Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effect of the Min System on Timing of Cell Division in Escherichia coli

MPG-Autoren
/persons/resource/persons254422

Keilberg,  D.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254378

Hot,  E.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254759

Thanbichler,  M.
Max Planck Fellow Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254723

Sogaard-Andersen,  L.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jia, S., Keilberg, D., Hot, E., Thanbichler, M., Sogaard-Andersen, L., & Lenz, P. (2014). Effect of the Min System on Timing of Cell Division in Escherichia coli. PLoS ONE, 9(8): e103863. doi:10.1371/journal.pone.0103863.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-BDD9-0
Zusammenfassung
In Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time. Both quantities are found to be different in WT and cells without functional Min system. We develop a series of theoretical models whose predictions are compared with the experimental findings. Continuous improvement leads to a final model that is able to explain all relevant experimental observations. In particular, it shows that the chromosome segregation defect caused by the absence of Min proteins has an important influence on timing of cell division. Our results indicate that the Min system affects the septum formation rate. In the absence of the Min proteins this rate is reduced, leading to the observed strongly randomized cell division events and the longer division waiting times.