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Abstract. Forest disturbance and regrowth are key pro-
cesses in forest dynamics, but detailed information on these
processes is difficult to obtain in remote forests such as
the Amazon. We used chronosequences of Landsat satellite
imagery (Landsat 5 Thematic Mapper and Landsat 7 En-
hanced Thematic Mapper Plus) to determine the sensitivity
of surface reflectance from all spectral bands to windthrow,
clear-cut, and clear-cut and burned (cut+ burn) and their
successional pathways of forest regrowth in the Central
Amazon. We also assessed whether the forest demography
model Functionally Assembled Terrestrial Ecosystem Sim-
ulator (FATES) implemented in the Energy Exascale Earth
System Model (E3SM) Land Model (ELM), ELM-FATES,
accurately represents the changes for windthrow and clear-
cut. The results show that all spectral bands from the Land-
sat satellites were sensitive to the disturbances but after 3
to 6 years only the near-infrared (NIR) band had significant
changes associated with the successional pathways of for-
est regrowth for all the disturbances considered. In general,
the NIR values decreased immediately after disturbance, in-
creased to maximum values with the establishment of pio-
neers and early successional tree species, and then decreased
slowly and almost linearly to pre-disturbance conditions with
the dynamics of forest succession. Statistical methods pre-
dict that NIR values will return to pre-disturbance values
in about 39, 36, and 56 years for windthrow, clear-cut, and
cut+ burn disturbances, respectively. The NIR band cap-

tured the observed, and different, successional pathways of
forest regrowth after windthrow, clear-cut, and cut+ burn.
Consistent with inferences from the NIR observations, ELM-
FATES predicted higher peaks of biomass and stem density
after clear-cuts than after windthrows. ELM-FATES also pre-
dicted recovery of forest structure and canopy coverage back
to pre-disturbance conditions in 38 years after windthrows
and 41 years after clear-cut. The similarity of ELM-FATES
predictions of regrowth patterns after windthrow and clear-
cut to those of the NIR results suggests the NIR band can be
used to benchmark forest regrowth in ecosystem models. Our
results show the potential of Landsat imagery data for map-
ping forest regrowth from different types of disturbances,
benchmarking, and the improvement of forest regrowth mod-
els.

1 Introduction

Old-growth tropical forests are declining in extent at accel-
erated rates due to deforestation (Keenan et al., 2015), and
they currently occupy an area of about 50 % of their origi-
nal coverage (FAO, 2010). This decline affects the carbon,
water, and nutrient cycles of the ecosystems and acceler-
ates the loss of ecosystem goods and services (Foley et al.,
2007; Nobre et al., 2016). Furthermore, natural and anthro-
pogenic disturbances may act synergistically to exacerbate
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forest degradation (Silverio et al., 2018; Schwartz et al.,
2017). Under natural conditions, disturbed forests recover
to their pre-disturbance conditions through complex inter-
actions that vary across spatial and temporal scales (Chaz-
don, 2014). In general, it is known that forest pathways of
regrowth (i.e., pattern of regrowth) are initiated with fast-
growing and shade-intolerant species (pioneers) that are es-
tablished from seeds and dominate a few years after dis-
turbance, followed by the recruitment and establishment of
shade-tolerant species, and finally the establishment of a
closed-canopy old-growth forest (Chazdon, 2014; Denslow,
1980; Mesquita et al., 2001; Swaine and Whitmore, 1988).
Understanding of the dynamics of forest regrowth following
natural and anthropogenic disturbances in the Amazon, how-
ever, has so far been limited by lack of long-term observa-
tional data showing different stages of forest regrowth.

Remote sensing data can be used to assess forest regrowth
via changes in spectral characteristics (Frolking et al., 2009;
Roberts et al., 2004; Schroeder et al., 2011; DeVries et al.,
2015; Lucas et al., 2002; McDowell et al., 2015). Landsat
satellite imagery is appropriate for examining land surface
changes due to its long-term record availability and spa-
tial resolution of 30 m (Loveland and Dwyer, 2012; Wul-
der et al., 2012; Alcantara et al., 2011; Woodcock et al.,
2008; Cohen and Goward, 2004; Hansen et al., 2013). Land-
sat imagery has been used to detect forest disturbance and
pathways of regrowth in temperate and boreal forests in the
United States and Canada (Kennedy et al., 2007, 2010, 2012;
Pickell et al., 2016; Schroeder et al., 2011; Dolan et al.,
2009, 2017) and for the detection of forest disturbance and
regrowth of biomass in the Amazon (Vieira et al., 2003; De-
Vries et al., 2015; Lucas et al., 2002; Powell et al., 2010;
Lu and Batistella, 2005; Steininger, 2000; Shimabukuro et
al., 2019). These studies suggest that Landsat may be sen-
sitive to different types of disturbances and their subsequent
pathways of forest regrowth in the Amazon, but these appli-
cations have not yet been assessed.

The ability to forecast future trajectories of forests de-
pends upon the fidelity with which disturbance and regrowth
processes are represented within terrestrial biosphere mod-
els. These models capture processes operating between the
leaf and landscape scales and can represent regrowth changes
over large regions (Fisk, 2015), long time periods (Holm et
al., 2017; Putz et al., 2014), a range of disturbance intensities
(Powell et al., 2013), and interactions between multiple dis-
turbance types and disturbance histories (Hurtt et al., 2006).
But how well these models simulate and capture the diverse
array of successional pathways of forest regrowth after an-
thropogenic or natural disturbances needs to be more thor-
oughly evaluated, given observed increases in disturbance
rates (Lewis et al., 2015). The few modeling studies analyz-
ing tropical disturbances have focused on the effects of frag-
mented edges or the regrowth of specific tree species (Dantas
de Paula et al., 2015; Kammesheidt et al., 2002).

Cohort-based dynamic vegetation demographic models
(VDMs) are particularly suitable tools for expanding upon
these studies (Fisher et al., 2018). In contrast to traditional
land surface models, VDMs include ecological demographic
processes, such as discretized vegetation height, with differ-
ent plant types competing for light within the same verti-
cal profile, and heterogeneity in light availability along dis-
turbance and recovery trajectories, all of which facilitate
direct simulation of regrowth dynamics during succession.
This structured demography in VDMs allows for simula-
tion of canopy gap formation, competitive exclusion, and co-
existence of vegetation, thus producing variability in forest
stand age and composition (Fisher et al., 2010; Moorcroft et
al., 2001; Longo et al., 2019). VDMs are designed for vege-
tation to dynamically respond to variation in traits (Fyllas et
al., 2014) leading to differences in plant mortality, growth,
and recruitment rates (Shugart and West, 1980). These at-
tributes influence the ecosystem fluxes of carbon, energy,
and water (Bonan, 2008). Despite their potential for simu-
lating regrowth processes, there has been limited VDM test-
ing of regrowth following tropical forest disturbances. Im-
portantly, projections of future climate using Earth system
models (ESMs) are strongly influenced by the terrestrial car-
bon cycle in the tropics (Arora et al., 2013; Friedlingstein et
al., 2014), which is strongly regulated by disturbance and re-
growth (Chazdon et al., 2016; Trumbore et al., 2015; Magna-
bosco Marra et al., 2018).

Observational studies have shown that Amazon forests fol-
low a range of successional regrowth pathways after clear-
cutting and burning (Mesquita et al., 2001, 2015). Thus, the
type of disturbance and the pre-disturbance ecosystem state
are important determinants of the successional pathways of
forest regrowth. Nonetheless, this information is difficult to
obtain in remote forests of the Amazon. In this study, we
addressed this issue in the context of windthrow, clear-cut,
and clear-cut and burned (cut+ burn) disturbances to analyze
(i) the sensitivity of Landsat to detect and distinguish these
relevant disturbances and their pathways of forest regrowth
and (ii) the time span of forest regrowth. This understanding
of forest regrowth was used to (iii) test the modeled forest re-
growth of the Functionally Assembled Terrestrial Ecosystem
Simulator (FATES) model (Fisher et al., 2015) implemented
in the Energy Exascale Earth System Model (E3SM) Land
Model (ELM) (Riley et al., 2018; Zhu et al., 2019), ELM-
FATES. This study provides insights into the use of remote
sensing to identify drivers of forest disturbance in the Ama-
zon, and a better understanding of the pathways of forest re-
growth provides insights into the resilience of these forests
to repeated disturbances and can help improve land models.
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Figure 1. Location of disturbed forests. (a) The disturbed areas
were located in Central Amazonia and comprised (b) a windthrow
site close to the village of Tumbira; (c) a clear-cut site, on the Porto
Alegre farm; and (d) a cut+ burn site on the Dimona farm. These
three areas are encompassed in the Landsat scene Path 231 Row 062
as shown in the inset in (a). For the spectral characteristics before
and after disturbances we used cells of 3× 3 pixels (blue squares)
over disturbed and undisturbed areas. For the pathways of forest re-
growth after clear-cutting and burning sites, we analyzed areas with
different distances from the disturbance edge (A1, A2, and A3 in
yellow). The background image in (a) is from © Google Earth Pro.
The background images in (b), (c), and (d) are from Landsat 5 on
12 July 1987, 1 June 1984, and 12 July 1987 and were composed in
RGB color using bands 5, band 4, and band 3, respectively.

2 Study area and methods

2.1 Study area and sites

Forests in the Central Amazon affected by windthrow, clear-
cut, and cut+ burn were addressed in this study. Windthrows
(Mitchell, 2013) in the Amazon are caused by strong de-
scending winds that uproot or break trees (Garstang et al.,
1998; Negrón-Juárez et al., 2018; Nelson et al., 1994). In
clear-cut areas, forests are cut and cleared, and in cut+ burn
areas forests are cleared and burned (Mesquita et al., 2001,
2015; Lovejoy and Bierregaard, 1990). The windthrow, clear-
cut, and cut+ burn sites used in this study were selected
based on the following conditions: (a) prior to disturbance
they were upland (no flooding) old-growth forest and located
in the same region, with similar climatic, edaphic, and floris-
tic composition; (b) long-term records of satellite imagery
and corresponding field data before and after disturbance are
available; and (c) no subsequent disturbance has occurred.

The three windthrow, clear-cut, and cut+ burn sites an-
alyzed in this study are located near the city of Manaus,
Central Amazon (Fig. 1a). The windthrow (centered at 3◦ S,
60.75◦W; Fig. 1b) was located near the village of Tumbira,
about 80 km southwest of Manaus, occurred in 1987, and
covered an area of ∼ 75 ha. At this site, data on forest re-
growth including forest structure and species composition
for trees ≥ 10 cm DBH (diameter at breast height of 1.3 m)
have been collected since 2011 covering disturbed and undis-
turbed areas and found that the genus Cecropia is one of
the dominant species in the most disturbed areas (Magna-
bosco Marra et al., 2018). The clear-cut and cut+ burn sites
were experimentally created within the Biological Dynam-
ics of Forest Fragments Project (BDFFP), which encom-
passes an area of ∼ 1000 km2 (centered at 2.5◦ S, 60◦W) lo-
cated 80 km north of the city of Manaus, Brazil. The BDFFP
was established and managed in the early 1980s by Brazil’s
National Institute of Amazonian Research (INPA) and the
Smithsonian Institution and is the longest-running experi-
ment of forest fragmentation in the tropics (Bierregaard et
al., 1992; Lovejoy et al., 1986; Laurance et al., 2011, 2018;
Tollefson, 2013). Further details of the BDFFP are in Bier-
regaard et al. (2001). The selected clear-cut site is located
on the Porto Alegre farm (centered at 2.35◦ S, 59.94◦W;
Fig. 1c). This site was clear-cut in 1982 without subse-
quent use and was dominated by the pioneer tree genus Ce-
cropia 6–10 years after abandonment (Mesquita et al., 1999,
2001). The cut+ burn site is located on the Dimona farm
(centered at 2.33◦ S, 60.11◦W; Fig. 1d), which was clear-
cut and burned in September 1984, maintained as pasture
for 2–3 years, and then abandoned. By 1993 this site was
6 years old and dominated by the pioneer tree genus Vismia
(Mesquita et al., 1999, 2001).

In the Manaus region the mean annual temperature is
27◦ C (with higher temperatures from August to Novem-
ber and a peak in October) and the mean annual rainfall is
2365 mm with the dry season (rainfall < 100 mm per month;
Sombroek, 2001) from July to September (Negrón-Juárez et
al., 2017). The topography is relatively flat with landforms
ranging from 50–105 m a.s.l. (Laurance et al., 2007, 2011;
Renno et al., 2008), and the mean canopy height is ∼ 30 m,
with emergent trees reaching 55 m (Laurance et al., 2011;
Lima et al., 2007; Da Silva, 2007). The soil in this region
comprises Ferrosols (Quesada et al., 2011; Bierregaard et
al., 2001; Ferraz et al., 1998) following the Food and Agri-
culture Organization (FAO) classification and with similar
floristic composition (Bierregaard et al., 2001; Carneiro et
al., 2005; Vieira et al., 2004; Higuchi et al., 2004). In the
BDFFP and for old-growth forest trees with DBH ≥ 10 cm,
there are 261±18 species ha−1, the stem density is 608±52
stems ha−1, and the basal area is 28 m2 ha−1 (Laurance et
al., 2010), which is representative of the region (da Silva et
al., 2002; Vieira et al., 2004; Carneiro et al., 2005; Magna-
bosco Marra et al., 2014, 2016, 2018). In this region 93 %
of stems are between 10 and 40 cm in DBH (Higuchi et al.,
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2012) and the annual tree mortality is 8.7 trees ha−1 for trees
≥ 10 cm in DBH (Higuchi et al., 1997).

2.2 Landsat satellite data and procedures

The Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) (Schmidt et al., 2013; Masek et al., 2006,
2008, 2013) surface reflectance (SR) from the Landsat 5
Thematic Mapper (TM) was used in this study to charac-
terize the type of disturbance and the subsequent pathways
of forest regrowth over our study areas. LEDAPS was devel-
oped to ensure that spectral changes in Landsat are associated
with regrowth dynamics (Masek et al., 2012; Schmidt et al.,
2013) and to facilitate robust studies of land surface changes
at different temporal and spatial scales in tropical forests
(Kim et al., 2014; Valencia et al., 2016; Alonzo et al., 2016).
LEDAPS SR Landsat 5 TM (L5 hereinafter) is generated by
the United States Geological Survey (USGS) using the Sec-
ond Simulation of the Satellite Signal in the Solar Spectrum
(6S) that corrects for the influences of, among others, wa-
ter vapor, ozone, aerosol optical thickness, and digital eleva-
tion on spectral bands (USGS, 2017; Vermote et al., 1997).
L5 bands are derived using per-pixel solar illumination an-
gles and generated at a 30 m spatial resolution on a Univer-
sal Transverse Mercator (UTM) mapping grid (USGS, 2017).
LEDAPS in the Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) sensor (L7 hereinafter) was also used to corrobo-
rate our predictions (described below). Though L5 and L7
use the same wavelength bands, they are different sensors
and differences in surface reflectance may exist, especially in
tropical forests, due to large atmospheric effects (Claverie et
al., 2015). Landsat 8 was not used since comparison between
Landsat 8 and both L5 and L7 is not straightforward due to
differences in the spectral bandwidth of these sensors. We
used LEDAPS since a long time series of data is available
with high spectral performance (Claverie et al., 2015) and it
is suitable for ecological studies in the Amazon (van Don-
inck and Tuomisto, 2018; Valencia et al., 2016). L5 and L7
are available in Google Earth Engine (Gorelick et al., 2017),
which we used to retrieve and analyze these data.

The L5 and L7 spectral bands used in this study were blue
(0.45–0.52 µm), green (0.52–0.62 µm), red (0.63–0.69 µm),
near infrared (NIR) (0.76–0.90 µm), shortwave infrared 1
(SWIR1) (1.55–1.75 µm), and shortwave infrared 2 (SWIR2)
(2.08–2.35 µm). L5 and L7 measurements provide the frac-
tion of energy reflected by the surface and range from 0 (0 %)
to 10 000 (100 %). Only scenes from June, July, and August
were used since these dry-season months present less cloud
cover over our study area (Negrón-Juárez et al., 2017). This
procedure also reduces effects associated with illumination
or phenology since images correspond to the same period
each year. Only images that were cloud free, cloud shadow
free, and haze free over our disturbed areas were used to
eliminate errors associated with these elements. For this pro-
cedure, visual inspection of visible bands and quality infor-

mation from L5 and L7 were used. No further corrections
were applied due to the robustness of L5 imagery over the
Amazon (Valencia et al., 2016). All of the disturbances are
in the Landsat scene Path 231, Row 062. The dates of L5
images used (Landsat 5 operational imaging ended in 2011)
were 1 June 1984 (except for the windthrow), 6 July 1985,
12 July 1987, 2 August 1989, 20 July 1990, 8 August 1991,
31 July 1994, 21 June 1997, 26 July 1998, 13 July 1999,
24 July 2003, 4 August 2007, 6 August 2008, 27 July 2010,
and 31 August 2011. The dates of L7 images used were 7 Au-
gust 2011, 22 June 2012, 12 June 2014, 2 August 2015, and
7 August 2017.

The spectral characteristics of old-growth forests and their
changes after disturbances were investigated using 19 cells
of 3× 3 pixels (Fig. 1b, c, d). The average of each cell
was used in our analysis. Spectral characteristics for old-
growth forests for each site were determined from cells lo-
cated in the same position as the disturbance but previous
to the disturbance and/or from adjacent areas. Five cells of
old-growth forests were located from 1 to 2 km away from
the windthrow site. Though closer distances may also repre-
sent old-growth forests, we were conservative since Landsat
is not sensitive to clusters of downed trees comprising fewer
than eight trees (Negrón-Juárez et al., 2011). For the clear-cut
and cut+ burn sites the spectral characteristics of their re-
spective old-growth forests (control) were studied from three
cells per site located 500 to 800 m away from the edge of
the disturbance to minimize edge effects that are relevant
in the first 100 m (Lovejoy et al., 1986; Laurance et al.,
2007; Mesquita et al., 1999). The spectral characteristics for
the windthrow were acquired from two cells containing the
highest level of SWIR1 values in 1987 which is associated
with the maximum disturbance (Negrón-Juárez et al., 2011;
Magnabosco Marra et al., 2018; Nelson et al., 1994). For the
clear-cut site three cells were located 400–500 m from the
edge, and for the cut+ burn site, three other cells were lo-
cated at a distance of 100–300 m with respect to the edge. For
the clear-cut site we also selected four areas: A1, A2, A3, and
AT (AT = A1+A2+A3), shown in Fig. 1c. For the cut+ burn
site, we selected three areas:A1,A2, andAT (AT = A1+A2),
shown in Fig. 1d.

L5 data for the windthrow, clear-cut, and cut+ burn sites
encompass a period of 28 years with 13 years of missing
data due to cloud cover or lack of image. In order to assess
the forest regrowth to spectral levels similar to old-growth
forests (control), we applied a gap-filling method (Gerber,
2018) for time series to obtain estimates for missing years us-
ing the R package “zoo” (Zeileis et al., 2018). The gap-filled
datasets were analyzed using the smoothing-spline technique
(R package, 2017). To determine whether L5 bands were sen-
sitive to regrowth, we analyzed changes in the slope (β) of
the bands across our chronosequence. A t test on the slope
coefficient was used to test the null hypothesis that β is zero
(H0, β = 0) against the alternative hypothesis (H1, β 6= 0)
at a 5 % significance level (α = 0.05). If the computed test

Biogeosciences, 17, 6185–6205, 2020 https://doi.org/10.5194/bg-17-6185-2020



R. I. Negrón-Juárez et al.: Landsat NIR band and ELM-FATES sensitivity 6189

statistic (t stat) was inside the critical values, then H0 was
not rejected. The critical values (±t1−α/2, n− 2; n is the
number of data points) were obtained from statistical tables
(Neter et al., 1988). Forests in the Manaus region affected
by windthrows were dominated by tree species from the gen-
era Cecropia and Pourouma in about 3–5 years (Magnabosco
Marra et al., 2018; Nelson and Amaral, 1994), and the clear-
cut and cut+ burn sites were dominated by Cecropia and
Vismia about 6 years after the disturbances (Mesquita et al.,
1999, 2001). The slopes of the time series were determined
after these periods, i.e., 1991, 1987, and 1990 for windthrow,
clear-cut, and cut+ burn sites, respectively.

A comparison of successional pathways of forest regrowth
among studied disturbances was conducted which was feasi-
ble due to the similar conditions of climate, soils, and struc-
ture and composition of the old-growth forests. Time series
of L5 bands were analyzed using the statistical nonparamet-
ric function (univariate fit), with the smoothing spline and the
Gaussian regression ANOVA (analysis of variance) model.
Calculations were conducted on the R 3.5.2 software plat-
form (R package, 2017) using the package “gss” (General
Smoothing Splines) (Gu, 2018). We calculated the smooth
spline (using the cubic fit algorithm) of observed data and
the associated standard errors, from which we calculated
Bayesian 95 % confidence intervals. Predictions of the time
after disturbance needed to reach old-growth forests values
are based on these data using the function “ssanova” (Fitting
Smoothing Spline ANOVA Models) of the R package gss
(General Smoothing Splines), version 2.1-9. The predictions
were compared with published field observations (Sect. 2.1)
where data were available, and L7 images were used to as-
sess the reliability of our predictions.

2.3 Forest regrowth simulation in ELM-FATES

Time series of L5 bands sensitive to disturbances and the
pathways of forest regrowth were compared with modeling
results from ELM-FATES (Fisher et al., 2010, 2015; Holm
et al., 2020). The underlying model structure and concepts in
FATES are based on the Ecosystem Demography (ED) con-
cept (Moorcroft et al., 2001) and are described in detail at
https://github.com/NGEET/fates, last access: 1 July 2019. A
major development is the modularization of the model struc-
ture in FATES so that boundary conditions and vegetation
can be coupled with ESM land models. FATES is integrated
into the E3SM Land Model (ELM) (Riley et al., 2018; Zhu
et al., 2019) and the Community Land Model (CLM) (Fisher
et al., 2019; Lawrence et al., 2019) coupled to the Com-
munity Earth System Model (Hurrell et al., 2013). In this
study we used ELM-FATES. ELM-FATES simulates vege-
tation that varies in terms of successional age and size; plant
competition; and dynamic rates of plant mortality, growth,
and recruitment, all on landscapes partitioned by areas of
disturbance. The main updates and modifications in ELM-
FATES compared with ED include changes to carbon alloca-

tion and allometry and the introduction of the perfect plas-
ticity approximation (PPA) (Purves et al., 2008; Fisher et al.,
2010) used for the accounting of crown spatial arrangements
throughout the canopy and organizing cohorts into discrete
canopy layers. Photosynthesis and gas exchange physiology
in ELM-FATES follows the physics within the CLM v4.5
(Bonan et al., 2011) and, unlike ED, uses the original Ar-
rhenius equation from Farquhar et al. (1980). ELM-FATES
tropical forest simulations conducted here were based on pa-
rameter and demography sensitivity analysis at a site 40 km
from the BDFFP (Holm et al., 2020), at the ZF2 research
station (Magnabosco Marra et al., 2014). Holm et al. (2017)
found that with the improved parameterization, ELM-FATES
closely matched observed values of basal area, leaf area in-
dex (LAI), and mortality rates but underestimated stem den-
sity for a Central Amazon old-growth forest near the BDFFP.

Model simulations were driven by climate-forcing data de-
rived from measurements collected between the years 2000
and 2008 at the K34 flux tower located at 2.6◦ S, 60.2◦W
(de Araujo et al., 2002) about 40 km from the BDFPP,
at the ZF2 research station. ELM-FATES (using the git
commit “4a5d626” and the version corresponding to tag
“sci.1.0.0_api.1.0.0”) was run and spun up for 400 years until
a stable biomass equilibrium was reached within the modeled
forest. We then simulated a one-time logging treatment of a
near-complete mortality of all trees (98 % “clear-cut”) with a
remaining 2 % consisting of only small trees > 5 cm DBH to
aid in recruitment (Mesquita et al., 2015). Second, we sim-
ulated a one-time windthrow disturbance that killed 70 % of
trees (“windthrow”) as was reported in a recent observational
study on windthrows in the same region (Magnabosco Marra
et al., 2018). All dead trees were “removed” and therefore
did not enter modeled soil pools. The fire module in ELM-
FATES is currently under final development and testing, and
therefore burned simulations are not included in this study.
The old-growth forest simulated by ELM-FATES, used as
a pre-disturbance metric, was based on previously validated
tropical parameterization and sensitivity testing in the same
region (Holm et al., 2020); see supplementary material of
Fisher et al. (2015) for a description of plant-functional-
type specific carbon allocation and allometry schemes and
updates from the ED model framework. Simulations of dis-
turbance and subsequent vegetation regrowth were initiated
from this old-growth forest state. The model design used here
only allows for simulating intact forests with natural dis-
turbances (e.g., gap dynamics or windthrows) or harvested
forests and not both at the same time or in adjacent patches.
Accounting for distance to intact forests was excluded due
to the current limited understanding of seed dispersal mech-
anisms (i.e., spatial variability, dispersal limitation, etc.) in
tropical forests (Terborgh et al., 2019). We use a more gen-
eral form of seed production, such that the individual cohorts
in ELM-FATES use a targeted fraction of net primary pro-
duction (NPP) during the carbon allocation process (after
accounting for tissue turnover and storage demands), which
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Figure 2. Imposed trait variation used in the parameterization of
ELM-FATES tropical evergreen plant functional types (PFTs) for
the 20-ensemble simulations and the resulting average growth rate
average over the 50-year simulation period. Each simulation con-
sisted of a single PFT varying by all four traits at once: wood
density, Vcmax, the canopy area allometric coefficient, and leaf-
clumping index for leaf self-occlusion. Dark green points represent
fast-growing evergreen pioneer PFTs, while light green points rep-
resent slow-growing late successional PFTs.

adds to the site-level seed pool for recruitment of new co-
horts. Field data were not used to simulate or calibrate the
modeled forest regrowth post-disturbance.

To account for uncertainty in the representation of plant
physiology within tropical evergreen forests, we analyzed an
ensemble of 20 simulations varying in targeted plant func-
tional traits. We prescribed each ensemble with a single trop-
ical evergreen plant functional type (PFT) that varied in wood
density (0.44 to 1.06 g cm−3) and maximum rate of carboxy-
lation (Vcmax; 42 to 55 µmol m2 s−1) (Table 1), via random
sampling. To evaluate changes in canopy coverage of the
forest stand, each PFT additionally varied by an allomet-
ric coefficient (1.35 to 1.65), determining the crown-area-to-
diameter ratio, and a leaf-clumping index (0.59 to 1.0 out of
a 0–1 fraction) that determines how much leaf self-occlusion
occurs and decreases light interception, and the direct and
diffuse extinction coefficients in the canopy radiation calcu-
lations. The default values for these parameters are based
on, or derived from, references given in Table 1. Each en-
semble member represents a single PFT across the spectrum
of fast-growing “pioneer” PFTs and slow-growing “late suc-
cessional” PFTs to provide a reasonable spread across the
trait uncertainty when assessing regrowth from disturbance.
We characterized pioneer plants in our simulations as having
low wood density (Baker et al., 2004) and high Vcmax based
on the inverse relationship between these two plant traits, as
well as a low crown area coefficient and low leaf-clumping
factor; i.e., a monolayer planophile distribution (Lucas et
al., 2002). These correlated relationships were applied to the
ensemble-selected traits (Fig. 2). The opposite relationship
was applied for slow-growing, late successional PFTs (i.e.,
high wood density, low Vcmax, high crown area coefficient,
and high leaf-clumping factor).

In order to evaluate ELM-FATES performance during for-
est regrowth we compared the NIR band, the most sensitive
band to regrowth (see results), with ELM-FATES outputs of
aboveground biomass (AGB, Mg ha−1), total stem density of
trees ≥ 10 cm DBH (stems ha−1), leaf area index (LAI; one-
sided green leaf area per unit ground surface area; m2 m−2),
and total live crown area (m2 m−2) since these variables di-
rectly influence the surface reflectance (Ganguly et al., 2012;
Lu, 2005; Masek et al., 2006; Powell et al., 2010; Ruiz et
al., 2005). We suggest that testing an array of modeled forest
variables (e.g., biomass structure, density coverage of vege-
tation, and proportion of the tree crown that has live foliage)
provides a robust comparison to NIR values, due to multiple
forests characteristics contributing to and affecting NIR re-
flectance (Ollinger, 2011), and reduces model unknowns and
biases that can arise when using only one model variable.
The usage of different stand structure and canopy processes
can be helpful when evaluating ELM-FATES during differ-
ent phases of forest regrowth. In addition, we averaged mod-
eled outputs of the crown area, stem density, and LAI, since
each of these variables influences the reflectance of forests,
and defined this average as the modeled “canopy coverage”.
Measurements of forest canopy cover have been used to ana-
lyze plant growth and survival, and it is an important ecologi-
cal parameter related to many vegetation patterns (Ganey and
Block, 1994; Jennings et al., 1999; Paletto and Tosi, 2009).
Modeled diameter growth rates (cm yr−1) for trees with DBH
≥ 10 cm are also shown to provide information on the suc-
cessional dynamics within ELM-FATES.

3 Results

3.1 L5 bands and disturbances

All L5 bands showed an increase in surface reflectance im-
mediately after windthrow, clear-cut, and cut+ burn sites ex-
cept the NIR values which decreased (with higher decrease
after burning) (Fig. 3a, b, and c). This decrease in NIR values
was due to exposed woody material and dry leaves, typical
after windthrow (Negrón-Juárez et al., 2010a; Negrón-Juárez
et al., 2011) and clear-cutting (Sect. 7 in Adams and Gille-
spie, 2006) or the dark surface following burning (Pereira et
al., 1997). For windthrows, these effects last about 1 year,
after which vegetation regrowth covers the ground surface
(Negrón-Juárez et al., 2010a, 2011). The spectral character-
istics of old growth and disturbances are shown in Fig. 3d–f
with the error bands representing the standard deviation of
all pixels from respective cells. About 1 year after the dis-
turbance the bands that experienced increases in surface re-
flectance showed a decrease in surface reflectance (the oppo-
site to the NIR band) due to the increases in vegetation cover.
A similar response is expected for the clear-cut that occurred
in 1982 and therefore before the beginning of our available
data (L5 imagery is available from 1984; Fig. 3e). The simi-
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Table 1. The range (minimum to maximum) of four key model input parameters used in the 20-ensemble ELM-FATES simulations for both
windthrow and clear-cut simulations, to account for uncertainty in the representation of plant traits, along with the default value used in
the ELM-FATES model. Wood density value from Moorcroft et al. (2001); Vcmax based on Oleson et al. (2013) and Walker et al. (2014);
crown area : DBH derived from Farrior et al. (2016) and adjusted based on site-specific sensitivity tests; and the leaf-clumping index based
on radiation transfer theory of Norman (1979).

Variations in ensemble parameters in ELM-FATES

Default Minimum Maximum Range

Wood density (g cm−3) 0.7 0.44 1.06 0.62
Vcmax (µmol m2 s−1) 50 42 55 13
Crown area : DBH (unitless) 1.5 1.35 1.65 0.30
Leaf clumping (0–1) 0.85 0.59 1.00 0.41

larity of spectral signatures for the control forests previous to
the disturbances suggests comparable structure and floristic
composition.

3.2 Pathways of forest regrowth

About 6 years after the disturbance, NIR values reached
a maximum and then decreased slowly with time showing
a significant negative trend (Table 2). SWIR1 values also
showed a significant negative trend with time but only for
the clear-cut site (Table 2). In general, the green, blue, red,
SWIR1, and SWIR2 band values returned to pre-disturbance
values (control) about 6 years after the disturbance (Fig. 3d,
e, f and Table 2). Therefore, we used the NIR band (which
remained higher than pre-disturbance values throughout the
time series and is potentially sensitive to ecosystem proper-
ties of regrowing forest) to investigate the regrowth dynamics
in comparison to our control forests.

We used the relationships presented in Figs. 4, 5, and 6
to determine the time taken for NIR values from the distur-
bance sites to become similar to control NIR values. The av-
erage control NIR value was 28± 1 %. For the windthrow
site the NIR values became similar to control levels after
about 39 years (range 32 to 57 years). For the clear-cut and
cut+ burn sites, this period was estimated to be 36 years
(range 31 to 42 years) and 56 years (range 42 to 93 years),
respectively. From Figs. 4–6 it is evident that the type of dis-
turbance has a clear effect on the pathways of NIR recovery.
L7 data, in general, are within the 95 % CI of predictions.

During the first 12 years following the windthrow,
the spline curve fitted to the NIR data decreased by
∼ 0.13 % yr−1 after which the rate of decrease doubled
(0.26 % yr−1; Fig. 4). For clear-cutting, NIR values de-
creased faster, i.e.,∼ 0.4 % yr−1. The decrease in NIR values
for the clear-cut site appears to be independent of the distance
from the edge of the disturbance since the changes in NIR
values of all selected areas (A1, A2, A3, and AT ) are similar
(Fig. 5). For the cut+ burn site, the rate of change in NIR
values to reach values similar to the control forests was the
slowest among all disturbances considered (∼ 0.15 % yr−1)

(Fig. 6). The cut+ burn site showed differences with respect
to the border of the disturbance (areas A1, A2, and AT ),
which may be related to the spatial heterogeneity of burnings
and forest responses.

3.3 FATES model and regrowth from forest
disturbance

To address our goal of improving the connection between re-
mote sensing, model benchmarking, and the fidelity of fu-
ture predictions of forest regrowth processes, we examine
the representation of such processes within ELM-FATES.
The average of the ELM-FATES 20-member ensemble pre-
dicted a continuous, and almost linear, regrowth of biomass
(Fig. 7a) after clear-cut and windthrows. The modeled re-
covering biomass returned to modeled old-growth forest val-
ues more quickly for windthrows (37 years, range 21 to
83 years) compared to clear-cuts (42 years, range 27 to
80 years). However, the annual rate of change in biomass
regrowth over 50 years was faster in the clear-cut simula-
tion (2.5 Mg ha−1 yr−1) than in the windthrow simulations
(2.0 Mg ha−1 yr−1), which was due to the clear-cut site re-
covering from initial biomass of near zero and a proportion-
ally greater contribution of fast-growing pioneer species.

The model simulation of stem density, LAI, and crown
area are shown in Fig. 7b–d, respectively. For stem den-
sity, ELM-FATES (black line) predicted an average of up to
8 years before any new stems reached≥10 cm DBH (a stand-
developing period; Fig. 7b) for the clear-cut. The simulated
stem density for old-growth forests (Fig. 7b; green line) was
∼ 200 stems ha−1 (≥ 10 cm at 1.3 m), ∼ 408 trees lower than
observations. The model ensembles with typical early suc-
cessional traits predicted a forest with many fast-growing,
small-diameter stems < 10 cm, with maximum early succes-
sional stem densities reaching 1560 and 1414 stems ha−1

for clear-cut and windthrows, respectively. Once the canopy
closes and self-thinning dominates (average of 15 years af-
ter disturbance), there are declines in stem density as trees
gain biomass, and canopy closure forces some trees into
the understory, where they die at faster rates due to shad-
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Figure 3. L5 (LEDAPS SR Landsat 5) spectral characteristics for (a) windthrow (12 July 1987), (b) clear-cut (1 June 1984), and (c) cut+ burn
(12 July 1987) (in red) and control (old-growth) forests (in green) sites. Time series of each L5 spectral band for (d) windthrow, (e) clear-cut,
and (f) cut+ burn sites. The bars represent the standard deviation from all pixels from all 3× 3 cells comprising the respective disturbances
shown in Fig 1. Vertical dashed line in (d), (e), and (f) represents the year of the disturbance.

Table 2. Test of the significance for the slopes of the time series of six bands from L5 (LEDAPS SR Landsat 5) for the windthrow (period
1991–2011), clear-cut (period 1987–2011), and cut+ burn (period 1990–2011) cases in Central Amazonia shown in Fig. 3d–f. The critical
values (t0.975,8 and t0.975,12) for the t distribution were obtained from statistical tables. Bold represents H1.

Windthrow Clear-cut Cut+ burn
t0.975,12 = 2.179 t0.975,8 = 2.306 t0.975,8 = 2.306

β t stat β t stat β t stat

Blue −1.51 −1.10 −0.63 −0.25 −3.92 −1.15
Green −0.03 −0.02 −0.72 −0.31 −3.03 −0.78
Red −0.12 −0.68 −0.18 −0.08 −3.19 −0.93
NIR −12.36 −4.07 −35.1 −10.17 −11.72 −2.83
SWIR1 0.87 0.70 −4.83 −4.52 −2.25 −1.98
SWIR2 0.95 1.45 0.17 0.22 −0.48 0.36

ing. The modeled forests returned to old-growth stem den-
sity conditions 39 and 41 years after windthrows and clear-
cut, respectively (Table 3). Though the two disturbance types
have very similar times of return to pre-disturbance condi-
tions, they differ in the speed of recovery. ELM-FATES pre-
dicts faster diameter growth increments (1.3 cm yr−1) and
canopy closure for a forest composed of all pioneer type
PFTs and slower (0.5 cm yr−1) diameter growth and more
open canopies for the late successional forest type (Fig. 8).
Diameter growth is an emergent model feature of dynamic
plant competition for light and stand structure and is con-
sistent with observational studies of secondary forests grow-
ing through succession (Brown and Lugo, 1990; Winter and
Lovelock, 1999; Chapin et al., 2003).

The LAI of the modeled old-growth forest (4.0 m−2 m−2),
prior to disturbances, was close to the observed LAI
(4.7 m−2 m−2) measured near our study sites (Chambers
et al., 2004). Due to disturbance, the initial modeled LAI
(Fig. 7c) and total crown area (Fig. 7d) decreased, as ex-
pected. During regrowth from disturbance both the LAI and
total crown area rapidly recovered, and the LAI even sur-
passed pre-disturbance values. This pattern resembles the
initial NIR spike due to fast-growing PFTs. These two
canopy coverage attributes reached maximum values after 3
to 6 years, depending on the disturbance and response of for-
est attributes (Table 3). To evaluate model results against re-
mote sensing observations, we compared the initial period af-
ter the disturbance of the spikes in NIR values to the canopy-
coverage metric (combination of LAI, stem density, total
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Figure 4. Changes in NIR values for windthrows and prediction
(based on extrapolation of fitted spline curve) of NIR values reach-
ing pre-disturbance values. The plots show the SR data (circles), the
fit (solid lines), and the 95 % confidence interval (CI, dashed lines).
Grey bar represents the control (old-growth forests) NIR value of
28± 1 %, and the horizontal dashed black line is 28 %.

Figure 5. Changes in NIR values after clear-cuts for areas A1, A2,
A3, and AT = A1+A2+A3 (shown in Fig. 1c) and prediction of
NIR values reaching pre-disturbance values. The plots show the
data (circles), the fit (solid line), and the 95 % confidence inter-
val (CI, dashed lines). Grey bar represents the control (old-growth
forests) NIR value of 28± 1 %, and the horizontal dashed black line
is 28 %.

crown area) over the same modeled period. ELM-FATES
predicted that after a windthrow the forest took 5.7 years
to reach maximum values of canopy coverage, which was
sooner than the clear-cut simulation (7 years). While the
modeled time span for this initial period was similar to that
inferred from NIR values, there was disagreement between
which disturbance recovery occurred fastest (windthrow in
ELM-FATES vs. clear-cut in the NIR band), similar to dis-
agreement in the recovery of AGB (Table 3).

ELM-FATES provided a prediction of the values in each
forest variable when the stand reached its production limit
and full canopy closure, at which point there was a shift to
a declining trend and decreases in forest attributes that out-
paced any gains (Table 3). At the maximum peak recovery

Figure 6. Changes in NIR values for cut+ burn site in areas A1,
A2, andAT = A1+A2 (shown in Fig. 1) and prediction of NIR val-
ues reaching pre-disturbance values. The linear fit (solid line) and
the 95 % CI (dashed line) are shown. Grey bar represents the con-
trol (old-growth forests) NIR value of 28± 1 %, and the horizontal
dashed black line is 28 %.

and carrying capacity limit, the highest forest values occurred
in the clear-cut simulation, matching the higher NIR values
from clear-cut a few years after the disturbance (Figs. 4–6).
Over the longer self-thinning period the modeled LAI de-
creased and returned to modeled old-growth values 26 years
after clear-cut and gradually over 53 years for windthrows
(Table 3). LAI was the only variable that had a noticeable
faster recovery in the clear-cut simulations. After both dis-
turbances the total crown area permanently remained high
(0.99 m2 m−2) and slightly higher than the crown area of the
simulated old-growth forests (0.98 m2 m−2), suggesting that
disturbances can generate a denser canopy, as discussed be-
low.

4 Discussion

Our results show that Landsat reflectance observations were
sensitive to the initial changes in vegetation following
windthrows, clear-cut, and cut+ burn, three common distur-
bances in the Amazon. Specifically, a decrease in NIR val-
ues and an increase in SWIR1 values were the predominant
spectral changes immediately (within a few years) follow-
ing disturbances. The increase in SWIR1 values was dif-
ferent among the disturbances with the maximum increase
observed in the cut+ burn, followed by clear-cut and then
the windthrow site. The highest increase in SWIR1 values
in cut+ burn sites may be related to the high thermal emis-
sion of burned vegetation (Riebeek, 2014). Likewise, the
relatively higher moisture content of woody material in the
windthrow site decreases the reflection of the SWIR2 band.
On the other hand, in our control (old-growth) forests, we
observed typically high NIR reflectance due to the cellular
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Figure 7. Simulated regrowth of the Central Amazon forest after a clear-cut (98 % tree mortality; black line) and windthrow (70 % tree
mortality; orange line) event using 20 simulations of the demographic model ELM-FATES, compared to the modeled old-growth values
prior to disturbance (dashed green line) and against field data (solid green line) from close sites, except for crown area data that were
taken from lidar data in Acre, Brazil (Figueiredo et al., 2016). The shaded grey and orange areas represent the spread across the ensembles,
showing minimum and maximum values of each forest attribute over its regrowth. (a) Regrowth of aboveground biomass (AGB; Mg C ha−1).
(b) Regrowth of stem density (stems ha−1) of stems > 10 cm DBH and years of returning to modeled old-growth values. (c) Regrowth of leaf
area index (m−2 m−2) and (d) regrowth of total crown area.

Table 3. Summary of different time spans of regrowth (years) to old-growth forest status after two disturbance types: windthrows and clear-
cuts from ELM-FATES model results and remote sensing. Additionally, the time (years) it takes forest attributes to reach maximum values
during regrowth and the corresponding value at this maximum peak. AGB (Mg C ha−1), stem density (stems ha−1), LAI, and crown area
(m2 m−2) refer to simulation results, as compared against NIR remote sensing. The average of AGB and stem density is characterized as
modeled “forest structure”. The averages of crown area, stem density, and LAI are characterized as modeled canopy coverage in this study
and are additionally compared against NIR values.

Regrowth to old growth (years)

Disturbance ELM-FATES ELM-FATES ELM-FATES Model average of NIR
type AGB stem density LAI forest structure

Windthrow 37 39 53 38.0 39
Clear-cut 42 41 26 41.5 36.1

Time to reach maximum values of regrowth (years)

Disturbance ELM-FATES ELM-FATES ELM-FATES Model average of NIR
type crown area stem density LAI canopy coverage

Windthrow 6 9 3 6 7
Clear-cut 7 10 6 7.0 6

Values at maximum peak of regrowth

Disturbance ELM-FATES ELM-FATES ELM-FATES NIR
type crown area stem density LAI

Windthrow 0.99 1414 4.9 35.5
Clear-cut 0.99 1560 7.5 42.0
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structure of leaves (Sect. 7 in Adams and Gillespie, 2006),
absorption of red radiation by chlorophyll (Tucker, 1979),
and absorption of the SWIR1 band by the water content in
leaves (Sect. 7 in Adams and Gillespie, 2006).

While the SWIR1 band is frequently used to identify
exposed woody biomass immediately after disturbances
(Negrón-Juárez et al., 2010b, 2008), we found that the NIR
band was more sensitive to the successional pathways of re-
growth for all the disturbances considered. The NIR band
has also been associated with succession (Lu and Batistella,
2005) and regrowth (Roberts et al., 1998) in naturally and an-
thropogenically disturbed tropical forests (Laurance, 2002;
Chazdon, 2014; Magnabosco Marra, 2016; Laurance et al.,
2011). Previous studies have shown that changes in NIR val-
ues are related to leaf structure and surface characteristics
(Roberts et al., 1998; Xiao et al., 2014) with the youngest
leaves having higher NIR values with respect to fully formed
and older leaves (Roberts et al., 1998). Maximum values of
the NIR band were observed about 6 years after clear cut,
which is the time pioneers form a closed canopy (Mesquita
et al., 1999, 2001, 2015), and characterized by a relatively
uniform distribution of tree diameter and heights (Vieira et
al., 2003). This maximum in the NIR band was higher in
the clear-cut site dominated by species from the genera Ce-
cropia and Pourouma (Mesquita et al., 2015; Massoca et al.,
2012) than the site affected by cut+ burn dominated by Vis-
mia species (Mesquita et al., 2015; Laurance et al., 2018).
The higher NIR values in Cecropia and Pourouma are due
to the genera’s monolayer planophile distribution of large
leaves that produces high reflectance compared to Vismia,
species of which have rougher and denser canopies that trap
more NIR reflectance (Lucas et al., 2002). The high values of
the NIR band might be related to the low leaf wax (Chavana-
Bryant et al., 2017) from new trees and/or scattering related
to leaf and canopy water (Asner, 2008). NIR values decrease
with the dynamics of succession due to an increase in the
canopy roughness (Hallik et al., 2019).

After the establishment of pioneers, the NIR values de-
crease with time but with different rates depending on the
type of disturbance. In windthrown areas, tree mortality and
subsequent recruitment may continue for several decades,
promoting changes in functional composition and canopy ar-
chitecture (Magnabosco Marra et al., 2018). Cecropia and
Pourouma trees grow relatively quickly, and after closing the
canopy they limit light penetration due to their large leaves
creating a dark, cooler, and wetter understory (Mesquita et
al., 2001; Jakovac et al., 2014). As a result, light levels in the
understory decline faster with time and thus allow the recruit-
ment and establishment of shade-tolerant species. The co-
hort of Cecropia and Pourouma species has a relatively short
lifespan, and, ∼ 20 years after disturbance, secondary and
old-growth forest species start to be established (Mesquita et
al., 2015). With the self-thinning of Cecropia and Pourouma,
the growing understory traps more light, and consequently
albedo decreases (Roberts et al., 2004). This pattern is con-

Figure 8. Change in predicted diameter increment growth rate
(cm yr−1) for one simulation, from the 20 ensembles, that repre-
sents a fast-growing pioneer forest stand and a slow-growing late
successional forest stand from a clear-cut disturbance (black and
grey) and a windthrow disturbance (orange). Variations in the di-
ameter increment are a result of differences in the following traits:
wood density, Vcmax, crown area, and a leaf-clumping index.

sistent with the decline in NIR values and observed changes
in canopy architecture (Mesquita et al., 2015), photosyn-
thesis, and the LAI (Saldarriaga and Luxmoore, 1991). In
contrast, the architecture of Vismia species that dominate
cut+ burn areas allows higher light levels in the under-
story and subsequent recruitment of Vismia or other genera
with similar light requirements. As a consequence, species
turnover and structural changes are slower than in clear-cut
areas (as found by Jakovac et al., 2014, in a study conducted a
few kilometers from the BDFFP) and windthrows, consistent
with changes in NIR values. In the course of succession, Vis-
mia tends to be replaced by Bellucia, which is a genus with a
similar leaf and canopy structure to Vismia (Mesquita et al.,
2015). This pattern favors the penetration of light through the
canopy (Longworth et al., 2014) for several decades before
a more shaded understory allows the germination and estab-
lishment of old-growth species (Williamson et al., 2014).

For the windthrow we estimate that the NIR values
should become similar to pre-disturbance conditions in about
39 years. This value agrees with the 40 years of biomass re-
growth found using ground-based data in the Central Ama-
zon (Magnabosco Marra et al., 2018). This result also corrob-
orates previous studies that the NIR band operates in the best
spectral region to distinguish vegetation biomass (Tucker,
1979, 1980) and photosynthesis (Badgley et al., 2017). For
clear-cutting and cut+ burn, the regrowth time was about
36 and 56 years, respectively, but no ground-based estimates
were available for comparison. Still, NIR values showed that
the pathways of regrowth from clear-cut and cut+ burn are
divergent with time (Figs. 5 and 6), which is consistent with
observational studies (Mesquita et al., 2015).
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Figure 9. Total stem density (stems ha−1) separated into six diam-
eter (cm) size classes from Central Amazon field data located at the
nearby ZF2 site (green bars) averaged from 1996–2011, and pre-
dicted by ELM-FATES (grey bars). The percentages represent the
proportion of stems in each size class relative to the total stem den-
sity.

In general, we found that NIR values may be used as
a proxy in modeling studies aimed at addressing forest re-
growth after disturbances. Though NIR values are useful to
distinguish successional stages up to decades after the distur-
bance, they may not represent all the successional processes.
As soon as the forest canopy becomes structurally similar
to that of the mature forest, the NIR band will no longer
be sensitive to changes in vegetation attributes (Lucas et al.,
2002). Though L5 NIR data may be complemented with cur-
rent Landsat measurements (the L5 NIR band has a compa-
rable performance to the Landsat 8 NIR Operational Land
Imager (OLI) algorithm; Vermote et al., 2016), it is impor-
tant to emphasize that our estimates of recovered reflectance
and biomass in disturbed areas do not capture the full re-
covery of diversity in floristic attributes and species compo-
sition that can take centuries (Rozendaal et al., 2019). The
predominance of Cecropia, after clear-cut, and Vismia, after
cut+ burn, have also been found in the western (Gorchov et
al., 1993; Saldarriaga et al., 1986) and the southern (Rocha et
al., 2016) Amazon suggesting that our findings are applicable
to other regions. However, an Amazon-wide study is beyond
the scope of our work, which is to explore the sensitivity of
Landsat to different disturbance types.

Our analysis demonstrates that this version of ELM-
FATES has the capacity to reproduce the initial response
to disturbance and regrowth patterns after the clear-cut and
windthrow that occurred over similar time ranges com-
pared to NIR values. The strongest agreement occurred when
ELM-FATES predicted higher peaks of the post-disturbance
stem density and LAI in clear-cuts than in windthrows, which
can be used for future benchmarking, consistent with the
higher peak of NIR values from clear-cuts (Fig. 5 vs. Fig. 4).
This effect may be due to ELM-FATES having more ho-

mogeneous canopies after clear-cuts as well as more open
disturbed area for fast-growing plants, which is also an ob-
served trend. In addition, the average regrowth times to pre-
disturbance values were close between ELM-FATES and
NIR results (Table 3), showing that pathways of forest re-
growth in ELM-FATES are comparable to observed pat-
terns in tropical forests. ELM-FATES predicted a contin-
uous, and almost linear, regrowth of biomass for the first
50 years of simulation after both clear-cut and windthrows
(Fig. 7a), consistent with NIR results and observational stud-
ies (Mesquita et al., 2015; Saldarriaga et al., 1988; Jako-
vac et al., 2014; Magnabosco Marra et al., 2018). In addi-
tion, the changes in biomass rates predicted by ELM-FATES
were similar to biomass observations recorded after clear-cut
(2.3 vs. 2.6 Mg ha−1 yr−1) (Mazzei et al., 2010), as well as
there being a faster rate of AGB accumulation after clear-cut
compared to windthrow, similar to a study reporting higher
regrowth rates in more highly disturbed sites (Magnabosco
Marra et al., 2018).

Landsat showed a faster recovery of NIR values
to pre-disturbance conditions in clear-cuts compared to
windthrows. Faster growth is characteristic of anthropogeni-
cally driven secondary forests that reflect rapid coloniza-
tion and monodominance of adapted species and genera in
changed environmental conditions; e.g., high growth rates,
low self-competition, high leaf area index, low herbivory
rates (Poorter et al., 2016; Mesquita et al., 2015; Rozen-
daal and Chazdon, 2015). ELM-FATES predicted a faster
recovery of structural AGB and canopy coverage to pre-
disturbance conditions for windthrows (70 % tree mortality)
compared to clear-cuts (98 % tree mortality). A major con-
tributing factor to this pattern resulted from larger modeled
diameter increments after windthrows (0.92 cm yr−1) com-
pared to clear-cuts (0.82 cm yr−1) in the first 20 years after
the disturbance, setting the trajectory for faster regrowth to
pre-disturbance after windthrows. Only the LAI had a faster
recovery to pre-disturbance values after clear-cuts, which is
expected due to the newly developed forest having a sim-
plified forest structure and the canopy being more homoge-
neous after a clear-cut (Rosenvald and Lohmus, 2008). ELM-
FATES predicted the timing of peak canopy coverage was
marginally sooner after windthrows compared to clear-cuts,
opposite to the NIR pattern. This discrepancy may be related
to more biomass loss and open canopy coverage, followed by
a lack of rapid colonization in the modeled clear-cut. Due to
the higher stand disturbance that naturally occurs from clear-
cuts and the diverse complexities in tropical forest composi-
tion, we emphasize that the dynamics of different competing
PFTs in ELM-FATES requires further investigation. Emerg-
ing modeling studies that include plant trait trade-offs, for
example, in the leaf and stem economic spectrum or fast-
growth vs. slow-growth strategies, may help to better cap-
ture the drivers of forest productivity and demography, en-
abling improved modeled responses to global change sce-
narios (Fauset et al., 2019; Sakschewski et al., 2015). Here
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we test the basic representation of biomass demographics,
prior to the more challenging aspects of representing inter-
acting functional diversity in recovering systems (Fisher et
al., 2015; Powell et al., 2018).

ELM-FATES predicts the total stem density for a closed-
canopy forest to be very low compared to observations
(200 simulated vs. 600 stems ha−1), but modeled total AGB
was close to that reported for the same region (110 sim-
ulated vs. ∼ 150 Mg C ha−1; Chambers et al., 2013). This
discrepancy is due to ELM-FATES predicting a dispropor-
tionately high number of large trees (Fig. 9; with 8 % of
stems > 60 cm and 4.5 % of stems > 100 cm), resulting in
a crowded canopy, which out-compete smaller understory
trees. Higuchi et al. (2012) report 93 % of trees ≥ 10 cm
DBH in the study site to be below 40 cm DBH, while ELM-
FATES predicted noticeably fewer trees below 40 cm DBH
(Fig. 9). Low stem density could be attributed to multiple
model assumptions, such as high density-dependent mortal-
ity and self-thinning due to the marginal carbon economics of
understory trees, low branch-fall turnover, a need for greater
limitation of maximum crown area than currently modeled,
and increases in mortality rates with tree size (Johnson et al.,
2018). Our findings here will guide future ELM-FATES and
ecosystem modeling development efforts towards improving
the representation of forests comprising dense canopies and
how they shift during regrowth.

Land surface models do not typically simulate spectral
leaf reflectance, but there is potential to include such output
within radiative transfer schemes as is currently done in the
CLM. That addition would greatly assist our ability to com-
pare with Earth observation datasets. In lieu of this develop-
ment, we show that with successional aging, modeled forest
structure returns to pre-disturbed values (through canopy clo-
sure) with a similar recovery time to that inferred from NIR
data, occurring with the process of canopy closure, all which
can be compared against remote sensing vegetation indices
(see Supplement Fig. S1) and metrics. Which vegetation in-
dex (e.g., normalized difference vegetation index – Rouse et
al., 1973; enhanced vegetation index – Huete et al., 2002) or
metric properly represents the successional pathways follow-
ing disturbances remains an important area of study.

5 Conclusions

We tested the sensitivity of Landsat surface reflectance to
windthrow, clear-cut, and cut+ burn forest in the Central
Amazon. The NIR band was more responsive to the suc-
cessional pathways of forest regrowth years after the distur-
bance. NIR values showed that pathways of forest regrowth
were different among the disturbances, with cut+ burn be-
ing the most different in terms of spatial heterogeneity and
regrowth time to old-growth status, in agreement with obser-
vational studies. Our results indicate that after disturbances
the NIR values will reach old-growth forest values in about

39 years following windthrows (in agreement with observed
biomass regrowth), 36 years for clear-cuts, and 56 years for
cut+ burn. These results were then compared with simula-
tions of regrowth after windthrows and clear-cut from ELM-
FATES. The simulated forest structure and the remote sens-
ing NIR values from the windthrow and clear-cut have simi-
lar return times to those of old-growth forest conditions. Fu-
ture studies applying ELM-FATES should focus on improv-
ing stem density predictions, which were underestimated,
and on enhancing the capacity to compare with remote sens-
ing observations through representation of canopy-spectral-
reflectance characteristics.

Code and data availability. The Landsat data used in this study
are freely available through the Google Earth Engine platform.
ELM-FATES is available at https://github.com/NGEET/fates. Ob-
servational data used to compare remote sensing and modeling re-
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