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Overview

e Independent component analysis: recover the linear mixing

that combines independent sources

e Kernel independence testing: given a sample of m pairs
{(x1,y1),---, (Tm,Ym)}, are the random variables x and y
independent?

e The two sample problem: are samples {z1,...,x,,} and

{y1,...,yn} generated from the same distribution?




Some notation and conventions
e Random variables are written sans serif, eg x, x
e Vector spaces are written in caligraphic font, eg x € X

e Probability distributions and densities are P,(A), expectations

are E,(x)

e (Covariance matrices are written

Cay = Ex,y(xyT) — Ex(X)Ey(yT)




ICA

...where to be careful when doing it




ICA (Population version)

e Indepdendent component analysis: we assume
x = As,

— x vector of observations, A (unknown) mixing matrix,

— s a vector of [ unknown, independent inputs:
l
Ps = Hi:l P,

— B is our estimate of A1

e We want to find
— An estimate y of s, using...

— ...an estimate B of A~1:




ICA (empirical version)

e Indepdendent component analysis: we assume
X =AS,

e Data matrices are [ X m, where

X1

X1

e Vectors x; and s; contain m i.i.d. samples




ICA examples

e Sounds mixed together (“cocktail party” problem)
e EEG recordings (brain, fetal heartbeat)
e [conomics

e Image processing




A toy example (1)

e We have two distributions: Py is uniform, Py is bimodal

Source 1, uniform (X) Source 2, bimodal (YY)




A toy example (2)

e Initial unmixed RVs in red, mixed RVs in black

Input sources

Observed mixtures

mixture 2
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Things that are impossible for ICA (1)

e Assuming we know what the original signals look like, can we

determine how observations were mixed?
— Reminder: ICA doesn’t care about the sources: it only tries

to recover the mixing matrix

e First example:
— Both PDFs Gaussian
— Observe mixtures at different rotation angles

— Can we ever recover the mixing?




Input sources

Mixed sources (1t/4)

Mixed sources (1t/2)

mixture 2
mixture 2

0
source 1 (X)

mixture 1 mixture 1




Things that are impossible for ICA (2)

e Second example:
Both PDF's uniform, symmetric about origin
Observe mixtures at different rotation angles

What happens when rotation angle is maximum (7/2)?

Input sources Mixed sources (1t/4)

Mixed sources (1t/2)

mixture 2
mixture 2

0]
source 1 (X)

mixture 1 mixture 1




Things that are impossible for ICA (3)

e Third example:

— RV on x-axis has asymmetric PDF, that on y-axis has
symmetric pdf

— What happens if the mixing matrix negates the Y variable?

Input sources Mixed using Y': ==Y

mixture 2

source 1 (X) mixture 1




Things that are impossible for ICA (4)

e Separating RVs that are everywhere constant
e Separating multiple Gaussians
e Recovering signal order

e Recovering signal amplitude




ICA Step 1

Decorrelation




First step in ICA: decorrelate
e Idea: remove all dependencies of order 2 between observations x
e Call whitened signals t: we haven’t reached unmixed signals y

e Whiten the observations:

t =B,x where Cy:=E(tt') —E (t)E(t') =1

We thus break up B as follows:
B =B,B,

— B,, is a whitening matrix
— B, is remaining demixing operation (more soon!)

Reminder: this is done by using the SVD of C;; = SAS':

B’w _ A—l/QST




Example: what does decorrelation achieve?

e A uniform distribution on the interval [—2, 2]

e A mixture of two Gaussians with equal probability, means +1
and —1

Input sources Observed mixtures Observations after spatial whitening

mixture 2
mixture 2

.

-1 0 1 0
source 1 mixture 1

0 1
mixture 1




Decorrelation: a drawback

A small warning: in theory, it is better not to break up the

unmixing matrix in this way, since there is a loss in accuracy

(statistically less efficient).

In practice, most ICA methods do decorrelation first, and the effect

is not really noticeable.




ICA Step 2(a)

Rotation: maximum likelihood




What is left: rotation

e To recover original signal, need to rotate (see figure)

e We assume from now on that only the rotation remains to be
done

Input sources

Observations after spatial whitening

mixture 2

0 0
source 1 mixture 1




Rotation (continued)

e For two signals, the rotation is expressed

cos(f) —sin(0)
sin(f)  cos(0)

B, =

e This generalises to higher dimensions, eg for [ = 3,

cos(f,) —sin(f,) O cos(f,) 0 —sin(6,)
sin(f,) cos(f,) O 0 1 0
0 0 1  sin(f,) 0  cos(6y)

0
—sin(6,,)
sin(0,)  cos(0y) |




ICA: maximum likelihood

e We have a model for the observations, parametrised by
(B~*,P)

— Reminder: we use B™! here since B the unmizing matrix

— Another reminder: model must have Py = Hf;:1 P,

e With this model, our estimated density of observations is
P, = |det(B™")|"!Ps(Bx) = | det(B)|Ps(Bx)

e Maximise the expected log likelihood,

L :=Ey {log st} = Ex [log | det(B)| + log |SS<BX>}

e Empirical expression:

- I, ¢
L :=log|det(B)| + . Zlog P.(Bx;)

g=1




Maximum likelihood: example

e The probability distribution of both source densities is

% (NM(=2.5,1) + N(2.5,1)),

where N (i, 0?) is a Gaussian with mean p and variance o*
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Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this so wrong?

Input sources

Observed mixtures

mixture 2

source 1 mixture 1




ICA Step 2(b)

Rotation: contrast functions




What is a copy?

e The random vector s is a copy of x if and only if x = Cs, where
C does only:

0
1

1
Permutations, e.g. C =
0

—1 0
0 1

Sign swaps, e.g. C =

2 0
0 3

Rescalings, e.g. C =

— Some combination of several of the above

e The most we can hope for in ICA is to recover a copy of the
signals




Contrast functions

e Ideally: contrast ¢(y) = 0 if and only if all components of y

mutually independent:

P,=]]P,.

i=1
— Under our mixing assumptions: contrast ¢(Cs) = 0 if and
only if Cs a copy of s

— How people really use it: contrast should be “smallest”

when random variables are “most independent”

e There exist contrast functions that have nothing to do with

max likelihood...

e ...but max likelihood induces the “best” contrast (when

correct!)




Contrast functions and maximum likelihood

How does the maximum likelihood relate to contrast functions?

e The max likelihood solution induces a contrast function:

L :=E, {log FA’X} = —DKL(PBX\\IsS) + const

e What is KL divergence? Given two densities Py, Qx defined on
X C R"™, then

Dra (PolQ) = [ Putyion (G ) .

o D1, (Py||Qx) > 0 with equality if and only if Py = Q, almost

everywhere.

o ...thus ¢a1.(y) = Dkr,(PBx||Ps) is a contrast as long as Ps = Ps




Contrast functions and mutual information (1)

e The mutual information is just the KL divergence between the

joint distribution and the product of the marginals:

P i j(yiay')
I<y’wyj> :/J}Pyi,yj<yiayj>log (P i) ’

dy; dy;
yi<yz->Pyj<yj>> ey

e This is also a contrast function:
I(Yi,}’j) =0 iff PYian — PYi PYj

e Little used in ICA:
— Hard to find good empirical estimates

— Hard to optimise




Contrast functions and mutual information (2)

e Simplification: when rotation only is considered, need only 1-D
entropies (see [8] in references)

Reason:

L (Py pri> Zh yi) —log|det B.

where h(y) = —Ey log(Py(y))
h (x) constant wrt B: only function of observations x
log |det B| = 1 when B are rotations
Entropies are also hard to compute: IDEA: use
l
=&,
71=1

for some other nonlinear f(y




Contrast functions (3): Some famous cases

This slide represents a gross simplification of what really goes on.
Read the papers!

e What kind of nonlinear f(y) can we use to make our contrasts?

e Infomax-type contrast:

f(y) = a — exp(—y?/2)sech®(y)
for some a > 1

e Fast ICA-type contrast:

f(y) = . log cosh(ay).

where a > 1.

e Jade-type contrast:
fly) =y*




Kurtosis: an important concept

e Kurtosis definition: when mean is zero,

ks = E (x*) =3 (E, (2))”.

Source densities can be super-Gaussian (positive kurtosis) or

sub-Gaussian (negative kurtosis)
Zero kurtosis does not mean Gaussian!

Certain popular contrast functions depend explicitly on

kurtosis of unmixed signals

Other contrast functions only work when kurtosis is positive or

negative




Contrast functions: Example (1)

e Samples drawn from Super- and Sub-Gaussian distributions

below:

Super—Gaussian sources Sub—Gaussian sources




Contrast functions: Example (2)

e Results for Jade, Infomax, and Fast ICA contrasts

Jade Imax Fica

Super-Gaussian

Sub-Gaussian




Disclaimer!

e The implementations of Jade, Fast ICA, and Infomax on the
internet work for positive and negative kurtoses! I.e. real life

algorithms are more complicated.

e That said, the foregoing demonstrates the danger of blindly

using random ICA software on the internet without knowing

what it does.




ICA for non-i.i.d. processes




ICA for non-i.i.d. signals (1)

We can get extra information from sources not being i.i.d.
Assume zero mean.

Assume that our observation vector x(¢) now depends on time
shifted values x(t + 7), where 7 > 1, and that the process is
stationary

Define the covariance
Caa(7) = E(x(1)x(t + 7)),
where the above is indpendent of 7 due to stationarity

Hint: the ideas we’re about to use were described for

decorrelation in 1.i.d. case




ICA for non-i.i.d. signals (2)

e Our assumption that the inputs are uncorrelated causes the
following to hold:

A = E(s(s’ (1) = E((A7x() (A7'x(1) ")
= A'C(0) (A
where A is a diagonal matrix

e But the following can also be assumed: for any 7 > 1,
A=E (s(t)sT(t +7)) = A1C,. (1) (A_l)T

e Combining both criteria: get

C..(0)CZLH(T)A = A (AK—l)

e Methods exist to solve for a greater number of delays (see

references): procedure is called joint diagonalisation




Advanced (kernel!)

independence measures




Kernel dependence measures

e Kernel dependence measures
— Zero only at independence
— Take into account high order moments

— Make “sensible” assumptions about smoothness

e Applications
— Independent component analysis (ICA)
— Feature selection (Fukumizu et al.)

— Dependence detection between voxel activity in Macaque
visual cortex (V1)




Outline

e Constrained covariance (COCO)

— Covariance in RKHSs
— Three useful properties of COCO

*x Independence measure when kernels universal

x How to derive independence test from independence
measure
- Cases where dependence hard to detect
- How to choose kernel?

x Error prob. of test drops quickly as sample size increases

e Use of COCO (and other kernel dependence measures) in ICA




Dependence detection
X space

e Get m pairs of points in different spaces

e Are the RVs x and y dependent?




A second order method

e Choose directions, get dot product with all

e Directions chosen such that the vectors of projections have

biggest covariance. Is covariance 07




Take nonlinear features

e Points in each space mapped to vectors of nonlinear features:

roxi= Vi) Viepa(®) ... VAealn) .|
y oy = :\/71901@) Va2ea(y) - VAnen(y) }

x € Hxy and y € Hy, can be infinite dimensional

As n increases, )\, smaller and ¢, less smooth
e Define projection vectors in each space: f € Hy, g € Hy.

e Formal definition of COCQO:

CcoV (fTX, gTy)

COCO(Pyy; Hx, Hy) := sup
rerx gery |fllrnxllglin,




The kernel trick (1)

e Must we really consider infinite dimensional vectors?

e Differentiating COCO wrt f and g, want biggest eigenvalue

0 C,
C,, O

e When we rely on a finite sample,




The kernel trick (2)

e This means:

e Inner product in reproducing kernel Hilbert spaces given by

kernel

XIXQ — k (331 — 332)

yiye =k (y1 — y2)




An empirical estimate

e Kernel covariance then largest eigenvalue ~; of

0 K K ~ K 0
ROLKG, o a| | o KU,

° Kq(qun is matrix of inner products between centred

observations in feature space:

K, = HK[;) H

1
H=T- —11"
m




COCO measures independence

o COCO(Pyxy;Hx,Hy)=0iff x,y independent, when Hx and
Hy are RKHSs induced by universal kernels (eg. Gaussian
kernels, Laplace kernels, ...)

e Also true of

— Kernel canonical correlation: as above, but normalising by
the variance in the RKHS [1]

— Kernel mutual information: an upper bound on the MI near

independence [6]

— Kernel generalised variance: a looser upper bound on the

MI near independence [1]




Why universal?

e What happens when kernel is not universal?

e Example: spline kernel

B1 spline, width /2 Spectru

m of kernel

\ :




Background: statistical tests (1)

e Probability measure P, in Py or Py
e T'wo hypotheses:
— Hy: null hypothesis (P, € Pp)
— Hy: alternative hypothesis
Observe a sample z
If sample is in
— Rejection/critical region R: reject Hy
— Acceptance region: accept Hy

Region defined using test statistic A(z)

— Example: sample mean (is mean greater than some
threshold?)




Background: statistical tests (2)

e How good is a test?
— Type I error: We reject Hy although it is true
— Type II error: We accept Hj although it is false

e Power of test:
B(P;) :=P;(z € R)

— Should be ~ 0 for P, € Py, ~ 1 for P, € P,

o [evel of test: for 0 < a <1

a 2 supp, ep, H(Pz)

— Upper bound on worst possible type I error

— Note: of test is true worst type I error




When is dependence hard to detect?

e NO test can detect all dependence for finite samples.

o Set P of prob. distrib. Py over n variables
— P; generates independent random variables,

— P, gives dependent RVs

Test: A(x) takes m i.i.d. samples, returns

A(a:)zlza:rvpicfr?, A(a:):O:a:NP,((i)@

Uncertainty due to empirical estimate: a-test

sup E (A(x)=1) <«

. :BNP,EQL
PV eP;

There exists Py € P; such that for small e,

Popn (A(@)=0)>1—a—¢




Hard-to-detect dependence (2)

e COCO can be =~ 0 for dependent RVs with highly non-smooth
densities:

Py = a+ Bei(x)eily),
— [ large

— (3 non-trivial
e COCO ‘“as small as you want” (depends on [)

e Reason: norms in the denominator

CcoV (fTX, gTy)

COCO(Pyy; Hx, Hy) := sup
fEHX,gEHY 1] 72 &7,

e RESULT: not detectable with finite sample size




Hard-to-detect dependence (3)

Smooth density

Density takes the form:

500 samples, rough density

4 P,y o< 1+ sin(wx) sin(wy)
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A test of independence

Empirical COCO converges to the population COCO at speed

1//n.

A dependence test: A(z) is the indicator that COCO larger
than C'y/log(1/a)/n

A(z) is an a-test

— Reminder: « upper bounds prob. that test returns

dependence when random variables independent

Type II approaches zero as 1/+/n.

— Reminder: Type II error is prob. that test returns

independence when random variables dependent
No slow learning rates for dependence tests!

Finite sample results!



Choosing kernel size (1)

e Reminder: the RKHS norm of a function is

1710 = 5 72 (k)

e If kernel decays quickly, its spectrum decays slowly:

— then non-smooth functions have smaller RKHS norm
e Example: spectrum of two Gaussian kernels

Gaussian kernels

Gaussian kernel spectra
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Choosing kernel size (2)

e Could we just decrease kernel size?

e Yes, but only up to a point

COCO (empirical average, 1000 samples)

-0.5 0 0.5
Log kernel size




Application to ICA

ICA can be done by optimising over kernel dependence

measures (contrast function)

State-of the art performance for small to medium scale

problems
Still too slow for large-scale (£ 16 sources) problems
Better outlier resistance than alternatives

Source kurtosis does not affect performance




Positive, Negative, and Zero kurtosis

e Amari divergence mesaures distance between estimated and

true mixing matrix
e Invariant to source order swapping and source scaling

e Bigger — worse performance
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Outlier resistance

e Qutlier noise added to the mixed sources
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The Two-Sample Problem




The two-sample problem

e Test if same distribution generated two samples

e Our criterion: the maximum mean discrepancy
— Given a type I error, type II error converges fast (1/y/n)

— No assumptions about generating distributions

e Applications

— Neuroscience: test whether spikes on different days are from

the same neuron
— Speaker identification
— Comparison of paintings using hyperspectral photography
— Merging databases




The MMD (1)

e F a universal RKHS, F:={f € F : | f||x <1} the unit ball
in F.

e The population MMD is defined as

MMD(Py, Py; F) = (;gg [Exf(x) — Eyf(y)]> -

o MMD(Py,Py: F) =0 if and only if P, = Py, for universal

kernels




The MMD (2)

e How to get it wrt kernels

— Mean elements corresponding to ¢(x) and ¢(y):

= Ex(f(x),
= Ey(f(y))-

— The norm is also written as

]| 7 = sup(f, u)
feF




e The MMD in terms of kernels:

2
MM D(Py, Py; F) (?“2 (f, e — uy>f>
€

2
e — byl 7

(B — oy fho — ,uy>_7:
Ex,x’k(X7 Xl) + Ey,y/ k(y, y/> — 2Ex,yk(x, y),

e X' is a R.V. independent of x with distribution P,

e y' is a R.V. independent of y with distribution P,.




Empirical estimate

e Given data x of size m drawn from P, and y of size n drawn

from P,

e An unbiased empirical estimate (quadratic cost):

KMD(xz,y; F) := — Zk Tl Tiy)
Z#J

(a)

n—]. Zk y317y32

1753
(b)

7

_%sz xz,y]

1=1 5=1

(©




How fast does empirical converge to population?
e For testing purposes, need only positive deviation
e Use 1- and 2-sample U-statistic bounds from Hoeffding
o Assume 0 < k(z,y) < R almost everywhere, m < n.

e For all n > 2 and all 0 < 0 < 1, with probability at least 1 — 9,
for all P, and Py,

KMD(z,y; F) — KMD(P,,P,; F) It \/10g<3/5>,

< -
b

n

_ 1+(1—v2)r




A 2-sample test based on MMD
o Test statistic is KM D(x,y; F)
e Null hypothesis Hy is P, = Py

e The test: accept Hy if

log(3/a)

o< |

gives a test of level «
Type 2 error asymptotically drops as 1/y/n

What is p-value? We get an upper bound using

—KMD?(x,y; F)53°n
R? '

p§3eXP<




Further reading




Some references on ICA and independence
measurement

Start with Cardoso’s excellent introduction [3], and the tutorial

by Hyvérninen [7]

For kernel methods, look at [6] (this talk), [1], and [5] (final
paper deals with conditional independence)

Some alternative recent methods with “adaptive” contrast
functions: [10, §]

Classic algorithms for time series separation with second order
methods: |9, 2]

An important paper for optimising over rotation matrices: [4]
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