ≥ ε

⎫⎬
⎭ ≤ 2 exp

(
−mε

2

2

)
.

This yields

P{ sup
f∈F

(R[f] −Remp[f]) > ε} ≤ 4N (F , 2m) exp

(
−mε

2

8

)
.

• provided that N (F , 2m) does not grow exponentially inm, this
is nontrivial

• such bounds are called VC type inequalities

• two types of randomness: (1) the P refers to the drawing of
the training examples, and (2) R[f] is an expectation over the
drawing of test examples.

∗ A rigorous treatment would need to use a second randomization over permutations of the 2m-sample,

see [56].

Confidence Intervals

Rewrite the bound: specify the probability with which we want R
to be close to Remp, and solve for ε:

With a probability of at least 1 − δ,

R[f] ≤ Remp[f] +

√
8

m

(
ln(N (F , 2m)) + ln

4

δ

)
.

This bound holds independent of f ; in particular, it holds for the
function fm minimizing the empirical risk.

B. Schölkopf, Canberra, February 2006

Discussion

• tighter bounds are available (better constants etc.)

• cannot minimize the bound over f

• other capacity concepts can be used

B. Schölkopf, Canberra, February 2006

VC Entropy

On an example (x, y), f causes a loss

ξ(x, y, f (x)) =
1

2
|f (x) − y| ∈ {0, 1}.

For a larger sample (x1, y1), . . . , (xm, ym), the different functions
f ∈ F lead to a set of loss vectors

ξf = (ξ(x1, y1, f (x1)), . . . , ξ(xm, ym, f (xm))),

whose cardinality we denote by

N (F , (x1, y1) . . . , (xm, ym)) .

The VC entropy is defined as

HF(m) = E [lnN (F , (x1, y1) . . . , (xm, ym))] ,

where the expectation is taken over the random generation of the
m-sample (x1, y1) . . . , (xm, ym) from P.

HF(m)/m → 0 ⇐⇒ uniform convergence of risks (hence consis-
tency)

Further PR Capacity Concepts

• exchange ’E’ and ’ln’: annealed entropy .

Hann
F (m)/m→ 0 ⇐⇒ exponentially fast uniform convergence

• take ’max’ instead of ’E’: growth function.
Note that GF(m) = lnN (F ,m).

GF(m)/m→ 0 ⇐⇒ exponential convergence for all underlying
distributions P.

GF(m) = m · ln(2) for all m ⇐⇒ for any m, all loss vectors
can be generated, i.e., the m points can be chosen such that by
using functions of the learning machine, they can be separated
in all 2m possible ways (shattered).

B. Schölkopf, Canberra, February 2006

Structure of the Growth Function

Either GF(m) = m · ln(2) for all m ∈ N

Or there exists some maximal m for which the above is possible.
Call this number the VC-dimension, and denote it by h. For
m > h,

GF(m) ≤ h
(
ln
m

h
+ 1

)
.

Nothing “in between” linear growth and logarithmic growth is
possible.

B. Schölkopf, Canberra, February 2006

VC-Dimension: Example

Half-spaces in R
2:

f (x, y) = sgn(a + bx + cy), with parameters a, b, c ∈ R

• Clearly, we can shatter three non-collinear points.

• But we can never shatter four points.

• Hence the VC dimension is h = 3 (in this case, equal to the
number of parameters)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

x

x

x

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

x

x

x

A Typical Bound for Pattern Recognition

For any f ∈ F and m > h, with a probability of at least 1 − δ,

R[f] ≤ Remp[f] + φ

(
h

m
,
log(δ)

m

)
holds, where the confidence term φ is defined as

φ

(
h

m
,
log(δ)

m

)
=

√√√√h
(
log 2m

h + 1
)
− log(δ/4)

m
.

• does this mean, that we can learn anything?

• The study of the consistency of ERM has thus led to concepts
and results which lets us formulate a better induction principle:
we can use this bound to get a low risk!

• in practice: use as a guideline for designing algorithms

B. Schölkopf, Canberra, February 2006

Examples of Induction Principles

• Empirical risk minimization: minimize

Remp[f] =
1

m

m∑
i=1

1

2
|f (xi) − yi|

•Minimum description length: minimize some measure of the
description length of the sequence (x1, y1), . . . , (xm, ym) by a
function f .

• Structural risk minimization (SRM) (Vapnik, 1979): mini-
mize the RHS of

R[f] ≤ Remp[f] + φ

(
h

m

)
.

To this end, introduce a structure on F .

Learning machine ≡ a set of functions and an induction principle
B. Schölkopf, Canberra, February 2006

SRM: The Picture

R(f*)

h

training error

capacity term

error

Sn−1 Sn Sn+1

structure

bound on test error

B. Schölkopf, Canberra, February 2006

Finding a Good Function Class

• recall: separating hyperplanes in R
2 have a VC dimension of 3.

• more generally: separating hyperplanes in R
N have a VC di-

mension of N + 1.

• hence: separating hyperplanes in high-dimensional feature
spaces have extremely large VC dimension, and may not gener-
alize well

• however, margin hyperplanes can still have a small VC dimen-
sion

B. Schölkopf, Canberra, February 2006

Separating Hyperplane

w

◆

◆

◆

◆

●
●

●

●
● {x | <w x> + b = 0},

<w x> + b > 0,

<w x> + b < 0,

B. Schölkopf, Canberra, February 2006

Canonical Hyperplanes [72]

Note: if c �= 0, then

{x| 〈w,x〉 + b = 0} = {x| 〈cw,x〉 + cb = 0}.
Hence (cw, cb) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.r.t. X∗ =
{x1, . . . ,xr} if minxi∈X | 〈w,xi〉 + b| = 1.

Note that for canonical hyperplanes, the distance of the closest
point to the hyperplane (“margin”) is 1/‖w‖:
minxi∈X

∣∣∣〈 w
‖w‖,xi

〉
+ b

‖w‖
∣∣∣ = 1

‖w‖.

B. Schölkopf, Canberra, February 2006

Theorem 2 (Vapnik [69]) Consider hyperplanes 〈w,x〉 = 0
where w is normalized such that they are in canonical form
w.r.t. a set of points X∗ = {x1, . . . ,xr}, i.e.,

min
i=1,...,r

| 〈w,xi〉 | = 1.

The set of decision functions fw(x) = sgn 〈x,w〉 defined on
X∗ and satisfying the constraint ‖w‖ ≤ Λ has a VC dimension
satisfying

h ≤ R2Λ2.

Here, R is the radius of the smallest sphere around the origin
containing X∗.

B. Schölkopf, Canberra, February 2006

x

x

x

γ1

γ2

xx R

B. Schölkopf, Canberra, February 2006

Proof Strategy (Gurvits, 1997)

Assume that x1, . . . ,xr are shattered by canonical hyperplanes
with ‖w‖ ≤ Λ, i.e., for arbitrary y1, . . . , yr ∈ {±1}, there exists
a w such that

yi 〈w,xi〉 ≥ 1 for all i = 1, . . . , r. (1)

Two steps:

• prove that the more points we want to shatter (1), the larger
‖∑r

i=1 yixi‖ must be

• upper bound the size of ‖∑r
i=1 yixi‖ in terms of R

Combining the two tells us how many points we can at most shat-
ter.

B. Schölkopf, Canberra, February 2006

Part I

Summing (1) over i = 1, . . . , r yields〈
w,

⎛
⎝ r∑
i=1

yixi

⎞
⎠〉 ≥ r.

By the Cauchy-Schwarz inequality, on the other hand, we have〈
w,

⎛
⎝ r∑
i=1

yixi

⎞
⎠〉 ≤ ‖w‖

∥∥∥∥∥∥
r∑
i=1

yixi

∥∥∥∥∥∥ ≤ Λ

∥∥∥∥∥∥
r∑
i=1

yixi

∥∥∥∥∥∥ .
Combine both:

r

Λ
≤
∥∥∥∥∥∥

r∑
i=1

yixi

∥∥∥∥∥∥ . (2)

B. Schölkopf, Canberra, February 2006

Part II

Consider independent random labels yi ∈ {±1}, uniformly dis-
tributed (Rademacher variables).

E

⎡
⎢⎣
∥∥∥∥∥∥

r∑
i=1

yixi

∥∥∥∥∥∥
2
⎤
⎥⎦ =

r∑
i=1

E

⎡
⎣〈yixi, r∑

j=1

yjxj

〉⎤⎦

=

r∑
i=1

E

⎡
⎣〈yixi,

⎛
⎝
⎛
⎝∑
j �=i

yjxj

⎞
⎠ + yixi

⎞
⎠〉

⎤
⎦

=

r∑
i=1

⎛
⎝
⎛
⎝∑
j �=i

E
[〈
yixi, yjxj

〉]⎞⎠ + E [〈yixi, yixi〉]
⎞
⎠

=

r∑
i=1

E
[
‖yixi‖2

]
=

r∑
i=1

‖xi‖2

B. Schölkopf, Canberra, February 2006

Part II, ctd.

Since ‖xi‖ ≤ R, we get

E

⎡
⎢⎣
∥∥∥∥∥∥

r∑
i=1

yixi

∥∥∥∥∥∥
2
⎤
⎥⎦ ≤ rR2.

• This holds for the expectation over the random choices of the
labels, hence there must be at least one set of labels for which
it also holds true. Use this set.

Hence ∥∥∥∥∥∥
r∑
i=1

yixi

∥∥∥∥∥∥
2

≤ rR2.

B. Schölkopf, Canberra, February 2006

Part I and II Combined

Part I:
(r

Λ

)2 ≤ ‖∑r
i=1 yixi‖2

Part II: ‖∑r
i=1 yixi‖2 ≤ rR2

Hence
r2

Λ2
≤ rR2,

i.e.,
r ≤ R2Λ2.

B. Schölkopf, Canberra, February 2006

Pattern Noise as Maximum Margin Regularization

o

o

o

+

+

+

o

+

r

ρ

Maximum Margin vs. MDL — 2D Case

o

o

o

+

+

+

o

+
γ+Δγ

γ

Rρ

Can perturb γ by Δγ with |Δγ| < arcsin ρ
R and still correctly

separate the data.
Hence only need to store γ with accuracy Δγ [56, 75].

B. Schölkopf, Canberra, February 2006

Kernels and Feature Spaces

Preprocess the data with

Φ : X → H
x �→ Φ(x),

where H is a dot product space, and learn the mapping from Φ(x)
to y.

• usually, dim(X) � dim(H)

• “Curse of Dimensionality”?

• crucial issue: capacity, not dimensionality

B. Schölkopf, Canberra, February 2006

Example: All Degree 2 Monomials

Φ : R
2 → R

3

(x1, x2) �→ (z1, z2, z3) := (x2
1,
√

2x1x2, x
2
2)

❍

❍

❍

❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕✕

✕

✕

✕

✕

✕

✕

✕

✕

x1

x2

❍
❍

❍
❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

z1

z3

✕

z2

B. Schölkopf, Canberra, February 2006

General Product Feature Space

How about patterns x ∈ R
N and product features of order d?

Here, dim(H) grows like Nd.

E.g. N = 16 × 16, and d = 5 −→ dimension 1010

B. Schölkopf, Canberra, February 2006

The Kernel Trick, N = d = 2

〈
Φ(x),Φ(x′)

〉
= (x2

1,
√

2 x1x2, x
2
2)(x

′2
1,
√

2 x′1x′2, x′22)�

=
〈
x, x′

〉2

= : k(x, x′)

−→ the dot product in H can be computed in R
2

B. Schölkopf, Canberra, February 2006

The Kernel Trick, II

More generally: x, x′ ∈ R
N , d ∈ N:

〈
x, x′

〉d
=

⎛
⎝ N∑
j=1

xj · x′j

⎞
⎠
d

=

N∑
j1,...,jd=1

xj1 · · · · · xjd · x′j1 · · · · · x′jd =
〈
Φ(x),Φ(x′)

〉
,

where Φ maps into the space spanned by all ordered products of
d input directions

B. Schölkopf, Canberra, February 2006

Mercer’s Theorem

If k is a continuous kernel of a positive definite integral oper-
ator on L2(X) (where X is some compact space),∫

X
k(x, x′)f (x)f (x′) dx dx′ ≥ 0,

it can be expanded as

k(x, x′) =

∞∑
i=1

λiψi(x)ψi(x
′)

using eigenfunctions ψi and eigenvalues λi ≥ 0 [42].

B. Schölkopf, Canberra, February 2006

The Mercer Feature Map

In that case

Φ(x) :=

⎛
⎝

√
λ1ψ1(x)√
λ2ψ2(x)

...

⎞
⎠

satisfies
〈
Φ(x),Φ(x′)

〉
= k(x, x′).

Proof:

〈
Φ(x),Φ(x′)

〉
=

〈⎛⎝
√
λ1ψ1(x)√
λ2ψ2(x)

...

⎞
⎠ ,

⎛
⎝

√
λ1ψ1(x

′)√
λ2ψ2(x

′)
...

⎞
⎠〉

=

∞∑
i=1

λiψi(x)ψi(x
′) = k(x, x′)

B. Schölkopf, Canberra, February 2006

The Kernel Trick — Summary

• any algorithm that only depends on dot products can benefit
from the kernel trick

• this way, we can apply linear methods to vectorial as well as
non-vectorial data

• think of the kernel as a nonlinear similarity measure

• examples of common kernels:

Polynomial k(x, x′) = (
〈
x, x′

〉
+ c)d

Sigmoid k(x, x′) = tanh(κ
〈
x, x′

〉
+ Θ)

Gaussian k(x, x′) = exp(−‖x− x′‖2/(2σ2))

• Kernels are studied also in the Gaussian Process prediction com-
munity (covariance functions) [79, 76, 81, 41]

B. Schölkopf, Canberra, February 2006

Positive Definite Kernels

It can be shown that (modulo some details) the admissible class
of kernels coincides with the one of positive definite (pd) kernels:
kernels which are symmetric (i.e., k(x, x′) = k(x′, x)), and for

• any set of training points x1, . . . , xm ∈ X and

• any a1, . . . , am ∈ R

satisfy ∑
i,j

aiajKij ≥ 0, where Kij := k(xi, xj).

K is called the Gram matrix or kernel matrix.

B. Schölkopf, Canberra, February 2006

Elementary Properties of PD Kernels

Kernels from Feature Maps.
If Φ maps X into a dot product space H, then

〈
Φ(x),Φ(x′)

〉
is a

pd kernel on X × X .

Positivity on the Diagonal.
k(x, x) ≥ 0 for all x ∈ X
Cauchy-Schwarz Inequality.
k(x, x′)2 ≤ k(x, x)k(x′, x′) (Hint: compute the determinant of
the Gram matrix)

Vanishing Diagonals.
k(x, x) = 0 for all x ∈ X =⇒ k(x, x′) = 0 for all x, x′ ∈ X

B. Schölkopf, Canberra, February 2006

The Feature Space for PD Kernels [4, 1, 50]

• define a feature map

Φ : X → R
X

x �→ k(., x).

E.g., for the Gaussian kernel: Φ

. .
Φ(x) Φ(x')x x'

Next steps:

• turn Φ(X) into a linear space

• endow it with a dot product satisfying〈
Φ(x),Φ(x′)

〉
= k(x, x′), i.e.,

〈
k(., x), k(., x′)

〉
= k(x, x′)

• complete the space to get a reproducing kernel Hilbert space

B Schölkopf Canberra February 2006

Turn it Into a Linear Space

Form linear combinations

f (.) =

m∑
i=1

αik(., xi),

g(.) =

m′∑
j=1

βjk(., x′j)

(m,m′ ∈ N, αi, βj ∈ R, xi, x
′
j ∈ X).

B. Schölkopf, Canberra, February 2006

Endow it With a Dot Product

〈f, g〉 :=

m∑
i=1

m′∑
j=1

αiβjk(xi, x
′
j)

=

m∑
i=1

αig(xi) =

m′∑
j=1

βjf (x′j)

• This is well-defined, symmetric, and bilinear (more later).

B. Schölkopf, Canberra, February 2006

The Reproducing Kernel Property

Two special cases:

• Assume
f (.) = k(., x).

In this case, we have

〈k(., x), g〉 = g(x).

• If moreover
g(.) = k(., x′),

we have
〈k(., x), k(., x′)〉 = k(x, x′).

k is called a reproducing kernel

B. Schölkopf, Canberra, February 2006

Endow it With a Dot Product, II

• It can be shown that 〈., .〉 is a p.d. kernel on the set of functions
{f (.) =

∑m
i=1αik(., xi)|αi ∈ R, xi ∈ X} :

∑
ij

γiγj
〈
fi, fj

〉
=

〈∑
i

γifi,
∑
j

γjfj

〉
=: 〈f, f〉

=

〈∑
i

αik(., xi),
∑
i

αik(., xi)

〉
=
∑
ij

αiαjk(xi, xj) ≥ 0

• furthermore, it is strictly positive definite:

f (x)2 = 〈f, k(., x)〉2 ≤ 〈f, f〉 〈k(., x), k(., x)〉 = 〈f, f〉 k(x, x)

hence 〈f, f〉 = 0 implies f = 0.

• Complete the space in the corresponding norm to get a Hilbert
space Hk.

B Schölkopf Canberra February 2006

Explicit Construction of the RKHS Map for Mercer
Kernels

Recall that the dot product has to satisfy

〈k(x, .), k(x′, .)〉 = k(x, x′).

For a Mercer kernel

k(x, x′) =

NF∑
j=1

λjψj(x)ψj(x
′)

(with λi > 0 for all i, NF ∈ N∪ {∞}, and
〈
ψi, ψj

〉
L2(X) = δij),

this can be achieved by choosing 〈., .〉 such that

〈ψi, ψj〉 = δij/λi.

B. Schölkopf, Canberra, February 2006

ctd.

To see this, compute

〈k(x, .), k(x′, .)〉 =

〈∑
i

λiψi(x)ψi,
∑
j

λjψj(x
′)ψj

〉

=
∑
i,j

λiλjψi(x)ψj(x
′)〈ψi, ψj〉

=
∑
i,j

λiλjψi(x)ψj(x
′)δij/λi

=
∑
i

λiψi(x)ψi(x
′)

= k(x, x′).

B. Schölkopf, Canberra, February 2006

Deriving the Kernel from the RKHS

An RKHS is a Hilbert space H of functions f where all point
evaluation functionals

px : H → R

f �→ px(f) = f (x)

exist and are continuous.
Continuity means that whenever f and f ′ are close in H, then
f (x) and f ′(x) are close in R. This can be thought of as a topo-
logical prerequisite for generalization ability.
By Riesz’ representation theorem, there exists an element of H,
call it rx, such that 〈rx, f〉 = f (x),

in particular,
〈rx, rx′〉 = rx′(x).

Define k(x, x′) := rx(x
′) = rx′(x).

(cf. Canu & Mary, 2002)

The Empirical Kernel Map

Recall the feature map

Φ : X → R
X

x �→ k(., x).

• each point is represented by its similarity to all other points

• how about representing it by its similarity to a sample of points?

Consider

Φm : X → R
m

x �→ k(., x)|(x1,...,xm) = (k(x1, x), . . . , k(xm, x))�

B. Schölkopf, Canberra, February 2006

ctd.

• Φm(x1), . . . ,Φm(xm) contain all necessary information about
Φ(x1), . . . ,Φ(xm)

• the Gram matrix Gij :=
〈
Φm(xi),Φm(xj)

〉
satisfies G = K2

where Kij = k(xi, xj)

• modify Φm to

Φwm : X → R
m

x �→ K−1
2(k(x1, x), . . . , k(xm, x))�

• this “whitened” map (“kernel PCA map”) satifies〈
Φwm(xi),Φ

w
m(xj)

〉
= k(xi, xj)

for all i, j = 1, . . . ,m.

B. Schölkopf, Canberra, February 2006

Some Properties of Kernels [56]

If k1, k2, . . . are pd kernels, then so are

• αk1, provided α ≥ 0

• k1 + k2

• k1 · k2

• k(x, x′) := limn→∞ kn(x, x
′), provided it exists

• k(A,B) :=
∑
x∈A,x′∈B k1(x, x

′), where A,B are finite subsets
of X
(using the feature map Φ̃(A) :=

∑
x∈AΦ(x))

Further operations to construct kernels from kernels: tensor prod-
ucts, direct sums, convolutions [30].

B. Schölkopf, Canberra, February 2006

Properties of Kernel Matrices, I [51]

Suppose we are given distinct training patterns x1, . . . , xm, and a
positive definite m×m matrix K.

K can be diagonalized as K = SDS�, with an orthogonal matrix
S and a diagonal matrix D with nonnegative entries. Then

Kij = (SDS�)ij =
〈
Si,DSj

〉
=
〈√

DSi,
√
DSj

〉
,

where the Si are the rows of S.

We have thus constructed a map Φ into an m-dimensional feature
space H such that

Kij =
〈
Φ(xi),Φ(xj)

〉
.

B. Schölkopf, Canberra, February 2006

Properties, II: Functional Calculus [60]

•K symmetric m×m matrix with spectrum σ(K)

• f a continuous function on σ(K)

• Then there is a symmetric matrix f (K) with eigenvalues in
f (σ(K)).

• compute f (K) via Taylor series, or eigenvalue decomposition of
K: If K = S�DS (D diagonal and S unitary), then f (K) =
S�f (D)S, where f (D) is defined elementwise on the diagonal

• can treat functions of symmetric matrices like functions on R

(αf + g)(K) = αf (K) + g(K)

(fg)(K) = f (K)g(K) = g(K)f (K)

‖f‖∞,σ(K) = ‖f (K)‖
σ(f (K)) = f (σ(K))

(the C∗-algebra generated by K is isomorphic to the set of
continuous functions on σ(K))

Computing Distances in Feature Spaces

Clearly, if k is positive definite, then there exists a map Φ such
that

‖Φ(x) − Φ(x′)‖2 = k(x, x) + k(x′, x′) − 2k(x, x′)
(it is the usual feature map).

This embedding is referred to as a Hilbert space representation
as a distance. It turns out that this works for a larger class of
kernels, called conditionally positive definite.

In fact, all algorithms that are translationally invariant (i.e. inde-
pendent of the choice of the origin) in H work with cpd kernels
[56].

B. Schölkopf, Canberra, February 2006

Support Vector Classifiers

feature spaceinput space

Φ

◆

◆
◆

◆
●

●
●

●
●

●

[6]

B. Schölkopf, Canberra, February 2006

Separating Hyperplane

w

◆

◆

◆

◆

●
●

●

●
● {x | <w x> + b = 0},

<w x> + b > 0,

<w x> + b < 0,

B. Schölkopf, Canberra, February 2006

Optimal Separating Hyperplane [71]

.
w

◆

◆

◆

◆

●
●

●

●
● {x | <w x> + b = 0},

B. Schölkopf, Canberra, February 2006

Eliminating the Scaling Freedom [72]

Note: if c �= 0, then

{x| 〈w,x〉 + b = 0} = {x| 〈cw,x〉 + cb = 0}.
Hence (cw, cb) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.r.t. X∗ =
{x1, . . . ,xr} if minxi∈X | 〈w,xi〉 + b| = 1.

B. Schölkopf, Canberra, February 2006

Canonical Optimal Hyperplane

,
w

{x | <w x> + b = 0},

{x | <w x> + b = −1},
{x | <w x> + b = +1},

x2
x1

Note:

<w x1> + b = +1
<w x2> + b = −1

=> <w (x1−x2)> = 2

=> (x1−x2) =
w

||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

B. Schölkopf, Canberra, February 2006

Formulation as an Optimization Problem

Hyperplane with maximum margin: minimize

‖w‖2

(recall: margin ∼ 1/‖w‖) subject to

yi · [〈w,xi〉 + b] ≥ 1 for i = 1 . . . m

(i.e. the training data are separated correctly).

B. Schölkopf, Canberra, February 2006

Lagrange Function (e.g., [5])

Introduce Lagrange multipliers αi ≥ 0 and a Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m∑
i=1

αi (yi · [〈w,xi〉 + b] − 1) .

L has to minimized w.r.t. the primal variables w and b and
maximized with respect to the dual variables αi

• if a constraint is violated, then yi · (〈w,xi〉 + b) − 1 < 0 −→
· αi will grow to increase L — how far?

·w, b want to decrease L; i.e. they have to change such that
the constraint is satisfied. If the problem is separable, this
ensures that αi <∞.

• similarly: if yi · (〈w,xi〉 + b) − 1 > 0, then αi = 0: otherwise,
L could be increased by decreasing αi (KKT conditions)

B. Schölkopf, Canberra, February 2006

Derivation of the Dual Problem

At the extremum, we have

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b,α) = 0,

i.e.
m∑
i=1

αiyi = 0

and

w =

m∑
i=1

αiyixi.

Substitute both into L to get the dual problem

B. Schölkopf, Canberra, February 2006

The Support Vector Expansion

w =

m∑
i=1

αiyixi

where for all i = 1, . . . ,m either

yi · [〈w,xi〉 + b] > 1 =⇒ αi = 0 −→ xi irrelevant
or
yi · [〈w,xi〉 + b] = 1 (on the margin) −→ xi “Support Vector”

The solution is determined by the examples on the margin.

Thus

f (x) = sgn (〈x,w〉 + b)

= sgn
(∑m

i=1
αiyi〈x,xi〉 + b

)
.

B. Schölkopf, Canberra, February 2006

Why it is Good to Have Few SVs

Leave out an example that does not become SV −→ same solution.

Theorem [70]: Denote #SV(m) the number of SVs obtained
by training on m examples randomly drawn from P(x, y), and E
the expectation. Then

E [Prob(test error)] ≤ E [#SV(m)]

m
Here, Prob(test error) refers to the expected value of the risk,
where the expectation is taken over training the SVM on samples
of size m− 1.

B. Schölkopf, Canberra, February 2006

A Mechanical Interpretation [11]

Assume that each SV xi exerts a perpendicular force of size αi
and sign yi on a solid plane sheet lying along the hyperplane.

Then the solution is mechanically stable:

m∑
i=1

αiyi = 0 implies that the forces sum to zero

w =

m∑
i=1

αiyixi implies that the torques sum to zero,

via ∑
i

xi × yiαi · w/‖w‖ = w × w/‖w‖ = 0.

B. Schölkopf, Canberra, February 2006

Dual Problem

Dual: maximize

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj
〈
xi,xj

〉
subject to

αi ≥ 0, i = 1, . . . ,m, and

m∑
i=1

αiyi = 0.

Both the final decision function and the function to be maximized
are expressed in dot products −→ can use a kernel to compute〈

xi,xj
〉

=
〈
Φ(xi),Φ(xj)

〉
= k(xi, xj).

B. Schölkopf, Canberra, February 2006

The SVM Architecture

Σ f(x)= sgn (+ b)

input vector x

support vectors
 x 1

... x 4

comparison: k(x,x i), e.g.

classification

weights

k(x,x i)=exp(−||x−x i||
2 / c)

k(x,x i)=tanh(κ(x.x i)+θ)

k(x,x i)=(x.x i)
d

f(x)= sgn (Σ λi
.k(x,x i) + b)

λ1 λ2 λ3 λ4

k k k k

B. Schölkopf, Canberra, February 2006

Toy Example with Gaussian Kernel

k(x, x′) = exp
(
−‖x− x′‖2

)

B. Schölkopf, Canberra, February 2006

Nonseparable Problems [3, 15]

If yi · (〈w,xi〉 + b) ≥ 1 cannot be satisfied, then αi → ∞.

Modify the constraint to

yi · (〈w,xi〉 + b) ≥ 1 − ξi

with
ξi ≥ 0

(“soft margin”) and add

C ·
m∑
i=1

ξi

in the objective function.

B. Schölkopf, Canberra, February 2006

Soft Margin SVMs

C-SVM [15]: for C > 0, minimize

τ (w, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi · (〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0 (margin 2/‖w‖)

ν-SVM [58]: for 0 ≤ ν < 1, minimize

τ (w, ξ, ρ) =
1

2
‖w‖2 − νρ +

1

m

∑
i

ξi

subject to yi · (〈w,xi〉 + b) ≥ ρ− ξi, ξi ≥ 0 (margin 2ρ/‖w‖)

B. Schölkopf, Canberra, February 2006

The ν-Property

SVs: αi > 0
“margin errors:” ξi > 0

KKT-Conditions =⇒
• All margin errors are SVs.

• Not all SVs need to be margin errors.

Those which are not lie exactly on the edge of the margin.

Proposition:
1. fraction of Margin Errors ≤ ν ≤ fraction of SVs.
2. asymptotically: ... = ν = ...

B. Schölkopf, Canberra, February 2006

Duals, Using Kernels

C-SVM dual: maximize

W (α) =
∑

i
αi −

1

2

∑
i,j
αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ C,
∑
i αiyi = 0.

ν-SVM dual: maximize

W (α) = −1

2

∑
ij
αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ 1
m,

∑
i αiyi = 0,

∑
i αi ≥ ν

In both cases: decision function :

f (x) = sgn
(∑m

i=1
αiyik(x,xi) + b

)
B. Schölkopf, Canberra, February 2006

Connection between ν-SVC and C-SVC

Proposition. If ν-SV classification leads to ρ > 0, then C-SV
classification, with C set a priori to 1/ρ, leads to the same decision
function.

Proof. Minimize the primal target, then fix ρ, and minimize only over the
remaining variables: nothing will change. Hence the obtained solution w0, b0, ξ0

minimizes the primal problem of C-SVC, for C = 1, subject to

yi · (〈xi,w〉 + b) ≥ ρ− ξi.

To recover the constraint

yi · (〈xi,w〉 + b) ≥ 1 − ξi,

rescale to the set of variables w′ = w/ρ, b′ = b/ρ, ξ′ = ξ/ρ. This leaves us, up

to a constant scaling factor ρ2, with the C-SV target with C = 1/ρ.

B. Schölkopf, Canberra, February 2006

SVM Training

• naive approach: the complexity of maximizing

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyjk(xi,xj)

scales with the third power of the training set size m

• only SVs are relevant −→ only compute (k(xi,xj))ij for SVs.
Extract them iteratively by cycling through the training set in
chunks [69].

• in fact, one can use chunks which do not even contain all SVs
[43]. Maximize over these sub-problems, using your favorite
optimizer.

• the extreme case: by making the sub-problems very small (just
two points), one can solve them analytically [46].

• http://www.kernel-machines.org/software.html

B. Schölkopf, Canberra, February 2006

MNIST Benchmark

handwritten character benchmark (60000 training & 10000 test
examples, 28 × 28)

5 0 4 1 9 2 1 3 1 4

3 5 3 6 1 7 2 8 6 9

4 0 9 1 1 2 4 3 2 7

3 8 6 9 0 5 6 0 7 6

1 8 7 9 3 9 8 5 9 3

3 0 7 4 9 8 0 9 4 1

4 4 6 0 4 5 6 1 0 0

1 7 1 6 3 0 2 1 1 7

9 0 2 6 7 8 3 9 0 4

6 7 4 6 8 0 7 8 3 1

B. Schölkopf, Canberra, February 2006

MNIST Error Rates

Classifier test error reference
linear classifier 8.4% [7]
3-nearest-neighbour 2.4% [7]
SVM 1.4% [11]
Tangent distance 1.1% [62]
LeNet4 1.1% [39]
Boosted LeNet4 0.7% [39]
Translation invariant SVM 0.56% [19]

Note: the SVM used a polynomial kernel of degree 9, corresponding to a feature
space of dimension ≈ 3.2 · 1020.

Other successful applications: e.g., [35, 33, 31, 12, 67, 9, 84, 26, 24, 14, 22, 45,
77, 83]

B. Schölkopf, Canberra, February 2006

Speeding up the decision rule

Approximate
w =

m∑
i=1

αiyiΦ(xi)

by

w′ =

Nz∑
i=1

γiΦ(zi),

with Nz � m: Minimize

ρ = ‖w − w′‖2

Note that ρ can be expressed in terms of k by using〈
Φ(x),Φ(x′)

〉
= k(x, x′)

Construct the new expansion sequentially.
“reduced set methods”, [e.g. 10, 11, 44, 53]

B. Schölkopf, Canberra, February 2006

Face Detection

• scan test images in several resolutions

• critical issue: runtime speed. Compute sequential approxima-
tion via reduced set expansion.

• need to evaluate on average 2 – 3 kernels per image location [49]

after 0, 1 (13.3% patches remaining), 10 (2.6%), 20 (0.01%) and 30 (0.002%) kernels

templates:
B. Schölkopf, Canberra, February 2006

Invariant Hyperplanes [55]

Consider decision functions f (x) = sgn(g(x)), where

g(x) :=

m∑
i=1

vi 〈Bx,Bxi〉 + b.

To get local invariance under transformations of the Lie group
{Lt}, minimize the regularizer

1

m

m∑
j=1

(
∂

∂t

∣∣∣
t=0

g(Ltxj)
)2

.

This corresponds to an SV optimization after preprocessing with

B = C−1
2,

where

C =
1

m

m∑
j=1

(
∂

∂t

∣∣∣
t=0

Ltxj
)(

∂

∂t

∣∣∣
t=0

Ltxj
)�

.

The Tangent Covariance Matrix

C = covariance matrix of ± ∂
∂t|t=0Ltx

Preprocessing of x:

Bx = C−1
2x = SD−1

2S�x
1. project x onto the Eigenvectors of C

2. divide by the square roots of the Eigenvalues, i.e.: the directions
of main variance of ± ∂

∂t|t=0Ltx are scaled back

• in practice, use Cλ := (1 − λ)C + λI

• for the nonlinear case, use the kernel PCA map [13]

B. Schölkopf, Canberra, February 2006

USPS Digit Recognition Application [13]

1 2 3 4 5 6 7 8 9 10 11

0.06

0.065

0.07

0.075
LIH − 4 Invar
IHKPCA − 4 Invar

Results for 4 invariance transformations (translations) and differ-
ent trade-offs between margin maximization and invariance en-
forcement (left: standard SVM).

B. Schölkopf, Canberra, February 2006

SV Regression: ε-Insensitive Loss (Vapnik, 1995)

Goal: generalize SV pattern recognition to regression, preserving
the following properties:

• formulate the algorithm for the linear case, and then use kernel
trick

• sparse representation of the solution in terms of SVs

ε-Insensitive Loss:

|y − f (x)|ε := max{0, |y − f (x)| − ε}
Estimate a linear regression f (x) = 〈w,x〉 + b by minimizing

1

2
‖w‖2 +

C

m

m∑
i=1

|yi − f (xi)|ε.
B. Schölkopf, Canberra, February 2006

ε-SV Regression Estimation [72]

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

B. Schölkopf, Canberra, February 2006

Formulation as an Optimization Problem

Estimate a linear regression

f (x) = 〈w,x〉 + b

with precision ε by minimizing

minimize τ (w, ξ, ξ∗) =
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i)

subject to (〈w,xi〉 + b) − yi ≤ ε + ξi
yi − (〈w,xi〉 + b) ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

for all i = 1, . . . ,m.

B. Schölkopf, Canberra, February 2006

Dual Problem, In Terms of Kernels

For C > 0, ε ≥ 0 chosen a priori,

maximize W (α,α∗) = −ε
m∑
i=1

(α∗i + αi) +

m∑
i=1

(α∗i − αi)yi

− 1

2

m∑
i,j=1

(α∗i − αi)(α
∗
j − αj)k(xi,xj)

subject to 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . ,m, and

m∑
i=1

(αi − α∗i) = 0.

The regression estimate takes the form

f (x) =
∑m

i=1
(α∗i − αi)k(xi,x) + b,

B. Schölkopf, Canberra, February 2006

ν-SV Regression

Again, use ν to eliminate another parameter:
Estimate ε from the data s.t. the ν-property holds.

Primal problem: for 0 ≤ ν ≤ 1, minimize

τ (w, ε) =
1

2
‖w‖2 + C

⎛
⎝νε + 1/m

m∑
i=1

|yi − f (xi)|ε
⎞
⎠

B. Schölkopf, Canberra, February 2006

A Graphical Proof of the ν-Property

x

x

x
x

x

xx

x

x

x

x

+ε

−ε
0

ξ∗

ξ

Cost function: 1
2C‖w‖2 + νε + 1

m

∑m
i=1(ξi + ξ∗i)

B. Schölkopf, Canberra, February 2006

The ν-Property

Proposition 3 Assume ε > 0. The following statements hold:

(i) ν is an upper bound on the fraction of errors.

(ii) ν is a lower bound on the fraction of SVs.

(iii) Suppose the data were generated iid from a ’well-behaved’∗
distribution P(x, y). With probability 1, asymptotically, ν
equals both the fraction of SVs and the fraction of errors.

∗ Essentially, P(x, y) = P(x)P(y|x) with P(y|x) continuous (some details omitted).

B. Schölkopf, Canberra, February 2006

ν-SV-Regression: Automatic Tube Tuning

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Identical machine parameters (ν = 0.2), but different amounts of
noise in the data.

B. Schölkopf, Canberra, February 2006

ε-SV-Regression, Run on the Same Data

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Identical machine parameters (ε = 0.2), but different amounts of
noise in the data.

B. Schölkopf, Canberra, February 2006

Toy Examples: Estimating a Noisy Sinc Function

ν = 0.2

m 10 50 100 200 500 1000 1500 2000
ε 0.27 0.22 0.23 0.25 0.26 0.26 0.26 0.26
fraction of errors 0.00 0.10 0.14 0.18 0.19 0.20 0.20 0.20
fraction of SVs 0.40 0.28 0.24 0.23 0.21 0.21 0.20 0.20

• automatically computed ε largely independent of m

• asymptotics consistent with theorem

B. Schölkopf, Canberra, February 2006

Boston Housing Benchmark

• 506 examples, 13-dimensional.

Results (MSE):

• Bagging regression trees: 11.7 [8]

• ε-SV regression: 7.6 [64]

• 100 runs, with 25 randomly selected test points.

• training set is split into actual training set and validation set (80 points) for
selecting ε, C, and kernel parameters

• ftp://ftp.ics.uci.com/pub/machine-learning-databases/housing

B. Schölkopf, Canberra, February 2006

Comparison: ν vs. ε

ν-SVR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

automatic ε 2.6 1.7 1.2 0.8 0.6 0.3 0.0 0.0 0.0 0.0
MSE 9.4 8.7 9.3 9.5 10.0 10.6 11.3 11.3 11.3 11.3
Errors 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5
SVs 0.3 0.4 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0

ε-SVR 0 1 2 3 4 5 6 7 8 9 10

MSE 11.3 9.5 8.8 9.7 11.2 13.1 15.6 18.2 22.1 27.0 34.3
Errors 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVs 1.0 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

• RBF kernel, C and σ chosen as in [59]

B. Schölkopf, Canberra, February 2006

Parametric Error Models

Use a tube of varying radius ζ(x) ≥ 0:
minimize

τ (w, ξ(∗), ε) = ‖w‖2/2 + C ·
⎛
⎝νmε +

m∑
i=1

(ξi + ξ∗i)

⎞
⎠

subject to (〈w,xi〉 + b) − yi ≤ εζ(xi) + ξi
yi − (〈w,xi〉 + b) ≤ εζ(xi) + ξ∗i
ξ
(∗)
i ≥ 0, ε ≥ 0.

This leads to the “usual” dual, with the modified last constraint
m∑
i=1

(αi + α∗i)ζ(xi) ≤ Cmν.

B. Schölkopf, Canberra, February 2006

Toy Example: Some Noisy Data

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Assumption: we have prior knowledge indicating that the noise is
modulated by ζ(x) = sin2((2π/3)x).

B. Schölkopf, Canberra, February 2006

Toy Example, II

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

constant-radius tube parametric model using ζ(x)

B. Schölkopf, Canberra, February 2006

Robustness of SV Regression

Proposition. Using SVR with |.|ε, local movements of target
values of points outside the tube do not change the estimated
regression.

Proof.

1. Shift yi locally −→ (xi, yi) still outside the tube −→ original dual solution

α(∗) still feasible (α
(∗)
i = C, since all points outside the tube are at the

upper bound).

2. The primal solution, with ξi transformed according to the movement, is also
feasible.

3. The KKT conditions are still satisfied, as still α
(∗)
i = C. Thus [5, e.g.], α(∗)

is still the optimal solution.

B. Schölkopf, Canberra, February 2006

The Representer Theorem

Theorem 4 Given: a p.d. kernel k on X × X , a training set
(x1, y1), . . . , (xm, ym) ∈ X×R, a strictly monotonic increasing
real-valued function Ω on [0,∞[, and an arbitrary cost function
c : (X × R

2)m → R ∪ {∞}
Any f ∈ H minimizing the regularized risk functional

c ((x1, y1, f (x1)), . . . , (xm, ym, f (xm))) + Ω (‖f‖) (3)

admits a representation of the form

f (.) =
∑m

i=1
αik(xi, .).

B. Schölkopf, Canberra, February 2006

Remarks

• significance: many learning algorithms have solutions that can
be expressed as expansions in terms of the training examples

• original form, with mean squared loss

c((x1, y1, f (x1)), . . . , (xm, ym, f (xm))) =
1

m

m∑
i=1

(yi − f (xi))
2,

and Ω(‖f‖) = λ‖f‖2 (λ > 0): [37]

• generalization to non-quadratic cost functions: [16]

• present form: [56]

B. Schölkopf, Canberra, February 2006

Proof

Decompose f ∈ H into a part in the span of the k(xi, .) and an
orthogonal one:

f =
∑
i

αik(xi, .) + f⊥,
where for all j

〈f⊥, k(xj, .)〉 = 0.

Application of f to an arbitrary training point xj yields

f (xj) =
〈
f, k(xj, .)

〉
=

〈∑
i

αik(xi, .) + f⊥, k(xj, .)

〉

=
∑
i

αi〈k(xi, .), k(xj, .)〉,

independent of f⊥.
B. Schölkopf, Canberra, February 2006

Proof: second part of (3)

Since f⊥ is orthogonal to
∑
i αik(xi, .), and Ω is strictly mono-

tonic, we get

Ω(‖f‖) = Ω
(
‖
∑

i
αik(xi, .) + f⊥‖

)
= Ω

(√
‖
∑

i
αik(xi, .)‖2 + ‖f⊥‖2

)

≥ Ω
(
‖
∑

i
αik(xi, .)‖

)
, (4)

with equality occuring if and only if f⊥ = 0.
Hence, any minimizer must have f⊥ = 0. Consequently, any
solution takes the form

f =
∑

i
αik(xi, .).

B. Schölkopf, Canberra, February 2006

Application: Support Vector Classification

Here, yi ∈ {±1}. Use

c ((xi, yi, f (xi))i) =
1

λ

∑
i

max (0, 1 − yif (xi)) ,

and the regularizer Ω (‖f‖) = ‖f‖2.
λ→ 0 leads to the hard margin SVM

B. Schölkopf, Canberra, February 2006

Further Applications

Bayesian MAP Estimates. Identify (3) with the negative log
posterior (cf. Kimeldorf & Wahba, 1970, Poggio & Girosi, 1990),
i.e.

• exp(−c((xi, yi, f (xi))i)) — likelihood of the data

• exp(−Ω(‖f‖)) — prior over the set of functions; e.g., Ω(‖f‖) =
λ‖f‖2 — Gaussian process prior [81] with covariance function
k

• minimizer of (3) = MAP estimate

Kernel PCA (see below) can be shown to correspond to the case
of

c((xi, yi, f (xi))i=1,...,m) =

⎧⎨
⎩ 0 if 1

m

∑
i

(
f (xi) − 1

m

∑
j f (xj)

)2
= 1

∞ otherwise

with g an arbitrary strictly monotonically increasing function.

Regularization Interpretation of Kernel Machines

The norm in H can be interpreted as a regularization term (Girosi
1998, Smola et al., 1998, Evgeniou et al., 2000): if P is a regular-
ization operator (mapping into a dot product space D) such that
k is Green’s function of P ∗P , then

‖w‖ = ‖Pf‖,
where

w =
∑m

i=1
αiΦ(xi)

and
f (x) =

∑
i
αik(xi, x).

Example: for the Gaussian kernel, P is a linear combination of
differential operators.

B. Schölkopf, Canberra, February 2006

‖w‖2 =
∑
i,j

αiαjk(xi, xj)

=
∑
i,j

αiαj

〈
k(xi, .), δxj(.)

〉

=
∑
i,j

αiαj
〈
k(xi, .), (P

∗Pk)(xj, .)
〉

=
∑
i,j

αiαj
〈
(Pk)(xi, .), (Pk)(xj, .)

〉
D

=

〈
(P

∑
i

αik)(xi, .), (P
∑
j

αjk)(xj, .)

〉
D

= ‖Pf‖2,

using f (x) =
∑
i αik(xi, x).

B. Schölkopf, Canberra, February 2006

Further Kernel Algorithms — Design Principles

1. “Kernel module”

• similarity measure k(x, x′), where x, x′ ∈ X
• data representation

(in associated feature space where k(x, x′) =
〈
Φ(x),Φ(x′)

〉
)

— thus can construct geometric algorithms

• function class (representer theorem, f (x) =
∑
i αik(x, xi))

2. “Learning module”

• classification

• quantile estimation / novelty detection

• feature extraction

• ...

B. Schölkopf, Canberra, February 2006

SV Morphing

...powerpoint

B. Schölkopf, Canberra, February 2006

Unsupervised SVM Learning

x1, . . . , xm ∈ X i.i.d. sample from P

• extreme view: unsupervised learning = density estimation

• easier problem: for α ∈ (0, 1], compute a region R such that

P(R) ≈ α,

i.e., estimate quantiles of a distribution, not its density.

• becomes well-posed using a regularizer: find “smoothest” region
that contains a certain fraction of the probability mass

• given only the training data, we will get a trade-off: try to
enclose many training points (more than α) in a smooth region

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo

Multi-Dimensional Quantiles

• C a class of measurable subsets of X
• λ a real-valued function on C
• quantile function with respect to (P, λ, C):

U(α) = inf{λ(C)|P(C) ≥ α,C ∈ C} 0 < α ≤ 1.

• present case [54]: λ(C) ∝ 1
margin2, where

C := {half-spaces in H, not containing the origin}

B. Schölkopf, Canberra, February 2006

Separating Unlabelled Data from the Origin

One can show: if Φ(x1), . . . ,Φ(xm) are separable from the origin
in H, then the solution of

min
w∈H

1

2
‖w‖2 subject to 〈w,Φ(xi)〉 ≥ 1

is the normal vector of the hyperplane separating the data from
the origin with maximum margin.

B. Schölkopf, Canberra, February 2006

ν-Soft Margin Separation

o o

o

o

w
xΦ()

o

o
o

o

o

o

||w||ρ/

ξ/ ||w||

.

For ν ∈ (0, 1], compute

min
w∈H,ξ∈Rm,ρ∈R

1
2‖w‖2+ 1

m

∑
i ξi − νρ

subject to 〈w,Φ(xi)〉 ≥ ρ−ξi, ξi ≥ 0 for all i.

Result:

• the decision function f (x) = sgn(〈w,Φ(x)〉−ρ) will be positive
for “most” examples xi contained in the training set

• ‖w‖ will be small, hence the separation from the origin large

Related approaches: enclose data in a sphere [52, 65]

B. Schölkopf, Canberra, February 2006

Deriving the Dual Problem

Using multipliers αi, βi ≥ 0, we introduce a Lagrangian

L =
‖w‖2

2
+

1

νm

∑
i

ξi−ρ−
∑
i

αi(〈w,Φ(xi)〉−ρ+ ξi)−
∑
i

βiξi,

and set the derivatives w.r.t. the primal variables w, ξ, ρ equal to
zero, yielding

w =
∑
i

αiΦ(xi), (5)

αi =
1

νm
− βi ≤

1

νm
, (6)∑

i

αi = 1. (7)

Patterns with αi > 0 are Support Vectors.
B. Schölkopf, Canberra, February 2006

Dual Problem

min
α∈Rm

1
2

∑
ij αiαjk(xi, xj)

subject to 0 ≤ αi ≤ 1
νm,

∑
i αi = 1.

The decision function is

f (x) = sgn

⎛
⎝∑

i

αik(xi, x) − ρ

⎞
⎠ .

— a thresholded sparsified Parzen windows estimator

B. Schölkopf, Canberra, February 2006

Support Vectors and Outliers

SV := {i | αi > 0}; OL := {i | ξi > 0}

The KKT-Conditions imply:

• ξi > 0 =⇒ αi = 1/(νm), hence OL ⊂ SV

• SV \OL ⊂ {i | ∑j αjk(xj, xi) − ρ = 0}

B. Schölkopf, Canberra, February 2006

The Meaning of ν

Proposition.
(i)

|OL|
m

≤ ν ≤ |SV |
m

(ii) Suppose P does not contain discrete components, and
the kernel is analytic and non-constant. With probability 1,
asymptotically,

|OL|
m

= ν =
|SV |
m

.

B. Schölkopf, Canberra, February 2006

Toy Examples using k(x, y) = exp(−‖x−y‖2

c)

ν, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38

B. Schölkopf, Canberra, February 2006

Error Bound for Single-Class Classification

For x ∈ X , θ ∈ R, let d(x, f, θ) := max{0, θ − f (x)}. Similarly
for X := (x1, . . . , xm), D(X, f, θ) :=

∑
x∈X d(x, f, θ).

Theorem 5 Denote

•X ∈ Xm a sample generated from an unknown distribution
P, without discrete components

• fw the solution of the optimization problem,

•Rw,ρ := {x|fw(x) ≥ ρ} the induced decision region.

With probability 1 − δ, for any γ > 0,

P
{
x′|x′ �∈ Rw,ρ−γ

} ≤ 2

m
(k + logm2/(2δ)),

where

k =
c1 log(c2γ̂

2m)

γ̂2
+

2D
γ̂

log

(
e

(
(2m− 1)γ̂

2D + 1

))
+ 2,

c1 = 16c2, c2 = ln(2)/(4c2), c = 103, γ̂ = γ/‖w‖, D =
D(X, fw,0, ρ) = D(X, fw,ρ, 0).

Discussion

• algorithm tries to enclose training sample in Rw,ρ

• theorem bounds the probability that test points will be in the
larger region Rw,ρ−γ

• a small γ leads to a small region but a large complexity term

• a small ‖w‖ leads to a small complexity term (recall γ̂ =
γ/‖w‖)

B. Schölkopf, Canberra, February 2006

USPS Handwritten Digit Outlier Detection

Typical examples (random selection):

6 9 2 8 1 8 8 6 5 3

2 3 8 7 0 3 0 8 2 7

Experiment: perform outlier detection on the 2007-element USPS
test set (using ν = 5%)

Next slides: the outliers, ranked by their “badness”

B. Schölkopf, Canberra, February 2006

Kernel PCA [57]

R2

linear PCA

R2

H

Φ

kernel PCA

k

k(x,y) = (x.y)

k(x,y) = (x.y)d

x

x
x xx

x

x

x
xx

x

x

x

x
x xx

x

x

x
xx

x

x

x

x

x
x

x
x

x

x x

x

x

x

B. Schölkopf, Canberra, February 2006

Kernel PCA, II

x1, . . . , xm ∈ X , Φ : X → H, C =
1

m

m∑
j=1

Φ(xj)Φ(xj)
�

Eigenvalue problem

λV = CV =
1

m

m∑
j=1

〈
Φ(xj),V

〉
Φ(xj).

For λ �= 0, V ∈ span{Φ(x1), . . . ,Φ(xm)}, thus

V =

m∑
i=1

αiΦ(xi),

and the eigenvalue problem can be written as

λ 〈Φ(xn),V〉 = 〈Φ(xn), CV〉 for all n = 1, . . . ,m

B. Schölkopf, Canberra, February 2006

Kernel PCA in Dual Variables

In term of the m×m Gram matrix

Kij :=
〈
Φ(xi),Φ(xj)

〉
= k(xi, xj),

this leads to
mλKα = K2α

where α = (α1, . . . , αm)�.

Solve
mλα = Kα

−→ (λn,α
n)

〈Vn,Vn〉 = 1 ⇐⇒ λn 〈αn,αn〉 = 1

thus divide αn by
√
λn

B. Schölkopf, Canberra, February 2006

Feature extraction

Compute projections on the Eigenvectors

Vn =

m∑
i=1

αni Φ(xi)

in H:

for a test point x with image Φ(x) in H we get the features

〈Vn,Φ(x)〉 =

m∑
i=1

αni 〈Φ(xi),Φ(x)〉

=

m∑
i=1

αni k(xi, x)

B. Schölkopf, Canberra, February 2006

The Kernel PCA Map

Recall

Φwm : X → R
m

x �→ K−1
2(k(x1, x), . . . , k(xm, x))�

If K = UDU� is K’s diagonalization, then K−1/2 =
UD−1/2U�. Thus we have

Φwm(x) = UD−1/2U�(k(x1, x), . . . , k(xm, x))�.
We can drop the leading U (since it leaves the dot product invari-
ant) to get a map

ΦwKPCA(x) = D−1/2U�(k(x1, x), . . . , k(xm, x))�.
The rows of U� are the eigenvectors αn of K, and the entries of

the diagonal matrix D−1/2 equal λ
−1/2
i .

B. Schölkopf, Canberra, February 2006

Toy Example with Gaussian Kernel

k(x, x′) = exp
(−‖x− x′‖2

)

B. Schölkopf, Canberra, February 2006

Kernel PCA Denoising

Idea: in feature space, discard higher-order principal components,
and compute approximate pre-images [53].

Original data, first 8 feature extractors (left), pre-images com-
puted by retaining 1...8 components in feature space (right).

B. Schölkopf, Canberra, February 2006

Comparison of Different Algorithms

kernel PCA nonlinear Principal linear PCA
(4 PCs) autoencoder Curves (1 PC)

[53, 29, 21]

B. Schölkopf, Canberra, February 2006

Denoising of USPS Digits

Gaussian noise ‘speckle’ noise
orig.

noisy
n = 1

P 4
C 16
A 64

256
n = 1

K 4
P 16
C 64
A 256

linear PCA
reconstruction

kernel PCA
reconstruction

Other applications: face modeling [48], image superresolution (see below).

B. Schölkopf, Canberra, February 2006

Natural Image KPCA Model

Training images of size 396×528. The 12×12 training patterns are
obtained by sampling 2,500 patches at random from each image.

B. Schölkopf, Canberra, February 2006

a b

c d

Example of natural image super-resolution: a. original image of
resolution 528×396, b. low resolution image (264×198) stretched
to the original scale, c. reconstruction of the high-frequency com-

Super-Resolution (Kim, Franz, & Schölkopf, 2004)

a. original image of resolution
528 × 396

b. low resolution image (264 ×
198) stretched to the original
scale

c. bicubic interpolation d. supervised example-based
learning based on nearest neigh-
bor classifier

f. unsupervised KHA recon-
struction

g. enlarged portions of a-d, and f (from left to right)

Comparison between different super-resolution methods.

B. Schölkopf, Canberra, February 2006

Kernel Dependency Estimation [80]

Given two sets X and Y with kernels k and k′, and training data
(xi, yi).

Estimate a dependency w : H → H′

w(·) =
∑
ij

αijΦ
′(yj) 〈Φ(xi), ·〉 .

This can be evaluated in various ways, e.g., given an x, we can
compute the pre-image

y = argminY‖w(Φ(x)) − Φ′(y)‖.
A convenient way of learning the αij is to work in the kernel PCA
basis.

B. Schölkopf, Canberra, February 2006

Application to Image Completion

ORIG:

KDE:

k−NN:

Shown are all digits where at least one of the two algorithms makes
a mistake (73 mistakes for k-NN, 23 for KDE).

(from [80])

B. Schölkopf, Canberra, February 2006

Vector Quantization

• given a set of m data vectors X = x1, . . . , xm

• wish to represent them by a reduced number of M ‘codebook’
vectors V = v1, . . . , vM

• Codebook V is chosen such that some overall measure of distor-
tion is (approximately) minimized when each x is represented
by its ‘nearest’ v:

EVQ =

m∑
n=1

D [v(xn), xn]

where v(xn) = argmin
v∈V

D [v, xn]

• A common distortion is squared Euclidean distance: D [v, xn] =
‖v − xn‖2

B. Schölkopf, Canberra, February 2006

Kernel VQ

• Conventionally: specify codebook size M and minimize EVQ
over V

– e.g., Linde-Buzo-Gray (LBG) algorithm

• kernel approach [66]:

– specify a maximum distortion guarantee:

D [v(xn), xn] ≤ R (∗)
– constrain the codebook to be a subset of the data set:

{v1, . . . , vM} ⊆ {x1, . . . , xm}
– try to find v1, . . . , vM with minimal M such that (∗) holds

(Tipping & Schölkopf, 2001 [66])
B. Schölkopf, Canberra, February 2006

• define a kernel:

k(xi, xn) =

{
1 if D [xi, xn] ≤ R

0 otherwise

• seek a sparse vector w = (w1, . . . , wm) such that for all xn
m∑
i=1

wik(xi, xn) > 0

• Every xn lies within ‘distance’ R of at least one xi for which
wm > 0

• recall the empirical kernel map

Φm(x) = (k(x1, x), . . . , k(xm, x))

B. Schölkopf, Canberra, February 2006

• seek solutions with few positive wm by solving the optimization
problem:

min
w

‖w‖q
subject to w�Φm(xn) ≥ 1 for all xn ∈ X

• Ideally, we would choose q = 0, since ‖w‖0 counts the non-zero
coefficients

• But q = 1 leads to a tractable linear programming problem

• Penalizers of the form ‖w‖1 generally lead to sparse solutions

B. Schölkopf, Canberra, February 2006

Practicalities

• Actual penalty used:
m∑
m=1

|wm|
cm

– cm =
∑
n k(xm,xn) the number of examples in the support

of k(xm,x)

– this improves sparsity without affecting the constraints

• perform a final ‘pruning’ step since symmetries in many tasks
still give a number of superfluous vectors

– a consequence of using the q = 1 rather than q = 0 penalty

– typically, this step removes a further 1%–5% of vectors

B. Schölkopf, Canberra, February 2006

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

B. Schölkopf, Canberra, February 2006

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 R=0.1 M=42

B. Schölkopf, Canberra, February 2006

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 R=0.2 M=12

B. Schölkopf, Canberra, February 2006

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 R=0.3 M=8

B. Schölkopf, Canberra, February 2006

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 R=0.4 M=4

B. Schölkopf, Canberra, February 2006

Application to Block Coding of Images

• Popular use of conventional VQ

• Example 384 × 256 image:

• Split into 8 × 8 blocks

•X comprises m = 1536 examples of 192-dimensional vectors
(64 × 3 colours)

B. Schölkopf, Canberra, February 2006

Original Image (288KB) LP−VQ reconstruction with R=200, 144KB (50%)

LP−VQ reconstruction with R=500, 33KB (12%) LBG reconstruction, 33KB (12%)

B. Schölkopf, Canberra, February 2006

Image Statistics

Image Size Ratio R M Emax Erms

Original 288KB 100% 0 1536 0 0
LP-VQ Reconstruction 144KB 50% 200 757 199.9 88.7
LP-VQ Reconstruction 33KB 12% 500 170 499.5 283.8
LBG Reconstruction 33KB 12% - 170 816.4 229.8

B. Schölkopf, Canberra, February 2006

Discussion

• Complementary approach to standard VQ

• Useful where:

– a ‘genuine’ R exists

– ‘outliers’ must be accurately coded

– prototypes must be representative of data

– as an initialiser for standard VQ

• Need not be a vector space as long as D [v, xn] defined

B. Schölkopf, Canberra, February 2006

Kernel Machines Research

• algorithms/tasks: KDE, feature selection (Weston et al., 2002), multi-label-problems

(Elisseeff & Weston, 2001), unlabelled data (Szummer & Jaakkola, 2002, Zhou et al.,

2004), ICA [28], canonical correlations (Bach & Jordan, 2002; Kuss, 2002)

• optimization and implementation: QP, SDP (Lanckriet et al., 2002), online ver-

sions, ...

• theory of empirical inference: sharper capacity measures and bounds (Bartlett, Bous-

quet, & Mendelson, 2002), generalized evaluation spaces (Mary & Canu, 2002), ...

• kernel design

– transformation invariances [13]

– kernels for discrete objects [30, 78, 40, 18, 74]

– kernels based on generative models [34, 61, 68]

– local kernels [e.g., 84]

– complex kernels from simple ones [30, 2], global kernels from local ones [38]

– functional calculus for kernel matrices [60]

– model selection, e.g., via alignment [17]

– kernels for dimensionality reduction [27]

B. Schölkopf, Canberra, February 2006

Conclusion

• crucial ingredients of SV algorithms: kernels that can be repre-
sented as dot products, and large margin regularizers

• kernels allow the formulation of a multitude of geometrical al-
gorithms (Parzen windows, SVMs, kernel PCA,...)

• the choice of a kernel corresponds to

– choosing a similarity measure for the data, or

– choosing a (linear) representation of the data, or

– choosing a hypothesis space for learning,

and should reflect prior knowledge about the problem at hand.

For further information, cf.
http://www.kernel-machines.org,
http://www.learning-with-kernels.org.

References

[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337–404, 1950.

[2] P. L. Bartlett and B. Schölkopf. Some kernels for structured data. Technical report, Biowulf Technologies, 2001.

[3] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Opti-
mization Methods and Software, 1:23–34, 1992.

[4] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups. Springer-Verlag, New York, 1984.

[5] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

[6] B. E. Boser, I. M. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor,
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, PA, July
1992. ACM Press.

[7] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A. Müller, E. Säckinger, P. Simard,
and V. Vapnik. Comparison of classifier methods: a case study in handwritten digit recognition. In Proceedings of the 12th
International Conference on Pattern Recognition and Neural Networks, Jerusalem, pages 77–87. IEEE Computer Society
Press, 1994.

[8] L. Breiman. Bagging predictors. Technical Report 421, Department of Statistics, UC Berkeley, 1994.
ftp://ftp.stat.berkeley.edu/pub/tech-reports/421.ps.Z.

[9] M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. S. Furey, M. Ares, and D. Haussler. Knowledge-
based analysis of microarray gene expression data using support vector machines. Proceedings of the National Academy of
Sciences, 97(1):262–267, 2000.

[10] C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor, Proceedings of the 13th International
Conference on Machine Learning, pages 71–77, San Mateo, CA, 1996. Morgan Kaufmann.

[11] C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning machines. In M. Mozer,
M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375–381, Cambridge,
MA, 1997. MIT Press.

[12] O. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram-based image classification. IEEE Transactions on Neural
Networks, 10(5), 1999.

[13] O. Chapelle and B. Schölkopf. Incorporating invariances in nonlinear SVMs. In T.G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[14] S. Chen and C. J. Harris. Design of the optimal separating hyperplane for the decision feedback equalizer using support
vector machines. In IEEE International Conference on Acoustic, Speech, and Signal Processing, Istanbul, Turkey, 2000.

[15] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

[16] D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related estimators. Annals of Statistics,
18:1676–1695, 1990.

[17] N. Cristianini, A. Elisseeff, and J. Shawe-Taylor. On optimizing kernel alignment. Technical Report 2001-087, NeuroCOLT,
2001.

[18] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods.
Cambridge University Press, Cambridge, UK, 2000.

[19] D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 46:161–190, 2002. Also:
Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000.

[20] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition, volume 31 of Applications of mathe-
matics. Springer, New York, 1996.

[21] K. I. Diamantaras and S. Y. Kung. Principal Component Neural Networks. Adaptive and Learning Systems for Signal
Processing, Communications, and Control. John Wiley & Sons, New York, 1996.

[22] H. Drucker, B. Shahrary, and D. C. Gibbon. Relevance feedback using support vector machines. In Proceedings of the 18th
International Conference on Machine Learning. Morgan Kaufmann, 2001.

[23] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. In A. J. Smola, P. L.
Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 171–203, Cambridge, MA,
2000. MIT Press.

[24] T. S. Furey, N. Duffy, N. Cristianini, D. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification
and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906–914, 2000.

[25] F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6):1455–
1480, 1998.

[26] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines.
Machine Learning, 46:389–422, 2002.

[27] J. Ham, D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality reduction of manifolds. In Proceedings of
ICML. 2004.

[28] S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel feature spaces and nonlinear blind source separation. In
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14.
MIT Press, 2002. To appear.

[29] T. J. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical Association, 84(406):502–516, 1989.

[30] D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Depart-
ment, University of California at Santa Cruz, 1999.

[31] M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, and J. Platt. Trends and controversies — support vector machines.
IEEE Intelligent Systems, 13:18–28, 1998.

[32] I. A. Ibragimov and R. Z. Has’minskii. Statistical Estimation — Asymptotic Theory. Springer-Verlag, New York, 1981.

[33] T. S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote protein homologies. Journal
of Computational Biology, 7:95–114, 2000.

[34] T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models. In Proceedings of the 1999 Conference on AI and
Statistics, 1999.

[35] T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Claire Nédellec
and Céline Rouveirol, editors, Proceedings of the European Conference on Machine Learning, pages 137–142, Berlin, 1998.
Springer.

[36] G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by
splines. Annals of Mathematical Statistics, 41:495–502, 1970.

[37] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and
Applications, 33:82–95, 1971.

[38] I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proceedings of ICML’2002, 2002.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86:2278–2324, 1998.

[40] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels. Technical Report 2000-
79, NeuroCOLT, 2000. Published in: T. K. Leen, T. G. Dietterich and V. Tresp (eds.), Advances in Neural Information
Processing Systems 13, MIT Press, 2001.

[41] D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor, Neural Networks and Machine Learning,
pages 133–165. Springer-Verlag, Berlin, 1998.

[42] J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical
Transactions of the Royal Society, London, A 209:415–446, 1909.

[43] E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and applications. Technical Report AIM-1602,
MIT A.I. Lab., 1996.

[44] E. Osuna and F. Girosi. Reducing run-time complexity in SVMs. In Proceedings of the 14th Int’l Conf. on Pattern
Recognition, Brisbane, Australia, 1998.

[45] P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy. Gene functional classification from heterogeneous data. In Proceedings
of the Fifth International Conference on Computational Molecular Biology, pages 242–248, 2001.

[46] J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 185–208, Cambridge, MA, 1999.
MIT Press.

[47] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9), September 1990.

[48] S. Romdhani, S. Gong, and A. Psarrou. A multiview nonlinear active shape model using kernel PCA. In Proceedings of
BMVC, pages 483–492, Nottingham, UK, 1999.

[49] S. Romdhani, B. Schölkopf, P. Torr, and A. Blake. Fast face detection, using a sequential reduced support vector evaluation.
TR 73, Microsoft Research, Redmond, WA, 2000. Published as: Computationally efficient face detection, Proceedings of
the International Conference on Computer Vision 2001, pp. 695–700.

[50] S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow, England, 1988.

[51] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Doktorarbeit, Technische Universität
Berlin. Available from http://www.kyb.tuebingen.mpg.de/∼bs.

[52] B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given task. In U. M. Fayyad and R. Uthurusamy,
editors, Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, 1995. AAAI
Press.

[53] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. J. Smola. Input space vs. feature space in
kernel-based methods. IEEE Transactions on Neural Networks, 10(5):1000–1017, 1999.

[54] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional
distribution. Neural Computation, 13:1443–1471, 2001.

[55] B. Schölkopf, P. Simard, A. J. Smola, and V. Vapnik. Prior knowledge in support vector kernels. In M. Jordan, M. Kearns,
and S. Solla, editors, Advances in Neural Information Processing Systems 10, pages 640–646, Cambridge, MA, 1998. MIT
Press.

[56] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[57] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural
Computation, 10:1299–1319, 1998.

[58] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation,
12:1207–1245, 2000.

[59] B. Schölkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik. Comparing support vector machines
with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45:2758–2765, 1997.

[60] B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W. S. Noble. A kernel approach for learning from almost orthogonal
patterns. In Proceedings of the 13th European Conference on Machine Learning (ECML’2002) and Proceedings of the 6th
European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’2002), Helsinki, volume
2430/2431 of Lecture Notes in Computer Science, Berlin, 2002. Springer.

[61] M. Seeger. Bayesian methods for support vector machines and Gaussian processes. Master’s thesis, University of Edinburgh,
Division of Informatics, 1999.

[62] P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson,
J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5. Proceedings of the 1992
Conference, pages 50–58, San Mateo, CA, 1993. Morgan Kaufmann.

[63] A. J. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators and support vector kernels.
Neural Networks, 11:637–649, 1998.

[64] M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. Weston. Support vector regression with ANOVA
decomposition kernels. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support
Vector Learning, pages 285–292, Cambridge, MA, 1999. MIT Press.

[65] D. M. J. Tax and R. P. W. Duin. Data domain description by support vectors. In M. Verleysen, editor, Proceedings ESANN,
pages 251–256, Brussels, 1999. D Facto.

[66] M. Tipping and B. Schölkopf. A kernel approach for vector quantization with guaranteed distortion bounds. In T. Jaakkola
and T. Richardson, editors, Artificial Intelligence and Statistics, pages 129–134, San Francisco, CA, 2001. Morgan Kauf-
mann.

[67] S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In P. Langley,
editor, Proceedings of the 17th International Conference on Machine Learning, San Francisco, California, 2000. Morgan
Kaufmann.

[68] K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.R. Müller. A new discriminative kernel from probabilistic
models. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2002.

[69] V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow, 1979. (English translation:
Springer Verlag, New York, 1982).

[70] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka, Moscow, 1974. (German Translation:
W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie–Verlag, Berlin, 1979).

[71] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automation and Remote Control, 24:774–
780, 1963.

[72] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[73] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[74] J.-P. Vert. A tree kernel to analyze phylogenetic profiles. In Proceedings of ISMB’02, 2002.

[75] U. von Luxburg, O. Bousquet, and B. Schölkopf. A compression approach to support vector model selection. Technical
report, Max Planck Institute for Biological Cybernetics, 2002. To appear in JMLR, 2004.

[76] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Math-
ematics. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1990.

[77] M. K. Warmuth, G. Rätsch, M. Mathieson, J. Liao, and C. Lemmen. Active learning in the drug discovery process. In
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14.
MIT Press, 2002. To appear.

[78] C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances
in Large Margin Classifiers, pages 39–50, Cambridge, MA, 2000. MIT Press.

[79] H. L. Weinert, editor. Reproducing Kernel Hilbert Spaces — Applications in Statistical Signal Processing. Hutchinson Ross,
Stroudsburg, PA, 1982.

[80] J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel dependency estimation. Technical Report 98,
Max Planck Institute for Biological Cybernetics, 2002.

[81] C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I.
Jordan, editor, Learning and Inference in Graphical Models. Kluwer, 1998.

[82] D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7):1341–1390, 1996.

[83] C.-H. Yeang, S. Ramaswamy, P. Tamayo, S. Mukherjee, R. M. Rifkin, M. Angelo, M. Reich, E. Lander, J. Mesirov, and
T. Golub. Molecular classification of multiple tumor types. Bioinformatics, 17:S316–S322, 2001. ISMB’01 Supplement.

[84] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering support vector machine kernels
that recognize translation initiation sites. Bioinformatics, 16(9):799–807, 2000.

B. Schölkopf, Canberra, February 2006

