ICA and Kernel Distribution Testing

(Lecture notes, MLSS 06, Canberra)

Arthur Gretton
Department of Biological Cybernetics Max-Planck Institute, Tübingen, Germany. arthur@tuebingen.mpg.de

Overview

- Independent component analysis: recover the linear mixing that combines independent sources
- Kernel independence testing: given a sample of m pairs $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, are the random variables x and y independent?
- The two sample problem: are samples $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ generated from the same distribution?

Some notation and conventions

- Random variables are written sans serif, eg \times, \mathbf{x}
- Vector spaces are written in caligraphic font, eg $x \in \mathcal{X}$
- Probability distributions and densities are $\mathbf{P}_{x}(A)$, expectations are $\mathbf{E}_{\mathrm{x}}(\mathrm{x})$
- Covariance matrices are written

$$
\mathbf{C}_{x y}:=\mathbf{E}_{\mathbf{x}, \mathbf{y}}\left(\mathbf{x} \mathbf{y}^{\top}\right)-\mathbf{E}_{\mathbf{x}}(\mathbf{x}) \mathbf{E}_{\mathbf{y}}\left(\mathbf{y}^{\top}\right)
$$

ICA

...where to be careful when doing it

ICA (Population version)

- Indepdendent component analysis: we assume

$$
\mathbf{x}=\mathbf{A} \mathbf{s}
$$

- x vector of observations, A (unknown) mixing matrix,
- s a vector of l unknown, independent inputs:

$$
\mathbf{P}_{\mathbf{s}}=\prod_{i=1}^{l} \mathbf{P}_{\mathbf{s}_{i}}
$$

$-B$ is our estimate of A^{-1}

- We want to find
- An estimate \mathbf{y} of \mathbf{s}, using...
- ...an estimate \mathbf{B} of \mathbf{A}^{-1} :

$$
\hat{\mathbf{s}}:=\mathbf{y}=\mathbf{B x}=\mathrm{BA} \mathbf{s}
$$

ICA (empirical version)

- Indepdendent component analysis: we assume

$$
\mathbf{X}=\mathbf{A S},
$$

- Data matrices are $l \times m$, where

$$
\mathbf{X}:=\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{l}
\end{array}\right] \quad \text { and } \quad \mathbf{S}:=\left[\begin{array}{c}
\mathrm{s}_{1} \\
\vdots \\
\mathbf{s}_{l}
\end{array}\right]
$$

- Vectors \mathbf{x}_{i} and \mathbf{s}_{i} contain m i.i.d. samples

ICA examples

- Sounds mixed together ("cocktail party" problem)
- EEG recordings (brain, fetal heartbeat)
- Economics
- Image processing

A toy example (1)

- We have two distributions: \mathbf{P}_{x} is uniform, $\mathbf{P}_{\mathbf{y}}$ is bimodal

A toy example (2)

- Initial unmixed RVs in red, mixed RVs in black

Things that are impossible for ICA (1)

- Assuming we know what the original signals look like, can we determine how observations were mixed?
- Reminder: ICA doesn't care about the sources: it only tries to recover the mixing matrix
- First example:
- Both PDFs Gaussian
- Observe mixtures at different rotation angles
- Can we ever recover the mixing?

Things that are impossible for ICA (2)

- Second example:
- Both PDFs uniform, symmetric about origin
- Observe mixtures at different rotation angles
- What happens when rotation angle is maximum $(\pi / 2)$?

Things that are impossible for ICA (3)

- Third example:
- RV on x -axis has asymmetric PDF, that on y-axis has symmetric pdf
- What happens if the mixing matrix negates the Y variable?

Things that are impossible for ICA (4)

- Separating RVs that are everywhere constant
- Separating multiple Gaussians
- Recovering signal order
- Recovering signal amplitude

ICA Step 1

Decorrelation

First step in ICA: decorrelate

- Idea: remove all dependencies of order 2 between observations \mathbf{x}
- Call whitened signals \mathbf{t} : we haven't reached unmixed signals y
- Whiten the observations:

$$
\mathbf{t}=\mathbf{B}_{w} \mathbf{x} \quad \text { where } \quad \mathbf{C}_{t t}:=\mathbf{E}_{\mathbf{t}}\left(\mathbf{t} \mathbf{t}^{\top}\right)-\mathbf{E}_{\mathbf{t}}(\mathbf{t}) \mathbf{E}_{\mathbf{t}}\left(\mathbf{t}^{\top}\right)=\mathbf{I}
$$

- We thus break up B as follows:

$$
\mathbf{B}=\mathbf{B}_{r} \mathbf{B}_{w}
$$

$-\mathbf{B}_{w}$ is a whitening matrix
$-\mathbf{B}_{r}$ is remaining demixing operation (more soon!)

- Reminder: this is done by using the SVD of $\mathbf{C}_{t t}=\mathbf{S} \Lambda \mathbf{S}^{\top}$:

$$
\mathbf{B}_{w}=\Lambda^{-1 / 2} \mathbf{S}^{\top}
$$

Example: what does decorrelation achieve?

- A uniform distribution on the interval $[-2,2]$
- A mixture of two Gaussians with equal probability, means +1 and -1

Decorrelation: a drawback

A small warning: in theory, it is better not to break up the unmixing matrix in this way, since there is a loss in accuracy (statistically less efficient).

In practice, most ICA methods do decorrelation first, and the effect is not really noticeable.

ICA Step 2(a)

Rotation: maximum likelihood

What is left: rotation

- To recover original signal, need to rotate (see figure)
- We assume from now on that only the rotation remains to be done

Rotation (continued)

- For two signals, the rotation is expressed

$$
\mathbf{B}_{r}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

- This generalises to higher dimensions, eg for $l=3$,

$$
\begin{aligned}
\mathbf{B}_{r}:= & {\left[\begin{array}{ccc}
\cos \left(\theta_{z}\right) & -\sin \left(\theta_{z}\right) & 0 \\
\sin \left(\theta_{z}\right) & \cos \left(\theta_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
\cos \left(\theta_{y}\right) & 0 & -\sin \left(\theta_{y}\right) \\
0 & 1 & 0 \\
\sin \left(\theta_{y}\right) & 0 & \cos \left(\theta_{y}\right)
\end{array}\right] } \\
& \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}\right) & -\sin \left(\theta_{x}\right) \\
0 & \sin \left(\theta_{x}\right) & \cos \left(\theta_{x}\right)
\end{array}\right]
\end{aligned}
$$

ICA: maximum likelihood

- We have a model for the observations, parametrised by $\left(\mathbf{B}^{-1}, \hat{\mathbf{P}}_{\mathbf{s}}\right)$
- Reminder: we use \mathbf{B}^{-1} here since \mathbf{B} the unmixing matrix
- Another reminder: model must have $\hat{\mathbf{P}}_{\mathbf{s}}=\prod_{i=1}^{l} \hat{\mathbf{P}}_{\mathrm{s}_{i}}$
- With this model, our estimated density of observations is

$$
\hat{\mathbf{P}}_{\mathbf{x}}=\left|\operatorname{det}\left(\mathbf{B}^{-1}\right)\right|^{-1} \hat{\mathbf{P}}_{\mathbf{s}}(\mathbf{B} \mathbf{x})=|\operatorname{det}(\mathbf{B})| \hat{\mathbf{P}}_{\mathbf{s}}(\mathbf{B x})
$$

- Maximise the expected log likelihood,

$$
L:=\mathbf{E}_{\mathbf{x}}\left[\log \hat{\mathbf{P}}_{\mathbf{x}}\right]=\mathbf{E}_{\mathbf{x}}\left[\log |\operatorname{det}(\mathbf{B})|+\log \hat{\mathbf{P}}_{\mathbf{s}}(\mathbf{B} \mathbf{x})\right]
$$

- Empirical expression:

$$
\widehat{L}:=\log |\operatorname{det}(\mathbf{B})|+\frac{1}{m} \sum_{j=1}^{m} \log \hat{\mathbf{P}}_{\mathbf{s}}\left(\mathbf{B} \mathbf{x}_{j}\right)
$$

Maximum likelihood: example

- The probability distribution of both source densities is

$$
\frac{1}{2}(\mathcal{N}(-2.5,1)+\mathcal{N}(2.5,1))
$$

where $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is a Gaussian with mean μ and variance σ^{2}

Maximum likelihood: where it fails

- Model as before, but true source densities are Laplace.
- Why is this so wrong?

ICA Step 2(b)

Rotation: contrast functions

What is a copy?

- The random vector \mathbf{s} is a copy of \mathbf{x} if and only if $\mathbf{x}=\mathbf{C s}$, where C does only:
- Permutations, e.g. $\mathbf{C}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Sign swaps, e.g. $\mathbf{C}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
- Rescalings, e.g. $\mathbf{C}=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
- Some combination of several of the above
- The most we can hope for in ICA is to recover a copy of the signals

Contrast functions

- Ideally: contrast $\phi(\mathbf{y})=0$ if and only if all components of \mathbf{y} mutually independent:

$$
\mathbf{P}_{\mathbf{y}}=\prod_{i=1}^{l} \mathbf{P}_{\mathrm{y}_{i}} .
$$

- Under our mixing assumptions: contrast $\phi(\mathbf{C s})=0$ if and only if Cs a copy of s
- How people really use it: contrast should be "smallest" when random variables are "most independent"
- There exist contrast functions that have nothing to do with max likelihood...
- ...but max likelihood induces the "best" contrast (when correct!)

Contrast functions and maximum likelihood

How does the maximum likelihood relate to contrast functions?

- The max likelihood solution induces a contrast function:

$$
L:=\mathbf{E}_{\mathbf{x}}\left[\log \hat{\mathbf{P}}_{\mathbf{x}}\right]=-D_{\mathrm{KL}}\left(\mathbf{P}_{\mathbf{B x}} \| \hat{\mathbf{P}}_{\mathbf{s}}\right)+\text { const }
$$

- What is KL divergence? Given two densities $\mathbf{P}_{\mathbf{x}}, \mathbf{Q}_{\mathbf{x}}$ defined on $\mathcal{X} \subset \mathbb{R}^{n}$, then

$$
D_{\mathrm{KL}}\left(\mathbf{P}_{\mathbf{x}} \| \mathbf{Q}_{\mathbf{x}}\right)=\int_{\mathcal{X}} \mathbf{P}_{\mathbf{x}}(\mathbf{x}) \log \left(\frac{\mathbf{P}_{\mathbf{x}}(\mathbf{x})}{\mathbf{Q}_{\mathbf{x}}(\mathbf{x})}\right) d \mathbf{x}
$$

- $D_{\mathrm{KL}}\left(\mathbf{P}_{\mathbf{x}} \| \mathbf{Q}_{\mathbf{x}}\right) \geq 0$ with equality if and only if $\mathbf{P}_{\mathbf{x}}=\mathbf{Q}_{\mathbf{x}}$ almost everywhere.
- ...thus $\phi_{M L}(\mathbf{y})=D_{\mathrm{KL}}\left(\mathbf{P}_{\mathrm{Bx}} \| \hat{\mathbf{P}}_{\mathbf{s}}\right)$ is a contrast as long as $\hat{\mathbf{P}}_{\mathbf{s}}=\mathbf{P}_{\mathbf{s}}$

Contrast functions and mutual information (1)

- The mutual information is just the KL divergence between the joint distribution and the product of the marginals:

$$
I\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right)=\int_{\mathcal{Y}} \mathbf{P}_{\mathrm{y}_{i}, \mathrm{y}_{j}}\left(y_{i}, y_{j}\right) \log \left(\frac{\mathbf{P}_{\mathrm{y}_{i}, \mathrm{y}_{j}}\left(y_{i}, y_{j}\right)}{\mathbf{P}_{\mathrm{y}_{i}}\left(y_{i}\right) \mathbf{P}_{\mathrm{y}_{j}}\left(y_{j}\right)}\right) d y_{i} d y_{j}
$$

- This is also a contrast function:

$$
I\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right)=0 \quad \text { iff } \quad \mathbf{P}_{\mathrm{y}_{i}, \mathrm{y}_{j}}=\mathbf{P}_{\mathrm{y}_{i}} \mathbf{P}_{\mathrm{y}_{j}}
$$

- Little used in ICA:
- Hard to find good empirical estimates
- Hard to optimise

Contrast functions and mutual information (2)

- Simplification: when rotation only is considered, need only 1-D entropies (see [8] in references)
- Reason:

$$
D_{\mathrm{KL}}\left(\mathbf{P}_{\mathbf{y}} \| \prod_{i=1}^{l} \mathbf{P}_{\mathrm{y}_{i}}\right)=\sum_{i=1}^{l} h\left(\mathrm{y}_{i}\right)-h(\mathbf{x})-\log |\operatorname{det} \mathbf{B}| .
$$

where $h(\mathrm{y})=-\mathbf{E}_{\mathrm{y}} \log \left(\mathbf{P}_{\mathrm{y}}(y)\right)$

- $h(\mathbf{x})$ constant wrt \mathbf{B} : only function of observations \mathbf{x}
- $\log |\operatorname{det} \mathbf{B}|=1$ when \mathbf{B} are rotations
- Entropies are also hard to compute: IDEA: use

$$
\phi(\mathbf{y})=\sum_{j=1}^{l} \mathbf{E}_{\mathrm{y}_{j}}\left(f\left(\mathrm{y}_{j}\right)\right)
$$

for some other nonlinear $f(y)$

Contrast functions (3): Some famous cases

This slide represents a gross simplification of what really goes on. Read the papers!

- What kind of nonlinear $f(y)$ can we use to make our contrasts?
- Infomax-type contrast:

$$
f(y)=a-\exp \left(-y^{2} / 2\right) \operatorname{sech}^{2}(y)
$$

for some $a \geq 1$

- Fast ICA-type contrast:

$$
f(y)=\frac{1}{a} \log \cosh (a y)
$$

where $a \geq 1$.

- Jade-type contrast:

$$
f(y)=y^{4}
$$

Kurtosis: an important concept

- Kurtosis definition: when mean is zero,

$$
\kappa_{4}=\mathbf{E}_{\mathrm{x}}\left(\mathrm{x}^{4}\right)-3\left(\mathbf{E}_{\mathrm{x}}\left(\mathrm{x}^{2}\right)\right)^{2}
$$

- Source densities can be super-Gaussian (positive kurtosis) or sub-Gaussian (negative kurtosis)
- Zero kurtosis does not mean Gaussian!
- Certain popular contrast functions depend explicitly on kurtosis of unmixed signals
- Other contrast functions only work when kurtosis is positive or negative

Contrast functions: Example (1)

- Samples drawn from Super- and Sub-Gaussian distributions below:

Contrast functions: Example (2)

- Results for Jade, Infomax, and Fast ICA contrasts

Disclaimer!

- The implementations of Jade, Fast ICA, and Infomax on the internet work for positive and negative kurtoses! I.e. real life algorithms are more complicated.
- That said, the foregoing demonstrates the danger of blindly using random ICA software on the internet without knowing what it does.

ICA for non-i.i.d. processes

ICA for non-i.i.d. signals (1)

- We can get extra information from sources not being i.i.d.
- Assume zero mean.
- Assume that our observation vector $\mathbf{x}(t)$ now depends on time shifted values $\mathbf{x}(t+\tau)$, where $\tau \geq 1$, and that the process is stationary
- Define the covariance

$$
\mathbf{C}_{x x}(\tau)=\mathbf{E}(\mathbf{x}(t) \mathbf{x}(t+\tau))
$$

where the above is indpendent of τ due to stationarity

- Hint: the ideas we're about to use were described for decorrelation in i.i.d. case

ICA for non-i.i.d. signals (2)

- Our assumption that the inputs are uncorrelated causes the following to hold:

$$
\begin{aligned}
\Lambda & =\mathbf{E}\left(\mathbf{s}(t) \mathbf{s}^{\top}(t)\right)=\mathbf{E}\left(\left(\mathbf{A}^{-1} \mathbf{x}(t)\right)\left(\mathbf{A}^{-1} \mathbf{x}(t)\right)^{\top}\right) \\
& =\mathbf{A}^{-1} \mathbf{C}_{x x}(0)\left(\mathbf{A}^{-1}\right)^{\top}
\end{aligned}
$$

where $\boldsymbol{\Lambda}$ is a diagonal matrix

- But the following can also be assumed: for any $\tau \geq 1$,

$$
\widetilde{\Lambda}=\mathbf{E}\left(\mathbf{s}(t) \mathbf{s}^{\top}(t+\tau)\right)=\mathbf{A}^{-1} \mathbf{C}_{x x}(\tau)\left(\mathbf{A}^{-1}\right)^{\top}
$$

- Combining both criteria: get

$$
\mathbf{C}_{x x}(0) \mathbf{C}_{x x}^{-1}(\tau) \mathbf{A}=\mathbf{A}\left(\Lambda \widetilde{\Lambda}^{-1}\right)
$$

- Methods exist to solve for a greater number of delays (see references): procedure is called joint diagonalisation

Advanced (kernel!) independence measures

Kernel dependence measures

- Kernel dependence measures
- Zero only at independence
- Take into account high order moments
- Make "sensible" assumptions about smoothness
- Applications
- Independent component analysis (ICA)
- Feature selection (Fukumizu et al.)
- Dependence detection between voxel activity in Macaque visual cortex (V1)

Outline

- Constrained covariance (COCO)
- Covariance in RKHSs
- Three useful properties of COCO
* Independence measure when kernels universal
* How to derive independence test from independence measure
- Cases where dependence hard to detect
- How to choose kernel?
* Error prob. of test drops quickly as sample size increases
- Use of COCO (and other kernel dependence measures) in ICA

- Get m pairs of points in different spaces
- Are the RVs x and y dependent?

A second order method

- Choose directions, get dot product with all points.
- Directions chosen such that the vectors of projections have biggest covariance. Is covariance 0?

Take nonlinear features

- Points in each space mapped to vectors of nonlinear features:

$$
\begin{aligned}
& -x \rightarrow \mathbf{x}:=\left[\begin{array}{lllll}
\sqrt{\lambda_{1}} \varphi_{1}(x) & \sqrt{\lambda_{2}} \varphi_{2}(x) & \ldots & \sqrt{\lambda_{n}} \varphi_{n}(x) & \ldots
\end{array}\right] \\
& -y \rightarrow \mathbf{y}:=\left[\begin{array}{lllll}
\sqrt{\lambda_{1}} \varphi_{1}(y) & \sqrt{\lambda_{2}} \varphi_{2}(y) & \ldots & \sqrt{\lambda_{n}} \varphi_{n}(y) & \ldots
\end{array}\right] \\
& -\mathbf{x} \in \mathcal{H}_{\mathcal{X}} \text { and } \mathbf{y} \in \mathcal{H}_{\mathcal{Y}}, \text { can be infinite dimensional } \\
& - \text { As } n \text { increases, } \lambda_{n} \text { smaller and } \varphi_{n} \text { less smooth }
\end{aligned}
$$

- Define projection vectors in each space: $\mathbf{f} \in \mathcal{H}_{\mathcal{X}}, \mathbf{g} \in \mathcal{H}_{\mathcal{Y}}$.
- Formal definition of COCO:

$$
\operatorname{COCO}\left(\mathbf{P}_{x, y} ; \mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}}\right):=\sup _{f \in \mathcal{H}_{\mathcal{X}}, g \in \mathcal{H}_{\mathcal{Y}}} \frac{\operatorname{cov}\left(\mathbf{f}^{\top} \mathbf{x}, \mathbf{g}^{\top} \mathbf{y}\right)}{\|\mathbf{f}\|_{\mathcal{H}_{\mathcal{X}}}\|\mathbf{g}\|_{\mathcal{H}_{\mathcal{Y}}}}
$$

The kernel trick (1)

- Must we really consider infinite dimensional vectors?
- Differentiating COCO wrt \mathbf{f} and \mathbf{g}, want biggest eigenvalue

$$
\left[\begin{array}{cc}
\mathbf{0} & \mathbf{C}_{x y} \\
\mathbf{C}_{x y}^{\top} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{f}_{i} \\
\mathbf{g}_{i}
\end{array}\right]=\gamma_{i}\left[\begin{array}{l}
\mathbf{f}_{i} \\
\mathbf{g}_{i}
\end{array}\right]
$$

- When we rely on a finite sample,

$$
\widehat{\mathbf{C}}_{x y}=\left[\begin{array}{lll}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{m}
\end{array}\right] \mathbf{H}\left[\begin{array}{c}
\mathbf{y}_{1}^{\top} \\
\vdots \\
\mathbf{y}_{m}^{\top}
\end{array}\right]
$$

The kernel trick (2)

- This means:

$$
\begin{aligned}
\mathbf{f} & =\sum_{l=1}^{m} c_{l} \mathbf{x}_{l} \\
\mathbf{g} & =\sum_{l=1}^{m} d_{l} \mathbf{y}_{l} .
\end{aligned}
$$

- Inner product in reproducing kernel Hilbert spaces given by kernel

$$
\begin{array}{r}
\mathbf{x}_{1}^{\top} \mathbf{x}_{2}=k\left(x_{1}-x_{2}\right) \\
\mathbf{y}_{1}^{\top} \mathbf{y}_{2}=k\left(y_{1}-y_{2}\right)
\end{array}
$$

An empirical estimate

- Kernel covariance then largest eigenvalue γ_{i} of

$$
\left[\begin{array}{cc}
0 & \widetilde{\mathbf{K}}_{m m}^{(x)} \widetilde{\mathbf{K}}_{m m}^{(y)} \\
\widetilde{\mathbf{K}}_{m m}^{(y)} \widetilde{\mathbf{K}}_{m m}^{(x)} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{c}_{i} \\
\mathbf{d}_{i}
\end{array}\right]=\gamma_{i}\left[\begin{array}{cc}
\widetilde{\mathbf{K}}_{m m}^{(x)} & 0 \\
0 & \widetilde{\mathbf{K}}_{m m}^{(y)}
\end{array}\right]\left[\begin{array}{c}
\mathbf{c}_{i} \\
\mathbf{d}_{i}
\end{array}\right] .
$$

- $\widetilde{\mathbf{K}}_{m m}^{(x)}$ is matrix of inner products between centred observations in feature space:

$$
\widetilde{\mathbf{K}}_{m m}^{(x)}=\mathbf{H} \mathbf{K}_{m m}^{(x)} \mathbf{H}
$$

where

$$
\mathbf{H}=\mathbf{I}-\frac{1}{m} \mathbf{1 1}{ }^{\top}
$$

COCO measures independence

- $\operatorname{COCO}\left(\mathbf{P}_{\mathrm{x}, \mathrm{y}} ; \mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}}\right)=0$ iff x, y independent, when $\mathcal{H}_{\mathcal{X}}$ and \mathcal{H}_{y} are RKHSs induced by universal kernels (eg. Gaussian kernels, Laplace kernels, ...)
- Also true of
- Kernel canonical correlation: as above, but normalising by the variance in the RKHS [1]
- Kernel mutual information: an upper bound on the MI near independence [6]
- Kernel generalised variance: a looser upper bound on the MI near independence [1]

Why universal?

- What happens when kernel is not universal?
- Example: spline kernel

Background: statistical tests (1)

- Probability measure $\mathbf{P}_{\mathbf{z}}$ in \mathcal{P}_{0} or $\overline{\mathcal{P}_{0}}$
- Two hypotheses:
$-H_{0}$: null hypothesis $\left(\mathbf{P}_{\mathrm{z}} \in \mathcal{P}_{0}\right)$
- H_{1} : alternative hypothesis
- Observe a sample \boldsymbol{z}
- If sample is in
- Rejection/critical region R : reject H_{0}
- Acceptance region: accept H_{0}
- Region defined using test statistic $\Delta(\boldsymbol{z})$
- Example: sample mean (is mean greater than some threshold?)

Background: statistical tests (2)

- How good is a test?
- Type I error: We reject H_{0} although it is true
- Type II error: We accept H_{0} although it is false
- Power of test:

$$
\beta\left(\mathbf{P}_{\mathrm{z}}\right):=\mathbf{P}_{\mathrm{z}}(\boldsymbol{z} \in R)
$$

- Should be ~ 0 for $\mathbf{P}_{\mathbf{z}} \in \mathcal{P}_{0}, \sim 1$ for $\mathbf{P}_{\mathrm{z}} \in \overline{\mathcal{P}_{0}}$
- Level of test: for $0 \leq \alpha \leq 1$

$$
\alpha \geq \sup _{\mathbf{P}_{\mathbf{z}} \in \mathcal{P}_{0}} \beta\left(\mathbf{P}_{\mathbf{z}}\right)
$$

- Upper bound on worst possible type I error
- Note: size of test is true worst type I error

When is dependence hard to detect?

- NO test can detect all dependence for finite samples.
- Example: Set \mathcal{P} of prob. distrib. $\mathbf{P}_{\mathbf{x}}$ over n variables
$-\mathcal{P}_{i}$ generates independent random variables,
$-\mathcal{P}_{d}$ gives dependent RVs
- Test: $\Delta(\boldsymbol{x})$ takes m i.i.d. samples, returns

$$
\Delta(\boldsymbol{x})=1: \boldsymbol{x} \sim \mathbf{P}_{\mathbf{x}^{m}}^{(d)}, \quad \Delta(\boldsymbol{x})=0: \boldsymbol{x} \sim \mathbf{P}_{\mathbf{x}^{m}}^{(i)}
$$

- Uncertainty due to empirical estimate: α-test

$$
\sup _{\mathbf{P}_{\mathbf{x}}^{(i)} \in \mathcal{P}_{i}} \mathbf{E}_{\boldsymbol{x} \sim \mathbf{P}_{x^{m}}^{(i)}}(\Delta(\boldsymbol{x})=1) \leq \alpha
$$

- There exists $\mathbf{P}_{\mathbf{x}} \notin \mathcal{P}_{i}$ such that for small ϵ,

$$
\mathbf{P}_{\boldsymbol{x} \sim \mathbf{P}_{\boldsymbol{x}} \boldsymbol{m}}(\Delta(\boldsymbol{x})=0) \geq 1-\alpha-\epsilon
$$

Hard-to-detect dependence (2)

- COCO can be ≈ 0 for dependent RVs with highly non-smooth densities:

$$
\mathbf{P}_{\mathrm{x}, \mathrm{y}}=\alpha+\beta \varphi_{l}(\mathrm{x}) \varphi_{l}(\mathrm{y})
$$

- l large
- β non-trivial
- COCO "as small as you want" (depends on l)
- Reason: norms in the denominator

$$
\operatorname{COCO}\left(\mathbf{P}_{x, y} ; \mathcal{H}_{\mathcal{X}}, \mathcal{H}_{\mathcal{Y}}\right):=\sup _{f \in \mathcal{H}_{\mathcal{X}}, g \in \mathcal{H}_{\mathcal{Y}}} \frac{\operatorname{cov}\left(\mathbf{f}^{\top} \mathbf{x}, \mathbf{g}^{\top} \mathbf{y}\right)}{\|\mathbf{f}\|_{\mathcal{H}_{\mathcal{X}}}\|\mathbf{g}\|_{\mathcal{H}_{\mathcal{Y}}}}
$$

- RESULT: not detectable with finite sample size

Hard-to-detect dependence (3)

Density takes the form: $\mathbf{P}_{x, y} \propto 1+\sin (\omega x) \sin (\omega y)$

Hard-to-detect dependence (4)

- Example: sinusoids of increasing frequency

 0 O O O O O O O O O

 00000000000

 $00000000 \% 000$ OOOOOOOOOOO

 $\stackrel{\circ}{\circ} \circ 0^{\circ}$
 $\begin{array}{rllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

A test of independence

- Empirical COCO converges to the population COCO at speed $1 / \sqrt{n}$.
- A dependence test: $\Delta(\boldsymbol{z})$ is the indicator that COCO larger than $C \sqrt{\log (1 / \alpha) / n}$
- $\Delta(\boldsymbol{z})$ is an α-test
- Reminder: α upper bounds prob. that test returns dependence when random variables independent
- Type II approaches zero as $1 / \sqrt{n}$.
- Reminder: Type II error is prob. that test returns independence when random variables dependent
- No slow learning rates for dependence tests!
- Finite sample results!

Choosing kernel size (1)

- Reminder: the RKHS norm of a function is $\|f\|_{\mathcal{H}_{x}}^{2}:=\sum_{i=1}^{\infty} \tilde{f}_{i}^{2}\left(\tilde{k}_{i}\right)^{-1}$.
- If kernel decays quickly, its spectrum decays slowly:
- then non-smooth functions have smaller RKHS norm
- Example: spectrum of two Gaussian kernels

Choosing kernel size (2)

- Could we just decrease kernel size?
- Yes, but only up to a point

Application to ICA

- ICA can be done by optimising over kernel dependence measures (contrast function)
- State-of the art performance for small to medium scale problems
- Still too slow for large-scale ($\gtrsim 16$ sources) problems
- Better outlier resistance than alternatives
- Source kurtosis does not affect performance

Positive, Negative, and Zero kurtosis

- Amari divergence mesaures distance between estimated and true mixing matrix
- Invariant to source order swapping and source scaling
- Bigger \rightarrow worse performance

Outlier resistance

- Outlier noise added to the mixed sources

The Two-Sample Problem

The two-sample problem

- Test if same distribution generated two samples
- Our criterion: the maximum mean discrepancy
- Given a type I error, type II error converges fast $(1 / \sqrt{n})$
- No assumptions about generating distributions
- Applications
- Neuroscience: test whether spikes on different days are from the same neuron
- Speaker identification
- Comparison of paintings using hyperspectral photography
- Merging databases

The MMD (1)

- \mathcal{F} a universal RKHS, $F:=\left\{f \in \mathcal{F}:\|f\|_{\mathcal{F}} \leq 1\right\}$ the unit ball in \mathcal{F}.
- The population MMD is defined as

$$
M M D\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathrm{y}} ; F\right):=\left(\sup _{f \in F}\left[\mathbf{E}_{\mathrm{x}} f(\mathrm{x})-\mathbf{E}_{\mathrm{y}} f(\mathrm{y})\right]\right)^{2} .
$$

- $M M D\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathrm{y}} ; F\right)=0$ if and only if $\mathbf{P}_{\mathrm{x}}=\mathbf{P}_{\mathrm{y}}$, for universal kernels

The MMD (2)

- How to get it wrt kernels
- Mean elements corresponding to $\phi(\mathrm{x})$ and $\phi(\mathrm{y})$:

$$
\begin{aligned}
\left\langle\mu_{x}, f\right\rangle_{\mathcal{F}} & :=\mathbf{E}_{\mathrm{x}}\left[\langle\phi(\mathrm{x}), f\rangle_{\mathcal{F}}\right]
\end{aligned}=\mathbf{E}_{\mathrm{x}}(f(\mathrm{x})), ~ 子, ~=\mathbf{E}_{\mathrm{y}}[(f(\mathrm{y})) .
$$

- The norm is also written as

$$
\|\mu\|_{\mathcal{F}}:=\sup _{f \in F}\langle f, \mu\rangle_{\mathcal{F}}
$$

- The MMD in terms of kernels:

$$
\begin{aligned}
M M D\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathrm{y}} ; F\right) & =\left(\sup _{f \in F}\left\langle f, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}}\right)^{2} \\
& =\left\|\mu_{x}-\mu_{y}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{x}-\mu_{y}, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}} \\
& =\mathbf{E}_{\mathrm{x}, \mathrm{x}^{\prime}} k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)+\mathbf{E}_{\mathrm{y}, \mathrm{y}^{\prime}} k\left(\mathrm{y}, \mathrm{y}^{\prime}\right)-2 \mathbf{E}_{\mathrm{x}, \mathrm{y}} k(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

- x^{\prime} is a R.V. independent of x with distribution \mathbf{P}_{x}
- y^{\prime} is a R.V. independent of y with distribution \mathbf{P}_{y}.

Empirical estimate

- Given data \boldsymbol{x} of size m drawn from \mathbf{P}_{x} and \boldsymbol{y} of size n drawn from \mathbf{P}_{y}
- An unbiased empirical estimate (quadratic cost):

$$
\begin{aligned}
K M D(\boldsymbol{x}, \boldsymbol{y} ; \mathcal{F}):= & \underbrace{\frac{1}{m(m-1)} \sum_{i \neq j} k\left(x_{i_{1}}, x_{i_{2}}\right)}_{\text {(a) }} \\
& +\underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} k\left(y_{j_{1}}, y_{j_{2}}\right)}_{\text {(c) }} \\
& -\underbrace{\frac{2}{n m} \sum_{i=1}^{m} \sum_{j=1}^{n} k\left(x_{i}, y_{j}\right)}_{\text {(b) }} .
\end{aligned}
$$

How fast does empirical converge to population?

- For testing purposes, need only positive deviation
- Use 1- and 2-sample U-statistic bounds from Hoeffding
- Assume $0 \leq k(x, y) \leq R$ almost everywhere, $m \leq n$.
- For all $n>2$ and all $0<\delta<1$, with probability at least $1-\delta$, for all \mathbf{P}_{x} and \mathbf{P}_{y},

$$
K M D(\boldsymbol{x}, \boldsymbol{y} ; \mathcal{F})-K M D\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathrm{y}} ; \mathcal{F}\right) \leq \frac{R}{\beta} \sqrt{\frac{\log (3 / \delta)}{n}}
$$

- Here $\beta=\frac{1+(1-\sqrt{2}) r}{1+r(2-r)}$
$-r=\sqrt{n / m}$.

A 2-sample test based on MMD

- Test statistic is $K M D(\boldsymbol{x}, \boldsymbol{y} ; F)$
- Null hypothesis H_{0} is $\mathbf{P}_{\mathrm{x}}=\mathbf{P}_{\mathrm{y}}$
- The test: accept H_{0} if

$$
K M D(\boldsymbol{x}, \boldsymbol{y} ; F) \leq \frac{R}{\beta} \sqrt{\frac{\log (3 / \alpha)}{n}}
$$

- gives a test of level α
- Type 2 error asymptotically drops as $1 / \sqrt{n}$
- What is p-value? We get an upper bound using

$$
p \leq 3 \exp \left(\frac{-K M D^{2}(\boldsymbol{x}, \boldsymbol{y} ; F) \beta^{2} n}{R^{2}}\right)
$$

Further reading

Some references on ICA and independence measurement

- Start with Cardoso's excellent introduction [3], and the tutorial by Hyvärninen [7]
- For kernel methods, look at [6] (this talk), [1], and [5] (final paper deals with conditional independence)
- Some alternative recent methods with "adaptive" contrast functions: $[10,8]$
- Classic algorithms for time series separation with second order methods: $[9,2]$
- An important paper for optimising over rotation matrices: [4]

References

[1] F. Bach and M. Jordan. Kernel independent component analysis. Journal of Machine Learning Research, 3:1-48, 2002.
[2] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind source separation technique using second order statistics. IEEE Transactions on Signal Processing, 45(2):434-444, 1997.
[3] J.-F. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, 90(8):2009-2026, 1998.
[4] A. Edelman, T. Arias, and S. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998.
[5] K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
[6] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schoelkopf. Kernel methods for measuring independence. JMLR, 6:2075-2129, 2005.
[7] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.
[8] E. Learned-Miller and J. Fisher III. Independent components analysis by direct entropy minimization. Technical Report UCB/CSD-3-1221, Computer Science Division, University of California Berkeley, 2003.
[9] L. Molgedey and H. Schuster. Separation of a mixture of independent signals using time delayed correlation. Physical Review Letters, 72 (23):3634-3637, 1994.
[10] D.-T. Pham. Fast algorithms for mutual information based independent component analysis. IEEE Transactions on Signal Processing, 2002. Submitted.

