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Abstract

We study the fair division problem of allocating a mixed manna under additively separable
piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and
bads that everyone dislikes, as well as items that some like and others dislike. The seminal work
of Bogomolnaia et al. [14] argue why allocating a mixed manna is genuinely more complicated
than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also
provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and
disconnected set of equilibria even under linear utilities), but leave the problem of computing
an equilibrium open. This problem remained unresolved even for only bad manna under linear
utilities.

Our main result is a simplex-like algorithm based on Lemke’s scheme for computing a com-
petitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear.
Experimental results on randomly generated instances suggest that our algorithm will be fast in
practice. The problem is known to be PPAD-hard for the case of good manna [23], and we also
show a similar result for the case of bad manna. Given these PPAD-hardness results, designing
such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic
Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still
one of the most widely used algorithms in practice.

Our algorithm also yields several new structural properties as simple corollaries. We obtain
a (constructive) proof of existence for a far more general setting, membership of the problem in
PPAD, rational-valued solution, and odd number of solutions property. The last property also
settles the conjecture of [14] in the affirmative.

Furthermore, we show that if either the number of agents or the number of items is a
constant, then the number of pivots in our algorithm is strongly polynomial when the mixed
manna contains all bads, providing additional evidence to the practicality of our approach.
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1 Introduction

Fair division is the problem of allocating a set of items among a set of agents in a fair and efficient
way. This age-old problem, mentioned even in the Bible, arises naturally in a wide range of real-life
settings such as division of family inheritance [64], partnership dissolutions, divorce settlements [17],
spectrum allocation [41], airport traffic management [77], office space between co-workers, seats in
courses [68, 10], computing resources in peer-to-peer platforms [50] and sharing of earth observation
satellites [13]. The formal study of this problem dates back to the seminal work of Steinhaus [70]
where he introduced the cake-cutting problem for more than two agents. Since then it has been an
active research area in many disciplines.

The vast majority of work in both Economics and Computer Science focuses on the case of
disposable goods, i.e., items that agents enjoy, or at least can throw away at no cost. However,
many situations contain mized manna where some items are positive goods (e.g., cake), while
others are undesirable bads (e.g., house chores and job shifts). Potentially, agents might disagree
on whether a specific item is a good or a bad. Examples include: dividing tasks among various
team members, deciding teaching assignments between faculty, managing pollution among firms,
or splitting assets and liabilities when dissolving a partnership.

Clearly, bads are nondisposable and must be allocated. At first glance, it seems that the tools
and techniques developed for the case of all goods might apply, but the mixed manna case turns out
to be significantly more complex. The seminal work of Bogomolnaia et al. [14] initiated the study
of mixed manna, where they argue why allocating a mixed manna is genuinely more complicated
than a good or a bad manna, and why an allocation based on competitive equilibrium with equal
incomes (CEEI) is the best mechanism.! They show the existence of equilibrium, and investigate
some of their peculiar properties. Namely, they establish that even the simplest case of linear
utility functions generally admits multiple equilibria, and the set of equilibria is non-convex and
disconnected.? In sharp contrast, in the same setting with all goods, an equilibrium is captured
by a convex program. Designing fast algorithms for mixed manna, even for linear utilities, is an
important open question — the abstract of Bogomolnaia et al. [14] mentions,?

. the implementation of competitive fairness under linear preferences in interactive platforms
like SPLIDDIT will be more difficult when the manna contains bads that overwhelm the goods.

Recently, [18, 45] make progress on this problem by designing polynomial-time algorithms for
computing competitive allocation under linear utilities when either the number of agents or the
number of items is a constant. These algorithms are based on clever enumeration-based exhaustive
search, which may not be fast in practice in the general case.

Our Contributions In this paper, we design a simplex-like algorithm for computing a competi-
tive allocation of a mixed manna when agents’ utility functions have a fairly general form: separable
piecewise linear concave (SPLC), a strict generalization of linear; see Section 4 for a formal defi-
nition. In economics, it is customary to assume that utility functions of goods are concave since
they capture the important condition of decreasing marginal utilities. Likewise, this assumption
is also natural for bads to capture increasing marginal disutility, e.g., considering the chore of re-
ducing pollution from a plant where driving emissions toward zero likely comes at a rising cost.

1E.g., competitive allocation not only achieves the standard notions of fairness called envy-freeness and propor-
tionality, but it is also (Pareto) efficient and core stable.

2 A similar result is shown for only bad manna [15]. We also refer to an excellent survey article by Moulin [62].

3Spliddit [1] is a user friendly online platform for computing fair allocation in a variety of problems, which have
drawn tens of thousands of visitors in the last five years [52]. Spliddit uses linear utilities.



The SPLC functions are also important for the fair division problems to capture natural situations
when there are limitations on the maximum amount of an item that can be assigned to an agent
due to rationing and other restrictions.

Experimental results on randomly generated instances suggest that our algorithm will be fast
in practice, answering the question raised by Bogomolnaia et al. [14]. Our algorithm follows a
systematic path rather than a brute force enumeration of every configuration; see Section 6. We also
show that the problem is PPAD-complete even when all items are bads. As a result, a polynomial
time algorithm is not possible unless PPAD = P. We note that SPLC utilities are extensively
studied in the case of good manna; see e.g., [23, 26, 74, 46]. To the best of our knowledge, they
have not been studied before for a bad (or mixed) manna. We also note that, [14, 15] mention
about reducing the bads under linear utilities into goods under SPLC utilities, however this may
not always work; see Appendix A.

Our approach is based on Lemke’s complementary pivoting on a polyhedron [59], which is similar
in spirit to simplex algorithm for linear programming [31] and classical Lemke-Howson algorithm for
computing a Nash equilibrium of a 2-player game [58]. A common phenomenon in these algorithms
is that they perform well in practice even though their worst case behavior is exponential; the
latter is exhibited via intricately doctored up instances that are designed to make the algorithm
perform poorly, e.g., see [56] and [67] for simplex and Lemke-Howson, respectively. Given the
PPAD-completeness of our problem, such a pivoting-based algorithm is the only non-brute-force
(non-enumerative) option known.

The most striking feature of this approach is that it not only gives a fast algorithm but also
provides several new structural results as simple corollaries. First, it yields the first (constructive)
proof of the existence of a competitive allocation of a mixed manna under SPLC utilities. Second, it
shows that a rational-valued equilibrium exists if all input parameters are rational. Third, together
with the result of Todd [72], it gives a proof of membership of this problem in PPAD. Fourth, this
shows that the number of equilibria is odd in a nondegenerate instance. We note that none of these
results were known even for linear utilities. The last property also settles the conjecture of [14]
in affirmative, which shows the odd property for 2 agents (or 2 items) under linear utilities and
conjectures the same for any number of agents and items.

Furthermore, we show that if either the number of agents or the number items is a constant,
then the number of pivots in our algorithm is polynomial when the mixed manna contains only
bads. All our results also extend to a more general setting of exchange; see Section 2 for definition.
To the best of our knowledge, the exchange setting was not studied before despite its natural
applications, e.g., exchange of tasks among agents in which a group of university students teaching
subjects or sports to each other, or some landlords providing shelter to apartment seekers in their
houses in exchange of help in household chores [2].

Techniques Our approach requires two steps. First, we need to derive a linear complementarity
program (LCP) formulation for the problem whose solutions capture competitive equilibria. Second,
we must show that the algorithm always terminates at a competitive equilibrium — this is usually
shown by proving no secondary-rays (special kind of unbounded edges) in the LCP polyhedron; see
Section 2.2 for details.

This approach has been extensively utilized for computing equilibria in markets (with only
goods) and in games; see, e.g., [38, 46, 48, 47, 57, 69, 53]. Each of them first obtains an LCP
formulation that ezactly captures equilibria, and then shows that there are no secondary-rays.
Despite significant efforts, no such LCP was found for competitive allocation of mixed manna. The
LCP we design has “non-equilibrium” solutions, and furthermore, it has secondary-rays.



We first note that both the above steps must work simultaneously. In fact, it is not difficult
to come up with an LCP formulation for only bads by extending the LCP for only goods [38, 46].
However, it does not yield an algorithm. Hence, we first come up with a different LCP for only
bads. The case of mixed manna turns out to be even more challenging as simply merging the two
LCPs does not work. This is due to the single utility maximization over all items for each agent,
and it is apriori not clear how much an agent wants to spend on only goods (or bads). Using new
ideas, we derive an LCP formulation that captures competitive allocation of a mixed manna, but
it also captures some non-equilibrium solutions that we deal with in the second step.

The second step presents the most significant challenge. The major issue with the Lemke’s
scheme is that, in general, it is not guaranteed to find a solution. This happens when the path
followed by the algorithm leads to a secondary ray.

As mentioned before, the standard way to show convergence of a complementary pivot algorithm
to a solution is by proving that there are no secondary rays in the LCP polyhedron. However, our
LCP formulation has secondary rays. Therefore, we must show that the algorithm never reaches a
secondary ray to guarantee its termination to a competitive equilibrium. In addition, we must show
that the final output of the algorithm is an equilibrium, rather than a non-equilibrium solution to
the LCP. This makes the analysis of our algorithm more challenging than the previous works.

For the hardness result, we show that finding a competitive allocation of a bad manna under
SPLC utilities is PPAD-hard, even a m—approximation, where 7 is the number of agents (The-
orem 29). A similar result is known for the case of good manna [23, 27, 25]. We obtain a reduction
from the problem of computing a Nash equilibrium in two-player games, a known PPAD-complete
problem [24]. At a high-level, our approach follows the same approach as in the case of good manna.
However, one major issue is how to prevent an agent from consuming some bad. This is easy in
case of goods — we can just set the corresponding utility function to zero. For bads this amounts
to setting the disutility value to infinity, which may lead to the non-existence of equilibrium [22].
Therefore, we stick to finite disutility values and circumvent the issue through a careful choice of
parameters and analysis. Our construction implies that the PPAD-hardness holds even if the PLC
function for every pair of agent and bad has at most three segments with constant slopes.

Further Related Work The fair division literature is too vast to survey here, so we refer to the
excellent books [17, 65, 61] and restrict attention to previous work that appears most relevant.

Most of the work in fair division is focused on allocating a good manna with a few exceptions of
bad manna [71, 9, 17, 65]. The seminal paper of Bogomolnaia et al. [14] is the first to study the case
of mixed manna. While linear is the most studied utility function to model agents’ preferences [14],
SPLC is its natural extension to capture important generalizations. For these models, competitive
allocation of a good manna is very well-understood. Two most ideal economic models to study
competitive allocation are of Fisher and Exchange. In Fisher setting, the celebrated Eisenberg-
Gale convex program captures equilibrium when utility functions are homothetic, concave and
monotone, which includes linear [40, 39]. The program maximizes the product of the agents’ utilities
(i.e., the Nash welfare) on all feasible utility profiles, and implies existence, convexity, uniqueness
(of utility profile), and polynomial time computation; there are faster algorithms for some special
cases [35, 63, 75, 76]. For exchange, polynomial time algorithms are known for subclasses of
homothetic functions including linear [55, 79, 37, 36, 49]. Although the SPLC case is known to be
PPAD-complete even in Fisher setting [26, 25|, the complementary pivot algorithm [46] works well
in practice and the only non-brute-force option known.

The fair allocation of indivisible items is also an intensely studied problem for the case when
all items are goods with a few recent exceptions [8, 7, 54, 6, 5, 66]. Since the standard notions of



fairness such as envy-freeness are not applicable, alternate notions have been defined for this case;
see [60, 19, 20, 11, 51, 44] for a subset of notable work and references therein. The Nash welfare
continues to serve as a major focal point in this case as well, for which approximation algorithms
have been obtained under several classes of utility functions including linear and SPLC [29, 28, 3,
4,12, 42, 21].

In our other related work [22], we show that a slight variant of the problem of computing a
competitive allocation of a bad manna under linear utilities is already PPAD-hard. This, together
with the non-convex and disconnected set of solutions, suggests that our algorithm in this paper is
likely to be the best one can hope for this problem even under linear utilities.

Organization of the paper We introduce notation and preliminaries in the following Section 2.
In Section 3 we give a high level overview of our LCP formulation and algorithm in the special case
of linear utilities to highlight the main issues and challenges that arise in computing competitive
allocation of a mixed manna. In Section 4, we formally define SPLC utilities and extend our LCP
formulation to this more general problem. Our algorithm and its analysis appear in Section 5. A
precise description of all the results are presented in Section 5.2. In Section 6, we show a strongly
polynomial bound of the algorithm for all bads when the number of agents (or items) is a constant.
We show PPAD-hardness of the bads only problem in Section 7. Section 8 summarizes our numerical
experiments on randomly generated instances. Appendix A presents a counterexample showing that
bads cannot be reduced into goods, Appendix B illustrates that the Lemke’s scheme fails if we try
a naive adaption of the LCP of [38, 46], which is specialized to all goods, and all the omitted proofs
appear in Appendix C. Finally, Appendix D shows the convergence of the algorithm for only bad
manna.

2 Preliminaries

Let M be the set of m divisible items that needs to be divided among the set N of n agents. An
item can be a good or a bad for an agent as discussed earlier. Each agent ¢ has a utility function
u; : R" — R over bundles of items. Let z; = (xij)jem denote agent i’s assigned bundle containing
x;; amount of item j. The standard notions of fairness and efficiency are envy-freeness and Pareto
optimality, defined as follows:

e Envy-freeness: An allocation X = (x1,...,x,) is said to have no envy, if each agent weakly
prefers her allocation over any other agents’ allocation, i.e., u;(x;) > ui(x;),Vi,j € N. Envy-
freeness also implies another standard fairness notion called proportionality, where every agent
receives at least a 1/n share of all items, i.e., u;(@;) > 2u;(M),Vi € N.

When agents have different weights (unequal rights/responsibilities), say 7; is the weight of
agent i, then we say that an allocation X has no envy if % > %:fj),w,j € N.

e Pareto optimality: An allocation X' = (z},...,]) Pareto dominates another allocation
X = (x1,...,2y) if u(x)) > ui(w;), Vi and ug(x)) > ug(xy) for some k. An allocation X is

Pareto optimal if no allocation X’ dominates X.

Competitive allocations are well-known to be not only envy-free and Pareto optimal, but also
core stable*. Two most ideal economic models to study competitive allocations are of Fisher and

4No coalition of agents, by standing alone, can allocate better shares to each agent in the coalition.



Exchange.? An exchange model is like a barter system, where each agent comes with an initial
endowment of items and exchanges them with others to maximize her utility function. Fisher is a
special case of exchange model where each agent has a fixed proportion of each item. Competitive
Equilibrium with Equal Incomes (CEEI) [73] is a special case of Fisher where each agent has the
same endowment.

2.1 Competitive Equilibrium

Let w; = (W;j)jem denote the agent 4’s initial endowment containing W;; > 0 amount of item j. In
Fisher, W;; = n;,Vi € N, j € M, where 7; is the budget (entitlement/weight) of agent i. In CEEI,
n; = 1,Vi € N. Given prices of items, each agent demands a utility maximizing (optimal) bundle
by spending her budget (earned by selling the initial endowment). At (competitive) equilibrium,
prices p = (p;)jem and allocation (x;);en, satisfy two conditions:

1. Optimal bundle, x; maximizes agent i’s utility at p, i.e., x; € {argmaxu;(y) s.t. Zj Yipj =
> Wijpji y; > 0,Vj}, and

2. Demand meets supply (market clearing), demand of each item equals its supply, i.e., Y, z;; =
Zi Wij, Vjie M.

Observe that equilibrium prices are scale invariant, i.e., if p is an equilibrium price vector, then
so is ap,Va > 0. Further, the prices of items, which are bads for all agents, will be negative at
equilibrium. We can assume without loss of generality that each agent brings some fraction of some
item, and that there is a unit amount of each item, i.e., Y .. Wi; = 1,Vj € M.

2.2 Linear Complementarity Problem and Lemke’s Scheme

Linear Complementary Problem (LCP) is a generalization of Linear Programming (LP) comple-
mentary slackness conditions: Given an n X n matrix A and an n-dimensional vector g, the problem
is to find y such that

Vien: (Ay)i<a; ¥ >0; y(Ay—q)i=0 . (1)

Clearly, the problem is only interesting when ¢; < 0 for some j € [n], otherwise y = 0 offers a
trivial solution. Let P denote the n-dimensional polyhedron defined by the first two constraints of
(1). We assume that P is nondegenerate. That is, exactly n — d constraints hold with equality on
any d dimensional face of P. Under this assumption, each solution to (1) corresponds to a vertex
of P since exactly n equalities must be satisfied.

The LCPs are general enough to capture (strongly) NP-hard problems [30] and therefore may
not have a solution. Lemke’s scheme first augments the LCP by adding a scalar variable z, to
create easily accessible solutions, and considers the formulation:

Vie[n]: (Ay)i—2<q; v >0; y(Ay—q)i=0 @
z>0 )

Observe that a solution (y, z) with z = 0 of (2) gives a solution y of (1) and vice versa. Let P’
be the polyhedron defined by the first two linear constraints for each i € [n], and z > 0 constraint.
The dimension of P’ is n+ 1. Assuming that P’ is nondegenerate, solutions to (2) must still satisfy

"These are two fundamental economic models, introduced by Walras [78] and Fisher [16] in the late nineteenth
century, respectively.



n constraints. Therefore, the set of solutions S is a subset of the 1-skeleton of P’, i.e., solutions
consist of edges (1-dimensional faces) and vertices (0-dimensional faces) of P’. Further, any solution
to (1) must be a vertex of P’ with z = 0.

Solutions S to the augmented LCP have some important structural properties. We say that
label i is present at (y,z) € P'if y; =0 or (Ay); — 2z = ¢;. Every solution in S is fully labeled since
label i is present for all i € [n]. A solution s € S contains double label i if y; = 0 and (Ay); —z = ¢
for i € [n]. Further, there are two edges of S incident to s since there are only two ways to relax
the double label while keeping all the other labels. Obviously, any solution s to (2), which satisfies
z = 0, contains no double labels. Relaxing z = 0 yields the unique edge incident to s at this vertex.

From the above observations, it follows that S consists of paths and cycles. We note that some
of the edges in S are unbounded. An unbounded edge of S incident to vertex (y*, z*) with z* > 0
is called a ray. Formally, a ray R has the form

R=A{(y"z")+ay,?)[a>0},

where (y’,2’) # 0 solves (2) with ¢ = 0 (the direction vector). Among all rays, one is special.
Observe that y = 0,z > |min; ¢;| gives a solution to (2), which forms an unbounded edge of S,
known as primary-ray. All other rays are called secondary-rays. Starting from the primary-ray,
Lemke’s scheme follows a path on 1-skeleton of P’ with a guarantee that it never repeats a vertex.
Therefore, either it reaches a vertex with z = 0 that is a solution of the original LCP (1), or it ends
up on a secondary-ray. In the latter case, the algorithm fails to find a solution, and in fact problem
may not have a solution. Observe that we can replace 1z with cz where ¢; = 0 when b; > 0, and
¢; > 0 when b; < 0, without changing the role of z.
In what follows, for simplicity, we use the shorthand notation of

(Ay)i<q L y

to represent {(Ay); — z < qi; vi >0; yi(Ay —q); = 0} while defining LCPs as in (1).

3 Warm up: Linear Utilities

In this section, we provide a high-level technical overview of our algorithm to convey the main
ideas and challenges. For simplicity, we will assume linear utilities. We deal with the more involved
case of SPLC utilities in Section 4. Since linear is a special subcase of SPLC, all the formal proofs
presented in later sections for SPLC simply apply to the linear case, so we do not present them
separately here.

Linear utility function is defined as u;(x;) := Zj Uijx;j, where U;; is the utility of agent ¢ for
a unit amount of item j. Clearly, U;; > 0 if item j is a good for i and U;; < 0 if it is a bad. For
bads, we also use D;; := |U;j| > 0 to denote the disutility of agent i for a unit amount of bad j. If
Ui; = 0, then we set z;; := 0 and do not introduce corresponding variable in the formulation.

We show in Section 4 that it is without loss of generality to assume that all agents agree on
whether an item j is good or bad. Therefore, M can be partitioned into a set M ™ of goods and a
set M~ of bads. We also show in Section 4 that competitive equilibrium prices of bads are negative,
and those of goods are positive. We may also assume without loss of generality that the total supply
of every item is 1.6 As discussed in Section 2, we derive our results for the most general exchange
setting, which is a strict generalization of Fisher and CEEI.

5This is like redefining the unit of items by appropriately scaling utility values.



Competitive equilibrium in the exchange setting does not always exist. We show that it is guar-
anteed to exist under the strong connectivity assumption (defined in Section 4). This assumption
implies the existence of equilibrium for all instances of Fisher (and hence CEEI) setting under lin-
ear utilities. We will show that our algorithm converges to a competitive equilibrium under strong
connectivity, thereby also implying a constructive proof of existence.”

Like the Simplex algorithm for linear programming (LP), our algorithm is based on Lemke’s
complementary pivoting scheme, which follows a path on a polyhedron and therefore easy to im-
plement and fast in practice (see Section 8 for experimental results). The complementary pivoting
is a powerful tool to design non-enumerative algorithms for (PPAD-)hard problems; a prominent
example is most widely used Lemke-Howson algorithm [58] for computing a Nash equilibrium in a
two-player game. Such an approach follows two steps:

1. Design a Linear Complementarity Problem (LCP) formulation that ezactly captures the so-
lutions.

2. Show that a complementary pivoting scheme converges to a solution. It essentially boils
down to showing that the algorithm will not reach an infinite edge on the LCP polyhedron —
a secondary-ray (see Section 2.2 for the definitions).

The main challenge here is to make both the steps work simultaneously. In fact, it is not difficult
to come up with an LCP formulation for only bads (i.e., M+ = )) by extending the LCP for only
goods [38, 46]. However, it does not yield an algorithm. Hence, we first come up with a different
LCP for only bads. The case of mixed manna turns out to be even more challenging as simply
merging the two LCPs does not work. This is due to a single utility maximization over all items,
and it is apriori not clear how much an agent wants to spend on only goods (or bads) as shown in
Example 6.

The standard way, used in all related works under all goods case [38, 46, 48, 47], to show
convergence of Lemke’s scheme to a solution is by proving that there are no secondary-rays in the
LCP polyhedron as discussed in Section 2.2. Despite significant efforts, no such LCP was found for
competitive allocation of mixed manna. We then switched our attention to showing convergence
to a solution even though there are secondary-rays.

3.1 LCP Formulation
3.1.1 Only Bads

In this section, we derive an LCP formulation for only bads, i.e., M+ = ). Recall from Section 2
that at competitive equilibrium, every agent receives their optimal bundle and demand meets
supply. Thus, the LCP need to capture both these conditions. Since LCP allows only non-negative
variables, we use p; > 0 even for bad j and interpret it as the payment to agents per unit of bad
done. At prices p and allocation x, the money earned by agent ¢ on bad j is x;;p;, which is a
quadratic term. To ensure linearity of equations, we use f;; to denote the money earned by i on j.
Then, the following linear equations capture the demand meets supply condition:

Vi€ M, Zfij =pj, and Vi€ N, Z fij = Z Wijpj (3)

ieEN jeM jeM

At prices p, agent ¢’s optimal bundle @; € {argmin}; Djjz; s.t. > wip; = Yo Wijpss xij >
0,vj}. That is, agent ¢ wants to minimize her total disutility (pain), and in the linear case,

"We note that the strong connectivity assumption is vacuous in case of only bad manna. For this case, we provide
a separate convergence proof in Appendix D without any assumptions.



her optimal bundle consists of only those bads that minimizes the pain per unit of money. Let
MPB;(p) denote the bads with minimum-pain-per-buck for agent i at prices p, i.e., MPB;(p) =
argmin; D;;/p;j. Then, fy. > 0 only if kK € MPB;(p). Let us now introduce a variable 7; to capture
the inverse of MPB for agent i. Then, the following captures the optimal bundle condition:

Vie NVje M, pj—Dyri <0, fi; >0, fij(Dijri —pj) =0 (4)

Using (3) and (4), we obtain the following LCP (very similar to the one for the goods only
case [38]): Variables are, p; representing price of bad j, f;; representing earning of agent i from
bad j, and r; representing inverse of minimum pain-per-buck (MPB) of agent i.

Vie N : ZjeM Wiipj — EjEM fij <0 Lo (5a)
VjieM: Yien fij —pi <0 L pj (5b)
Vie NVjeM: pj — Dijri <0 L fi (5¢)

It is easy to show that all competitive equilibria are solutions of LCP (5). One issue, common to
all related LCPs [38, 46, 48, 47], is that the LCP (5) has more solutions, e.g., setting all variables to
0 is a (trivial) solution. The fix used by all the previous works is: Since equilibrium prices are non-
zero and scale-invariant, it is without loss of generality to assume p; > 1,Vj € M at equilibrium,
and therefore consider (1+p;) as the price of item j and modify the LCP accordingly. However, this
fix fails miserably for the LCP (5). In particular, it indeed does give an LCP that exactly captures
all competitive equilibria, but it does not yield to an algorithm. If we apply Lemke’s scheme on
such an LCP, it encounters an infinite edge (secondary-ray) in a couple of steps and hence fails to
find a solution to the LCP.2

We need a fix for LCP (5) so that the Lemke’s scheme works, and besides, the resulting LCP is
extendable to allow goods as well. Extension to mixed manna case has to capture negative prices
(and money allocation) for bads while combining optimal bundle conditions of bads with those of
goods. We next discuss the general mixed manna setting to show an approach that handles all
these issues.

3.1.2 Mixed Manna

Since bads incur disutility, no agent wants to consume (do) them unless there is a valid reason.
At given prices, an agent ¢ is willing to do a bad only if either her income from endowment, i.e.,
(EjeM+ Wiipj — Z]EM_ Wijp;), is negative, implying she needs to earn, or she wants to buy
a good from money earned because the utility from the good outweighs the disutility of doing

8If we replace p; with (14 p;) in LCP (5), and then augment it by adding scalar variable —z in inequalities with
negative right hand side to apply Lemke’s scheme, we get:

Vi € N, Zje]% Wi]'pj — Zje]vl fi]' —z< _ZjeM Wi]' 1 r
Vje M, dien fis—pi <1 L p;
V’iGN, VjEM, p]'—Di]'Ti—ZS—l J_ fij

Suppose agent k& € N has the highest total endowment Zj Wy, that is more than 1, then for p, f,r = 0 and
Vze D 5 Wi, o0) are solutions of the above LCP, forming the primary-ray. The vertex at the end of this primary-
ray has z = Zj W; where the first inequality above becomes tight for agent k. Lemke’s scheme does complementary
pivot by increasing the corresponding variable ;. Note that, while fixing the remaining variables to the current
value, any 7, > 0 is a solution. Therefore, the algorithm will increase 7y infinitely without finding the next vertex.
This is another unbounded edge of the LCP, a secondary-ray. Thus, Lemke’s scheme gets stuck in the first pivoting
step itself and fails to find a solution; see Appendix B for further discussion.



the bad. The latter condition can be formally stated as: Recall minimum-pain-per-buck bads as
MPB;(p) = argmin,¢ - D;;/(—p;), and similarly define maximum-bang-per-buck (MBB) goods as
MBB;(p) = argmax;¢+Uij/p;. Naturally, agent i consume goods only from MBB;(p) and bads
only from MPB;(p), if at all. And, if MBB;(p) > MPB;(p), then agent i may want to consume bad
b € MPB;(p) so that from the earned money she can buy a good g € MBB;(p). At equilibrium,
the inequality has to hold with equality, otherwise ¢ will demand infinite amounts of both ¢ and
b. By capturing both the max and min ratios for goods and bads respectively in %, the optimal
bundle condition can be stated as:

vieNvjeMt: Si<l and fy>0=tu=1
1 ; - Di; 1 Dij 1
Vie N,Vj e M~ : pT]ZrT- and fij>0:>p7]—r7

Here, f;; for bad j should be thought of as earning of agent . Combining the above with an
appropriate extension of (3), we get the following LCP,

Vi € N : Zfij_ Zfijé ZWijpj_ ZWMPJ’ Lo

jeM+ jeEM— jeM+ jeEM—
VjeM?t: Pj < ien fij Lop
Vje M : Yien fij < pj L pj
Vie N,Yje Mt : Uijri —pj < 0; L fi
Vie N,Vje M : pj — Dijri < 0; L fi

Again, all competitive equilibria are solutions of the above LCP, but it has more solutions such
as all-zeros. Let us now replace p; with (P — p;) and r; with (R — r;), where P, R > 0 are large
constants such that R > P/Up, for Upin = Min; j).7;,£0 |Uij|. Think of P as an upper bound
on prices and R an upper bound on 7;’s (up to scaling) at any equilibrium. With this, we get the
following LCP:

VieN: Y fyu— Y fy <> Wy(P—p)— > Wy(P—p;) L r (6a)

jeM+ jeEM— jeM+ JEM—
VjeM": (P —pj) < Xien fig L p;i (6b)
VieM™: Yien fij < (P —pj) L pj (60
Vie N,Vje Mt : Uij(R—r;) — (P—p;) <0 L fi;  (6d)
Vie N,VjeM™: (P —pj) = Dij(R—1)) <0 L fij  (Ge)

In the next section, we will discuss how solutions of LCP (6) with p < P and » < R maps
to competitive equilibrium.? However, there are still two crucial issues that the algorithm needs
to handle: (i) “dummy solutions” where p £ P or » £ R, and (ii) the augmented LCP to apply
Lemke’s scheme has secondary-rays (easy to construct). We show in Section 3.2 that the algorithm,
starting from the primary-ray, will never reach either.

With p < P, we mean p; < P,Vj, and so on.



Every equation in LCP (6) represents three constraints of the LCP, namely the linear inequality
constraint, non-negativity of the corresponding variable, and complementarity condition which
requires either the inequality to be tight or the variable to be zero. To avoid ambiguity, now on
we will use equation number to refer to the linear constraint, and equation number with a prime
to refer to the complementarity constraint. For example, (6b) refers to (P —p;) < > .. fi; and

(6b”) refers to p;((P —pj) — > ien fij) = 0.

3.1.3 Correctness

Proof (sketch). Although not obvious, it is not too difficult to show that a competitive equilibrium
gives a solution of LCP (6). Given equilibrium prices p* and corresponding money allocation f*,
construct a solution of the LCP as follows: Assume p;‘- < P,Vj due to scale invariance, and set

Vje MT,Vie N: p;=P—p; and fi;= [}

VjeM-,Yie N: pj=P—(-p}) and fij=—

*
ij

Ui . .
o if 3j € M*, f5>0

Vie N: ri=R-—r;, where = . . .
i minje - =5 otherwise

The more difficult part is to map LCP solutions to competitive equilibrium (CE). First observe that
if (p, f,r) is a solution of the LCP, then p < P and r < R: Since all variables are non-negative,
(6¢) ensures that p; < P for all bads j, and this together with (6e) ensures that r; < R for all 1.
Then, (6d) ensures that even for all goods j,p; < P.

Unfortunately, the LCP does have “dummy solutions”, ones that do not give CE. For example,
setting p; = P,Vj € M, r, = R, Vi € N, and f = 0 is a solution of the LCP that gives no
information about equilibrium. There may be more such dummy solutions that we are unable to
discard, however in the next section we will argue that the algorithm has to find a “desired solution”
before it encounters any such dummy solution (this is in addition to avoiding the secondary-rays).

Now we argue that if p < P and » < R at (p, f,r) then it can be mapped to a competitive
equilibrium. For every good j € M™, set p; = P —p; and ff;‘ = fij, Vi € N, and for every bad
J €M™, set pj = —(P —pj) and f; = —f;;. For every agent i, set r; = R —r;. Clearly, lp*| >0
and r* > 0. Since the inequalities of (6a), (6b), (6¢) are satisfied simultaneously, we have

o< D <>

jeM jEMEN jeM

Thereby, all of them hold with equality implying that every agent spends/earns exactly her
budget, and every item is allocated completely. To show that f* indeed allocates optimal bundle
to every agent at prices p*, first we note that (6d) and (6e) ensures that for every agent Uiq/p; <
1/rf < Dy /(—py) for any good-bad pair (g,b). Therefore, agents do not have to demand infinite
amount of any item. Next, the corresponding (6d’) and (6e’) ensure that 7 is allocated goods only
from MBB;(p*) and bads only from MPB;(p*). This together with the fact that she exactly spends
her net earning implies (p*, f*) forms a competitive equilibrium.

Theorem 1 (Informal). For mized manna under linear utilities, solutions of LCP (6) with p < P
and r < R are in one-to-one correspondence with competitive equilibria.'?

19 In Section 4, we extend LCP (6) to capture equilibria under more general SPLC utilities. A number of new
issues arise, e.g., the characterization of optimal bundle turns out to be much more complex. We show that it can
be captured through linear and complementary conditions that still uses a single variable r; to tie them together.
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In summary, solutions of LCP (6) satisfy p < P and r < R, and those with p < P and r < R
exactly captures competitive equilibria. Many issues still remain: 1) LCP has “dummy” non-
equilibrium solutions, 2) augmented LCP has secondary-rays, and 3) LCP polyhedron has multiple
inherent degeneracies. We note that none of these issues arise in previous algorithms [38, 46, 48, 47].

3.2 Algorithm

To apply Lemke’s scheme, we need to add (—z) term to all the inequalities with possibly negative
right hand side (rhs). Observe that these are inequalities of (6a),(6b),(6d), where for (6d) rhs is
P — UZ]R <P-UpnR<O.

Handling Degeneracies FEvery inequality of LCP is paired up with a variable, and for every
pair, either the variable is zero or the inequality is tight at a solution. If both are true for some
pair then it is called a double label (details in Section 2.2). Lemke’s scheme follows a path of
vertices and edges in the solution space, and at every vertex pivots by either making the variable
non-zero or relaxing the tight inequality corresponding to the double label (complementary pivot).
Therefore to avoid ambiguities, it is important to ensure a unique double label at every vertex
that the algorithm encounters. This follows if the LCP polyhedron is nondegenerate. In general,
there are standard ways to handle degeneracy by symbolic or numerical perturbation of the input
parameters. However, in our case they are not sufficient.

To avoid degeneracies and to facilitate the final convergence proof, we need to add carefully
chosen coefficients to the (—z) terms.!* For every good j € M, define §; = (1 + ¢;) where ¢; > 0
is a uniform random value from (0,1/m). We show in Section 4.2.2 that if the input parameters
of the mixed manna, namely U;;’s and W;;’s do not have any polynomial relation, then €;’s can be
carefully chosen so that P is indeed nondegenerate. The augmented LCP is:

Vie N : Z fij — Z fij— 2z < Z Wi (P —pj) — Z Wij(P—p;) L 7 (7a)

jeM+ jeEM— jeEM+ jeEM—
VieMT: (P —pj) < Xien fij +652 L pj (7b)
Vie M : Yien fij < (P —pj) L pj (7c)
Vie N,VjeMt: Uij(R—r;)) = (P —pj) —2<0 L fi (7d)
Vie NVje M : (P—p;)—Dij(R—1;) <0 L fij (Te)
z2>0 (7f)

By construction and Theorem 1 we get:

Lemma 2. Every solution of LCP (7) with z = 0, p < P, and r < R gives a competitive
equilibrium.

Henceforth, we will use y to represent vector (p, f,r). Let P denote the polytope defined by
the linear inequalities of LCP (7) including y, z > 0.

As discussed in Section 2.2, the primary-ray of the LCP is defined as the unique unbounded
edge where y = 0 and z > 0. The algorithm (Lemke’s scheme) starts on this primary-ray of (7)
where z varies from oo to a positive value so that one of the inequalities becomes tight giving the

" This issue does not arise in the known LCPs for goods only case [38, 46, 48, 47].
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double label at the vertex reached. Since R is big relative to P, it ensures that the double label
corresponds to (7d). Then on, the algorithm pivots at the double label by relaxing one constraint,
and traveling along the corresponding edge of P to the next vertex solution — see Algorithm 1
in Section 5. Crucially, the complementary pivot ensure that it never revisits any vertex or edge
[59]. Therefore, the algorithm terminates when it either encounters a vertex (y, z) with z = 0, or
a secondary-ray, an unbounded edge other than the primary-ray. We next show that in the former
case we get a competitive equilibrium and the latter case never happens.

To ensure competitive equilibrium in the former case, we need to show that p < P and r < R as
well (Lemma 2). Furthermore, (7) has an obvious secondary-ray, namely p = P, r» = R, f = 0 and
z positive, and may have many more where a subset of p;’s and r;’s are set to P and R respectively.
The algorithm needs to avoid all of these rays. We handle both of these issues by showing that the
algorithm can never encounter a point where p; = P for any j € M, and r; = R for any 7 € N.
The proof is involved and requires a number of steps that we briefly discuss next. A detailed proof
for the general SPLC utilities is given in Section 5.1.

We prove four main claims:
(a) p< P,r<R,andif r;y =R for ani € N then p; = P,Vj € M~.
(b) If py = P for some good g € M then p; = P for all j € M.
(¢) If pp = P for some chore b € M~ then p; = P for all j € M~.
(d) It can not be that p, = P for all b € M~ unless p, = P for some good g € M* and z = 0.

Using these, let us first argue that the algorithm can never reach a point u = (y, z) (a vertex
or on an edge) where p; = P for some item j or r; = R for some agent 1.

The four claims above imply that if p; = P for some j or r; = R for some ¢ then all p;’s take
value P simultaneously. Consider the first point v before u where 0 < p < P. Observe that such
a v exists because on the primary-ray, where the algorithm starts, p = 0. At v, claim (a) above
imply » < R, and the demand meets supply conditions of (7a), (7b) and (7c) together with unit
supply for every item gives,

S (P-p)= Y (P-p)tnz= > fij— >, fu= > (P-p)= Y (P-p)—2z > 6

jeEM+ JEM— i,jeEMT 1,jEM— jeEM+ jEM— jeEM+

By canceling the price terms we are left with z(n + ZjeMJr d;) =0, implying z = 0 at v. Thus,
by Lemma 2, v itself gives an equilibrium and therefore the algorithm stops at v (or before) and
never reaches u. Full details are in Lemma 19.

Coming back to the four claims, (a) is relatively easy to show; see Lemma 15. We next explain
the idea behind (b). Let p, = P for some good g € M, then (7b’) forces the inequality to be tight
for g, implying ;2 + > .y fig = 0 = 2 = 0. With z = 0, (7a), (7b), (7c) together forces all of
them to hold with equality (by similar arguments as discussed in Section 3.1.3). Furthermore, for
all agents a € N who likes g, i.e., Uyy > 0, (7d) implies r, = R since 7, < R by (a). Replacing
re = R in (7e) for agent a and all the chores, we get that p; = P for all j € M~. This in turn
ensures fq; = 0, for all j € M~ due to (7c).

Now consider the optimal bundle conditions (7d) for agent a. Since z = 0, these essentially are
(R—1q) < % and (R —rg) = (Pip] if fo; > 0. Given that (R —r,) = 0, the latter implies
if fo; > 0 then]pj = P, but (7b) forc]es Yien fij = (P —pj) = 0 implying f,; to be zero. In
summary, agent a neither spends on goods nor earns from chores, and therefore her net income
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(X jens+ Waj (P —pj) = > e - Wai (P — pj)) has to be zero to satisfy (7a’). Since we have shown
pj = P for all the chores the second term is already zero, and hence we have that for all goods j if
Waj > 0 then p; = P.

Under the strong connectivity assumption, there are agents who like the goods that a brings,
namely j € M such that W,; > 0. Since for all these goods we already proved p; = P, applying
the argument again, we can show that for all goods that these agents bring we have p; = P.
Applying this argument repeatedly using the strong connectivity of the economy graph assumption
(Assumption 3 in Section 4) we can propagate p; = P to all the goods j € M*. For the formal
proof with all the details, see Lemma 16 that argues for the more general SPLC utilities. For claims
(c) and (d) too, see Lemmas 17 and 18 respectively.

No other secondary-ray The above argument takes care of secondary-rays where p; = P for
some item j or r; = R for some agent ¢. Next, we show that there are no other secondary-rays,
or in other words no secondary-rays where p < P and r < R. Recall that a secondary-ray is an
unbounded edge of polytope P and the entire edge is a solution of LCP (7) with z > 0. Let (y*, z*)
be the vertex where the ray starts, and (y’, 2’) be its direction vector then the ray can be formally
defined as R = {(y*, 2*) + (v, 2’) | ¥ > 0}. We will argue that the only possibility for R is that it
is the primary-ray where the algorithm started. And since the algorithm never revisits any point,
this is a contradiction.

Observe that the non-negativity of variables in P ensures (y’,2’) > 0, and for any variable if
its coordinate in the direction vector is positive then it increases to infinity on R. However, we
have p < P and » < R on R, hence p/, ' = 0. Then, it can be shown that (7c) and (7a) together
will not let any of the f;;’s increase infinitely implying f = 0. In summary, y’ = 0, and since the
direction vector (y',2’) can not be all zeros, 2’ > 0.

At any point on R, we have y = y* + vy’ = y* and z > 0. In fact, z goes to infinity on
R while y is fixed to y*. Therefore, inequalities with (—z) terms, namely (7a), (7b), (7d), are
all strict on R, and therefore their paired-up variables have to be zero. This gives that r* = 0,
p; =0, Vje€ M™, and fi5 =10, Vie N,Vj € M™. Then, for fi’s for chores, observe that (7e) is
also strict since Vi € N,Vj € M—, (P —pj) < P < D;;R and therefore fi; = 0. This makes all
the (7c) strict since (P — p;) > 0 for all items j, and in turn to satisfy (7c’) pj = 0, for all chores
j € M~. In summary, we get y* = 0 at the vertex of the ray.

Using ¥’ = 0 and y* = 0 we have that on the entire ray R, y = y* + vy’ = 0. Further,
2/ > 0,2* > 0 implies z = z* + vz > 0. However, by definition a ray with y = 0 and 2z > 0 is the
primary-ray where the algorithm starts and can never revisits. This contradicts that the algorithm
terminates on a secondary-ray with p < P and r < R. We refer to Theorem 20 for the formal proof
under more general SPLC utilities.

Our construction also implies odd number of equilibria for nondegenerate instances. Starting
from the primary-ray, the algorithm is guaranteed to reach an equilibrium. All other equilibria
are paired up because the above arguments also imply that if we start the algorithm from any
equilibrium point by relaxing z = 0, it will end up on either the primary-ray or another equilibrium
(see Theorem 23).

Putting everything together, we get (discussed in Section 5.2 for SPLC utilities):

Theorem 3 (Informal). For mized-manna under linear utilities, there is a complementarity pivot
algorithm that finds a competitive equilibrium. Thereby, implying that the problem is in PPAD and
the number of equilibria (up to scaling) for nondegenerate instances is odd.
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Figure 1: An example of SPLC utility functions for a good and a bad.

4 Separable Piecewise Linear Concave Utilities

Recall from Section 2 that the set of agents and items are respectively denoted by N and M.
Agent ¢ € N has W;; amount of item j € M, and it is without loss of generality to assume
that total amount of every item is 1, i.e., >, Wj; = 1,Vj. In this section, we consider additively
separable piecewise linear concave (SPLC) utility functions. That is, agent ¢’s utility function is
additively separable over the items u;(@;) = >_,c s uij(2ij), where for each agent i and each item
Jj, the function u;; : Ry — R is monotone piecewise linear and concave. The function is either
non-negative and increasing representing a good, or it is non-positive and decreasing representing a
chore/bad. We call each linear piece of u;j a segment. Let ]u”] be the number of segments of w;;,
and let the triple (4, j, k) denote the k-th segment. The slope of a segment gives the utility received
per each additional unit of the item. Let (7,7, k) be a segment with domain [a,b] C R and slope
c. Define U;j,, = ¢, and L;jp = b — a. Note that the length of last segment is infinite. However,
since there is unit amount of each item, we can assume without loss of generality that the length
of the last segment is 1 plus some small constant. Note that linear is a special case of SPLC where
each u;; has exactly one segment with infinite length.

Our assumptions on the function u;; implies the following. If agent ¢ receives positive utility
from item j, then Ujjp > Ujjiy > 0 for all k < k', capturing the standard economic assumption of
decreasing marginal returns on goods. Otherwise, 0 > Uyjp > Uy for all k < k' which models
scenarios where the cost of completing a chore increases with the percentage required to be per-
formed, e.g., cutting emissions from a plant. In the latter case, we use the notation D;j, = |Usjk|
for agent ¢’s disutility on the k-th segment of u;;. Figure 1 provides an illustration of SPLC utility
functions.

Identifying Goods and Bads We begin with an important observation. Examining the first
segment of each agent’s utility function reveals the sign of the item prices at equilibrium. If there
exists an agent ¢ € N such that U;j; > 0, then p; > 0. This follows since agent i would demand
infinite amount of item j if p; < 0, and then demand will not meet supply. Therefore, in any
equilibrium, if there exists an agent 7 such that U;;; > 0, then p; > 0. Similarly, if U;;; <0, Vi € N,
then p; <0, as at any positive price the demand of j is zero. In view of the above, we refer to items
with non-negative price as goods, and items with non-positive price as bads. Here, a negative price
for a bad implies an agent can earn by doing (consuming) the chore.
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We can further refine the above observations to identify situations where there exists an equi-
librium where an item’s price is 0. For any good j, i.e., pj > 0, we define the desire for j as

desirejzz Z Lijp.

(€N k:Uyj3>0

In words, desire; is the maximum possible demand for good j at any price p; > 0. Suppose that
desire; < 1, then observe that there exists an equilibrium where p; = 0, since there is a unit amount
of each item. Thus, for any good j with desire; < 1 we may set p; = 0, allocate the segments which
provide positive utility for agents, i.e., U;j;, > 0, and assign any remaining fraction of the good to
any zero utility segments.

Similarly, for any bad j , i.e., p; <0, we define the indifference to j as

indifference; = Z Z Liji.

1IEN k:Uiﬂ:O

The indifference to j is the maximum amount of j that can be assigned without causing any agent
to lose utility. If indifference; > 1, then all equilibria set p; = 0, and the item can be allocated
among the agents along segments with U;;, = 0.

Henceforth, we assume that desire for every good is more than 1 and indifference to every bad
is less than 1. Note that spending on bads ‘costs’ a negative amount of money, since the price is
negative for any bad. The natural economic interpretation is as follows. Suppose agent ¢ accepts
some portion of bad j she dislikes. As the price of j is negative, this decreases her overall spending.
Equivalently, she increases her budget by accepting responsibility for handling some universally
disliked chore in order to spend more on goods she enjoys. Thus, the negative spending on bads
can be viewed as receiving payment on some chore j to increase the agent’s budget.

Characterizing Optimal Bundles. At any prices, for each w;; function, clearly segment k > 1
is more attractive to agent ¢ than any later segment k' > k due to the concavity of u;;. Therefore,
even if agent 7 is allowed to buy “segments” of u;;, she will buy them in increasing order. Formally,
given a vector of prices p, an optimal bundle of items for agent i, i.e., the bundle that maximizes
her utility subject to the budget constraint, solves the following linear program (LP).

max > Uprtije st Y wiep; < Y Wipss 0 < mije < Lk, V(i 4, k),
Jk Jik J

where x;5;, is the fraction of item j allocated to agent i on the £’th segment of u;;. However, we
require a more explicit characterization for later analysis.
For any good, p; > 0, define the bang per buck (bpb) of agent i on segment (j, k) as
U. .
bpbj, = —2%.
Dj

Note that, bpb;;;, is the utility gained per unit spending on the kth segment of good j. Similarly,
for any bad, p; < 0, define the pain per buck (ppb) of agent i on segment (j, k) as

ppbijr = —2=.
Py

J

Note that, for a bad j since p; < 0 and Uy < 0, we have ppb;;, > 0 and it is the disutility per unit
earning on the kth segment of bad j.
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Intuitively, optimal bundles for any agent consist of segments with maximum bpb for goods,
which yield highest utility per unit spending, and minimum ppb for bads, which minimizes disutility
per unit spending. This can be easily verified through KKT conditions on the above LP. These
segments may be computed as follows. Sort agent i’s segments for goods in decreasing order of
bpb;;i, and increasing order of ppb;ji for bads. Define the equivalence classes G1,...,G; for goods
with equal bpb;ji, and By, ..., By with equal ppb;;, for bads. Given the prices p, each segment in
G4 adds an equal amount of utility per unit spending, while each segment in By adds an equal
amount of disutility per unit earning. Obviously, agent ¢ demands G’s and Bg’s in the increasing
order to maximize her utility subject to the budget constraint. By abuse of notation, we will use
bpb(G4) (ppb(Bg)) to denote the bpb (resp. ppb) of the segments in equivalence class Gy (resp.
By).

Since an agent’s utility decreases by consuming chores, she would consume one only if she needs
the money earned to either satisfy her budget constraint (pay for the chores she owns), or use it
to buy goods that (over) compensate for the disutility. Therefore, for agent i if Zje v Wiip; >0
then she consumes a segment from By only if there exists a Gy such that bpb(Gy) > ppb(By). If
the latter inequality is strict, then agent ¢ would choose to accept as much of bads as possible from
By to buy goods from Gy.

Suppose agent i stops buying goods and bads at equivalence classes G4 and By respectively —
G4 (resp. By) is the first partition that is not fully consumed. We note that, if > jem Wigp; <0
then agent i may consume only chores to earn the desired money. For all k < d and k' < d’ we call
the segments of equivalence classes Gy and By forced. All the segments of equivalence classes Gy
and By are called flexible. And the for all k¥ > d and k' > d’ we call the segments of G}, and By
undesirable. For all agents, ppb > bpb in their flexible partition.

Assumptions Even in the special case of all goods, equilibria in exchange setting need not
exist [33]. We need to assume certain sufficiency conditions to allow an equilibrium to exist. We
note that our conditions follows the previous works of [46, 23, 26] that consider only goods, and is
one of the weakest sufficiency conditions to guarantee an equilibrium exists in the case of all goods.
First, we include our basic assumptions.

Condition 1. FEach agent brings a positive amount of some good and positive amount of some bad.

Definition 1. For any good j € M, we say that agent i is non-satiated for j, if U;j;, > 0 where k
is the last segment of good j.

Definition 2. Define the economy graph as a directed graph G with vertices N, with directed
edges from i to j if agent 4 is non-satiated for some good [ that agent j brings. We call the instance
strongly connected if the economy graph G is strongly connected.

Condition 2. Economy graph of the input instance is strongly connected.

Note that, Condition 2 is needed to ensure the existence of equilibrium even for the goods only
case [46, 23]. We refer to Conditions 1 and 2 together as strong connectivity. We will show that our
algorithm in Section 5 converges to a competitive equilibrium under strong connectivity, hence we
get a constructive proof of the existence. Observe that this implies the existence of equilibrium in
all instances of the Fisher (and hence CEEI) setting under linear utilities and under non-satiated
SPLC utilities.
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4.1 LCP Formulation for All Bads

In this section, we derive a linear complementary program to capture competitive equilibria for the
case when mixed manna contains only bads, i.e., Ujji < 0,Y(4,7, k). We build on the approaches
of Eaves [38] and Garg et al. [46] for only goods. Our task consists of two steps. First, we need
to design constraints to ensure that market clears (i.e., all bads are fully allocated, and each agent
earns exactly the required budget). Second, we need to ensure agents earn their budget on optimal
bundles of bads. We note that most of the proofs are deferred to Appendix C.

The first problem, market clearing, is straightforward and does not even require complementar-
ity. Note that the LCP formulation requires non-negative variables. However, prices and spending
on bads are negative. Therefore, we create non-negative variables p; for all j € M, and f;j;, for all
segments (i, j, k). For every U1 < 0 for a good j, then we set f;r := 0 at the beginning itself,
and we do not introduce the corresponding variables in our formulation. We will use (—p;) as the
price of bad j € M, and (—f;;) as the amount agent i earns on the segment (j, k). We also let
D;ji. = |Uyji| denote i’s disutility on segment (4, j, k). Also, for each agent i, we create a variable
r;. Eventually, 1/r; will be the pain per buck of agent i’s flexible partition.

Let L denote a complementarity constraint between the inequality and the variable (e.g.,
Zj Wijp; < Zj,k fij L r;is a shorthand for Zj Wijp; < Zj,k fijk; Ti > 0; ri(zj Wiipj — fijk) =
0). We ensure market clearing with the following constraints, where each variable is paired with a
constraint by complementarity conditions to yield a standard LCP formulation.

Vie N: Zj Wiip; < Zj,k fije L7 (8a)
VjeM: 2k fijk < pj Lop. (8b)

We refer to each constraint by the equation number, and the corresponding complementarity
condition by the equation number prime. Next, we design constraints to ensure agents purchase
optimal bundles of bads. Recall the characterization of optimal bundles from Section 4. Let (i, j, k)
be a segment of agent i’s flexible partition. We want the variable r; to satisfy

ppbijr = — =
T4 Dj

>0 . (9)

For any forced segment (i,j', k'), we have ppb;jiy < ppbijr. We compensate for this by adding
another variable s,y > 0 for each segment (7,7, k") of i’s utility function. We want s;;;, > 0 for
any forced segment, and s;;; = 0 otherwise. The new variables can be interpreted as supplemen-
tary prices for each segment of 4’s utility function. This leads to the following constraints and
complementarity conditions

V(i,j. k) : pj— sije < Digeri L fiji (8¢)
V(i 5, k)« fijk < Lijkp; L osin - (8d)
Note that complementarity condition (8d’) ensures that forced segments are fully purchased. The

next lemma shows that LCP (8) captures all the competitive equilibrium (see Appendix C.1 for
proof).

Lemma 4. Any competitive equilibrium gives a solution to LCP (8).

LCP (8) suffers from a serious problem. The vector q of in (1) representation contains all zeros,
meaning that it admits the trivial solution p = f = r = s = 0. We address this issue by a
change of variables. For any equilibrium price vector p*, there exists a largest price (in magnitude)
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P = max; |p;\ Since equilibrium prices are scale invariant, we can assume that P is a positive
constant. Changing variables to define prices relative to P makes —(P —p;) the price of bad j € M.
Observe that bounding the maximum price (in absolute value) also bounds each agent’s ppb in her
flexible partition, i.e., 1/ppb < P/Dyipn, Vi € N, where D, = min; j k:p,;, >0 Dijk- Let a constant
R > (P/Dy,in), and replace r; with (R — r;). That is, we want 1/(R — r;) = ppb; for i’s flexible
partition. Substituting the new variables (i.e., p; with (P — p;) and r; with (R —r;)) into LCP (8)
yields

Vie N: — Zj Wijp; — Zj’k fijk < =P Zj Wi L r (10a)
Ve M: Sip ik +0j <P 1 p (10b)
V(i g, k) : Dijiri — pj — sijk < DijpR — P L fijk (10c)
V(i g, k) : fijk + Lijip; < Lijp P L Sk - (10d)

LCP (10) still allows one non-competitive equilibrium. Observe that setting p; = P, Vj € M,
ri = R, Vi € N, and all other variables (f,s) = 0, solves LCP (10), but this solution is not a
competitive equilibrium. Rather, this degenerate ‘equilibrium’ proposes to make the price of each
bad 0, since the price of bad j is —(P — pj). In turn, this makes each agent’s budget equal to
0, and prevents them from earning on anything. Ultimately, this leaves all bads unallocated and
the market doesn’t truly clear. We call this the degenerate solution. We show in Section 5 that
the algorithm never reaches this solution. Assuming p; < P, Vj € M and r; < R, Vi € N, it is
straightforward to verify that Lemma 4 still holds.

Theorem 5. The solutions to LCP (10) withp; < P, Vj € M andr; < R, Vi € N ezactly captures
all competitive equilibria (up to scaling).

The proof of the above theorem is in Appendix C.2.

4.2 LCP Formulation for Mixed Manna

We now extend the LCP formulation to the general mixed manna case. Given the known LCP
formulation for SPLC utilities for all goods due to Garg et al. [46], and LCP (10) for all bads, a
natural question is: Can we simply combine an LCP for goods and an LCP for bads to obtain an
LCP for mixed manna? Note that this treats the mixed manna case as two separate subproblems:
one for goods and one for bads. Such a formulation requires separate budget constraints for goods
and bads, i.e., each agent’s spending on goods (bads) is at least as much as her earnings on goods
(bads), similar to constraint (8a). However, a simple example illustrates that, in general, this is
not possible.

Example 6. Consider an instance with two agents A and B, and two items 1 and 2. Agents’
utilities are as follows: up(xq) = Ta1 — 2x 42, and up(xp) = rp1 — 3xpe. Assume each agent
brings an equal amount of each item, i.e., Wa1 = Wyo = Wpy = Wpe = 0.5.

There are a few important things to note. Both agents like item 1, so it is a good and p; > 0,
and since both agents dislike item 2, it is a bad and ps < 0. Clearly, both agents must purchase
some of bad 2 at equilibrium. A portion of item 1 can not be purchased by both agents since optimal
bundles require bpb = ppb. Thus, if both agents purchase some of item 1, then uay/p1 = wa2/p2, or
p2 = —2p1, but we also have the requirement po = —3p1, a contradiction. Therefore, only one agent
purchases good 1. One can verify that the prices p1 = 2 and po = —4, along with the allocation
xa1 =1, xp0 =3/4, xp1 =0, and xpy = 1/4 are an equilibrium where each agents’ initial budget
1s set to —1. Note that agent 1’s total spending on the good is 2, and agent 2’s spending on the
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good is 0. However, the total value of good in each agent’s initial bundle is 1. Thus, neither agent’s
spending on the good equals the value of good in her initial endowment.

4.2.1 Basic Formulation

Similar to Section 4.1, we start by designing an LCP whose solutions capture competitive equilibria.
This requires that the market clears, and that agents purchase optimal bundles of goods and bads.
Although specialized to the case of all bads, the derivation of LCP (10) in Section 4.1 provides the
basic framework needed to handle the general mixed manna setting. As discussed in Section 4,
we can identify which items are goods and which are bads by examining the sign of the utility for
the first segment of each agent. Note that when dealing with mixed manna, we assume the strong
connectivity conditions (see Conditions 1 and 2).

For clarity, we first write all complementarity conditions with minimal change of variables. Let
M~ and M™ denote the set of bads and goods respectively. For all j € M, prices, spending, and
utilities are negative. We introduce non-negative variables p; and f;;;, for all j € M. We interpret
pj as the price of good j € M, and (—p;) as the price of bad j € M~. Similarly, f;j; gives agent
i’s spending on the segment (3, j, k) for good j, while — f;;1, is i’s spending on the segment (4, j, k)
of bad 7 € M~. We ensure market clearing with the following complementarity conditions

VieN: > fgr— >, faw< Y, Wypi— > Wiyp; L n (11a)

kjeM+ k,jeM— jJEM* jJEM—
Vje M : Zfijk < pj L pj (11b)
ik
Vjie Mt pj < Zfijk L pj. (11c)
ik

Note that we treat the spending constraints for bads (11b) and goods (11c) differently. Further, if
all items are bads, then we recover (8a) and (8b).

Lemma 7. If p* is an equilibrium price vector, then 3 f such that (p, f) satisfies (11a), (11b),
and (11c), where p = |p*|. Further, if p and f satisfy (11a), (11b), (11c) and p > 0, then the
market clears.

Proof of the above lemma is in Appendix C.3. The next step is to make sure agents purchase
optimal bundles. Let (4,7, k) be a segment of agent ¢’s flexible partition for item j. We want the
variable r; to satisfy, where D;;, = |U;j;i| for bad j,

1 U 1 Dy
— =295 it e Mt and — = 2% ifje M. (12)
T bj & Dj

Recall that forced segments of goods and bads correspond to slightly different conditions. For any
forced segment (i, j, k") of bad j, we have ppb;ji < ppbiji. For any forced segment (i, j, k) of good
J, we have bpb;jir > bpb;ji. Again, we compensate for this by introducing a variable s;;;, > 0 into
each segment (i, 7, k) of i’s utility function, leading to the following complementarity conditions

Vie M, Y(i,j,k): pj—syr < Dirri L fije (11d)
Vie MY, V(i,5,k) s Ugjrri <pj+ sk L fije (11e)
V(i 4, k)« fijk < Lijip; L sijk - (11f)

Observe that, if all items are bads, then we recover (8c) and (8d).
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Lemma 8. Any competitive equilibrium of mized manna gives a solution to LCP (11).

The proof of the above lemma is in Appendix C.4. Similar to the case of all bads, LCP (11)
admits solutions that are not competitive equilibria, e.g., the trivial solution p = f =r =s = 0.
We use the same change of variables as before. We fix a maximum price (in absolute value)
P, and define the relative prices: (P — p;) for all goods j € M™, and —(P — p;) for all bads
j € M~. This bounds each agent’s ppb or bpb in her flexible partition, i.e., 1/bpb, 1/ppb < P/Upin
where Upip, = ming j x.v,,,#0 |Uijk|.- Using this we define a constant R > P/Up,;, and replace 7;
with (R — r;). That is, we want ﬁ to represent ppb and bpb of agent i’s flexible partitions.
Substituting p; with (P — p;) for each j € M and r; with (R — r;) for each agent ¢ € N into
LCP (11) yields

Vie N : Z Wijpj— Z Wijijr Z fijk* Z fzgkgp( Z Wijf Z le) 1 L7 (13&)

JEMt JEM~— k,jeM+ k,jeM— jEMt JEM~—
VieM™: > fik+p <P L pj (13b)
ik
VjeM": > fik—p; <P L pj (13c)
ik
Vj e M, Vi,k: Dijkm —Dj — Sijk < Dz]kR —-P L fijk (13(31)
Vj e M+, Vi, k: —Uijkri + Ppj — Sijk < P-— Uiij 1 fijk (136)
V(i j, k) Jijk + Lijkp; < LijiP L osir - (13f)

In the case of all bads, LCP (13) is equivalent to LCP (10) from Section 4.1.

Similar to LCP (10), LCP (13) still allows (at least) one non competitive equilibrium. By
setting p; = P, Vj € M, r; = R, Vi € N, and all other variables (f,s) = 0 we get a solution to
LCP (13). However, this solution does not correspond to a competitive equilibrium, but rather,
a degenerate solution where all prices are zero and no items are allocated. We show in Section
5.1 that the algorithm never reaches this degenerate solution. Assuming p; < P, Vj € M, and
r; < R, Vi € N, it is straightforward to verify that Lemmas 7 and 8 still hold — see Appendix C.5
for the formal proof.

Lemma 9. In any solution to LCP (13) with p; < P, Vj € M, and r; < R, Vi € N, all agents
receive an optimal bundle and market clears w.r.t. prices p* where p; = (P — pj) for all goods
j € M* and pj = —(P — p;) for all chores j € M~.

The next theorem follows using Lemmas 8 and 9 together with the way LCP (13) is constructed
from LCP (11). Its proof is in Appendix C.6.

Theorem 10. The solutions to LCP (13) with p; < P, Vj € M, and r; < R, Vi € N, exactly
captures competitive equilibrium of mixed manna (up to scaling).

4.2.2 Augmented LCP and Nondegeneracy

Observe that LCP (13) has the same form as (1) in Section 2.2. We now give the augmented LCP
for this problem. By choice of P and R > P/ min; j v, , 0 |Uijk| we have that for all bads j € M,

D;jrR — P > 0, Vi, k. This makes the right hand side of (13d) positive for all bads. Standard
LCP techniques [38, 46, 47] add the variable z only in constraints with negative right hand side.
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We make two changes. First, we include the variable z to any constraints with negative right hand
side, and all budget constraints (13a). Second, when adding z into spending constraints for goods
(13c), we use a coefficient §; = 1 + ¢, where €; is a uniform random number from (0,1/m). This
change is necessary to ensure that the polyhedron corresponding to the augmented LCP remains
nondegenerate, as discussed shortly. Adding z to any constraints with negative right hand side,
and all budget constraints (13a) yields

Vie N : Z Wijpj— Z Wi]‘pj‘f‘ Z fijlc_ Z fijlc_ZSP( Z Wij_ Z W’L]) 1 Ti(14a)

jeEM+ jeEM— k,jeM+ k,jeM— jeM+ jeEM—
Vie M : > fik+p <P 1L p (14b)
i,k
Vj€M+Z —Zfijk—pj—(SjZS—P 1 Dj (14C)
i,k

Vj e M, Vi,k: Dijkri —Dj — Sijk < Diij — P 1 fijk: (14d)

Vie MY, Vijk: —Upjkri+pj—sijk—2 < P—UjrR L fijk (14e)

V(i,j, ]{:) : fijk + Lijkpj < LijkP 1 Sijk - (14f)

Let P be the polyhedron corresponding to LCP (14). Lemke’s algorithm requires nondegeneracy
of the polyhedron P, i.e., if P is defined on k variables, then at any d dimensional face of P exactly
(k — d) inequalities hold with equality. In that case, the solutions of LCP (14) are paths and cycles

on the 1-skeleton of P. However, there is an inherent degeneracy present when z = 0, i.e., solutions
of LCP (13).

Inherent Degeneracy in LCP (13). Summing (11a) over all i € N, and (11b) over all j € M~ and
(11c) over all j € M™ yields two identical equations; see the proof of Lemma 7 for details. That
is, there is an inherent degeneracy in P.

Clearly, the inherent degeneracy of LCP (13) is still present in P when z = 0. We need to show
that no other degeneracies exist which crucially relies on §; = 1 + ¢; for all goods j € M +.12

If there is a degenerate vertex v € P with z > 0, p; < P, Vj € M, and r; < R, Vi € N,
then using the extra tight inequalities at v we can derive a polynomial relation between the input
parameters U, W and L, and ¢;’s. Therefore, we get the following theorem (see Appendix C.7 for
the formal proof).

Theorem 11. If the instance parameters U, W, and L have no polynomial relation among them,
then every vertex of P with z >0, p; < P, Vj € M, and r; < R, Vi € N, is nondegenerate.

By the similar argument, together with Theorem 10 and the fact that solutions of LCP (14)
with z = 0 are solutions of LCP (13), we get the following (see Appendix C.8 for a formal proof).

Theorem 12. If the instance parameters U, W, and L have no polynomial relation among them,
then solutions of LCP (14) with z =0, p; < P, Vj € M, and r; < R, Vi € N, are in one to one
correspondence with competitive equilibria.

Remark 13. A degenerate instance can be solved by perturbing the input parameters using the
technique in [36] that preserves the solution structure.

12Quppose §; = 1, Vj € M, and that p; = 0, V§j € M™, and fi;r, = O for all segments (4, 4, k) of each good. If
z = P, then (14c) also holds with equality Vj € M. Therefore, we have double labels for each good j € M.
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5 Algorithm

In Section 4.2.2, we designed the augmented LCP (14) that permits use of Lemke’s scheme, and we
showed a one to one correspondence between competitive equilibria and solutions to LCP (14) with
z=0,and pj < P, Vj € M and r; < R, Vi € N so long as the polyhedron P defined by LCP (14)
is nondegenerate. We now add the slack variable v, to the a-th constraint to of LCP (14) to obtain

Ay+v—cz=q, y>0, v>0, 2>0, and y-v =0,

where c is the vector of coefficients for z in LCP (14). Note that the condition v > 0 follows from
qg— Ay > 0. We call the new formulation LCP (14’). Of course when vy, = (¢ — Ay + ¢z), = 0, the
k-th constraint holds. Therefore, at any fully labeled vertex solution S of the polyhedron defined
by LCP (14’); see Section 2.2, either vy = 0 or y, = 0. At a double label, vy = yx = 0. Using the
notation of Section 2.2, we let y = (p, f, 7, s) be a vertex solution to LCP (14’).

Recall from Section 2.2 that Lemke’s algorithm explores a certain path of the 1-skeleton of
P, traveling from vertex solution to vertex solution along the edges of P. Note that we chose
R such that R > P/min; ; |Usji|, which ensures the right hand side of (14d) is positive, i.e.,
D;jrR — P > 0, for all segments (4,5, k), Vi,k, Vj € M~, and that the right hand side of (14e) is
negative, i.e., P — U;pR < 0, for all segments (i, j, k), Vi, k, Vj € M. Further, for sufficiently
large R, we have min; P(3_;cp+ Wij — X e~ Wij) > P — maxjep+ i UijiR. Then, we get the
primary ray (initial solution) Sy by setting

So={yy=0, z= jeI]\r/l[i),(i,k UijkR— P, vo =q+cz} .
Clearly, this initialization gives the unique double label yjr)« = vijr)y- = 0, for (4,5,k)" =
arg maX(jeMth) Uiij —P.

Algorithm 1 gives a formal description of the Lemke’s algorithm applied to LCP (14’). Assuming
the input parameters U, W, and L have no polynomial relationship among them, Theorem 11
guarantees that any vertex with z > 0 is nondegenerate. Therefore, a unique double label, say
k, such that y, = v = 0, always exists. Algorithm 1 pivots at the double label by relaxing one
constraint, and traveling along the corresponding edge of P to the next vertex solution.

Theorem 14. If the input parameters U, W, and L have no polynomial relationship among them,
then Algorithm 1 terminates at a competitive equilibrium in finite time.

5.1 Convergence of Lemke’s Algorithm

We now show that Algorithm 1 always finds an equilibrium. We note that, unlike earlier works that
consider only good manna [38, 46], our LCP formulation allows for secondary rays and one non-
equilibrium solution. This makes the proof that Lemke’s algorithm finds a competitive equilibrium
significantly more complex.

For ease of presentation, we perform the subsequent analysis using LCP (14), i.e., without any
slack variables. Let P be the corresponding polyhedron. To verify Algorithm 1 terminates at a
competitive equilibrium we need to examine two potential problems. First, we need to show that
the algorithm never finds a secondary ray. Second, we need to show that, starting from the primary
ray, Algorithm 1 never reaches the degenerate solution where p; = P, Vj € M,and r; = R, Vi € N.

First, we consider secondary rays. Recall that a ray R is a unbounded edge of P incident to
the vertex (y*, z*) with z* >0

R=A{ly",2"]+aly, 7] | Vo > 0}.
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Algorithm 1: Algorithm for Competitive Equilibrium of Goods and Bads.

Data: A, q
Result: A competitive equilibrium
18« S();
2 while z > 0 do
3 Let k be the double label in solution S, i.e., yr = vp = 0. ;
4 if vy just became 0 then
5 ‘ Pivot by relaxing yx = 0.;
6 else
7 ‘ Pivot by relaxing v = 0.;
8 end
9 Let S” be the next vertex solution to LCP (14’) reached, S « 5;
10 end

Clearly, all points on R solve LCP (14). Algorithm 1 begins at the primary ray Sy, and all others
are called secondary rays. The major issue is that if Algorithm 1 finds a secondary ray, then it
fails to terminate. Observe that setting p; = P for some j € M~ leads to secondary rays. Suppose
we set p; = P for some subset of bads B C M™, and p; = 0 otherwise, and make all other
variables (f,r,s) = 0. Then, we may select sufficiently large z* to satisfy all constraints of the
form (14a), (14c), and (14e). Let y* = (p, f,r,s) be this vertex solution, and consider the ray
R = [y*, z*] + [0, 1] incident to (y*, z*). It is easily verified that R solves LCP (14) for all « > 0,
and, therefore, is a secondary ray. We want to show the path traced by Algorithm 1 never reaches
these problematic vertices.

We begin with a simple observation. Notice that setting p; = P for any good requires that
z =0, by (14c) and (14c’). Therefore, Algorithm 1 stops at a vertex where any p; = P, for any
j € M+. We follow this result with a few useful facts.

Claim 1. Let S be any solution to LCP (14) with p; < P, Vj € M. Pick any agent i € N, and
any item (good or bad) j € M, and let k = |u;;| be i’s final segment for item j. If j € M~, then
sijk = 0. If j € MT and p; > 0, then s, = 0.

Proof. Recall that the length of the final segment (i, j, k) is infinite, however, we set L;j; = 1 + ¢,
for some small € > 0 since there is a unit amount of each item. We consider two cases: j is a bad
or a good. First suppose j € M, and for contradiction assume s;;, > 0. By complementarity
condition (14f"), (14f) holds with equality. Then, fix = Lijr(P — p;) > 0, since p; < P at S.
Consider the constraint (14b). From the above observations, we see that

Lijk(P—pj) = fije <Y _ fojw < P —pj,

il K

a contradiction, since L;;;, > 1, and p; < P.
Now suppose j € M T and p; > 0. For contradiction assume sijk > 0. Again (14f’) requires that
(14f) holds with equality so that fi;r = Li;jx(P — pj) > 0. Since p; > 0, then (14c’) requires that

P—pj= fujw +8z > fijr + ;2 = Liu(P = p;) + 0z,
i k!

a contradiction since L, > 1, d;,2 > 0. ]
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Lemma 15. At any solution to LCP (14), p; < P, Vj € M and r; < R, Vi € N. Further, if
r; = R for somei € N, thenp; = P, Vj € M™.

Proof. First suppose p; > 0, for some j € M~. Complementarity condition (14b’) requires that
(14b) holds with equality. Thus, sz fijk + pj = P. Then p; < P, since P, and fj;;’s are
non-negative. The case of j € M follows similarly, using complementarity condition (14c’).

Next if r; > R for some i € N, then all her f;;;’s have to be zero since both (14d) and (14e)
are strict. Then, using the fact that p; < P for all j € M, (14a) is also strict. This violates the
corresponding complementarity condition (14a’) since r; > R > 0, a contradiction.

For the second claim, we show contrapositive. Suppose that p; < P for any j € M ™, and pick
any agent i € N. Recall that 0 < D;;1 < --- < Dyji, where k is the final segment of i’s utility
function for j. By Claim 1, s;;; = 0, so that constraint (14d) for the segment (4, j, k) becomes:
Dijrri — pj < DyjpR — P. Since p; < P, it follows that r; < R. ]

Lemma 16. Starting from the primary ray, if Algorithm 1 reaches a vertex where pj = P for some
good j € M, then pjy < P for all other items j' € M, r; = R, for alli € N, and z = 0.

Proof. For contradiction, let T be the vertex solution to LCP (14) where p; = P for some good j
for the first time, and assume that pjy < P for some item j' € M. Let S be the vertex the that
precedes T starting from the primary ray, and E be the edge between S and T'. Note that such a S
exists since we start from the primary ray where p = r = 0. Let M; be the set of goods for which
pj > Pon E,and Ny ={i € N: 3j € My st. Uy >0, k=|uy|} be the set of agents that are
non-satiated for some good in M.

Claim 2. At T, r; = R, Vi € Nj.

Proof. Let j € My, and let i € Ny be an agent that is not satiated for good j. Let (i,j, k) be the
i’s final segment for good j. Note that p; > 0 on E so that p; can increase to P. By Claim 1,
siji = 0. Consider the constraint (14e) for this segment the edge £

Uij(R—1;) — (P —p;) —2 <0. (15)
Along E, both z — 0, and p; — P. Therefore, (15) implies that r; — R, since U, > 0. O
Claim 3. Ifp; — P for some good j € M, then pj — P, Vj' € M~.

Proof. Since item j is a good, at least one agent, say ¢, is non-satiated for j. Therefore, by Claim
2, 7 = R, on E. Consider any j' € M~. Let k' = |u;j| be ¢'s final segment of j/. By Claim 1,
sijir = 0, on E. Then, constraint (14d) requires that

(P = pjr) < Diji (R —1i)
which implies that p;, — P, since r; — R. O
Claim 4. The agents of N1 purchase no items at T, i.e., fi; =0, Vj, k, Vi € Ny.

Proof. At T, p; = P, Vj € M~, by Claim 3. Therefore, (14b’) requires that >_, , fijx +p; =
P, Vj e M~ at T. It follows that no agents purchase any bad at T, i.e., fijr = 0 Vi, k, Vj € M ™.
A similar argument shows that no agents purchase any goods j € My at T.

Let < € N1, and j be any good such that p; < P at T'. For contradiction, suppose ¢ purchases
jat T, ie., at least f;j1 > 0. Then, (14€’) requires that (P — p;) + sij1 = 0, since r; = R, and
z =0 at T'. Thus, we obtain a contradiction since s;;1 > 0, and p; < P. Therefore, the agents of
Nj purchase no items (bads or goods) at T'. O
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Claim 5. Agents of N1 are not endowed with any fraction of any good with a positive price, i.e.,
Vi € Ny, Wi; =0 for all j € My = M™* \ M. Therefore, the budget of each agent i € Ny is equal
to 0 atT.

Proof. At T the following conditions hold for all ¢ € N;. First, r; = R, by Claim 2. Then, (14a’)
requires that (14a) holds with equality. Next, Claim 3 shows that p; = P, Vj € M~ and Claim 4
states that fi;r = 0,Vj, k. Recalling, that z = 0 at 7', then (14a) simplifies to

> Wii(P—pj) = 0.

JEMp

Clearly, W;; = 0, Vj € My, for any ¢ € N; since p; < P, Vj € My. It follows that agents of N; are
only endowed with items in M~ U Mj. All of these items have price |P — p;| = 0 at 7. Thus, the
budget of agents in Ny equals 0 at 7. O

We now prove the lemma. Suppose p; < P for some item at 7. Claim 3 shows that p; =
P, Vj € M~. Therefore, j € My. Define Ny = N \ N;. Observe that |Ng| > 0, otherwise | M| = 0,
by Claim 5. It follows from Claim 2 that any agent ¢ € Ny is satiated for all j € My, i.e., the final
segment (1,7, k) has Usjp = 0. Further, the agents of N start with only goods of M, by Claim
5. Therefore, in the economic graph described in Section 4, there are no edges from the agents of
N1 to any agents of Ny. That is, the economic graph is not strongly connected, a contradiction.
Therefore, |[My| =0, and pj = P at T. My = M, and so Ny = N. By Claim 2, , = R, Vi € N, at
T. O

Next, we show that, starting from the primary ray, Algorithm 1 never reaches secondary rays
where p; = P, Vj € S C M~, while p; < P, ¥j € M~ \ S. For this, we first prove the following
lemma.

Lemma 17. Starting from the primary ray, if Algorithm 1 reaches a vertex where pj = P for some
bad j € M~, then pjy = P, for all j' € M~.

Proof. For the sake of contradiction, suppose T is the solution to LCP (14) where p; = P for some
bad j € M~ for the first time. Now consider the vertex S = (p, f,r, s, z) which precedes T. That
is, Algorithm 1 pivots at the vertex S and travels along the edge E to T.

At S,0<p; < PVje M, since T is the first time p; = P for some j € M~. In addition,
complementarity condition (14b’) requires that constraint (14b) holds with equality for bad j along
the entire edge F so that p; may increase to P. Then, the conditions Zlk fijk+p; = P,and p; < P,
imply that at least one agent, say ¢, spends on some segment (i, j, k) along E. Recall that we select
R large enough that the right hand side of (14d) is positive for all segments (i,j,k). Observe
that this implies 7; > 0, otherwise (14d) holds with strict inequality which forces fi;x = 0, V5, k
by complementarity condition (14d’). Thus, the segment (i, 7, k) is either forced or flexible for 7,
r; > 0, and (14d) holds with equality for segment (i, j, k) along E.

Let j' be a bad such that p;; < P at T. By Claim 1, i’s final segment k' = |u;;| has s;» = 0.
Since (14d) holds along E for the segment (i,7,k), then Dyjp(R —r;) = P —pj — sijp < P — pj.
Also, since s,y = 0, then d;j (R — r;) > P — pj» holds along E. Equivalently, we have

0< Dy, < D, _ 1 < Dy '
(P—pj) = (P=pj)—sijg  R—ri = (P—pj)
Thus, we obtain a contradiction since p; — P, but p;s < P. ]
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Lemma 17 implies that we can not have p; = P for some subset of bads, while p; < P for all
remaining bads. We still need to rule out the case where p; = P, Vj € M~. The argument follows
similar reasoning to that of Lemma 17. Setting p; = P, i.e., the price of all bads equals 0, requires
that at least one agent purchases some bad as p; — P, sending ppb 1 co. The more complicated
portion of the proof lies in showing that this agent also must purchase some goods. However, if
pj < P, Vj € M, then bpb remains bounded. This gives a contradiction since bpb > ppb whenever
an agent purchases both bads and goods.

Lemma 18. Starting from the primary ray, if Algorithm 1 reaches a vertex wherep; = P, Vj € M~
then pjy = P, Vj' € M+ and z = 0.

Proof. For contradiction, let T be a solution to LCP (14) where p; = P, Vj € M~ for the first
time, but p; < P, Vj € MT. Note that Lemma 16 shows that p; < P, Vj € M™, otherwise all
prices are set to zero, i.e., p; = P, Vj € M. Let S be the vertex which precedes T'.

At S, p; > 0,Vj € M~ so that p; may increase to P. Then, the conditions Zi,k fijk +pj = P,
and p; < P, Vj € M~, imply that at least one agent, say i, spends in her first segment (i, j,1) for
some bad j. Note that r; > 0, otherwise (14d) holds with strict inequality, and so (14d’) requires
fijk = 0 for all bads. Thus, the segment (4, j, 1) is either forced or flexible for ¢, 7; > 0, and (14d)
holds with equality for segment (i, j,1) along edge. We want to show that these conditions imply
that the agent also purchases some good.

Observe that on the edge E from S to T, every agent’s budget eventually becomes strictly
positive, since p; — P, Vj € M. Fix € > 0, and pick a point 7" on E so that 2|M ™| max;e - (P —
p;) < e. At T, it follows that

E ]fajk—Waj(P—pj)|§2|M7|%1&§(P—pj)§6, Ya € N,
; J
k,jeM—

since Wy; < 1, and fuj, < P — pj;, by (14b). Recall that r; > 0, so that (14a’) requires that
> jrem+ Wit (P —pyr) + 2= icn- Wi (P —p5) + Xk jen— fijk = 2k jrem+ figks or

Z Wijpjr +2z—€ < Z fijie < Z Wijrpjr + 2 + €,
jleM+ k,j'e M+ jleM+

at T'. Therefore, we must have f;;x > 0 at least for some segment (4,5, k") of some good j’,
since ) jenr+ Wij (P —pj) >0, z>0, and € > 0 was arbitrary. For this segment, complementarity
condition (14e’) requires that U;jp(R — 73) = (P — pjr) + 2z + s;js1. Note that Uy, > 0 since
(P —pj)>0on E, and z, s;j; > 0. For the bad j, (14d’) requires D;;i(R —r;) = (P — pj) — Sijk,
since f;jr > 0. Further, these conditions hold along the edge from T” to T where p; — P, Vj € M~.
But then

Uijrir 1 Dy, S Dy,

P—pp+z+sygw R—ri  (P—pj)—sijp  P—pj’

so that Usj /(P — pjo + 2 + sijpr) — 00, since p; — P. Then, me must have pjy — P, s;jr — 0,
and z — 0, along the edge from 7" to T, since ;47,2 > 0 and p;; < P, Vj € M by Lemma 15. A
contradiction since p;; < P, Vj € M+, O

Lemma 18 rules out the possibly of secondary rays where p; = P, Vj € S C M~. We still need
to show that Algorithm 1 never reaches the degenerate solution.

Lemma 19. Starting from the primary ray, Algorithm 1 never reaches the solution p; = P, ¥j € M,
and r; = R, ¥Yi € N, with all other variables, including z, equal to zero.
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Proof. Let T be the degenerate solution. By Lemma 18, Algorithm 1 never reaches a vertex with
pj = P, Vj € M~, while p; < P, Vj € M™. Therefore, the only possibility is that all p; are set to
P simultaneously.

Consider the vertex S that precedes T'. At S, 0 < p; < P, Vj € M, so that p;’s can increase to
P. Thus, (14b’) and (14¢’) require that (14b) and (14c) hold with equality at S. Summing these
equalities over all j € M shows that the total spending is

Yo fur— Y fuk= D>, (P=p)— > (P-p)-z ) 4

i,k jeM+ 1,k,jeEM— i,jeEMT 1,J€EM~ JjEMT

Note that z = 0 at T" so that Algorithm 1 stops there. This implies, 0 < r; < R, Vi € N, at S
so that the 7; can increase to R, as required by Lemma 16. Therefore, (14a’) requires that (14a)
holds with equality for all ¢ € N. Summing over all ¢ yields

Z fij'k — Z fijke = Z Wiy (P — pjr) — Z Wi;(P = pj) + zn.

ik,j €M+ ik,jEM~ i, eM+ ijeM~

Or, since there is a unit amount of each item, i.e., >, W;; = 1, we see that

Z fije — Z fijk = Z (P—pjr) — Z(P—Pj)—i-zn.

i,k,j'e M+ i,k,jeEM— jleM+ jEM—

Which implies that z(n + _;cy+ 6;) = 0, at S. Thus, 2 = 0, since the §; > 0, Vj € M. This
means that the algorithm stops at .S, which is a competitive equilibrium by Theorem 12. O

Theorem 20. Starting from the primary ray, the Algorithm 1 never reaches a secondary ray.

Proof. Here, we need to impose conditions on the choices of P and R. After fixing any P € R,
select R large enough to ensure that: the right hand side of (14d) is positive, i.e., D;;sR — P > 0,
for all segments (i,7,k), Vi, k, Vj € M~, and that the right hand side of (14e) is negative, i.e.,
P — U;rR < 0, for all segments (4,7,k), Vi, k, Vj € M*. Recall that the ray R = {[y*,z*] +
aly’, 2] | Yao > 0} begins at the vertex (y*,2*) and travels in the direction (y’,2’), where y =
(p, f,r,s).

First, we show that y' = 0, starting with p’ = 0. Consider constraints (14b), (14c), and
complementarity conditions (14b’) and (14c’). For contradiction, suppose pg > 0 for some j € M.
Then, p; > 0, Ya > 0, so (14b) or (14c) must hold with equality. Since P is fixed, fi’jk >0, Vi, ], k,
and z > 0, then eventually (14b) or (14c) is violated. Therefore, p’ = 0. Similarly, by (14b),
f' =0, Vj € M~. Note that if p’ = 0, then the price of each item is constant along E. Recall
from Claim 1, that s;;, = 0 for the final segment k = |u;;| of any bad. Therefore, 7’ = 0, otherwise
(14d) is eventually violated for the final segment (i, j, k) of any bad j € M~ for any agent i € N.
Also, since f' = 0 for all bads j € M, the spending on bads is constant. If f’iljk‘ > 0 for some good
j € M™, then z must increase to ensure inequality (14a) holds. Further, (14e) must hold for this
segment (i, j, k) by complementarity condition (14e’) since flljk > 0. However, since r; and p; are
constant and s;j; > 0, (14e) can not hold with equality as z increases. This shows that p’, f’, and
r’ are constant. Observe that these variables determine s by (14d) and (14e). Therefore, s’ = 0.
It follows that 2z’ > 0, otherwise no variables change.

Finally, we show y* = 0. Notice that along the ray E, the money earned and spent by each
agent remains constant. However, z increases. Thus, complementarity condition (14a’) implies
that r* = 0. It follows that (14d) holds with strict inequality for all bads j € M~, forcing
f* =0 for bads j € M~, by (14d’). Now, (14b’) requires that p* = 0 for all bads j € M, since
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pj < P, Vj € M and f* = 0 for all bads j € M. Since z increases while r; and p; remain fixed for
all goods j € M™, complementarity conditions (14c’) and (14e’) require that both p* and f* are
equal to 0 for all goods j € Mt. As a result, s* = 0, by (14f’) as (14f) holds with strict inequality
Vj € M, since p; < P, Vj € M. Therefore, y* = 0, and the ray is R = [0, 2*] + «[0, 1], i.e., the
primary ray. O

Proof (of Theorem 14). Theorem 11 shows that every vertex solution to LCP (14) with p < P,
r < R, and z > 0, is nondegenerate as long as there is no polynomial relation between U, W, and
L. Lemmas 16, 17, and 18 shows that we never reach a vertex where p; = P for any j € M, or
r; = R for any ¢ € N. Therefore, there is always a unique double label for Algorithm 1 to pivot
at. Theorem 20 establishes that Algorithm 1 never reaches a secondary ray, so that eventually it
reaches a solution with z =0, p < P, and r < R, which is an equilibrium by Theorem 12.

5.2 Results

Theorem 14 directly yields the following results on existence, membership in PPAD, and rational-
valued property.

Theorem 21. If the fair division instance of a mized manna under SPLC utilities satisfies strong
connectivity, as defined in Section 4, then there exists a competitive allocation, and the Algorithm 1
terminates with one. Furthermore, Algorithm 1 finds a rational-valued solution if all input param-
eters are rational numbers.

We note that for the bads only case the above theorem does not apply because the strong
connectivity assumption defined using goods is inapplicable. Therefore, for this case, we separately
show the convergence of our algorithm in Appendix D. This together with Theorem 5 shows that
Algorithm 1 finds an equilibrium for bads with SPLC utility functions, and therefore the remaining
theorems hold for this case as well.

Theorem 22. If the fair division instance of a mized manna under SPLC utilities satisfies strong
connectivity, as defined in Section 4, then the problem of computing a competitive allocation is in
PPAD.

Proof. The proof of this theorem follows from the Todd’s result [72] on orientability of the path
followed by a complementary pivot algorithm, and is exactly same as the proof of Theorem 6.2
in [46]. O

Theorem 23. If the fair division instance of a mized manna under SPLC utilities satisfies strong
connectivity, as defined in Section 4, and the input parameters U, W, and L have no polynomial
relationship between them, then there are an odd number of competitive equilibria.

Proof. Since the parameters U, W, and L have no polynomial relationship between them, Theorem
12 shows that all solutions to LCP (14) with p; < P, Vj € M, r, < R, Vi € N, and z = 0 are
competitive equilibria. Theorem 14 establishes that Algorithm 1 always terminates at one of
these solutions. We now argue that all other equilibria are paired up on paths of the polyhedron
corresponding to LCP (14).

Theorem 11 shows that every vertex solution of LCP (14) with p; < P, Vj € M, and r; < R,
Vi € N is nondegenerate. Therefore, a unique double label exists. Lemmas 16, 17, 18, and 19 show
that starting from a solution with p; < P, Vj € M, and r; < R, Vi € N and traveling along the
edge incident to the double label, we always reach another solution where p; < P, Vj € M, and
r; < R, Vi € N. Thus, a set of paths connect these solutions. Moreover, Theorem 20 shows that
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these paths never reach a secondary ray. Therefore, if one starts from an equilibrium, then the
subsequent path of solutions with p; < P, Vj € M, and r; < R, Vi € N must eventually end at
a vertex where z = 0, i.e., another equilibrium. Then, all other equilibria, besides the one found
starting from the primary ray, must be paired. Thus, there are an odd number of equilibria. O

6 Strongly Polynomial Bound

Devanur and Kannan [34] offered a strongly polynomial time algorithm for exchange model for
goods with SPLC utilities when either the number of goods or the number of agents is constant,
which [43] extended to more general Arrow-Debreu model with production. The approach uses a
cell decomposition technique and the fact that n hyperplanes in R? form at most O(n?) nonempty
regions, or cells. Garg et al. [46] adapted this argument to bound the number of fully label vertices
in their LCP formulation for exchange model for goods under SPLC utilities. We follow their
analysis and obtain a strongly polynomial bound on runtime for the case of all bads as well.

The idea is as follows. Suppose the number of bads, i.e., m, is a constant. We decompose
(p, z) space, i.e., RTH, into cells by a set of polynomially many hyperplanes such that each cell
corresponds to unique setting of forced, flexible, and undesirable partitions. Then, we show that
each fully labeled vertex maps into a cell by projection. Further, at most two vertices map to any
given cell. Consider the LCP (14) from Section 4 with M~ = M (i.e., M = {)). That is,

Vie N : _ZjeMWijpj _Zk,jEM fijk—zg _PZjEMWij 1 r (16&)
VjeM: Zfijk: +pj <P L pj (16b)

ik
Vj e M, Vi, k: Dijkrz’ —Dj — Sijk < Dz]kR —P 1 fijk (160)
v(i, j, k) : fijk + Lijip; < Lyjp P L s . (16d)

The main result of this section is the following theorem.

Theorem 24. If the fair division instance of a mired manna under SPLC utilities that contains
only bads has either constantly many agents or constantly many bads, then Algorithm 1 runs in
strongly polynomaial time.

Constantly Many Bads We consider RTH with coordinates pi,...,pm,2. For each tuple
(¢,4,7", k, k") where i € N, j # j' € M, k < |ug|, and k' < |u;5|, create a hyperplane Djji(P —
pj/) — Dijis (P — p;) = 0. This divides R7"™ in cells where each region has one of the signs <, =,
or >. For any agent ¢ € N, the sign of each cell gives a partial order on the pain per buck of her
segments. Thus, in any cell, we can sort the segments (j, k) of agent 4 in increasing order of pain per
buck, and create equivalence classes Bi, e ,Bli with same pain per buck. Let Bi<l = B{' u-- 'UBli_l,
and define BY; and BY, similarly.

Next, we show how to represent the flexible partition. We further subdivide each cell by
adding the hyperplanes Z(j,k)GBil Lijk(P —pj) = Zj Wi (P — p;) — z, for each agent i € N,
and each of her partitions Bli. For each subcell, let Blii be the rightmost partition such that
Z(jvk)EBil Lije(P — pj) < >2; Wij(P — p;) — = for agent i. Then, Bj is her flexible partition.
Finally, we add the hyperplanes p; = 0, Vj € M and z = 0, so that we only consider the cells
where p; > 0, and z > 0. Since every vertex on the path followed by Algorithm 1 satisfies p; < P,
we only consider the cells where p; < P. Observe that any vertex (y, z) traced by our algorithm
maps to a cell by projecting it onto (p, z) space.
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Lemma 25. Let P be the polyhedron corresponding to LCP (16). Then, at most two fully labeled
vertices of P map onto any given cell. Further, if two vertex map to the same cell, then they are
adjacent.

Proof. Each fully labeled vertex and each cell correspond to their own settings of forced, flexible,
and undesirable partitions for each agent. Therefore, if a vertex maps to a given cell, then these
two setting must match. If a vertex S = (p, f,r, s, z) maps to a certain cell, then the following
inequalities are satisfied

o If p; >0, then >, fijr = P —pj, else p; =0 at S.
o If >, Wij(P —pj) —2 >0, then >, Wi;(P —pj) =3 fije —2=0,elser; =0 at S.

o If Dz‘j’k’(P_pj) — Dijk(P_pj’) Z 0 for (j,, k,) S Blii? then _Dz’jk(R_Ti) + (P—pj) — Sz'jk = O,
else fijr =0 at S.

o If Dij’k:’(P —pj) — Dijk(P —pj/) > 0 for (j,, k,) S Blii’ then fijk = Lijk(P —pj), else Sijk = 0.

In each of the complementarity conditions above, one inequality is enforced. Therefore, their
intersection forms a line. If this line does not intersect P, then no vertex maps to this cell. If it
does, then intersection is either a fully labeled vertex, or a fully labeled edge on which the solution
is fully labeled along the entire edge. In the former case, only the vertex S maps to the cell. In
the latter, only the endpoints of the fully labeled edge map to the cell. Clearly, these vertices are
adjacent. O

Notice that the total number of hyperplanes we created is strongly polynomial. Therefore, this
creates a strongly polynomial number of cells as well.

Constantly Many Agents In this case, we consider the space R’} using to the coordinates 7.
Then, we create a partitioning of the segments corresponding to the bads. Besides this change, the
remaining analysis is similar.

Every fully labeled vertex S = (p, f,r, s, 2) maps to R} by taking the projection on r. Given a
fully labeled vertex, for each bad j sort all of its segments (4, j, k) by increasing order of D;;i(R—1;)
and partition them into equivalence classes B{, cees Blj . Observe that, at this vertex, bad j gets
allocated in order of these partitions. If segment (i, j, k) € Blj is allocated, i.e., f;jr > 0, then all
the segments in partitions before Blj must also be allocated. We call the last allocated partition the
flexible segment, all partitions before it forced partitions, and all partitions after it the undesirable
partitions of bad j. Suppose that segment (i,7,k) is in the flexible partition of bad j. Then,
D;;i(R —1;) = P — pj, otherwise all segments in this partition are either undesirable or all of them
are forced for the corresponding agents. Therefore, the flexible partition defines the price of each
bad.

Now we decompose the space R’} into cells in a way that captures the segment configuration
of each bad. For each tuple (i,i,7,k, k") where i # ¢ € N, j € M, k < |uy;|, and k' < |uy,l,
we introduce the hyperplane D;ji(R — r;) — Dyrjir(R — ry) = 0. In any cell, the signs of these
hyperplanes gives a partial order of segments (i, k) for each agent i based on D;;i(R —r;). Sort the
segments of each bad j in increasing order of D;;,(R —r;), and partition them into equality classes
Bi,...,B].

1 [

Next, we capture the flexible partition of each bad. If the bad is fully sold, then simply sum
the lengths of the segments starting from the first until it becomes 1. An undersold bad requires
more work. If a bad is undersold, then p; = 0. Thus, segments of its flexible partition satisfy

30



D;jr(R —r;) = P. To capture this we add the hyperplanes D;j,(R —r;) — P = 0, for all (4, j, k).
Observe that flexible partition of a bad is either: the partition when it becomes fully sold, or where
D;ji(R —r;) = P. This can easily be deduced from the signs of the hyperplanes. Finally, we add
the hyperplanes r; = 0, Vi and consider only those cells for which 0 <r; < R, Vi.

From the above discussion it is clear that the fully labeled vertices which map to a given cell may
be worked out similarly to Lemma 25. Further, we obtain one equality for each complementarity
condition, since each cell captures complete segment configuration, status of bads, and agents of
the instance.

Lemma 26. Let P be the polyhedron corresponding to LCP (16). Then, at most two fully labeled
vertices of P map onto any given cell. Further, if two vertex map to the same cell, then they are
adjacent.

Clearly, our algorithm follows a systematic path rather than a brute force enumeration of every
cell configuration like in [18, 45]. Theorem 24 follows from the above discussion since the number
of hyperplanes is strongly polynomial in both cases.

Remark 27. It is not clear how to show a strongly polynomial bound for the case of mixed manna
when the number of agents (or items) is a constant. This is due to the additional variable z
appearing in (14e) (constraint to force an optimal bundle). This makes the bpb condition unusable
as a segment configuration at an arbitrary fully-labeled verter.

7 PPAD-Hardness of all Bads with SPLC utilities

In this section, we show that finding 1/poly(n)-approximate equilibrium for bads under SPLC
utility functions is PPAD-hard. Our proof relies on reducing the problem of finding an approximate
Nash equilibrium, which is known to be PPAD-hard [32, 24], to finding a competitive equilibrium.
Our reduction is motivated from the construction of [23], which shows a similar result for the goods
case. The main challenge in extending the reduction to the bads case is that [23] crucially uses
utility values of 0 to prevent allocating certain items to agents. This translates to the disutility
(cost) of oo in case of bads. However, this breaks our proof of existence of an equilibrium (since
we require finite utility functions), and therefore can not be used. In fact, an equilibrium may not
even exist if we allow oo disutility values [22]. Thus, in the bads case every agent can possibly be
assigned any bad and utility functions must be designed in such a way that only certain desired
allocations happen at equilibrium.

We first show the hardness for the exchange model that we later extend to the Fisher (and
CEEI) model. Let us start by defining approximate equilibrium of exchange setting.

Approximate Exchange Equilibrium Recall that an exchange equilibrium (p*, z*) satisfies
the following two conditions:

C1. Optimal bundle: For each i € N, ] € argmin{f;(x) s.t.  >0; =} -p* > w; -p*}.
C2. Supply-Demand: For each j € M, >,y Ty = Yien Wij.

The equilibrium is said to be e-approximate, for ¢ > 0, if the optimal bundle condition holds as
above and the demand meets supply approximately:

C2". e-Supply-Demand: For each j € M, |3 ;cn a7 — D ey Wijl < €(Xien Wij)-

In our proof of hardness, we reduce finding approximate well-supported Nash equilibrium of a
two-player game to finding approximate competitive equilibrium, defined as follows.
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2-Nash A two-player game, where each player has n moves to chose from, can be represented
by two n x n payoff matrices (R, C). This is because in a play one of the player can be thought
of choosing a row (row-player) and the other player choosing a column (column-player), and the
corresponding entry in R and C are their payoffs respectively. The Nash equilibrium problem
can be states as follows: Given payoff matrices R,C € [0,1]"*" and € > 0, find mixed-strategy
(probability distribution) e for the row-player and 3 for the column-player such that, o, 3 € {z >

0] >osepn) 2 = 1} and,
Vs,t € [n], (RB)s<(RB)i—€e=>a,=0 and (a’C),<(a’C)i—e=B,=0. (17)

A remarkable series of results in 2006 settled the complexity of finding (approximate) Nash
equilibrium in finite games [32, 24]. In particular, [24] show that for any ¢ > 0, finding 1/n°
approximate well-supported Nash equilibrium in two player games is PPAD-hard. We provide a
reduction from finding a 1/n-approximate Nash equilibrium to finding a 1/poly(n)-approximate
equilibrium in the exchange setting for bads under SPLC cost functions to show Theorem 28. And
then reduce exchange to CEEI to show Theorem 29 below.

Theorem 28. Finding a pol;(n)—appmximate equilibrium in a bads exchange setting with SPLC

cost is PPAD-hard, where m is the number of bads. This holds even if every utility function has at
most two segments with O(1) costs.

Theorem 29. Finding a pol;(n) -approzimate equilibrium in a bads Fisher setting with equal budgets

(CEEI) under SPLC costs is PPAD-hard, where m is the number of bads. This holds even if every
utility function has at most three segments with O(1) costs.

7.1 Exchange Setting Construction

Given an n x n game (R, C') we construct an exchange setting M(R, C) of bads with SPLC utilities
as follows:

Bads. The setting has m = 2n + 2 bads, M = 1,...,m. Intuitively prices of items {1,...,n} will
correspond to vector a, and that of items {n + 1,...,2n} will correspond to vector 3 of the Nash
equilibrium.

Agents, their endowments, and utility functions. Let H be a large constant that we will
set later, and let (¢)* denote max{c,0}. Next, we will describe four sets of agents, and N is the
union of these four. If the cost function is linear we only specify the slope and if it is PLC then we
represent it by a list of (slope, length) pairs. Note that we work with disutility values D;ji, = |Usji|.
Also note that we only specify non-zero endowments.

e Price-requlating agents Npg. For every pair of items (j,j') € M x M where j # j', there is
an agent a;;» € Npgr. For notational simplicity let i = a; ;/, then i’s endowment and utility
functions are

— Endowment: W;; = 1/n.

— Utility Functions: w;; = 1, u;j = 2, and u;, = H otherwise.

e Deficit agents Np. For every item j € [2n], there is an agent a; € Np. Let ¢ = a;, then i’s
endowment and utility functions are

— Endowment: W; ,,,_1) = Wj 2n41) = 1/n8.
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— Utility Functions: u;; = 1, and u;, = H otherwise.

e Row-player’s agents Nr. For every pair s,s' € [n], there are two agents, as ¢ g € Nr and
as s g € Ngr. Let us denote these by i and ¢’ respectively. Our goal is to capture the NE
conditions for the row-player using the optimal bundles of these two agents, and therefore
their endowments and utility functions are closely related.

— Endowment: For each k € [n], let r, = (Rgy, — Rsi), and define r» =), 7.
x* Wis =Wyg = 1/n4.

« For each k € [n], Witnir) = (Tnkiy, and Wis(n4x) = (_;’é)+
—pr)t+ rt
* Wigm-1) = = and Wi 1) = S

— Utility Functions:
* Ujs = Uil g0 = {(17 1/TL4), (Hv OO)}
« For each k € [n], w; (1x) = {(1/3, (=) " /n®), (H,00)} and
Uit (nky = 1(1/3, ()" /n°), (H, 00)}.
* U (m—1) = {(1/37 (T)+/n6)7 (H> OO)} and Uit (m—1) = {(1/31 (_T)+/n6)7 (H7 OO)}
* ui,m = ui’,m =3.

* ;= uyp = H, otherwise.

e Column-player’s agents N¢. For every pair s,s’ € [n], there are two agents, a5y c € N¢
and ay s € Nc. Let us denote these by ¢ and i’ respectively. Again, the goal is to capture
the NE conditions for the column-player using the optimal bundles of these two agents, and
therefore their endowments and utility functions are constructed in similar way as above.

— Endowment: For each k € [n], let ¢ = (Crs — Cis), and set ¢ = Y. cx.
* Wi(n+s) = Wi’(n+5/) = 1/’1?,4.
* For each k € [n], W, = (er)* Wy = (et

n6 5 nb
(=o*

* Wiim—1) = 55— and Wi _1) = @

né -

— Utility Functions:
* Ui (nds) = Wil (nts’) = {(1, 1/n4)7 (H,00)}.
* For each k € [n], u;x = {(1/3, (—cx)*/n®), (H,00)} and
Uit | = {(1/3, (Ck)+/n6)v (H,00)}.
* U (m—1) = {(1/37 (C)+/n6)7 (H7 OO)} and Uit (m—1) = {(1/37 (_C)+/n6)7 (H’ OO)}
* Uim = Ui m = 3.

* U = Uy = H, otherwise.

Note that, each of the ¢;’s and r;’s above are in [—1, 1], and therefore for any bad j € M, total
endowment of it in the setting is Y ;. 4 Wi; < (mgl) + .1+ 27%2 + i—g‘ < 3. Thus, the e-approximate
supply-demand condition the above setting M(R, C). can be re-written as,

VieM, | xi— > Wil <3 (18)
1EN 1EN
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7.2 Correctness

In this section, we will show the following theorem.

1

Theorem 30. Computing - -approzimate well-supported Nash equilibrium in game (R, C) reduces

to #—approm’mate exchange setting equilibrium of M(R,C).

Let (p*,x*) be a #—approximate exchange setting equilibrium of M(R,C). Using the fact
that m = (2n + 2) and equation (18), the approximate supply-demand condition satisfied by the
equilibrium is,

VieM, | af—Y Wyl <3/m®<1/n. (19)

i€EA €A
Before starting the reduction, we introduce some notation. We work with absolute value of
prices, but for notational simplicity we use p; > 0 to denote the price of bad j in absolute value at

equilibrium. Also, for any subset of agents N C N, and any bad j € M, let W; (N) = > ien Wij-
Similarly, define 3 (N) = >, 5 75

The first step in each the reduction is to ensure that the prices are “well-behaved” [23]. In
particular, we will show that ratio of prices for any two bads is bounded above by two. The agents
of Npgr are constructed mainly for this task. Recall that the price of all bads are negative an

equilibrium.
Lemma 31. For any j,k € M, % <2.
k

To prove the above claim, first we need to understand consumption of Ny and N¢ agents on
the first segments of their cost functions. If the function w;; is non-linear then let z;;, denote the
amount agent ¢ is assigned of bad j on segment k.

Claim 6. For any s # s' € [n], let i = a(s ¢ gy and i' = a(y 5 r)- Then for every bad j € [m — 1],
Wij + Wyj 2 aijy + x5, Similarly, fori= a g c) and i' = a(y 5.0

Proof. The claims follow from the construction of Nz and N¢ respectively. Note that, allocation
on the first segment can not be more than its length. Therefore, z},; < 1/ nt = Wi; s and for the

remaining j € [n] both z}; and Wi; are zero. Similarly, z7, , | <1 /nt =Wy ¢ and aly. =Wy =0
for j € [n],j # §'. For j € {n+1,...,2n}, we have z;; < (—=rj—pn)T/n8 = Wy, and Thi <

(rj—n)*/n® = Wy, where r, = (Rygy — Rgp,). Similarly for j = (m — 1), x;; < (XCpep ) T/n° =
Wiy, and .y < (= Zke[n] 1)t /n® = W;;. The proof for i = (s,s',C) and i’ = (s, s,C) follows
similarly. O

The main intuition behind the proof of Lemma 31 is that if the maximum to minimum price
ratio is more than 2, then Npgr will leave out a 1/n amount of the minimum price bad to be
consumed by the remaining agents. And among the remaining agents, if they have to consume this
bad at high-slope segment (with disutility H) then they would prefer maximum priced bad instead.
Claim to consume the mm 6 will come handy in if agents outside Npr have to consume the 1/n
amount any bad from [(m — 1)] then they “have to” consume it on the high-slope segment.

Proof of Lemma 31. Let b’ € arg max;cp p;, and b € argmin;cp p;. Due to scale invariance of
equilibria, we may assume without loss of generality that p; = 1.
(m—1)

Assume for contradiction that py > 2p,. Note that W;,(Npr) = ~——. In Npp, all agents except
of type (b, j) and (4, b) have slope H for bad b, Vj € M, j # b. All of these agents will strictly prefer
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bad b’ over bad b, as it has lower pain per buck. Agents of type (j,b) have cost 1 for j and 2 for bad
b, and therefore will strictly prefer to consume ] over bad b. Agent (b,b") has cost 1 for b and 2 for
(b, j) for j # bV, they
bring 1/n units of b and can consume only as bmuch Therefore z;(Npr) < (m —2)/n. Due to (19)
N\ Npg has to consume (1/n—1/n®) amount of bad b. We consider two cases: b € [m—1], or b =

b’ but still strictly prefers b’ since 2% > 2 = L

Case I: b € [m — 1]. Any agent a; € Np, other than ay, strictly prefers bad o' over b since it
provides lower pain per buck. Also, agent a; can only buy p’(“m_l) /n® amount of b. Observe that

p>(km—1) < pj, < 3H. Indeed, if pj, > 3H, then all agents strictly prefer bad b’ over any segment of

b and the setting cannot clear, even approximately. Thus, z,(Np) < O(H/n®), which leaves the
remaining O(1/n — H/n®) of bad b to be purchased by the agents of Nr U N¢.

By Claim 6, 2} (Ngr U N¢) < wp(Ng U Ne) = O(1/n3). Therefore, the agents of Ng U N must
consume b at a disutility of H. However, in that case they prefer b’ over b, and the setting cannot
clear, even approximately.

Case II: b = m. First, note that none of the agents of Np will consume b = m since they strictly
prefer b’. Thus, all demand for m outside of Npr comes from Ng U N¢.

Observe, all agents of N¢ and Np must consume the bads {1,...,(m — 1)} on their first
segments with disutility 1/3, before consuming any of bad m with disutility 3. Consider agent
i = a(st,r) € Nr. Her total earnings are

e _Ds 1
Z Wijp; = itog Z (R — Rsi)tp Plntk) Z Re — Ru)™ Plm—1)- (20)
jeEM ke€[n] keln]
The total cost of her first segments of bads {(n +1),...,(m — 1)} is
1 * 1 >k
6 > (Rek — Rue) " plypy + E( > Rk — Rae) D1y (21)
ke[n] keln]
After purchasing her first segments of {(n +1),...,(m — 1)}, her remaining money which can
be used to purchase bad m is
s 1
vy + 6 Z (Rik — Ro)™p n+k Z Ro — Ry) ™ ( —1)
k€(n] ke[n]
1
= <n6 Z (Rsk — Ru)Tp Plntk) Z Ry, — Rsk) (m1)>
ke[n] ke(n]

nt  nb
keln] ke[n)
ps 1 . R
= nd + nb Z (Rsk — Rtk)(p(mfl) _p(nJrk)) : (22)
ke[n]

Now consider the agent i’ = a(,s,r) € Ng paired with 7. By the same argument, after purchasing
the first segments of bads {(n+ 1),...,(m — 1)}, ¢’ has the remaining money

p; | 1 " "
et =5 | D (R = Rat) (1) — Pl
keln]
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Then the total money ¢ and i’ can spend on m is (pt + pf)/nt = O(H/n%), since p}, < O(H). A
similar argument shows that for any pair ¢ = a( ¢y, i = a(t,s,c) in No, after spending on their
first segments of bads {1,...,n}, their remaining money to spend on m is at most O(H/n*). Sum-
ming over all pairs ¢ and i’ shows that the total amount the agents of Ng U N¢ can spend on m is
O(H/n?) < (1/n—1/n8), for n sufficiently large. Then setting cannot clear, even approximately. [

Let us set H = 10. Scale p* so that the minimum price is 1. Then using Lemma 31 we have
that p* € [1,2]™. Define us = 2 — p{ and v; = 2 — p{,,, , for all s € [n]. Note that, u,v € [0,1]"
but they need not be probability distributions. We will show Nash equilibrium conditions (17) for

(u,v) first.

Lemma 32. For any s,t € [n] if (Rv)s — (Rv); < —1/n then us = 0, and if (u?'C)s — (uT'C); <
—1/n then vs = 0.

To show the above lemma, we will first make a couple of simple observations. Define agent set
Npr = N\ Npr to be everyone outside Npg. In order to get us = 0 we need to force pt = 2. Next,
we show that if Npg leave leave a large enough amount of bad s to be consumed by Npg then it
must be that p} = 2.

Observation 33. No agent consumes any bad at cost H.

Proof. Note that for every agent ¢ there is at least one bad j such that the cost function f;; is linear
with slope at most 3. Given that H = 10 and 10/3 > 2, the claim follows using Lemma 31. O

Observation 34. For any bad b € M, (i) Wy,(Npr) — z;(Npr) > 1/n® = p; = 2, and (i)
Wy(Npr) — x5 (Npr) < —1/n° = p; =1

Proof. If Wy(Npr) — 2;(Npr) > 1/n®, then the supply-demand condition (18) requires that
Wy(Npr) — 3 (Npr) < 0. Recall that, for any agent (j,j’) € Npg the cost for bad j is 1, that
of bad j’ is 2, and H for all other bads. At equilibrium she only purchases bads that minimizes
cost/price. Therefore, if p; < 2 then from Npg, only the agents (b,j’), Vj' # b are willing to
consume bad b. Each of them brings exactly 1/n amount of bad b and can consume only what they
bring, which contradicts W;(Npgr) — 27 (Npr) < 0. Instead, if p; = 2, then agents of type (j',b)
may also be able to consume bad b.

Now suppose Wy,(Npr) — zj(Npr) < —1/n®, then the supply-demand condition (18) requires
that Wi,(Npr) — 23 (Npr) > 0. Notice that agents (b, j), Vj # b of bring all the of the bad b from
Npgr. Moreover, these agents strictly prefer b over j when p; > 1, since all p;-‘ € [1,2] by Lemma
31 (given that the minimum price is 1). Therefore Wy(Npr) — x;(Npr) < 0, which contradicts
approximate supply-demand. ]

Observation 35. p’(“m_l) = 2.

Proof. Claim 6 together with Observation 33 implies that W,,_1)(Nr U N¢) > x?mfl)(NR U N¢).
And from Observation 33 we also know that JUzkm,l)(ND) = 0 while W(,,,_1)(Np) = 2n/n® > 1/n".
Both of these together gives, W(,,,_1)(Npr) —x’(km_l)(NpR) > 1/n" and then Observation 34 implies
pfm—l) =2. ]

Using Observation 33 next we show a stronger version of Claim 6.

Observation 36. For any s # s’ € [n], let i = (s,s',R) and i’ = a(s,s,r)- LThen for every bad j €
[m—1], Wi +Wy; > o} ;+x} ;, and the condition holds with equality for j € {(n+1),...,(m—1)}.
Similarly, for i = a0y and i’ = a(y s ) where the equality holds for j € [n] U {(m —1)}.
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Proof. The inequality follows using the fact that no agent consumes any bad at cost H by Obser-
vation 33. To show equality for j > n when i = a(, ¢ gy and i = a(s,s,R), We only need to make
sure that ¢ and 7’ consumes the first segment of bad j completely.

For agent 4, recall that the cost of any 7 € {(n+1),...,(m — 1)} on the first segment is 1/3,
compared to that the next lowest cost of 1 (on the first segment of bad s). Since price ratios of any
two bads is not more than 2, she prefers to buy all the segments with cost 1/3 first. To consume
all of them she needs money of,

1 4n
6 > (R — Rue) " plin Z Ri = Rok) "Pln—1) < —5
ke[n] ke[n]

The above inequality follows from the fact that R € [0, 1]™*™ and every price is at most 2 (given
that the minimum price is 1). Her endowment of 1/n* amount of bad s earns her at least 1/n*
units of money, which is enough to buy the above bundle. Similar argument follows for agent ’.

The case for for i = a(s v ¢y and i’ = a(y 4 ) follows similarly. O

Now to prove Lemma 32 we only need to show that agents of set Nppg leave at least 1/n® amount
of bad s to be consumed by Npr. We will crucially use the above observations for the same.

Proof of Lemma 32. Let i = a(s4 ry € Nr. The total earning of 7 is given by (20). Given that price

ratio of any two bads is bounded above by 2 (Lemma 31), agent 7 will first buy the first segments

of bads {(n + 1),...,(m — 1)}, then the first segment of bad s, and then consume bad m if any

money left. By Observation 36, agent i spends exactly (21) on the bads {(n +1),...,(m — 1)}.
The left over money after the above spending is given by (22)

Bt o | ety (B = Bit) (Pfsr) — Pl

=5 4+L > kefn) (Bsk — Rux)vk
= 2 4 L[(Rv)s — (Rv)]
<B - <pi(HE-2)

The last inequality above follows from p% < 2 = —1/p% < —1/2. Thus, agent i can only

consume at most (— — ﬁ) amount of bad s from the 1/n* units that she brings. By Observation
36, agents of Np and N¢ are unable to consume any of the remaining % amount of s. Among
the agents of Np only agent as can consume s, but only up to the amount of <mp1> S . Thus,
Ws(Npr) — 2%(Npg) > 277 -5 > n87 and then using Observation 34 it follows that p} = 2. This
in turn implies us =2 — p} = 0

The second part of the lemma follows similarly. O

Observation 37. Let s € argmaxycp,|(Rv)g, then p; = 1. Similarly, for s € argmaxycp, (uC)g,
pZ‘n_'_S) =1.

Proof. As observed in the proof of Lemma 32, for all ¢ € [n],t # s, the corresponding agent
i = a(s,r) € N, the total earning minus spending on the segments with slope 1/3 is,

Pt o l(Ro), — (Ro)] 2

_n4;
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since (Rv)s — (Rv); > 0. Therefore, i will consume all of the bad s that she brings, i.e., 1/n?
amount. By Observation 36 remaining agents of Nr and N¢ together will consume all of s that
they bring to the setting. Among Np, the agent as brings 1/n® units of (m — 1) and wants to
consume only bad s. Price of 2 for bad (m — 1) (Obs. 35), gives earning of 2/n® to agent as. Since
price of s can be at most 2 (by Lemma 31 assuming the minimum price is 1), she will demand at
least 1/n8 units of bad s. Putting supply and demand of all the agents in Npg together we get,

W(Npr) — zi(Npr) < —1/n®
From the above inequality, Observation 34 gives us p; = 1. The second part follows similarly. [

The above observation ensures that vectors w and v are not zero vectors. Using this together
with Lemma 32 we will show the main theorem next.

Proof of Theorem 30 Given an equilibrium (p*, z*) of setting M(R, C') construct vectors u and v
as defined above,
Vs €n], us=2-—p, andvs=2-— p(m_s)
Observation 37 ensures that u,v # 0. Construct strategy vectors

u v
= and fB=—=——
Zse[n] Us Zse[n] Us

We will show that (a, 3) satisfies Nash equilibrium conditions (17) for € = 1/n. For any pair
of strategies s,t € [n]

o =

(BB, — (RB): < ~1/n = (Saep vo)  (R0)s — (Rv)e) < —1/n
= ((Rv)s — (Rv)) < =1/n (. (Xsep vs) = 1 using Obs. 37)
= pi=2 (. Lemma 32)
= u;=0 (. us=2-—p})
= a;=0 (. us=2-pi)

By the similar argument as above we can show that for any pair s, € [n] if (@’ C)s — (a?C); <
—1/n then vy = 0. O

Proof of Theorem 28. Clearly, our construction is polynomial (in number of agents and bads)
with respect to the input size of the 2-player game (R,C). Theorem 30 shows that a 1/m®-
approximate exchange setting equilibrium yields a 1/n-approximate well-supported NE of (R, C).
Moreover, this conversion from exchange equilibrium to NE runs in polynomial time. As finding a
1/n-approximate well-supported NE is PPAD-hard, it follows that finding a 1/poly(n)-approximate
exchange equilibrium is PPAD-hard. O

Proof of Theorem 29. We will show how to convert our exchange setting construction into a Fisher
setting with equal budgets in a way such that the equilibria of the two settings are in one-to-
one correspondence. Moreover, a O(e/n) approximate equilibrium in the Fisher setting is a O(e)
approximate equilibrium in the exchange setting. Both the reduction from exchange to Fisher
setting, and conversion of Fisher to exchange equilibrium take polynomial time which establishes
the PPAD-hardness of the Fisher case. We use the notation (w,x,p) and (w,&,p) to denote
endowments, allocations, and prices in the exchange and Fisher settings respectively.

First we show how to convert our exchange setting construction into a Fisher setting. We ensure
equal budgets by giving each agent an equal amount of each bad. Recall in the construction of
the exchange setting, the agents of Npg bring the largest amount of each bad j € [m], specifically
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a 1/n amount. In the Fisher setting, we give each agent a Wij = 1/n amount of each bad j, by
increasing 4’s initial endowment of each bad j by 1/n — W;;. As all agents bring the same amount
of each bad, the new instance is a Fisher setting with equal budgets.

Next, we want to ensure a one-to-one correspondence between the equilibria of the two settings.
For each agent ¢ and bad j we add an extra segment to f;; with disutility Jijl = 0 and length
f/ijl = 1/n — Wjj, the additional amount of bad j given to agent i. Note that this new segment
becomes the first segment of f;;, and ‘shifts’ all other segments to the right. Moreover, for any set
of prices p, these newly created first segments are: optimal purchases since they have 0 disutility,
and can be fully purchased since the cost f/ijlpj = (1/n — Wij)p; is exactly equal to extra money
i earns from bad j in the Fisher setting. Thus, after purchasing all the new first segments, ¢ is
left with a remaining budget of >,/ Wijpj =2 jeB Jiijlpj = > jen Wijpj, i-e., her budget in the
exchange setting. Finally, since we shift all remaining segments of f;; to the right, it is easy to
check that i’s forced, flexible, and undesirable segments are the same (up to the newly added first
segments) in both the exchange and Fisher settings for any prices p. Thus, if x; = (zi;)jem is an
affordable and optimal bundle in the exchange setting, then Z; = (L;j1 + 4;)jenm is an affordable
and optimal bundle in the Fisher setting. It follows that the set of equilibria of the two settings
are in one-to-one correspondence.

Finally, we show that if (z*,p*) is an €/(6n) approximate equilibrium of the Fisher setting,
then (x*,p*) is an € approximate equilibrium of the exchange setting where

xi; =% — Lipn,  p; =Dj, V4,5 (23)

As previously argued, if Z} is an affordable and optimal bundle for the Fisher setting, then z is an

affordable and optimal bundle for the exchange setting. Thus, if condition C1 holds for (z*,p*),
then it holds for (x*, p*). It remains to check condition C2’. Observe, that there are

(n—1) n(n —1)

‘N‘:2m(m—1) .

t+on+2" +2 — 6n2 + 61+ 2

agents used in the construction, and I/T/,-j = 1/nforalli,j. Thus, ),y Wij =6n+6+2/n < 6n+7,
forall j € M. By (23), | >2;en(Wij —275)| = | 20;en (Wi — x7;)], since Lij1 = 1/n—W;;. Therefore,
if (x*,p*) is €/(6n) approximate equilibrium of the Fisher setting, then

* T ~ % € T .
1> Wy — i) =) (Wi — i) < on > Wiy <e(l+7/(6n) <3¢, VjieM,  (24)
iEN iEN iEN

so that (x*,p*) is an € approximate equilibrium for the exchange setting by (18).

It follows that computing a Fisher setting equilibrium (with equal budgets) is PPAD-hard, since
both the reduction from exchange to Fisher setting, and the conversion from Fisher to exchange
equilibrium take polynomial time (and space). O

8 Numerical Experiments

Table 1 summarizes the results of numerical experiments conducted on randomly generated trials
using a Matlab implementation of our algorithm. Note that we used the same number of segments,
shown as #Seg in the table, for each agent and each item. We drew the Uj;i’s, Liji’s, and W;;’s
uniformly at random from the intervals [—1,0], [0,1/#Seg] , and [0, 1] respectively. Then, we
rescaled the W;; values to ensure a unit amount of each bad. Finally, for each agent ¢ and each bad
J, we sorted the Ujj;’s decreasing order to generate an SPLC utilities.
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N x Mx #Seg | Instances | Min iters | Mean iters | Max iters
5XxXbHXxbd 1000 85 137.3 297

10 x5 x5 1000 107 170.9 395

10 x10x 5 1000 130 369.1 609

15 x15%x5 50 168 750.3 1393

20 x 20 x 5 10 1127 1398.2 2001

Table 1: Experimental results conducted on random instances.
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Figure 2: Plot of N x M x #Seg versus maximum number of iterations.

Figure 2 compares the maximum number of iterations versus the total number of segments in
the agent’s utility functions, i.e., N x M x #Seg = Z” |uij]. Note that even in the worst case,
the maximum number of iterations is on the order of the total number of segments of the agents’
utility functions.

A Converting Bads into Goods?

Bogomolnaia et al. [14] propose a method to convert a competitive division problem with bads into
a problem with only goods. Note that their argument only applies to the Fisher setting and uses
linear utility functions. The approach relies on the interpretation of leisure as the opposite of work.
Therefore, if agent 7 is assigned an z;; fraction of bad j, then we can equivalently view this as a
good representing an exemption from completing a 1 — x;; fraction of the task.

The reduction from bads to goods proposed by [14] is as follows. Assume there are n agents in
the competitive division problem. For each bad j, we create n — 1 units of a good j’ representing
an exemption from completing bad j. Suppose agent 7 has utility D;; < 0 for bad j, then i’s utility
for good j’ is SPLC with two segments. The first segment has slope |D;;| > 0 and length L;; = 1,
and the second segment has slope 0. Note that this means ¢ values up to 1 unit of exemption to
the bad j.

Bogomolnaia et al. [14] state that given an equilibrium (2, p’) in the problem of goods, one can
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obtain an equilibrium in bads by setting pj = —p/, and zj; = 1 — 7.
Counter Example: Consider a competitive division problem with two agents a and b, and three
bads 1, 2, and 3. The agents’ utility functions are: u,(x) = —10z41 — 2x42 — X43, and up(z) =
—Zq1 — 100249 — 100z,3. We create 1 unit of exemption for each bad. The utility functions for
agent a are SPLC where the first segment has slope (10,2,1) for goods 1, 2, and 3 respectively,
and are capped at 1 unit of good. One can verify that the prices p’ = (4/3,1/3,1/3), and the
allocations !, = (3/4,0,0) and x, = (1/4,1,1)" are an equilibrium in goods. In bads, this becomes
p* = (—4/3,—-1/3,—1/3), with the allocation z} = (1/4,1,1) and x; = (3/4,0,0). However, this
is not a competitive equilibrium since a does not receive the same pbp for all bads. One can check
that the prices p* = (—20/13, —4/13,—2/13), along with the allocation x} = (7/20,4/13,2/13) and
xp = (13/20,0,0) give an equilibrium.

B Approach of [38, 46] Gets Stuck on Secondary-Rays

Previous works of Eaves [38] and Garg et al. [46] developed complementary pivot algorithms based
on Lemke’s scheme for all goods under SPLC utilities. The basic structure of our LCP is similar
to prior works. However, they use a different change of variables. Both [38, 46] use a lower bound
on prices by making the price of good j: 1+ p;, where p; > 0. Thus, the minimum price is 1 (in
absolute value). In addition, [38, 46] make no changes to the variable r; = 1/ppb;, where ppb; is
the pain per buck of agent i’s flexible segment. In this section, we examine this change of variables
when applied to the special case of all bads with linear utilities. The resulting formulation is as
follows:

Vie N, ZWijpj— Zfij—fizg—zwij Lo (25)
JjEM JEM JjeM

VieM, Y fij—p;i<1 1 p; (26)
iEN

Vi e N, VjEM, pj—Dijri—éijzg—l J—fij (27)

The constraints have the same interpretation as before: a budget constraint for all agents (25),
a constraint on the total spending of agents for each bad (26), and a minimum pain per buck
constraint for each agent, for each bad (27). Note that we add coefficients ¢;, and §;; to z for all
terms with negative rhs for two purposes. First, this provides a degree of control over the primary
ray, i.e., the initial double label, and therefore how the algorithm starts. Second, we require 6;;’s
coefficients to ensure nondegeneracy of LCP when z > 0. To see this, suppose p; = 0 for some
j€M,and r; =0, Vi € N. Then by setting z = 1, the constraints (27) become tight (hold with
equality) for this j, Vi € N. Thus, there is no unique double label.

We now examine the behavior of Lemke’s algorithm when starting from a constraint (25) or
(27). We show that in both cases the algorithm quickly reaches a secondary ray.

B.1 Starting from (25)

Suppose we select €; = 1, Vi € N, and ensure 1/6;; < max;, Zj Wi;. By setting z = maxy, Ej Wi,
and all other variables (p,r, f) = 0, we obtain a unique double label for constraint (25) for agent
a = argmaxy, ) ; Wj;. Specifically, all constraints (27) hold with strict inequality.

Lemke’s algorithm then fixes z = maxy Zj Wi = Zj Wy, and increases r,. Observe that 7,
only appears in the constraints (27). However, since 6,5z > 1, and Dy; > 0, Vj € M, increasing 7,
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never makes any inequality (27) tight for any 7 € M. That is, we arrived at secondary ray. Notice
that the same problem arises regardless of which budget constraint (25) we start from (assuming
appropriate choice of €;’s and d;;’s). Therefore, starting from a budget constraint (25) always leads
to a secondary ray.

B.2 Starting from (27)

Suppose we fix ¢, = 1, Vi € N, and d;;’s such that maxy zj Wi; < maxg;1/6;5. Then, setting
z = max;; 1/0;; and all other variables (p,r, f) = 0, yields the unique double label at constraint
(27) for the pair (a,b) = argmin; d;;, i.e., the agent a € N and bad b € M that achieve max;; 1/d;;.
Further, all constraints (25) hold with strict inequality.

Lemke’s algorithm fixes z = 1/d,p, and increases fq; until some other inequality becomes tight.
Note that (25) can not become tight due to our choice of z. Then, (26) becomes tight for bad b.
At this point, we may change p; subject to the following constraints

fab =1+ pp
1 +pb = 5abz.

We check whether a constraint of form (25) or (27) can become tight.

Starting from Pain per Buck Constraints (27). For any i # a, we would require that (27)
becomes tight while observing the relationship between f,;, py, and z above. Thus, we need
dib

14+pp=0ppz = 5*(1 +pp) > 1+ po,
ab

since dqp = min;j d;;. Thus, no constraint of the form (26) can become tight.
Budget Constraints (25). For any i € N (including a), we would require that (25) becomes
while maintaining the relationship between fu;, pp, and z above. Thus, for ¢ # a we need

1+
Wibpb—i-g Wij:z: S
. a
J

or after rearranging
SiWij — 1/6a = (1/0as — Win) Do,

<0 >0

where the inequalities of the coefficients follow from 1/d,, > maxy Zj Wi > Wy, However, no
value of p, > 0 suffices. Similarly, if we want (25) to become tight for agent a, then we need

YiWij —1/0qp — 1= (1/6ap — Wip + 1) s,

<0 >0

and again no value of p, > 0 works.

Conclusion: The examples demonstrate that for this relationship between fu;, pp, and z, no
constraints can become tight, i.e., we have reached a secondary ray.
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C Omitted Proofs

C.1 Proof of Lemma 4
We will need the following lemma to prove the result.

Lemma 38. If p* is an equilibrium price vector, then 3 f such that (8a) and (8b) hold. Further,
if p and f satisfy (8a) and (8b), and p > 0, then the market clears.

Proof. Let p* be an equilibrium price vector and set p = |p*|. Let * be the equilibrium allocation
for p*. For each agent ¢ and each bad j, we distribute z;; among individual segments by filling
starting from the first segment until all of z7; is used

7)), = min <max <a:fj — Z Lijp, 0), Lijk>. (28)

k' <k

The market clearing conditions ensures that setting f;;, = xfjkpj together with p satisfies (8a) and
(8b).
Next, suppose p, f satisfy (8a) and (8b) and p > 0. Summing (8a) over all i € N and (8b) over

all j € M gives
=) Wipi < fir <> pjs
J 2% 1,5,k J
where the first equality uses the fact that there is a unit amount of each bad, i.e., >, W;; = 1,
Vj € M. It follows from the non-negativity of all variables that all constraints (8a) and (8b) hold
with equality. Therefore, setting ;1 = fij /p; ensures the market clears. ]

Proof. (of Lemma 4) Let (x*,p*) be a competitive equilibrium. Define p and f as in Lemma 38,
and set r; according to (9) for any segment (i, j, k) of ’s flexible partition. Note that r; > 0 since
0 < Djj1 < Dijo < ... for all bads j € M. By Lemma 38, (8a) and (8b) hold with equality since
(z*,p*) clears the market. Therefore, so do (8a’) and (8b’).
We set the variables s;j;, as follows: if (i, 7, k) is undesirable or flexible set s;;;, = 0, if (¢, j, k) is

a forced segment set s;j;, to satisfy

Lo Dk Sijk = Pj — Dijkri.

i Pj— Sijk
Note that s;j; > 0 since D;j;, > 0 and D;j/p; < % for forced segments. It can be easily verified
that in each case: the segment is forced, flexible, or undesirable; the constraints (8c) and (8d), and
corresponding complementarity conditions (8¢’) and (8d’) are satisfied. O

C.2 Proof of Theorem 5

We will need the following lemma to prove the theorem.

Lemma 39. In any solution to LCP (10) with p; < P, Vj € M, and r; < R, Vi € N, agents
receive an optimal bundle of bads.

Proof. Recall that D;;, = |Usjk| > 0, V (4, ], k) since for each agent, her utility for each bad is a
concave, decreasing function, i.e., 0 < D;j1 < D;j2 < .... Due to scale invariance of competitive
equilibria, we may pick any maximum price (in absolute value) P. Given the choice of P, we
selected R such that R > P/min;j; D;;,. This ensures D;jpR — P > 0, V(4, j, k), which makes the
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right hand side of (10c) positive for all segments (4, 7, k). Notice this implies that r; >0, Vi€ N,
otherwise (10c) is a strict inequality. In turn, (10c’) forces fi;xr = 0, V (4,7,k). Then, for each
Jj € M, p; < P implies (10a) is strict and therefore p; = 0 which will violate inequality (10b).

Let (i, 7, k) be a segment with highest ppb that agent ¢ spends on in the solution to LCP (10).
Define o; as the inverse of the pain per buck of the this segment

_ P —Pj 1
Dy, ppbijk

oF)

Observe that o; > 0, since p; < P, and D;j;;, > 0, for all segments of all bads.

We want to show that (R —r;) < 0. Since agent i spends on the segment (i, j, k), i.e., fijz > 0,
complementarity condition (10c’) requires constraint (10c) holds with equality. Since s;;, > 0, this
yields

Dz]k(R - T‘i) =P - Pj - Sijk S P — pj = Dz’jkai‘ (29)

Thus, (R —r;) < o; since Dyj;, > 0.

Let @; denote all segments of i’s utility function with ppb = 1/0;, and call this the flexible
partition. Similarly, let the forced partition be all segments with strictly lower ppb than 1/0;, and
the undesirable partition be all segments with strictly higher ppb than 1/0;. We show that these
segments correspond to forced, flexible, and undesirable partitions described in Section 4.

Observe that undesirable partitions are unallocated by construction, since we selected o; based
on the segment receiving a positive allocation with highest ppb. Now consider any segment (i, j, k)
in agent ¢’s forced partition. We have,

1
——— < — = Dijr(R — ;) < Dijpoi < P — pj.

Hence to satisfy (10c), it must be that that s;j; > 0. Therefore, (10d) must hold with equality to
satisfy (10d’). That is, the segment is fully allocated.

Finally, let (i,j,k) € Q;. If (R —r;) < o; then all the segments of this partition are also fully
allocated by the similar argument as above. In other words, the agent exhausts her budget when
she is done consuming (); as the last partition. It follows from the characterization in Section 4
that each agent receives an optimal bundle of bads. O

Proof. (of Theorem 5) By Lemma 38 at prices pj = —(P — p;) for all j the market clears. And by
Lemma 39, each agent receives an optimal bundle of goods in any solution to LCP (10), i.e., it is
a competitive equilibrium. Further, upto change of variables from LCP (8) to LCP (10), Lemma 4
shows that every competitive equilibrium yields a solution to LCP (10). O

C.3 Proof of Lemma 7

Proof. The proof follows similarly to Lemma 38 in Appendix C.1. Let (*,p*) be an equilibrium.
Set p; = |p;'f|, Vj €M™, and p; = pj, Vj € M™. For each agent i and each item j, we distribute T}
among individual segments by filling starting from the first segment until all of z7; is used, according
to (28). The market clearing conditions for the equilibrium ensures that setting f;jr = x;‘jkpj
together with p satisfies (11a), (11b), and (11c).

Next, suppose p, f satisfy (11a), (11b), (11c) and p > 0. Summing (11a) over all i € N, (11b)
over all j € M~ and (11c) over all j € M gives

dopi— Y= D>, far— D, fax< Y, Wipi— Y, Wiypi= Y pj— Y

jeEM+ JEM— i,k jeM+ i,k,jeM— i,jJEMT 1,jEM— jeM+ JjEM—
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since there is a unit amount of each item, i.e., ) . W;; = 1. Since all variables are non-negative, it
follows that (11a), (11b), and (11c) hold with equality. Therefore, setting x;;; = fijx/p; ensures
the market clears. O

C.4 Proof of Lemma 8

Proof. Let (z*,p*) be a competitive equilibrium. In the LCP set p; = |pj|, Vj € M and f as done
in the proof of Lemma 7. By Lemma 7, (11a), (11b), and (11c) hold with equality since (x*,p*)
clears the market. Therefore, so do (11a’), (11b’), and (11c’). For each agent 4, if ¢ purchases any
goods, then set r; according to (12) for any flexible segment of goods. Otherwise, set r; according
to (12) for any flexible segment of bads. In either case r; > 0 since i is non-satiated for some good
7, i.e., U’ijk >0, and 0 < Dijl < Dijg <..., for all badsj e M.

We set the variables s;j;, as follows. If (i, 7, k) is undesirable or flexible set s;;; = 0, whether
j is a good or a bad. Recall that, for a forced segment (7,7, k), if j € M then r% < Up"—jk, and if

j € M~ then Ti > % Using this, set it’s s;;, to satisfy
i j

S= R e MY, or — =9 ifie M.

Ti o Pj Tt Sijk Ti  Dj— Sijk
It is easy to verify that in each case: the segment is forced, flexible, or undesirable; the constraints
(11d), (11e), and (11f) are satisfied, as well as the corresponding complementarity conditions (11d’),
(11e’), and (11f"). O

C.5 Proof of Lemma 9

Proof. Given a solution of LCP (13), define p; = (P—p;), Vj € M" and p; = —(P—pj), Vje M.
And allocation xj; = > fije/p;, V(i,j). We want to show that (p*,z*) gives a competitive
equilibrium. It is easy to show that market clears at (p*, ") using (13a), (13b), and (13c) using
similar argument as in Lemma 7. Next, we show that every agent receives an optimal bundle as
per x* at prices p*.

Recall that we have picked P and R such that minjcps- ;5 DijpR— P > 0, and P —minjcp+ ;.
UijrR < 0. While similar to the proof of Lemma 39, we now rely on the assumption that each
agent ¢ is non-satiated for some good j, i.e., the final segment (4, j, k) of good j satisfies U,j;, > 0.
Notice that since D;;p > 0,Vi, k for any bad j, and the above assumption on goods implies that
r; >0, Vi€ N. Consider two cases: an agent purchases some bads, or they purchase only goods.
In the first case, if r; = 0, then (13d) is a strict inequality. Then (13d’) requires fi;x = 0, V i, k,
Vj € M~, contradicting market clearing, Lemma 7. Similarly, in the second case, if r; = 0, then
(13e) can not hold for the non-satiated segment with infinite length.

Here, we diverge from the case of all bads, depending on whether an agent purchases any goods
(or bads). Consider any agent i. There are three cases, i purchases: a) only goods, b) only bads, or
¢) goods and bads. We focus on the last case as it is the most complicated. The first two cases can
be handled in a similar manner. Let (7,7, k) be the segment of goods with lowest bang per buck
that agent ¢ spends on, i.e., with f;;; > 0. Define v; as the inverse bpb of this segment

Uijk

Vi

Note that 0 < v; < 00, since p; < P, and each agent is non-satiated for some good j. Similarly, let
(4,7, k") be the segment of bads with the highest pain per buck, ppb, that i spends on, and define

45



o; as in Lemma 39. We want to show that v; < (R — r;) < 0;. Therefore, bpb;ji > ppb;ji for any
good j and any bad j’ that ¢ spends on. From (29), we have (R — ;) < 0;. By a similar argument,
for the segment (i, j, k) with lowest bang per buck

Uijk(R—1;) = (P — pj) + sijk > (P —pj) = Usjivs.

Thus, (R —r;) > v;.

Let G; denote the set of segments of goods with bpb = 1/v;, and call this the flexible partition
of goods. Similarly, let the forced partition of goods be all segments with strictly higher bpb than
1/v;, and the undesirable partition of goods be all segments with strictly lower bpb than 1/v;.
Define the various partitions of bads as: forced for ppb strictly less than o;, undesirable if ppb
strictly more than o;, and let B; be the flexible partition for bads where ppb = 1/0;. As per the
optimal bundle characterization described in Section 4 we need to show that f;;;’s are zero for the
segments in undesirable partitions, fi;x = L;jx(P — p;) for the segments in forced partitions, and
0 < fijk < Lijp(P — pj) for segments in G; and B;.

Observe that undesirable goods (bads) are unallocated by construction, since we selected v; (o)
based on the segment receiving a positive allocation with lowest bpb (highest ppb). Consider any
segment (4, j, k) in agent i’s forced partition, whether a bad or a good. Observe that s;;, > 0, in
order to satisfy (13d) or (13e). Therefore, (13f’) requires that (13f) holds with equality. That is
the segment is fully allocated.

For the flexible partition, if v; < (R —r;), then for all (4, j, k) € G; it must be that s;;, > 0 and
hence fijr = Liji(P — p;), otherwise (i, j, k) could be partially allocated. Similarly, if (R—17;) < o3,
then all the segments in B; are fully allocated, otherwise they could be partially allocated. Thus,
1 only purchases goods with bpb > ppb, and in the flexible partition of goods and bads bpb = ppb.
It follows from the characterization in Section 4 that each agent receives an optimal bundle of
bads. O

C.6 Proof of Theorem 10

Proof. By Lemmas 7 and 9, the market clears and each agent receives an optimal bundle of goods
in any solution to LCP (13) with p; < P, Vj € M and r; < R, Vi € N, i.e., it is a competitive
equilibrium. Further, Lemma 8 shows that every competitive equilibrium prices yields a solution
to LCP (13) with p; < P, Vj € M and r; < R, Vi € N. Therefore, solutions to LCP (13) with
pj < P, Vj €M, and r; <R, Vi € N, exactly captures competitive equilibria up to scaling. ]

C.7 Proof of Theorem 11
We first show this theorem for the case of all bads, i.e., for LCP (14) without (14c) and (14e).

Theorem 40. In case of all bads, if the input parameters D, W, and L have no polynomial
relation among them, then every vertex of P with 2 > 0, p; < P, Vj € M, and r; < R, Yi € N s
nondegenerate.

Proof. Let S = (p,q,r,s,z) be a vertex solution to LCP (14) with z > 0 and p; < P, Vj € M.
For contradiction, suppose S is degenerate. Then, there are at least two double labels at S. Let
7 be the set of inequalities of LCP (14) which hold with equality at S. Remove all zero variables
and their non-negativity conditions from Z, as well as all conditions corresponding to double labels
at S. Our goal is to write all non-zero variables as linear functions of z, where the coefficients are
in terms of monomials of input parameters. Then, substituting these expressions into the double
labels at S yields a polynomial relation among input parameters.
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For forced segments, i.e., s;j, > 0, remove conditions (14d) and (14f) from Z, and replace f;ji,
with L;jx(P — p;j). For undesirable segments, (14f) is a strict inequality and f;;; = 0. Thus, Z
contains no conditions (14d) or (14f) for undesired segments either.

Now we may write all non-zero variables as linear functions of z. All remaining f;;;, correspond
to spending in flexible segments. Clearly, for each agent i and each bad j only one such segment
exists. To simplify notation we relabel f;; for these flexible segments as f;;, and the corresponding
Dijk as DU

Let & be the set of (i,j) pairs such that agent i has a flexible segment for bad j, i.e., where
condition (14d) holds with s;j; = 0. Then,

Dz-jri — pj = DZJR - P. (30)

By considering the pairs of £ as edges between N and M, we obtain a bipartite graph, say G. Note
that G is acyclic, otherwise we obtain a polynomial relation between D;;’s using (30) along the
cycles to eliminate the r;’s and p;’s.

Let H be a connected component of G. We pick a representative bad for H. If there is an
undersold bad, i.e., (14b) is a strict inequality, then we pick this item, say b. Observe that for any

bad j € H, we may write P —p; = Z;Eg; (P —pp), where ¢1(D) and ¢o(D) are monomials in terms

of ngs. Similarly, we may write R — r; in terms of monomials of ngs. Now, since (14b) is a strict
inequality for bad b, the complementary condition (14b’) requires p, = 0. In addition, no other bad
7 can be undersold in H, otherwise the above steps yield a polynomial relation between the ngs.

Suppose that for component H, the representative bad b is not undersold, i.e., (14b) holds with
equality. Consider any leaf node vy of H, and remove the edge incident to it in H, say (vo,v1)
to create H'. Let H' be rooted at vy. Starting from leafs of H' and working toward the root vy,
we can use market clearing conditions (14b) and (14a) for bads and agents respectively, to write
all Z-’js for edges in H' as linear functions of z and the representative prices obtained in the first
step. Market clearing conditions give two different expressions for f;; on the missing edge (vo, v1).
Thus, yielding a linear relation between the representative prices and z. This relation is non trivial
because exactly one of them must contain a W;; not present in the other.

If bad b is undersold, then a similar approach using b as the root allows us to write fi’js as linear
functions of representative prices and z. This gives a system of linear equations: p, = 0 if b is
undersold, and p; is a linear function of representative prices and z otherwise. Solving this system,
we obtain p;’s as linear functions of z. Substituting these expressions for representative prices in
terms of z, we obtain expressions for f;;’s, r;’s, and remaining p;’s. We preform the above steps
for each connected component of G.

Finally, consider the equalities of G corresponding to double labels that we removed from Z.
Replace all variables by their linear functions of z. Use one double label to solve for z in terms of
input parameters D, W, and L. Substitute this value of z in to the other double label to get a
polynomial relation among input parameters, a contradiction. O

Proof. (of Theorem 11) The proof closely follows that of Theorem 40. We assume for contradiction,
that the vertex is nondegenerate. Our goal is to write all non-zero variables as linear functions of
z, where the coefficients are in terms of monomials of input parameters. Then, substituting these
expressions into the double labels at S yields a polynomial relation between input parameters.
Notice that we may still follow the steps in Theorem 40 to solve for r, as well as p, f, and s for
all bads j € M~. Thus, it remains to solve for p, f, and s for all goods j € M™. Using similar
arguments to the case of all bads, we find expressions for these variables as linear functions of
z. Substituting these expressions into the two sets of double labels yields a polynomial relation
between input parameters. ]
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C.8 Proof of Theorem 12

To prove the theorem it suffices to show one to one correspondence between solutions of LCP (13)
and competitive equilibria. For this, we first show a similar result for the case of all bads, i.e., using

LCP (10).

Theorem 41. If the polyhedron of LCP (10) is nondegenerate, then solutions to LCP (10) with
pj <P, VjeM, andr; < R, Vi € N, are in one to one correspondence with competitive equilibria.

Proof. Due to scale invariance, it suffices to show this for the set of competitive equilibria, say
&, where the minimum price is —P. In LCP (10), we represent the equilibrium price of a bad
as p;‘f = —P + p;. Therefore, we show a one to one correspondence between elements of £ and
solutions to LCP (10) with p; = 0 for some bad j. Let (x*,p*) € £. By Theorem 5, any competitive
equilibrium (x*, p*) yields a solution to LCP (10) using p = P+p*, and f where f;;;, = T3 (P—pj).
We show that this choice of (p, f) yields exactly one solution to LCP (10).

For contradiction, suppose not. Then, there exists different choices of r and s that together with
(p, f) solve LCP (10). Observe that fixing p, f, and s also fixes . Therefore, it must be true that for
some agent, say i, her flexible partition, say Q;, is full allocated, i.e., fijr = Liji(P—p;),V(J, k) € Q;.
Set r; so that

I Dy
R— T N P — bj ’
for some segment (j, k) € Q;, and set s;;, = 0, V (j, k) € Q;. Set the r and s for all other agents
similarly.

Let C = Zij |uij|, be the total number of segments over all agents and items. Observe that
there are n + m + 2C variables in LCP (10). Further, the solution described above gives at least
n+m+2C + 2 inequalities of LCP (10) hold with equality: Market clearing gives (10a) Vi € N and
(10b) Vj € M, and optimal bundles satisfies complementarity conditions (10c’) and (10d’). Plus
the requirement p; = 0 for some bad. Finally, all segments of agent ¢’s flexible partition () satisfy
both (10d) and s;;, = 0. However, nondegeneracy of LCP (10) means at most n 4+ m + 2C + 1
inequalities hold with equality at any vertex. O

Proof. (Theorem 12) Showing the one to one correspondence follows from a nearly identical argu-
ment to that of Theorem 41. The only difference is that must consider the set of equilibria with
maximum magnitude of price equal to P, i.e., p; = 0 for some good or some bad. Assuming a bad
has price with maximum magnitude price P and follow the same argument as Theorem 41. The
case where a good has maximum magnitude price follows from a similar argument. O

D Convergence of Algorithm 1 with All Bads

In this Section we prove that Algorithm 1 always converges to an equilibrium in the case of all bads,
M = (). The proofs are similar in spirit to the mixed manna case, but there are minor differences
in some details. We still show that we the algorithm never sets a subset prices to zero, i.e., p; = P,
Vj € M C M, rather all prices are set to zero simultaneously. However, we can not rely on Lemma
16 to ensure that r; = R, Vi € N, as used in Lemma 19 which shows that the algorithm stops at
an equilibrium before setting p; = P, Vj € M. This is the only real difference between the proofs.
Recall LCP (10) of Section 4.1 which gives the formulation for all bads. We require the aug-
mented LCP which we create by adding —z to the left hand side of (10a) for all i € N, yielding

Vi e N : —ZWijpj —Zfijk—z < _PZWU L r. (31)
J J:k J
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Let k = argmax; ) jenr Wij. Then we get the primary ray by setting z = > jem Wi, and all other
variables equal to O.

We now show that Algorithm 1 never reaches a secondary ray where p; = P for some subset of
bads, and z > 0, and that the algorithm never reaches the degenerate solution where p; = P, Vj €
M, and all other variables equal to 0.

Note that Claim 1, and Lemmas 15, and 17 still hold. Therefore, p; < P, Vj € M, r; <
R, Vi € N, and if p; = P for some j € M, then p; = P, Vj € M. Thus, the algorithm never
reaches a secondary ray where p; = P for some subset of bads, and z > 0. It remains to show
that the algorithm never reaches the generate equilibrium where p; = P, Vj € M. The idea is
similar to Lemma 19. However, we can not use Lemma 16 to show that p; = P, Vj € M implies
ri=R, Vi € N.

Lemma 42. Starting from the primary ray, Algorithm 1 never reaches the degenerate solution
where pj = P, Vj € M, r; = R, Vi € N, and all other variables equal to zero.

Proof. Let T be a vertex where p; = P, Vj € M, S be the vertex that precedes T', and E be the edge
between S and T. At S, p; > 0 so that all p; — P on E. Therefore, complementarity condition
requires that (10b’) requires that (10b) holds with equality on F, sz fijk = P —pj, Vj € M.
Since p; < P at S, this requires that for each bad j € M, at least on agent, say i, purchases some
this bad, i.e., fijr > 0. Then complementarity condition (10c’) requires that (10c) is tight. Observe
that this implies that r; > 0, otherwise (10c¢) holds with strict inequality for all segments (i, j, k).
Therefore, for this agent, (31) holds with equality on E by complementarity condition (31’).

We want to argue that r; > 0,Vi € N. If this condition holds then 31 is tight Vi € N, and (10b)
is tight Vj € M. Summing over all of the constraints yields

Y P—pj=> Wiy(P—p)=> fix+nz=Y P—pj+nz
J J ijk J
at S, since ), W;; = 1. Then, z = 0 at S, which is a competitive equilibrium by Theorem 5.

For contradiction, assume that r, > 0, for some strict subset of agents £k € Ny C N. Note
that for all agents i € Ny = N \ Ny, (10c) holds with strict inequality since r; = 0, and therefore
complementarity condition (10c’) requires that f;;; = 0 for all segments (j,k) for all i € Np.
Further, since p; > 0, Vj € M, at S then (10b’) requires that (10b) is tight for all j € M. Then,
we see that > oy fijk = ik fijke = 2;(P — pj)-

Next, observe that (31) is tight for all i € N; by complementarity condition (31’). Therefore,
> jieny Wii(P—=pj) =3, kien, fijk +|N1]z. Also, since every agent is endowed with some fraction
of at least one bad and p; < P at S, >, ,cn, Wij(P —p;) < >_,;(P — pj). Combining the above
results yields

Y (P=pj)> Y Wy(P=pj)= > fie+INilz=>Y (P—pj)+ [Nz,

J J)ZGNI jvkvieNl J

at S. Thus, we obtain a contradiction since p; < P, Vj € M and z > 0 at S. O

The only remaining step to show convergence of Algorithm 1 in the case of all bads is to show
that the algorithm never reaches a secondary where p < P, and r < R. However, this follows the
argument of Theorem 20, while simply ignoring the steps that relate to goods.

Then, Lemmas 17 and 42 show that starting from the primary ray, p < P and r < R. Specif-
ically, Algorithm 1 never reaches a secondary ray where p; = P for some subset of bads, and it
never reaches the degenerate solution. Theorem 20 shows that the algorithm never reaches any
other secondary ray. Therefore, eventually we reach a vertex where p < P, » < R, and z = 0,
which is an equilibrium by Theorem 5.
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