English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Physical-chemical plant-derived signals induce differentiation in Ustilago maydis

MPS-Authors
/persons/resource/persons254529

Mendoza-Mendoza,  Artemio
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254135

Berndt,  Patrick
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254223

Djamei,  Armin
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254837

Weise,  Carolin
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Vraneš,  Miroslav
Max Planck Society;

/persons/resource/persons254411

Kämper,  Jörg
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254413

Kahmann,  Regine
Emeriti Molecular Phytopathology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mendoza-Mendoza, A., Berndt, P., Djamei, A., Weise, C., Linne, U., Marahiel, M., et al. (2009). Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Molecular Microbiology, 71(4), 895-911. doi:10.1111/j.1365-2958.2008.06567.x.


Cite as: https://hdl.handle.net/21.11116/0000-0007-C4BD-7
Abstract
Ustilago maydis is able to initiate pathogenic development after fusion of two haploid cells with different mating type. On the maize leaf surface, the resulting dikaryon switches to filamentous growth, differentiates appressoria and penetrates the host. Here, we report on the plant signals required for filament formation and appressorium development in U. maydis. In vitro, hydroxy-fatty acids stimulate filament formation via the induction of pheromone genes and this signal can be bypassed by genetically activating the downstream MAP kinase module. Hydrophobicity also induces filaments and these resemble the dikaryotic filaments formed on the plant surface. With the help of a marker gene that is specifically expressed in the tip cell of those hyphae that have formed an appressorium, hydrophobicity is shown to be essential for appressorium development in vitro. Hydroxy-fatty acids or a cutin monomer mixture isolated from maize leaves have a stimulatory role when a hydrophobic surface is provided. Our results suggest that the early phase of communication between U. maydis and its host plant is governed by two different stimuli.