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Abstract17

Hydrological interactions between vegetation, soil, and topography are complex, and het-18

erogeneous in semi-arid landscapes. This along with data scarcity poses challenges for19

large-scale modelling of vegetation-water interactions.20

Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km21

spatial resolution for ecohydrological analysis. Their spatial patterns are based on Frac-22

tional Vegetation Cover (FVC) time series and emphasise limiting conditions of the sea-23

sonal wet to dry transition: the minimum and maximum FVC of temporal record, the24

FVC decay rate and the FVC integral over the decay period. We investigate the rele-25

vance of these metrics for large scale ecohydrological studies by assessing their co-variation26

with soil moisture, and with topographic, soil, and vegetation factors.27

Consistent with our initial hypothesis, FVC minimum and maximum increase with28

soil moisture, while the FVC integral and decay rate peak at intermediate soil moisture.29

We find evidence for the relevance of topographic moisture variations in arid regions, which,30

counter-intuitively, is detectable in the maximum but not in the minimum FVC. We find31

no clear evidence for wide-spread occurrence of the “inverse texture effect” on FVC. The32

FVC integral over the decay period correlates with independent data sets of plant wa-33

ter storage capacity or rooting depth while correlations increase with aridity. In arid re-34

gions, the FVC decay rate decreases with canopy height and tree cover fraction as ex-35

pected for ecosystems with a more conservative water-use strategy. Thus, our observation-36

based products have large potential for better understanding complex vegetation–water37

interactions from regional to continental scales.38

Plain Language Summary39

Local-scale processes controlling vegetation dynamics under water limitation are40

highly uncertain at large scales, despite their importance on global carbon and water cy-41

cles. This is particularly pronounced in Africa due to the scarcity of ground measure-42

ments despite the importance of African ecosystems due to their contribution to global43

cycles and their services to population. In order to overcome this problem, we developed44

a set of metrics based on the fractional vegetation cover observed from the European geo-45

stationary satellite. The metrics help diagnose the effects of local-scale ecohydrological46

processes thanks to their high spatial resolution of ca. 5 km. Initial analyses show con-47

sistent continental gradients in the metrics together with strong local variations and cor-48

roboration with different datasets from independent sources, in agreement with the lit-49

erature.50

1 Introduction51

Africa hosts the largest share of undernourished population, and the livelihood of52

the majority of its population relies on ecosystem services and water availability (Müller53

et al., 2014). Moreover, African ecosystems contribute strongly to fluctuations of the global54

carbon cycle (Williams et al., 2007; Weber et al., 2009; Valentini et al., 2014; Palmer et55

al., 2019). Despite its importance, large uncertainties prevail in understanding the African56

ecosystems and quantifying spatiotemporal variations of their functioning due to the com-57

plexity of continental gradient and scarcity of ground measurements, which has been shown58

in studies using different data and approaches ranging from in-situ observations (Schmiedel59

et al., 2021), over remote sensing (Weerasinghe et al., 2020), to ecosystem modelling (C. Martens60

et al., 2021), as well as systematic literature reviews (Adole et al., 2016).61

Savannas cover majority of the African continent (Williams & Albertson, 2004),62

and water is the limiting factor in such ecosystems, affecting vegetation’s carbon uptake63

and nitrogen assimilation (Rodŕıguez-Iturbe et al., 1999). The dominant role of water64
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in African drylands has been shown in various studies (Sankaran et al., 2005, 2008; Mer-65

bold et al., 2009; F. Wei et al., 2019). Moreover, evidence suggests that ecosystem func-66

tioning – even in the wettest part of the continent, the central African tropical forest –67

responds to soil moisture fluctuations (Guan et al., 2013; Gond et al., 2013) along with68

co-limitations of other factors such as radiation (Adole et al., 2019). Within the com-69

plex rainfall seasonality patterns having unimodal, bimodal or trimodal regimes, less than70

5 % of the continent is reported to be non-seasonally humid (Herrmann & Mohr, 2011).71

Soil moisture is the critical variable that characterises the water limitation of veg-72

etation (Porporato et al., 2001), which, in turn, shapes land–atmosphere exchanges of73

carbon, water, and energy fluxes (Gentine et al., 2012), phenology (Peñuelas et al., 2004),74

and vegetation functional traits (Guan et al., 2015; W. Zhang et al., 2019), along with75

their species or biome distribution (Xu et al., 2016). Rainfall is the primary source of76

moisture but plant available water in drylands is characterised by non-trivial and com-77

plex ecohydrological processes that control the availability of moisture from secondary78

sources (D’Odorico et al., 2019). In fact, Wilcox et al. (2017) conceptualised three crit-79

ical ecohydrological junctures: (1) infiltration versus overland flow, (2) soil evaporation80

versus transpiration, and (3) root water uptake versus drainage, that are all centred around81

the hydrological response of the ecosystem.82

Beyond precipitation intensity, topography, and soil properties, the first juncture83

is affected by presence of vegetation patches that interact with overland flow causing the84

typical runoff–runon dynamics at hillslope-scale (Ludwig et al., 2005). The second junc-85

ture, partitioning of terrestrial evaporation, is critical as an interplay between biologi-86

cal activity and productivity, and physical water losses by direct evaporation. Vegeta-87

tion transpiration generally dominates terrestrial evaporation (Z. Wei et al., 2017), and88

the partitioning is controlled more by vegetation and soil characteristics given the cli-89

mate (Nelson et al., 2020), highlighting a pivotal role of vegetation. The third juncture90

within the root zone is largely controlled by below-ground vegetation properties, such91

as depth and distribution of roots, that control the soil–plant hydraulics continuum. Deep92

rooting facilitates access to a larger moisture reservoir, a frequently observed trait in sa-93

vanna and woodland ecosystems (Kleidon & Heimann, 1998; Guswa, 2008). In fact, the94

diversity and complementarity of ecohydrological plant traits by different species within95

ecosystems was shown to determine resilience to drought (Anderegg et al., 2018) and to96

maximise plant water use (Scanlon et al., 2005; Caylor et al., 2009).97

There are further ecohydrological phenomena that should be considered when ex-98

ploring vegetation–water interactions, emerging from non-monotonic ecosystem responses99

to episodic events, and ephemeral waterbodies occurring across spatial scales. Non-monotonic100

effects of soil properties on the interaction between climatological aridity and vegetation101

can lead to the frequently observed “inverse texture effect” in arid climates, whereby sandy102

soils appear to be associated with less water stress compared to clay soils, due to their103

higher infiltration capacity (Noy-Meir, 1973). Additionally, dryland ecosystems locally104

return nearly all rainfall back to atmosphere as terrestrial evaporation (Newman et al.,105

2006) with very little water draining from the root zone to groundwater (Wilcox et al.,106

2017), except extreme rainfall events that episodically recharge aquifers (Taylor et al.,107

2013; J. Zhang et al., 2016). Moreover, riparian processes such as river channel losses108

from ephemeral rivers can provide critical source of moisture (Tooth, 2000; Mansell &109

Hussey, 2005; Jacobson & Jacobson, 2013; Wang et al., 2018). Riparian corridors and110

groundwater-fed valleys, therefore, often appear as “green islands” (Eamus et al., 2015),111

where access to the shallow groundwater supports vegetation activities. In such ecosys-112

tems, the growing season may continue several months after the rain season has ceased113

while the trees appear to have access to groundwater via deep roots or recharge their trunks114

with water during these times (Guan, Wood, et al., 2014; F. Tian et al., 2018).115

Previous studies, therefore, provide clear evidence that vegetation functions are con-116

trolled by moisture availability in non-humid climate, with moisture availability, itself,117
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emerging from the complex interplay among climate characteristics, vegetation traits,118

hillslope topography, soil properties, and presence of secondary moisture sources, e.g.,119

aquifers. In fact, incorporation of all these ecohydrological factors poses a challenge for120

land-surface modellers (Clark et al., 2015; Fisher & Koven, 2020). One of the main lim-121

itations for models is the specification of rooting depth (Fan et al., 2019). Over recent122

years, several studies have put forward estimations of the rooting depth or effective root-123

ing depth that represents the potential moisture access of the vegetation. A compari-124

son of different estimates, though, reveals a large uncertainty with rooting depth vary-125

ing from a few centimetres to tens of meters for a given location (Wang-Erlandsson et126

al., 2016). This, in part, is caused by the underlying assumptions in the estimation meth-127

ods, whose effect on the prediction cannot be constrained by or validated against obser-128

vations, especially in data scarce regions like Africa. Considering the particular difficul-129

ties associated with below-ground observation of ecosystem and land properties at a large-130

scale, remotely-sensed products of vegetation characteristics, indices, and responses pro-131

vide opportunities to back infer the underlying environmental factors and land surface132

characteristics.133

Remote sensing vegetation indices has been extensively used to capture phenolog-134

ical states of vegetation, such as detecting onset and length of growing season or peak135

greenness, as well as specific agricultural applications (reviewed in Zeng et al., 2020).136

Moreover, the temporal dynamics of vegetation indices can be exploited to understand137

ecologically relevant concepts such as land cover effects on vegetation dynamics (Yan et138

al., 2017), early green-up of woody vegetation in Africa (Guan, Wood, et al., 2014; Adole139

et al., 2019; Ouédraogo et al., 2020), effects of plant water storage (F. Tian et al., 2018),140

and early diagnosis of climate-induced forest mortality (Liu et al., 2019). The majority141

of vegetation remote sensing studies focusing on Africa are based on image acquisitions142

from polar orbiting satellites like MODIS (Adole et al., 2016), while only a few studies143

are based on vegetation indices derived from the geostationary satellite Meteosat Sec-144

ond Generation (MSG) (e.g.: Guan, Medvigy, et al., 2014; Yan et al., 2017). Geosta-145

tionary satellite based vegetation indices are available in daily temporal resolution, which146

is their biggest advantage compared to polar orbiting satellites where such high resolu-147

tion in time is not possible.148

In this study, we analyse the daily Fraction of Vegetation Cover (FVC) time se-149

ries from MSG to infer the ecohydrological characteristics of ecosystems over Africa. We150

derive a set of ecohydrological metrics from the vegetation decay period, and evaluate151

their spatial patterns. Our overarching hypothesis is that these metrics, derived from the152

vegetation dynamics over decay periods, contain valuable information on plant water ac-153

cess, presence of secondary moisture sources, and other ecohydrological mechanisms, which154

are modulated by climate, topography, soil properties, groundwater access, as well as veg-155

etation traits and scales. The ecohydrological metrics include (i) robust estimates of the156

minimum and maximum FVC, (ii) FVC integral over the decay period, and (iii) the ex-157

ponential decay rate during dry-down. Using the metrics, we evaluate several hypothe-158

ses that encompass the ecohydrological characteristics of moisture-limited ecosystems159

and the influence of environmental factors and land characteristics therein, such as:160

1. In arid regions, minimum and maximum FVC are larger in sandy soil while this161

covariation is inverted in semi-arid and humid regions. This hypothesis follows the162

“inverse texture effect” (Noy-Meir, 1973) often reported in drylands.163

2. Within similar climatic aridity, secondary moisture sources increase the minimum164

FVC and decrease seasonal FVC range. This hypothesis is derived from the clas-165

sical approach of mapping groundwater-dependent ecosystems – with shallow wa-166

ter table or potentially larger runoff due to topography – as “green islands” of at-167

tenuated seasonality (Eamus et al., 2015).168

3. Time integral of FVC over decay period as a proxy for plant accessible water stor-169

age is larger in semi-arid regions where differences between precipitation and po-170
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tential transpiration are marginally smaller at annual scales than at seasonal scales,171

compared to arid and humid regions. This hypothesis follows the expected opti-172

mal rooting depth of plants considering cost and benefit of developing root struc-173

ture (Guswa, 2010).174

4. FVC decay rate driven by progressive water limitation becomes lower with increas-175

ing aridity, tree cover and canopy height. This hypothesis assumes FVC mimics176

the decay rate of land evaporation during decay period and follows previously re-177

ported increase in timescale of land evaporation decay with aridity, canopy height,178

and woody vegetation (Teuling et al., 2006; Boese et al., 2019; Mart́ınez-de la Torre179

et al., 2019). Therefore, FVC decay rate would reflect adaptations of ecosystem180

water use strategies.181

We approach the analysis firstly by looking at the continental scale variations of182

the metrics, together with climatic aridity as the first order driver. This covariation is183

further scrutinised with other environmental factors relevant to the hypotheses given above.184

As aridity metric we chose mean annual root-zone soil moisture from the Global Land185

Evaporation Amsterdam Model (GLEAM).186

To derive the ecohydrological metrics for the African continent from high-resolution187

remote sensing data (Sec. 2), we developed a robust methodology (Sec. 3) to deal with188

noise, gaps, widely varying dynamics, and data size. The quality diagnostics along with189

the derived metrics and discussion of underlying mechanisms (Sec. 4), and open code190

for derivations, enables future advances in understanding and modelling ecohydrologi-191

cal processes and variability. Furthermore, initial analysis and corroboration with inde-192

pendent data illustrates the potential of applications of the ecohydrological metrics (Sec.193

4).194

2 Data195

2.1 Fraction of Vegetation Cover196

The FVC, derived from a spectral mixture analysis of the satellite retrievals, is a197

vegetation index summarising the two-dimensional coverage ratio of vegetation per unit198

land area (Trigo et al., 2011). With a range of [0–1], FVC is often used to derive fun-199

damental vegetation indices such as the Leaf Area Index. The FVC product used in this200

study was obtained from the Satellite Application Facility for Land Surface Analysis (LSA-201

SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EU-202

METSAT). The product is based on the retrievals of the Spinning Enhanced Visible and203

Infrared Imager (SEVIRI) sensor on board the MSG satellite (Trigo et al., 2011). As a204

geostationary satellite, the MSG has a circular spatial coverage of Earth centred at 0◦205

longitude, and it covers Europe and Africa entirely (see an example of the original FVC206

data for a day in Fig. A1). The SEVIRI is a multispectral optical sensor with 12 spec-207

tral bands, and a temporal resolution of 15 minutes. Under the sub-satellite point (nadir),208

it has 3.1 km spatial resolution in the normal bands, and a high-resolution band with209

1 km spatial resolution. The spatial resolution of the retrieval decreases with distance210

from the nadir, as for all geostationary satellites.211

The FVC data product is available at daily temporal resolution spanning the time212

period from early 2004 to present. FVC is estimated using parameters of a bidirectional213

reflectance distribution function on the cloud-corrected top of canopy reflectance values214

of three spectral channels namely red, near-infrared, and middle-infrared (LSA-SAF, 2016).215

Thanks to the very high temporal resolution of the SEVIRI sensor, spatial consistency216

of cloud-free data is ensured by the data providers (Trigo et al., 2011), which is also con-217

firmed by studies comparing enhanced vegetation index products of SEVIRI and MODIS218

across the Congo Basin (Yan et al., 2016). Further details of the product, and access to219
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downloading data are available at https://landsaf.ipma.pt/en/products/vegetation/fvc/220

.221

For this study, we selected the spatial domain as the African continent. In order222

to convert the product into equal width grids to facilitate analysis with other products,223

we resampled the original data to spatial resolution of 0.0417◦ (ca. 5 km) with the near-224

est neighbour method (using gdalwarp function in GDAL, GDAL/OGR contributors,225

2020). In terms of temporal domain, we used nearly 16 years of data, from the begin-226

ning of the records in 2004, to the end of 2019.227

2.2 Ancillary Data228

Soil Moisture229

We used the third version of GLEAM estimates of root-zone soil moisture (Miralles230

et al., 2011; B. Martens et al., 2017). GLEAM consists a set of modules to estimate dif-231

ferent components of land evaporation simultaneously. Therefore, the model estimates232

multiple products including root-zone soil moisture, (hereafter referred to as soil mois-233

ture). GLEAM data is available at 0.25◦ space and at daily resolution in time from 2003234

up to date with a small latency. We used mean value of daily estimates from 2004 to 2019235

(parallel to the temporal domain of FVC data used) as a diagnostic for average clima-236

tological aridity in Sec. 4. Additionally, we used daily values to compute temporal cor-237

relation between soil moisture and FVC, after aggregating original FVC data into 0.25◦238

by simple averaging (see Appendix D for spatial variation of correlation values).239

Sand Content of Soil240

In order to quantify effects of soil texture, we used gridded sand percentage of soil241

data from SoilGrids dataset (Hengl et al., 2017), which is a machine learning based in-242

terpolation of soil profiles at 250 meter resolution. SoilGrids dataset is available glob-243

ally and provides information from different layers, ranging from surface to 2 meters depth.244

Though in this study, for interpretability, we used the average of the top five layers that245

are not deeper than 1 meter for interpretability, and used the data at 0.0417◦ after ag-246

gregating by simple averaging.247

Height Above Nearest Drainage248

To relate the variation of the metrics to meso-scale heterogeneity and convergence249

of moisture caused by topography, we used the Height Above Nearest Drainage (HAND)250

data from (Yamazaki et al., 2019). Quantifying the vertical distance of a given point to251

the nearest drainage, HAND is closely related to drainage topology and hillslope-scale252

convergence of soil moisture and groundwater (Nobre et al., 2011). The HAND data used253

here is based on the MERIT digital elevation model at a spatial resolution of 3-arc sec-254

ond (ca. 90 m). We used the original high-resolution data after aggregating (simple av-255

erage) to the resolution of the ecohydrological metrics presented in this study (0.0417◦).256

Topographic Wetness Index257

In order to understand the runoff related effects of topography, we used Topographic258

Wetness Index (TWI), also known as compound topographic index. Being a function of259

both slope and the upstream area that potentially contribute to runoff of a given point,260

TWI is a metric to diagnose topography-induced effects on water cycle at hillslope scales.261

We used TWI data from Amatulli et al. (2020), which is computed by using the MERIT262

digital elevation model at 3-arc seconds, as the in case of HAND. In order to account263

for the high variability of TWI at hillslope scales while aggregating the data into 0.0417◦,264

we first calculated median TWI value of the domain (0.069). Then, we aggregated the265

TWI values by calculating percentage of sub-grid cells having higher TWI values than266

the median value computed in the first step. Eventually, similar to TWI itself, larger val-267
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ues in the normalised TWI means larger potential runoff due to topographic complex-268

ity.269

Accessible Water Storage Capacity and Rooting Depth270

We used multiple proxies of plant accessible water to understand their effects on271

vegetation dynamics. Effective Rooting Depth (ERD, Yang et al., 2016) is one of those272

products, which is natively at 0.5◦ spatial resolution. ERD comes from a global parametri-273

sation of a process-based, analytical model of carbon costs and benefits of deeper root-274

ing in plants, proposed by Guswa (2008). In this model, the cost of deeper roots is es-275

timated considering the physical structure of roots like density and length together with276

root respiration, while the benefit is estimated considering water use efficiency, growing277

season length and mean transpiration rate per rooting depth. In order to parametrise278

the model, root and soil properties were obtained from the literature, water use efficiency279

from an ensemble of process based models while climatological information from a long-280

term mean of remote sensing based products.281

In addition, the Rooting Depth (RD) product from Fan et al. (2017) is also used282

in this study. RD is estimated with inverse modelling of root water uptake profiles in283

three steps, where first soil water profile, as the supply, is estimated using climate, soil284

properties and topography. Thanks to the availability of high-resolution information on285

soil and topography, RD has a much higher spatial resolution (0.0083◦, ca. 1 km) than286

the other products. After estimation of plant water demand using atmospheric condi-287

tions and leaf area index, the supply is allocated as root water uptake using Ohm’s law288

at different soil depths, where amount of infiltration, groundwater recharge, and subse-289

quent uptake were effected (Fan et al., 2017). Note that the model includes multiple forc-290

ing data, with a temporal coverage from 1979 to the time of the study.291

Apart from the rooting depth products, we also used estimates of plant water stor-292

age capacity. Accessible Water Storage Capacity (AWSC, S. Tian et al., 2019) is de-293

rived at 0.25◦ by assimilating an ecohydrological model (World-Wide Water, van Dijk294

et al., 2013) with different remote sensing based water observations, namely surface wa-295

ter extent, near-surface soil moisture and variations of terrestrial water storage. World-296

Wide Water is a process based model using atmospheric conditions, containing three soil297

layers to simulate vegetation access to soil moisture, which also accounts for recharge and298

discharge from groundwater. Due to the temporal availability of the forcing data, AWSC299

product is derived using 6 years of data starting from 2010.300

The forth and last product used to analyse plant accessible water storage capac-301

ity is the Root Zone Storage capacity (RZSCRU2, Wang-Erlandsson et al., 2016) prod-302

uct derived by contrasting water fluxes observed by remote sensing, precipitation and303

irrigation as influx, and evaporation as outflux. Owing the assumption that plants de-304

velop their roots to optimise their root zone storage capacity, and using a simple approach305

on water fluxes, Wang-Erlandsson et al. (2016) did not use any external information on306

vegetation or soil properties. While different precipitation data are used as forcing data307

with different drought return periods, we used the final product forced by Climate Re-308

search Unit precipitation data (CRU TS3.22, Harris et al., 2014) with the shortest re-309

turn period, 2 year. RZSCRU2, which is derived using data from 2003 to 2013, is avail-310

able at 0.5◦ spatial resolution.311

For a consistent comparison across data at different resolutions, we aggregated all312

data to a common spatial resolution of 0.5◦ by simple averaging. Note that the spatial313

aggregation may result in loss of the spatial variability prevalent locally and potentially314

captured at a high resolution. Moreover, we only used the grid cells that all products315

have an estimate.316

Canopy Height317
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Since canopy height is an important indicator of ecosystem functions and is asso-318

ciated mostly with water limitation (Tao et al., 2016), we analysed the effects of canopy319

height on the decay rate of vegetation cover through their covariation in space. We used320

the lidar-derived canopy height data from the retrievals of the ICEsat satellite at a spa-321

tial resolution of 1 km (Simard et al., 2011). We used the data after aggregating (sim-322

ple average) to 0.0417◦.323

Tree Cover324

We used tree cover data in order to analyse the sensitivity between the relation-325

ship of decay rate of FVC and climatological aridity. We used the tree percent compo-326

nent of the MOD44B Version 6 Vegetation Continuous Fields from MODIS (Dimiceli et327

al., 2015), which is available globally in 250 meter spatial and annual temporal resolu-328

tion. We aggregated the product in space to the target resolution of this study by tak-329

ing the mean of higher resolution grid cells. Finally, we used the median tree cover value330

over the years covering the temporal domain of FVC data to obtain a time invariant met-331

ric, same approach taken for the annual estimates of the metrics derived from FVC (see332

Sec. 3).333

3 Methodology334

The derivation of the ecohydrological metrics is based exclusively on the daily FVC335

time series. The method can be divided into four main steps: (i) masking and retrieval336

of minimum and maximum FVC (FV Cmin and FV Cmax), (ii) detection of start and end337

of the decay periods, (iii) estimation of the decay period FVC integral (Idp), and (iv) es-338

timation of the FVC decay rate during dry-down (λ). Each methodological step is de-339

scribed in detail in the following subsections together with the final products, and their340

quality diagnostics when needed.341

3.1 Masking and Retrieval of FVC Extrema342

To remove the effect of outliers within a time series, we selected the 2nd and 98th343

percentiles of the entire records of the FVC data as the minimum (FV Cmin) and the344

maximum asymptotic values (FV Cmax). To maintain a reliable signal-to-noise ratio be-345

fore taking further steps, we filtered out any grid cell if FV Cmax < 0.1 or more than346

one-third of the time series were missing. Due to the simplicity of the derivation of FV Cmin347

and FV Cmax metrics, quality diagnostics were deemed unnecessary, and not derived in348

this set of metrics.349

3.2 Detection of Decay Periods350

The detection of the decay period was based on a procedure using the first deriva-351

tive of the smoothed FVC (V ′) (see Algorithm 1). We smoothed daily time series of the352

FVC with a 31-day moving average (Vsm). Then each day in the time series was marked353

as decay, growth or stable. To do so, we set two thresholds for decay and growth peri-354

ods as thdecay and thgrowth, respectively. After rigorous investigation of time series of355

individual grid cells, we used the 75th and 70th percentiles of the negative derivative (V ′)356

as thresholds thdecay and −thgrowth for each grid cell. The magnitude thdecay is, thus,357

bigger than thgrowth, in accordance with the larger gradient in the beginning of the pe-358

riod than the end. Only the magnitude of thgrowth was taken as a positive threshold to359

detect the increase in FVC.360

An observation was considered as decay if V ′ < thdecay, growth if V ′ > thgrowth,361

and stable if thdecay ≤ V ′ ≤ thgrowth. The resulting time series of classes (decay, growth,362

or recovery) were then smoothed by retaining the majority of decay and stable against363

recovery within a 5-day moving window. Complete decay period, which is considered as364
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the initial decay period followed by a stable, non-increasing period, was then identified365

as the period from the beginning of a decay to the end of a stable period. In order to366

ensure robustness of the end of the stable period, especially in hyper-arid regions with367

poor signal-to-noise ratio, we extended the detected decay periods until the next signif-368

icant increase in Vsm (> 5% of the corresponding seasonal amplitude of FVC). Note that369

selection of the thresholds and the moving window sizes were based on extensive explo-370

ration and visual inspection of the FVC time series. This was a necessary step to ensure371

the robustness against noise in the data, as well to address the diversity of FVC dynam-372

ics across African ecosystems. To highlight the complexity, some representative time se-373

ries of FVC in selected grid cells across different climatological aridity are included in374

Appendix B, together with soil moisture and precipitation time series.375

After detection of all decay periods in the time series, we only selected the longest376

one per calendar year. This is necessary for regions where vegetation may potentially377

have two growing (and decaying) seasons within a year. The longest decay period within378

a year is likely to be the most indicative of the largest water limitation, and the under-379

lying ecohydrological mechanisms. When the detected decay period spanned over two380

calendar years, it was assigned as the decay period of the starting year. In total, the de-381

cay period detection algorithm (Algorithm 1) yielded 16,423,339 decay periods in 1,029,847382

grid cells.383

Algorithm 1 Detection of decay periods from the entire time series

1: Smooth FVC time series with 31 days moving average; to yield Vsm
2: Calculate the first derivative of FVC time series from Vsm with daily step size; to

yield V
′

3: Through the entire time series, set the threshold for decay as thdecay=percentile(V
′
,

75) where V
′
< 0

4: Through the entire time series, set the threshold for growth as thgrowth=-1 ×
percentile(V

′
, 70) where V

′
< 0

5: Mark each observation for their corresponding period as:
if V ′ < thdecay then decay
else if V ′ > thgrowth then growth
else stable

6: Smooth the classes with a 5-day moving window by majority voting
7: Label consecutive observations marked with decay and followed by stable ones as

decay period
8: Extend every decay period label until Vsm > min(Vsm)+0.05×(max(Vsm)−min(Vsm))

is satisfied in the corresponding season
9: For each grid cell, keep only the longest decay period per year

3.3 Estimation of the Integral over FVC Decay384

We calculated the integral of FVC during decay period (Idp) as the total area un-385

der the FVC time series from the start to end of the decay period, with the area under386

FV Cmin removed. This can be expressed as,387

Idp =

decayperiod∑
(FV C(t)− FV Cmin) (1)

Removal of the baseline FVC value (FV Cmin) enhances the signal of seasonal de-388

cay of vegetation with respect to baseline vegetation activity. Note that, upon necessity,389

the full integral (total area under the curve) can be calculated as the sum of Idp and mul-390

tiplication of decay period duration with minimum FVC (D × FV Cmin).391
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From the yearly dry season detection, 16 (the number of years) values of Idp were392

computed for each grid cell. We selected the median of the 16 values as the represen-393

tative inference to be used for spatial analyses. The median was preferred over the mean394

to make the estimation robust against annual variations, for instance, by intermittent395

rain events in the dry season or issues related to FVC derivation. In addition, we also396

calculate and report the normalised robust Standard Error (SE) as an indicator of vari-397

ability. The SE is calculated as,398

SE =
SDn√
n

(2)

where SDn is the robust standard error, calculated from the Median Absolute De-399

viation (MAD) across years (with the assumption of a normal distribution, Rousseeuw400

& Croux, 1993), and corrected for the low number of samples (n = 16) as:401

SDn = MAD × 1.4826× n

n− 1
(3)

The robust standard error reflects variability of the metrics among years as well402

as methodological uncertainty, and is therefore suitable for customised filtering in the403

context of spatial analysis.404

3.4 Estimation of FVC Decay Rate405

Temporal decay of the FVC can be characterised using an exponential function as,406

FV C(t) = (FV Cdd − FV Cmin)× e−t/λ + FV Cmin (4)

where FV Cdd is the initial FVC value in the beginning of a dry-down, and λ is the407

e-folding time (in days). Note that λ is merely an inverse of the exponential decay rate.408

The formulation in Eq. 4 uses λ as it is easier to interpret. In simple terms, λ denotes409

the number of days needed to have a decrease in the seasonal amplitude of FVC (FV Cdd−410

FV Cmin) to 1/e of its original value during a dry-down event. Note that the selected411

exponential decay function explicitly takes an asymptotic minimum value of the FVC,412

as FV Cmin, into account while estimating the decay rate (see Sec. 3.1) since FV Cmin413

is included in the formulation (Eq. 4).414

Due to the S-shaped character of temporal vegetation dynamics, functions allow-415

ing different convexity, e.g., logistic functions, have been used to characterise these dy-416

namics (Beck et al., 2006). As exponential decay functions are strictly convex, the con-417

cave part of the decay, which is mostly observed in the beginning of the decay period,418

is not considered for this metric. The latter part of the decay period, with convex cur-419

vature (i.e.: the first derivative is negative while the second is positive), is labelled as ‘dry-420

down’ during the decay period. To define the dry-down period, we first discarded the421

time steps with concave observations (negative first and negative second derivative). Af-422

terwards, we filtered out the convex observations before the inflection point of the FVC,423

that mostly associated with low signal-to-noise ratio at the beginning of the dry-down.424

Once daily observations are marked as convex or concave, we searched for local minimum425

of V ′ in the first third of the dry season, and identified the inflection point as the start426

of the dry-down. Note that, in the above process, second derivative of the FVC (V ′′) was427

also smoothed with a 31-day moving window.428

This procedure effectively removes observations with concave shape in the dry sea-429

son, especially at the beginning of an event. For each event, if more than half of the data430

points showed convexity, we estimated λ, together with FV Cdd, based on an asymptotic431
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Algorithm 2 Identification of dry-down periods and modelling of the exponential decay

1: Smooth V
′

with 31 days moving average; to yield V
′

sm

2: Calculate the second derivative of FVC time series from V
′

sm with daily step size; to
yield V

′′

3: Smooth V
′′

with 31 days moving average; to yield V
′′

sm

4: Mark each observation with V
′

sm < 0 as:
if V

′′

sm > 0 then convex
else concave

5: Ignore convex observations before the inflection point of FVC time series, if there is
any

6: Ignore concave observations within the decay period and keep the rest as the dry-
down period

7: Discard any event having more concave observations than convex
8: Use Eq. 4 on dry-down period of the decay period to estimate λ
9: Filter out the estimations with NSE < 0.5 OR SE(λ) > 0.5× λ

regression model that minimises least squares error with the Levenberg–Marquardt al-432

gorithm (Moré, 1978; Elzhov et al., 2016). We used both the Nash–Sutcliffe modelling433

efficiency (NSE; Nash & Sutcliffe, 1970) and the standard error of the model (SEm) to434

assess the estimates of the model fitting. From the multiple λ estimates, only those with435

successful convergence of the Levenberg–Marquardt algorithm with NSE > 0.5 and SEm(λ) <436

0.5×λ were accepted, the median of which was taken as the representative final λ for437

a grid cell.438

After defining the final λ, we estimated the variation as done in Sec. 3.3. Unlike439

in Sec. 3.3, the sample size per grid cell (n) may change, as λ estimation may not con-440

verge in cases with high noise. We, therefore, also report the number of successful con-441

vergences of the Algorithm 2 as an additional quality diagnostic that can be used for fil-442

tering λ (mapped in Fig. H1).443

4 Results and Discussion444

In this section, we present and discuss the ecohydrological metrics derived in this445

study. For each metric we show the spatial variation in continental scale by maps along446

with zoomed inset plots (see Appendix E for further information and visual impression447

by corresponding Google Earth cut-outs) to visualise regional variability. Box plots of448

metrics per mean annual root-zone soil moisture show first order variations while heatmaps449

show sensitivity of these first order variations to different parameters addressing the hy-450

potheses given in Sec. 1 (see Sec. 2.2 for the details of the data). Here we present the451

metrics independently, but we summarise their cross-comparison with a density plot in452

Fig. C1.453

4.1 FVC Extremes454

Spatial distributions of FV Cmin and FV Cmax, histograms of the distribution over455

the full domain, and six zoomed insets focusing on selected regions are shown in Fig. 2a456

and 2b, respectively (see Fig. F1 for the seasonal dynamics expressed as FV Cmax−FV Cmin).457

At the continental scale, both FV Cmin and FV Cmax follow the moisture gradient with458

the highest and the lowest values in humid and arid regions, respectively. Saturation in459

the increase of FV Cmax (Fig. 2c) in semi-arid regions suggests that water does not severely460

limit the vegetation cover at the peak of the wet season in regions with intermediate to461

high mean annual soil moisture values (see Fig. E1 for map of mean annual root-zone462

soil moisture as an indicator of climatological aridity together with Google Earth views463
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of the insets). On the contrary, FV Cmin stays low up to intermediate mean annual soil464

moisture and increases only slightly with it suggesting that water limits FVC severely465

at the peak of the dry season. Understandably, largest seasonal ranges in FVC are ob-466

served in regions with semi-arid climate systems.467

In addition to the climate-associated large-scale gradients, the metrics also exhibit468

a substantial meso-scale heterogeneity. In arid regions, FV Cmin is higher in areas closer469

to perennial water sources, as can be seen near the Senegal and Gambia rivers (Box-A470

in Fig. 2a). FV Cmin is also elevated near large inland deltas and wetlands, i.e. the Oka-471

vango Delta (McCarthy, 2006) and the Sudd swamp (Tootchi et al., 2019), Box-D and472

Box-F in Fig. 2a, respectively, presumably indicating groundwater access by the vege-473

tation in the dry season. Interestingly, the meso-scale spatial patterns differ remarkably474

between FV Cmin and FV Cmax with a tendency of FV Cmax showing more spatial struc-475

ture than FV Cmin. This is likely because there is too little water input in the dry sea-476

son to cause big topographic moisture effects for FV Cmin except for the perennial sec-477

ondary water sources. Thus, such meso-scale heterogeneity suggests the importance of478

secondary water sources in water-limited systems, especially on top of the large climate-479

driven spatial variations, and highlights the value of FV Cmin and FV Cmax for ecohy-480

drological studies.481

Inverse Texture Effect482

We further tested if an “inverse texture effect” (Noy-Meir, 1973) could be observed483

from 5 km spatial resolution remote sensing FVC data over continental Africa. In hu-484

mid regions coarse textured soil is less favourable for vegetation than fine textured soil485

while in arid regions this pattern is inverted. This inverse texture effect has been doc-486

umented by several site-scale studies (Sala et al., 1988; Laio et al., 2001; Fernandez-Illescas487

et al., 2001; Looney et al., 2012). Noy-Meir (1973) suggested this inversion to occur with488

precipitation values of 300–500 mm/year, although it has also been reported for higher489

precipitation values (Epstein et al., 1997). The inversion of the texture effect in arid cli-490

mates is likely due to enhanced infiltration and hydraulic conductivity which reduced491

soil evaporation losses (Noy-Meir, 1973) and/or due to reduced water stress thanks to492

lower matrix potentials of sandy soils (Caylor et al., 2005).493

We binned soil moisture and sand percentage values to have equal number of ob-494

servations in each bin of a given variable, and calculated the mean of FV Cmin or FV Cmax495

per bin. The resulting heatmaps in Fig. 3 do not show clear patterns of an inverse tex-496

ture effect where FVC would be expected to increase with sand content. In the driest497

regions with the lowest mean annual soil moisture level, FV Cmin and FV Cmax are slightly498

elevated for low sand content, consistent with the “normal” texture effect. For interme-499

diate aridity levels, no clear and systematic pattern with sand content can be observed.500

It remains for further studies to clarify to what extent the “inverse texture effect” re-501

mains significant, which may be due to spatial resolution and quality of remote sensing502

data.503

Green Islands504

Another phenomenon we investigated are the “green islands” patterns where lo-505

calised moisture availability supports vegetation activity in otherwise dried down con-506

ditions. This approach has been used to detect groundwater dependent ecosystems (Münch507

& Conrad, 2007; Howard & Merrifield, 2010; Jin et al., 2011; Lv et al., 2013; Barron et508

al., 2014) or riparian corridors (Everitt & Deloach, 1990; Everitt et al., 1996; Neale, 1997;509

Akasheh et al., 2008) based on high spatial resolution remote sensing within relatively510

small regions. Here we analyse if such patterns due to secondary moisture sources are511

still evident at 5 km resolution and at continental scale by looking at the covariation of512

FV Cmin and FV Cmax with HAND and TWI, conditioned on mean aridity (Fig. 3). HAND513

is a hillslope scale proxy for groundwater accessibility (Fan et al., 2019) while TWI, a514
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metric considering local slope together with upstream area, is a strong proxy for topo-515

graphic soil moisture variations (Radu la et al., 2018). Contrary to our expectations, we516

did not observe a positive effect of these secondary moisture resources in arid regions on517

FV Cmin (Fig. 3a) but instead for FV Cmax at high aridity levels (Fig. 3b). This implies518

that shallow water table support vegetation with additional moisture during the grow-519

ing period as also shown in Koirala et al. (2017) but that this effect largely disappears520

in the dry season since most of the secondary moisture resource is also depleted or not521

available. This suggests that the effect of secondary moisture sources goes much beyond522

the frequently studied perennial “green islands” phenomenon and is likely more impor-523

tant in the wet rather than the dry season.524

4.2 Integral of FVC Decay525

Integral of FVC time series during decay period, Idp, is smallest in arid regions, fol-526

lowed by humid regions while the largest Idp values are observed in semi-arid regions (Fig.527

4a). Median values, as well as variations of Idp within similar climatology is larger when528

subject to intermediate aridity (Fig. 4c). Uncertainties are larger in some of the hyper-529

arid regions with low FVC and rare, episodic rainfall (Fig. 4b).530

At local scales, variations in Idp emerge as a combined effect of climate and other531

ecohydrological factors change over hillslope scales, such as proximity to the nearest drainage532

or occurrences of shallow water table depth. While a sharp aridity gradient in Sahel is533

clearly seen at Box-A and Box-B of Fig. 4a, local scale increases in Idp are also present534

at riparian zones like Senegal River (Box-A in Fig. 4a). Within similar aridity, Idp is smaller535

in seasonally flooding regions like the Sudd swamp (Tootchi et al., 2019), Box-F in Fig.536

2a. The highest values of Idp in the Lower Zambezi, bear strong similarity with the root-537

ing depth product presented in Wang-Erlandsson et al. (2016), and the previously re-538

ported seasonal hydrologic buffer (Kuppel et al., 2017) in these regions. This motivates539

further analysis of Idp with a plant accessible water storage perspective.540

Plant Accessible Water Storage541

Conceptually, plant accessible water storage is related to the vertical distribution542

of roots, and the water holding capacity of the soil that is determined largely by texture543

and organic carbon content. The root profile of water-limited ecosystems appears to adapt544

to the prevailing hydrologic and soil conditions while being constrained by other ecosys-545

tem properties and traits (Guswa, 2008; van Wijk, 2011; Fan et al., 2017; Schenk, 2008;546

Schenk & Jackson, 2002; Laio et al., 2006). Plant accessible water storage controls the547

propensity and sensitivity of ecosystems to drought stress in dry periods. Various mod-548

elling approaches to infer rooting depth or plant water storage capacity have been pro-549

posed (explained in detail in Wang-Erlandsson et al., 2016), as it cannot be observed di-550

rectly but still contains a critical information for global-scale models (Kleidon & Heimann,551

1998).552

The integral of FVC during dry season should be positively correlated with plant553

accessible water storage of the soil, as larger water storage would facilitate vegetation554

activity for longer period during water-limited conditions. The continental-scale patterns555

of Idp (Fig. 4a) with the largest values in strongly seasonal semi-arid savanna systems556

of both hemispheres are qualitatively consistent with the previous observation-based anal-557

ysis (e.g. Schenk & Jackson, 2002) as well as the optimality-based models (e.g. Kleidon558

& Heimann, 1998). Idp declines in hyper-arid regions like the Sahel, Horn of Africa, South-559

ern Africa, as well as the Congo rainforest. A similar pattern would be expected for op-560

timal rooting depth, which increases in regions with small differences between rainfall561

and potential evaporation in annual scales but large differences in seasonal scales (Laio562

et al., 2006; van Wijk, 2011). The inset plots in Fig. 4a clearly reveal the landscape scale563

patterns of Idp, presumably, due to topography-driven large variations of moisture. This564

may reflect enhanced and continued moisture supply due to topographic moisture con-565
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vergence or shallow water tables along with possible adaptations of rooting depth to these566

local hydrological conditions (Fan et al., 2017).567

We compared Idp with 4 products related to plant accessible water storage, namely568

two storage capacity products from Wang-Erlandsson et al. (2016) and S. Tian et al. (2019),569

and two rooting depth products from Yang et al. (2016) and Fan et al. (2017) at 0.5◦570

across Africa (see Sec. 2.2 for product details). As shown in Fig. I1, there is qualitative571

agreement of large values of Idp with AWSC and RZSCRU2 in the Miombo woodlands572

and, to a lesser extent, also in the northern savannas. All three also agree on low val-573

ues in hyper-arid regions like the Sahel, Horn of Africa and in Southern Africa. In or-574

der to quantify the extent of agreement among the five estimates, we made a pairwise575

comparison of Spearman’s correlation coefficient per climatological aridity via soil mois-576

ture (Fig. 6a). While the overall low-to-moderate correlation values among the products577

available in the literature demonstrate the scale of the challenge in estimating plant wa-578

ter storage capacity or rooting depth, highest correlation was observed between Idp and579

RZSCRU2. Regardless of the product pairs, correlations decrease with increasing humid-580

ity, which is presumably related with other limiting factors than water, such as radia-581

tion or nutrients.582

All four independent products utilised meteorological input data for water balance583

estimation, and also use remotely-sensed vegetation products in some way. While RZSCRU2584

and AWSC are constrained by hydrological Earth observations, the rooting depth prod-585

ucts RD and ERD originate largely from different assumptions of optimality and plant586

adaptation. Our comparison suggests that estimating plant accessible water storage based587

on Earth observation data may be more suitable than the presently-used optimality prin-588

ciples over the given resolution and domain of this study, despite the uncertainties of re-589

mote sensing data. Using Idp as an indicator of plant accessible water storage has the590

advantage that it is derived from dense time series of a geostationary satellite alone, re-591

quiring no additional meteorological inputs or modelling assumptions that introduce their592

inherent uncertainties. Furthermore, Idp features higher spatial resolution than most other593

storage capacity data, which provides insights on subsurface moisture variations at meso-594

scales.595

4.3 Decay Rate of FVC596

Similar to Idp, the e-folding time (λ), presented in Fig. 5a, also has a hump-shaped597

covariation with climatological aridity at continental scales. We find the lowest λ val-598

ues throughout the humid regions and partially in the arid regions, such as edges of the599

Sahara desert or the Horn of Africa, while the highest λ values are found in the semi-600

arid and arid regions. Though variation of λ (Fig. 5b) suggests that the low values of601

λ in some hyper-arid regions are associated with higher uncertainty due to low signal-602

to-noise ratio.603

Besides the coherent continental-scale spatial patterns, λ also has strong variations604

over meso-scales. Stronger lateral moisture convergence positively affects the λ in the605

arid regions, as seen in the Senegal (Box-A, Fig. 5a) and the Niger (partially in Box-B,606

Fig. 5a) rivers’ riparian zones in the arid climate. However, lateral moisture convergence607

does not always affect λ positively, as seen in the riparian zones of the Upper Zambezi608

and the Okavango rivers and their tributaries. Shown in Box-D in Fig. 5a, λ is high around609

the Cuando river, the Okavango Delta and the Linyanti swamp, but low in the Barotse610

Floodplain (see Cronberg et al. (1995); Zimba et al. (2018) for general information about611

the region). Such non-trivial patterns suggest the role of complex interactions between612

the vegetation traits and local moisture conditions (Fan et al., 2019), which also affect613

λ.614

λ and Ecosystem Water Use615
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λ can corroborate the rate of decrease of plant available water, ecosystem scale wa-616

ter use efficiency, and the propensity to senescence. Ecosystems differ widely in their wa-617

ter use strategies, from being water conservative – typically associated with strong down-618

regulation of stomatal conductance with water deficiency – to aggressive exploitation of619

water resources (Laio et al., 2001). Herbaceous plants are typically aggressive water users620

and cease with the depletion of surface soil moisture. Woody plants risk cavitation and621

death under severe water stress, and such, trees in places with frequent dry periods ben-622

efit from a water saving strategy or senescence for prolonged periods. Konings and Gen-623

tine (2017) inferred ecosystem water-use strategies globally based on diurnal variations624

of vegetation optical depth assuming that those reflect stomatal regulation to maintain625

leaf-water potential. They found an increase in isohydricity, i.e. the degree of stomatal626

regulation and subsequent water savings, with increase in vegetation height, consistent627

with the need of tall trees to prevent hydraulic failure during drought. Teuling et al. (2006)628

characterised decay rate in land evaporation (soil evaporation and transpiration) under629

water limitation using flux tower measurements and found that sites with stronger sea-630

sonality and larger woody coverage have slower decays. This association is confirmed by631

similar studies, for seasonality and canopy height (Boese et al., 2019), and for trees than632

grasses (Mart́ınez-de la Torre et al., 2019). Slower decay of land evaporation of taller/woody633

canopy despite the faster decay of soil moisture with stronger aridity (McColl et al., 2017)634

suggests reduced transpiration or other plant adaptation mechanisms.635

If the rate of FVC decay was also related to ecosystems’ water use strategy in a636

similar manner, we would expect slower FVC decay (higher λ) with increasing canopy637

height. In arid and semi-arid regions, we indeed find a tendency of increasing λ with canopy638

height except very tall canopy (Fig. 6b), suggesting that λ incorporates ecosystem wa-639

ter use strategy traits as well as direct or indirect effects of soil moisture therein. How-640

ever, as the climate gets wetter λ tends to decrease with canopy height. A possible ex-641

planation would be the changes in the drought coping strategies in ecosystem scale (Singh642

et al., 2020), or that water consumption, i.e. transpiration, increases with canopy height643

resulting in a faster depletion of moisture storage (Koirala et al., 2017), or increasing ecosys-644

tem water use efficiency with aridity.645

Sensitivity of the nonlinear relationship between λ and climatological aridity to tree646

cover (see Fig. 6b) shows that λ systematically increases with larger tree cover values647

in arid and semi-arid systems, with peak values observed in semi-arid regions with 26−648

43% of tree cover which overlaps with the reported interval for the transition between649

highly water-stressed forest and savanna (Singh et al., 2020). However this trend is in-650

verted moving towards regions with weaker water-stress, hence denser tree cover, which651

agrees with Singh et al. (2020) as moderately or lowly water-stressed forests do not de-652

velop strong adaptation against water limitation, nor change canopy structure. The agree-653

ment among these two studies having different methodologies shows the value of the observation-654

driven metric λ to gain ecohydrological insights and have a better understand in vegetation–655

water dynamics.656

5 Conclusions657

Using retrievals of the SEVIRI sensor of the geostationary satellite MSG, we de-658

rived ecohydrological metrics for continental Africa entirely from the temporal dynam-659

ics of the daily Fraction of Vegetation Cover (FVC) time series from 2004 to 2019 at ca.660

5 km (0.0417◦) spatial resolution. Our metrics captures both continental scale gradients661

and covariations with climate as well as structured regional variations, e.g. due to to-662

pographic factors. This provides an unprecedented opportunity to improve our under-663

standing of ecohydrological processes across spatial scales over Africa.664

The minimum asymptotic value of vegetation cover (FV Cmin) can be used to di-665

agnose riparian corridors, seasonal wetlands and floodplains in arid and semi-arid regions666
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with its structured spatial variations over meso-scales. The maximum asymptote of FVC667

(FV Cmax) shows enhanced vegetation growth in arid and semi-arid regions where ecosys-668

tem benefits from shallow groundwater or larger runoff. Therefore, FV Cmax may be used669

to diagnose the effect of secondary water resources in semi-arid regions in meso-scales.670

At continental scales, FV Cmin did not show a clear pattern neither for “inverse texture671

effect” nor “green islands”, which motivates further studies to understand the extent of672

such local scale processes over large domains, using remote sensing. However, we observed673

positive effect of proximity to groundwater and runoff potential on FV Cmax on arid re-674

gions as “green islands”, which suggests FV Cmax can reveal importance of secondary675

water resources in growing seasons in arid regions.676

The integral of FVC time series in decay period (Idp) can be used to diagnose the677

buffering capacity of vegetation on moisture limitation and shows broad consistency with678

inferred variations of the plant storage capacity or rooting depth. Since plant accessi-679

ble water storage is an important, also an uncertain, aspect in ecohydrology, Idp may help680

understand and model ecohydrological processes more accurately. The spatial patterns681

of Idp may be used to analyse plant water storage capacity in ecohydrological models and682

improve simplistic approaches where this varies only with vegetation type and soil.683

The last metric presented in this study, the e-folding time of vegetation cover dur-684

ing dry-down (λ), reveals the seasonal decay rate of vegetation, which – in the case of685

water-limited regions – emerges from the complex ecohydrological interactions between686

moisture availability and vegetation. Both the continental scale patterns against arid-687

ity and its sensitivity to canopy height and tree cover of λ agrees with the plant adap-688

tation strategies proposed in the literature. This provides a consistent diagnostic power689

on vegetation water interactions over the African continent. Moreover, strong and struc-690

tured variations of λ at meso-scales motivate in-depth analyses of the metric to resolve691

ecohydrological interactions at finer scales, yet over a continental gradient.692

Overall, given the the large amount of information stored in spatial variations of693

the metrics reflecting different driving mechanisms across spatial scales, the metrics have694

great potential to improve our understanding on vegetation dynamics on: (i) testing hy-695

potheses on understanding relevance of local-scale ecohydrological processes over large696

domains like continental Africa, (ii) better understanding basic ecosystem properties like697

water usage in ecosystem scale and diagnosing their driving factors, and (iii) extracting698

information and reducing uncertainty on concepts like plant water storage capacity. There699

remain multiple opportunities for further synergistic exploitation with retrievals of sur-700

face temperature from geostationary satellites which could provide complementary in-701

dicators on variations of moisture states inferred from an energy balance perspective. The702

suggested algorithms for deriving the metrics and the provision of the code facilitates703

consistent parallel assessments and helps overcome the technical difficulties of dealing704

with large volumes of data and the particularities of vegetation cover retrievals from the705

geostationary satellites.706

6 Data and Code Availability Statement707

All ecohydrological metrics presented in this study are available in standardised708

netCDF data format in https://doi.org/10.6084/m9.figshare.14987211.v1, together709

with their quality diagnostics.710

The R scripts developed for the implementation of the methodology are available711

for research uses. They can be accessed through https://github.com/caglarkucuk/712

EcohydroMetrics Africa.git.713

All the data used in this study are available in the cited literature (see Sec. 2), ex-714

cept the AWSC data from S. Tian et al. (2019) which was obtained from the correspond-715

ing author.716

–16–

ESSOAr | https://doi.org/10.1002/essoar.10504964.2 | CC_BY_NC_4.0 | First posted online: Thu, 19 Aug 2021 00:46:27 | This content has not been peer reviewed. 



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Acknowledgments717

Çağlar Küçük acknowledges funding from the International Max Planck Research School718

for Global Biogeochemical Cycles. Diego G. Miralles acknowledges funding from the Eu-719

ropean Research Council (ERC) under grant agreement 715254 (DRY2DRY) and the Eu-720

ropean Union Horizon 2020 Programme project 869550 (DOWN2EARTH).721

–17–

ESSOAr | https://doi.org/10.1002/essoar.10504964.2 | CC_BY_NC_4.0 | First posted online: Thu, 19 Aug 2021 00:46:27 | This content has not been peer reviewed. 



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1: Conceptual plot of the ecohydrological metrics derived from time series using
synthetic data. Points represent observations for growing period, early decay period and
decay period with dry-down in light grey, grey and black, respectively. Decay and growth
periods are defined by presence of decay, i.e., first derivative of the time series, while dry-
down period is defined by the convexity of the decay, i.e., using both first and second
derivatives (see Sec. 3.4 for details). The shaded area shows the integral of FVC during
decay period. The red curve shows the fitted line on the FVC time series during dry-down
using the asymptotic exponential decay function. All metrics presented in this study are
shown in bold characters.
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(a) (b) (c)

Figure 2: (a) Minimum asymptotic values of FVC, FV Cmin, (b) maximum asymptotic
values of FVC, FV Cmax, (c) box plot showing the variation of FV Cmin and FV Cmax
with mean annual soil moisture. In the maps, histogram of the metrics mapped can be
seen inside the main panel, with a dashed line indicating the mean values of the domain,
as well as six insets to show local variability (See Appendix E for details of the insets). In
all of the following box plots, binning of soil moisture is done automatically to equalise
frequency of observations among the bins while median values per each bin are shown in
the intermediate line of the boxes, with their 95 % confidence intervals notched. Upper
and lower edges of the boxes show the interquartile range (75th and 25th percentiles,
respectively) while the error bars show 1.5 times the interquartile range.

(a) FV Cmin (b) FV Cmax

Figure 3: Covariation of asymptote-related metrics and root-zone soil moisture with sand
percentage, HAND, and TWI. Note that binning of the continuous variables in x- and
y-axes are done automatically to equalise frequency of observations among the bins of a
given variable.
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(a) (b) (c)

Figure 4: (a) Integral of FVC time series in the decay period, Idp, (b) variation of Idp, (c)
distribution of Idp within mean annual soil moisture. See Fig. 2 for plotting details.

(a) (b) (c)

Figure 5: (a) e-folding time of FVC time series during dry-down (in days), λ, (b) varia-
tion of λ, (c) distribution of λ within soil moisture. See Fig. 2 for plotting details.
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(a) (b)

Figure 6: (a) Spearman’s correlation coefficients between pairs of products related to
plant accessible water content, namely Effective Rooting Depth (ERD) from Yang et al.
(2016), Rooting Depth (RD) from Fan et al. (2017), Accessible Water Storage Capac-
ity (AWSC) from S. Tian et al. (2019), Root Zone Storage Capacity (RZSCRU2) from
Wang-Erlandsson et al. (2016), and integral of FVC during decay period (Idp) presented
in this study. Black dots indicate significant correlation with ρ > 0.05. (b) Covariation
of λ and root-zone soil moisture with canopy height, and tree cover. Note that binning of
soil moisture, canopy height and tree cover are done automatically to equalise frequency
of observations among the bins of the given variable.
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Appendix A An Example Map of the Original FVC Data for a Sin-722

gle Day723

Figure A1: The original FVC data product for a single day, taken from
https://landsaf.ipma.pt/en/products/vegetation/fvc/
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Appendix B Time Series of FVC in Example Grid Cells724

In this subsection; we present 5 years time series of selected grid cells from each725

bin of mean annual soil moisture values given in the main manuscript to demonstrate726

the results of the algorithms in grid cell scale.727

(a) (b)

(c) (d)

Figure B1: FVC, soil moisture, and precipitation time series of sampled grid cells. Sam-
pling is done to have one grid cell per each bin of soil moisture values given in the plots
of the main manuscript. Points for both FVC and soil moisture are coloured according
to the state of vegetation activity as growing period is shown in light grey, decay period
with dark grey while dry-down during the decay period is shown in black. Fitted curve
to estimate λ is shown with red lines while 31-day smoothed FVC values are shown in or-
ange lines at the upper panel, while daily precipitation values are shown with blue bars at
the lower panel. Note that daily aggregated precipitation data is obtained from Tropical
Rainfall Measuring Mission (TRMM) (2011).
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(a) (b)

(c) (d)

(e) (f)

Figure B2: Continuation of Fig. B1 with samples having larger mean annual soil mois-
ture.
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Appendix C Density Plots of the Ecohydrological Metrics728

Figure C1: Density plots of the ecohydrological metrics presented in this study.
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Appendix D Temporal Correlation Between FVC and Soil Moisture729

(a) (b)

Figure D1: Pixelwise Spearman’s correlation of FVC and GLEAM root-zone soil mois-
ture in time for (a) entire time series, (b) time series marked as decay period using FVC.
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Appendix E Map of Climatological Aridity and Google Earth View730

of Insets731

Fig. E1 shows the continental map of mean annual root-zone soil moisture (%) from732

GLEAM and the Google Earth views of the insets. Note that soil moisture values are733

binned to have equal number of observations in each class. Box-A: the Gambia and large734

portion of the Senegal rivers; Box-B: a small area of the Niger river mostly showing the735

transition from the Sahara desert to Sahel; Box-C: more on the transition from Sahel736

to tropical regions; Box-D: located in one of the most complex regions of Africa in terms737

of topography and lateral flow of water with lower sections of the Okavango and the Cuando738

rivers and upper section of the Zambezi river, together with multiple seasonally flood-739

ing areas like the Okavango delta, the Barotse Floodplain, and the Linyanti swamp. These740

seasonal wetlands are vital for the ecosystem and also provides great support against wa-741

ter limitation and heat for not only plants but also animals; Box-E: Lower Zambezi Basin742

together with the drainage of Lake Malawi to Zambezi. It also covers the Inyanga moun-743

tains located between Mozambique and Zimbabwe where a climatic shift happens over744

the mountain range. Last but not least, Box-F: largely covered by tropical savanna, is745

divided by the White Nile from South to North, covers the Sudd swamp.746

Figure E1: Map of mean annual root-zone soil moisture (%) in the centre and satellite
view of the insets. Map and image data of the insets: Google Earth c©2020 TerraMetrics.
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Appendix F Summary of Seasonal Dynamics of FVC, FV Crange747

(a) (b)

(c)

Figure F1: Variations in FV Crange (as FV Cmax − FV Cmin) (a) in space (b) with clima-
tological aridity (c) similar to Fig. 3a but for FV Crange
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Appendix G Map of Idp Normalised by Event Duration748

In order to see the effect of event duration to Idp, we normalised the Idp values with749

the duration of the specific event Idp is estimated. Even though spatial patterns remained750

largely the same after normalisation, they became more pronounced in the East Suda-751

nian Savanna and Miombo woodlands in the Southern Africa. Spatial distribution of the752

normalised Idp is mapped, together with its covariation with soil moisture and the orig-753

inal Idp is shown in Fig. G1. Note that duration of the event necessary to make the nor-754

malisation is available in the corresponding netCDF file of the metrics (see Sec. 6).755

(a) (b) (c)

Figure G1: Integral of FVC time series in the decay period normalised by event duration
(a) Spatial variation, (b) variation against within mean annual soil moisture (see Fig. 2c
for plotting details). (c) density plot against Idp

Appendix H Map of Number of Convergences of Algorithm 2756

Appendix I Maps of Accessible Water Storage Capacity Datasets757
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Figure H1: Number of decay periods in which the Algorithm 2 successfully converged.

(a) Idp (b) RZSCRU2 (c) AWSC

(d) ERD (e) RD

Figure I1: Maps of accessible water storage capacity and rooting depth datasets used in
this study. (a) Integral of FVC during decay period, Idp, (b) Root Zone Storage Capacity
(RZSCRU2) using CRU as precipitation forcing data with 2 years of drought return pe-
riod from Wang-Erlandsson et al. (2016), (c) Accessible Water Storage Capacity (AWSC)
from S. Tian et al. (2019) (d) Effective Rooting Depth (ERD) from Yang et al. (2016),
(e) Rooting Depth (RD) from Fan et al. (2017). All products are aggregated to 0.5◦ and
cropped for the study domain.
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Kuppel, S., Fan, Y., & Jobbágy, E. G. (2017). Seasonal hydrologic buffer on conti-902

nents: Patterns, drivers and ecological benefits. Advances in Water Resources,903

102 , 178–187. doi: 10.1016/j.advwatres.2017.01.004904

Laio, F., D’Odorico, P., & Ridolfi, L. (2006). An analytical model to relate the ver-905

tical root distribution to climate and soil properties. Geophysical Research Let-906

ters, 33 (18), 1–5. doi: 10.1029/2006GL027331907

Laio, F., Porporato, A., Fernandez-Illescas, C. P., & Rodŕıguez-Iturbe, I. (2001).908
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