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A B S T R A C T   

Many workflows and tools that aim to increase the reproducibility and replicability of research findings have 
been suggested. In this review, we discuss the opportunities that these efforts offer for the field of developmental 
cognitive neuroscience, in particular developmental neuroimaging. We focus on issues broadly related to sta
tistical power and to flexibility and transparency in data analyses. Critical considerations relating to statistical 
power include challenges in recruitment and testing of young populations, how to increase the value of studies 
with small samples, and the opportunities and challenges related to working with large-scale datasets. Devel
opmental studies involve challenges such as choices about age groupings, lifespan modelling, analyses of lon
gitudinal changes, and data that can be processed and analyzed in a multitude of ways. Flexibility in data 
acquisition, analyses and description may thereby greatly impact results. We discuss methods for improving 
transparency in developmental neuroimaging, and how preregistration can improve methodological rigor. While 
outlining challenges and issues that may arise before, during, and after data collection, solutions and resources 
are highlighted aiding to overcome some of these. Since the number of useful tools and techniques is ever- 
growing, we highlight the fact that many practices can be implemented stepwise.   

1. Introduction 

In recent years, much has been written about reproducibility and 
replicability of results being lower than desired in many fields of science 
(Ioannidis, 2005; Munafò et al., 2017), including in cognitive neuro
science (Poldrack et al., 2017). Reproducibility refers to the ability to 
obtain the same results using the same data and code, while replicability 
is the ability to obtain consistent results using new data (Barba, 2018; 
Nichols et al., 2017). What will count as consistent results and thus form 
a successful replication is up for debate (Cova et al., 2018; Maxwell 
et al., 2015; Open Science Collaboration, 2015; Zwaan et al., 2018). For 

example, one might come to different conclusions about replicability 
when using statistical significance (e.g., p < .05) as a criterion, when 
comparing the effect sizes of the original and replication study, or when 
meta-analytically combining effect sizes from the original and replica
tion study (Open Science Collaboration, 2015). In the context of neu
roimaging, another complication is the use of qualitatively defined brain 
regions that may vary from study to study, making it hard to establish 
whether an effect has been replicated (Hong et al., 2019). Similarly, a 
distinction is often made between direct replications, in which all major 
features of the original study are recreated, and conceptual replications, 
in which changes are made to the original procedure to evaluate the 
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robustness of a theoretical claim to such changes (Zwaan et al., 2018). 
When we refer to replicability throughout this paper, we use the term in 
a broad sense of any attempt to establish the consistency of develop
mental cognitive neuroscience effects using new data. 

It has been suggested that low statistical power, undisclosed flexi
bility in data analyses, hypothesizing after the results are known, and 
publication bias, all contribute to the low rates of reproducibility and 
replicability (Bishop, 2019; Munafò et al., 2017). The field of develop
mental neuroimaging is not immune to the issues that undermine the 
reproducibility and replicability of research findings. In fact, there are 
several issues that may be even more pronounced in, or specific to, 
developmental neuroimaging. For example, recruiting sufficiently large 

sample sizes is challenging because of the vulnerability of younger 
populations, and the associated challenges in recruitment and testing. 
On top of that, to disentangle individual variation from developmental 
variation, higher numbers of participants are needed to represent 
different age ranges. If we expect an age effect for a specific psycho
logical construct, the sample size has to be sufficient per age category 
and not simply the power across the whole sample as would be assumed 
in an adult group. Examples that are specific for neuroimaging studies 
include the widely observed problem of greater in-scanner motion with 
younger age that could confound results, including observed develop
mental patterns (Blumenthal et al., 2002; Satterthwaite et al., 2012; 
Ducharme et al., 2016). Moreover, neuroimaging studies typically 

Fig. 1. Graphical overview of challenges in the 
field of developmental cognitive neuroscience. 
The upper panels represent how development 
itself is a result of many complex, interacting 
processes, that it may be described on different 
levels and studied using different methodolo
gies. Studying development also requires 
assessment of individuals over time, consid
ering individual variations within and between 
individuals over time. The lower rectangular 
boxes depict a summary of challenges to 
reproducibility and replicability for develop
mental cognitive neuroscience studies more 
generally (Illustrations by N.M. Raschle).   
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involve large numbers of variables and a multitude of possible choices 
during data analyses, including image quality control, the choice of 
specific preprocessing parameters and statistical designs. A failure to 
describe these choices and procedures in sufficient detail can vastly 
reduce the likelihood of obtaining reproducible and replicable results. 

In the current review, we outline a number of issues threatening 
reproducibility and replicability of findings in developmental neuro
imaging. Our ultimate goal is to foster work that is not only reproducible 
and replicable but also more robust, generalizable, and meaningful. At 
some points, we will therefore also discuss ways to improve our science 
that might not be directly related to reproducibility and replicability. We 
will consider issues broadly related to statistical power and flexibility 
and transparency in data analyses. Given our background, we will focus 
mainly on examples from structural and functional neuroimaging. 
Although we do not want to equate cognitive neuroscience with MRI- 
based measurements, we believe much can be generalized to other 
modalities used in the broader field of developmental cognitive neuro
science. Fig. 1 summarizes challenges that are specific to the study of 
development and those that are affecting reproducibility and replica
bility more broadly. These topics will be picked up later on in Table 1 in 
more depth. We discuss issues that may arise before, during and after 
data collection and point to potential solutions and resources to help 
overcome some of these issues. Importantly, we consider solutions that 
can be implemented stepwise and by researchers with limited resources 
such as those early in their career. 

2. Statistical power 

Statistical power refers to the likelihood that a study will detect an 
effect when there is an effect to be detected. Power is determined by 
both the size of the effect in question and the study sample size, which is 
the number of participants or observations. The importance of statistical 
power cannot be underestimated. Especially when combined with 
publication bias - the tendency for only significant findings to be pub
lished, statistical power is intimately tied to replicability. There are 
different ways how power can influence replicability. First, underpow
ered studies that report very small effects need enormous replication 
samples to assess whether the effect is close enough to zero to be 
considered a null effect. Note that one way to circumvent this is the 
‘small telescopes’ approach by Simonsohn (2015), which estimates 
whether the replication effect size is significantly smaller than an effect 
for which the original study had 33 % power to detect. Second, for 
replications to be informative, statistical power of the replication study 
needs to be high enough to be informative. It is therefore important to 
consider that underpowered studies can overestimate the effect size (and 
these overestimations are more likely to get published). When power 
calculations in a replication are based on such an inflated effect size, the 
actual replication power is much lower than proposed and results in an 
uninformative imprecise replication. In the context of developmental 
neuroimaging, we will first discuss issues related to sample size and 
effect sizes, before reviewing specific challenges of conducting 
small-sample size studies. We then discuss the opportunities – but also 
the challenges – for reproducibility and replicability that have arisen in 
recent years with the growing number of large, publicly available 
developmental cognitive neuroscience datasets. 

2.1. Sample size 

Adequate sample sizes are important for several reasons. As high
lighted by Button et al. (2013), small samples reduce the chance of 
detecting a true effect, but it is less well appreciated that small samples 
also reduce the likelihood that a statistically significant result reflects a 
true effect or that small samples can yield exaggerated effects. The 
mechanism behind this latter bias is that measured effect sizes will have 
some variability due to sampling error (Szucs and Ioannidis, 2017). 
Studies with small samples will only be able to classify a true effect as 
significant on the occasional large overestimation of the effect size, 
meaning that when results of underpowered studies turn out to be sig
nificant, chances are high that the effect size is overestimated. In other 
words, small samples increase Type 2 errors (false negatives) and can 
lead to inflated Type 1 errors (false positives) in the literature when 
combined with the bias to publish studies with positive results. Button 
et al. (2013) used reported summary effects from 48 meta-analyses 
(covering 730 individual primary studies) in the field of neuroscience 
published in 2011 as estimates of the true effects and calculated the 
statistical power of each specific study included in the same 
meta-analyses. In this way, they empirically showed that the average 
statistical power was low in a range of subfields within neuroscience, 
including neuroimaging where they estimated the median statistical 
power of the studies at a meager 8 %. Later, Nord et al. (2017) rean
alyzed data of the same sample of studies and found that the studies 
grouped together in several subcomponents of statistical power, 
including clusters of adequate or well-powered studies. But for the field 
of neuroimaging, the studies only grouped in two clusters, with the large 
majority showing relatively low statistical power and only a small group 
showing very high power. We speculate that developmental neuro
imaging studies are overrepresented in the former group. 

Adding to the bleak prospect of these findings, a recent empirical 
investigation reported low replicability rates of associations between 
gray matter volume and standard psychological measures in healthy 
adults, even in samples of around 200–300 participants (Masouleh et al., 
2019). These authors tried to replicate brain-behavior associations 
within the same large sample by using multiple randomly generated 
subsamples of individuals, looking at different sizes of the initial ‘dis
covery’ samples and subsequent replication samples. They showed that 
brain-behavior associations for the psychological measures did not often 
overlap in the discovery and replication samples. Additionally, as the 
size of the subsamples decreased (from N = 326 to N = 138), the 
probability of finding spatially overlapping results across the whole 
brain also decreased (Masouleh et al., 2019). Using a similar approach 
for cortical thickness and resting state functional connectivity, a preprint 
by Marek et al. (2020) recently suggested that datasets in the order of N 
= 2000 are needed to reliably detect the small effect sizes of most 
brain-behavior associations. 

For developmental neuroimaging, it is likely that the problem of low 
statistical power is even greater. First of all, children and adolescents are 
more difficult to recruit, and also to get high quality data from, than 
participants from, for instance, a young adult student population. Sec
ond, in order to study age-related differences and make inferences about 
development, participants at different ages are needed, increasing the 
required total sample size. Given time and financial constraints in 
research, these factors can lead to small samples and underpowered 
studies for developmental cognitive neuroscientists, which can exacer
bate the problem of false positives in the literature when combined with 
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publication bias. Here are some ways to reduce this problem: 

2.1.1. Sequential interim analyses 
Prior to data collection, one of the steps that can be taken to reduce 

the problems associated with low statistical power is to preregister the 
study to reduce reporting biases, such as only reporting significant re
sults or certain conditions in a given study (see section 3.4 for more 
detail). In this case, one can also choose to prespecify the use of 
sequential interim analyses during data collection. The use of sequential 
analyses allows researchers to perform a study with fewer participants 
because of the possibility to terminate data collection when a hypoth
esized result is significant (Lakens, 2014). First, the maximum sample 
size needed to detect your smallest effect size of interest at 80 % power is 
determined by a power analysis, as is typically done. However, with 
sequential interim analyses, researchers can evaluate the significance of 
an analysis with less than the optimal sample size so long as the analyses 
are adjusted for the false positive inflation that occurs due to multiple 
analyses. If the result is significant using criteria prespecified by the 
researcher under those more stringent conditions, then data collection 
can be stopped. Such a form of prespecified, transparent ‘data peeking’ is 
not commonly used in our field, but has recently gotten increased 
attention in infancy research (Schott et al., 2019). An example of a 
recent neuroimaging study using sequential analyses to examine the 
relationship between hippocampal volume and navigation ability can be 
found in Weisberg et al. (2019). 

2.1.2. Prevent participant dropout in longitudinal studies and address 
missing data 

Especially in longitudinal studies it is critical to consider retention 
efforts and ways to keep participants engaged in the study. Retention 
efforts are important to be able to effectively measure change over time, 
but also need to be designed to prevent biases in who drops out of the 
study. If the characteristics of the children and families who repeatedly 
participate in research sessions differ significantly from those who 
dropout over time, this will bias the results observed in longitudinal 
research if not appropriately addressed (Telzer et al., 2018; Matta et al., 
2018). Reported dropout rates in longitudinal neuroscience studies can 
range from 10 to 50 percent and might differ between age ranges (e.g., 
Peters and Crone, 2017; Rajagopal et al., 2014). Not uncommonly, 
dropout in developmental cognitive neuroscience studies that require an 
MRI scan is due to teenagers getting braces, in addition to the more 
widespread reasons for dropout in developmental studies: loss of contact 
with or loss of interest from the families involved. Therefore, it is 
important to proactively plan to account for dropout due to predictable 
reasons (e.g., braces during early adolescence) and to make it a great 
experience for young participants and their families to take part in the 
study (Raschle et al., 2012). Fortunately, many developmental cognitive 
neuroscience labs do this very well, and we encourage research groups 
to share their tips and tricks for this practical side of the data collection 
that can facilitate participant recruitment and high retention rates in 
longitudinal studies. Formats that may be used to share more practical 
information on study conduction are for example video documentations 
as may be done through the journal of visualized experiments (htt 
ps://www.jove.com/: for an exemplary pediatric neuroimaging proto
col see Raschle et al., 2009), or the online platform databrary (https:// 
nyu.databrary.org/). The Adolescent Brain Cognitive Development 
(ABCD; https://abcdstudy.org) study that is currently following 11,875 
children for 10 years, has described their efforts to ensure retention in a 
recent article (Feldstein Ewing et al., 2018). Their efforts focus on 
building rapport through positive, culturally sensitive interactions with 
participants and their families, conveying the message to families that 

their efforts to participate are highly valued. But even if participants are 
willing to participate in subsequent study sessions, data might be lost 
due to issues such as in-scanner movement. Our section on data 
collection (section 3.1) and data quality (section 3.2) describes ways to 
ensure high data quality in younger samples. Finally, it is not always 
possible to prevent participant drop-out—families will move and some 
families might encounter a sudden change in household stability. This is 
why it is crucial to think carefully about missing data in a longitudinal 
study and model data using the least restrictive assumptions about 
missingness (for an extensive review of handling missing data in longi
tudinal studies, please see Matta et al., 2018). 

2.2. The importance of effect sizes 

The focus on significant results in small samples, partly because such 
positive results get published more often, is one of the reasons why many 
published results turn out to be non-replicable. To overcome the over
reliance on binary decision rules (e.g., significant versus nonsignificant 
in the currently dominant frequentist framework), researchers might 
focus more on reporting effect sizes (a description of the magnitude of an 
effect; Reddan et al., 2017). Reporting effect sizes and putting them into 
context, is something that all studies can do to describe the relevance of 
a particular finding, and will also aid future power calculations. Putting 
effect sizes in context can take the form of addressing how the observed 
effect compares to other variables in the present study, or how the 
observed effect compares to what has been observed in other studies. To 
give a few examples: in a longitudinal developmental cognitive neuro
science study, one could report a significant negative linear relationship 
between cortical thickness and age during adolescence. But reporting 
the average annual percent decrease in cortical thickness would be one 
way to illustrate the effect size in an understandable and easily com
parable way. By doing so, readers can see how the annual decrease in 
cortical thickness observed during adolescence compares to what is 
observed in the aging literature, or to the impact of, for example, 
training interventions on cortical thickness. To take another example, 
reporting how correlations in spontaneous BOLD fluctuations, measured 
in resting-state functional MRI, relate to age can be put into context by 
comparing them to the effect sizes reported in studies of mental health or 
behavior. 

Statistical power is also a product of the effect size, which makes this 
an important measure for power calculations. Effect sizes can vary 
substantially in developmental cognitive neuroscience, depending on 
the topic of interest. A general recommendation is to design a study 
around an a priori power calculation drawing from the existing literature 
(e.g., using tools such as http://www.neuropowertools.org). However, 
in doing so one must take into account that due to reporting bias in the 
present literature, reported effect sizes are often inflated (Cremers et al., 
2017). While power calculation is not as straightforward for longitudi
nal study designs, simulation approaches can be adopted in open-source 
software packages available in R (e.g., powerlmm; simsem). When there 
is limited data regarding what effect size could be expected for a given 
analysis, researchers can instead identify a smallest effect size of interest 
(SESOI; Lakens et al., 2018). In the following sections, we discuss 
challenges and solutions related to conducting studies on small or 
moderate effect sizes, and separately for small sample studies and large 
studies. 

2.3. How to value small sample studies? 

For reasons such as the costs associated with recruiting and testing 
developmental samples, it can be difficult to obtain sample sizes that 
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yield sufficient statistical power when the effect size is small to medium 
at best. However, trying to publish a developmental neuroimaging study 
with a small sample of participants is becoming increasingly more 
difficult. But does this mean that we should stop performing small 
sample studies, altogether? We believe it is still worth considering small 
sample studies, at least in some situations. One example is that studies 
with small samples can have value by proof of concept or conceptual 
innovation. Another example is that small sample studies can have value 
by addressing understudied research questions or populations. Below, 
we consider recommendations on how these small sample investigations 
can be done in a meaningful way. 

2.3.1. Cumulative science from small samples 
The sample size needed for a well-powered study is dependent on 

multiple factors such as the presumed effect size and study design. But in 
general, the typical sample sizes of 20–30 participants are usually un
derpowered to detect small to medium within-subject effects (Cremers 
et al., 2017; Poldrack et al., 2017; Turner et al., 2018). For detecting 
between-subject effects of the average size reported (e.g., Cohen’s d of 
0.2; see Gignac and Szodorai, 2016), even larger sample sizes are 
needed. For correlational analysis designs it has been suggested that 
sample sizes of at least 150–250 participants are needed in order to 
ensure stable findings in the context of behavioral or questionnaire 
studies (Schönbrodt and Perugini, 2013). However, a sample size in that 
range is often not feasible for smaller developmental cognitive neuro
science laboratories or for researchers studying specific low prevalence 
clinical conditions. This should not mean that work on smaller, 
challenging-to-recruit samples should be abandoned. For one, the cu
mulative output from many underpowered studies may be converged in 
order to obtain a reliable conclusion, for example through meta-analytic 
approaches. Indeed, a meta-analysis of five geographically or in any 
other way diverse studies with N = 20 will lead to more generalizable 
conclusions than one N = 100 study from a single subpopulation. 
However, for this to be true, each individual study needs to be up to the 
highest standards of transparency and sharing of materials to allow a 
convergence of the data to ensure reproducibility. Furthermore, 
meta-analytic approaches are not invulnerable to the problem of pub
lication bias. If meta-analytic procedures are built upon a biased selec
tion of published findings, and if they cannot include null-findings 
within their models, then the resulting output is similarly problematic. 
As a feasible solution to ensure an unbiased study report, steps that can 
be taken before data collection are preregistration or submitting a 
Registered Report. Especially Registered Reports (preregistrations sub
mitted to a journal to be reviewed before data collection or analysis) 
guard against publication bias because the acceptance of the article will 
be independent of the study outcome (see section 3.4). The integrated 
peer-review feedback on the methods section of the proposed study 
should also positively impact the quality of the methods employed; 
altogether fostering reproducibility. After data collection, sharing re
sults should include the provision of unthresholded statistical imaging 
maps to facilitate future meta-analyses, which can for example be done 
through NeuroVault (www.neurovault.org; Gorgolewski et al., 2015). 

After data collection, several steps at the level of statistical analyses 
(which should also be considered before data collection when designing 
a study) can be taken to increase the replicability and validity of work 
with smaller samples. For one, given the lower statistical power of 
studies with smaller samples, it is advisable to limit the number of hy
potheses tested, and thus reduce the number of analyses conducted. This 
will limit the complexity of the statistical analyses and the need for or 
degree of adjustment for multiple comparisons. For neuroimaging 

research, limiting the number of analyses can be achieved in several 
ways, from the kind of scan sequences obtained to the regions of the 
brain examined. However, this necessitates a strong theoretical basis for 
selecting a specific imaging modality or region of the brain to examine, 
which might not be feasible for research lines impacted by publication 
bias. In that case, regions of interest are affected by publication bias 
because significant effects in regions of interest are more likely to be 
reported than nonsignificant effects. Without preregistration of all a 
priori regions of interest and all subsequent null findings, it is hard to 
consider the strength of the evidence for a given region. This is further 
complicated because heterogeneity in spatial location and cluster size 
across studies for regions with the same label lead to imprecise repli
cations of effects (Hong et al., 2019). One way to specify regions of in
terests less affected by publication bias is the use of coordinate-based 
meta-analysis. Another way is the use of parcellations in which brain 
regions are divided based on structural or functional connectivity-based 
properties (Craddock et al., 2012; Eickhoff et al., 2018; Gordon et al., 
2016). To ensure transparency, a priori selections can be logged through 
preregistration. Another example of limiting the complexity of a 
developmental cognitive neuroscience analysis would be to focus on 
effects for which a priori power was calculated. In practice, this means 
that especially in smaller samples, researchers should avoid analyses 
with ever smaller subgroups or post hoc investigation of complex 
interaction effects. We are aware that this might put early career re
searchers and others with less resources at a disadvantage, as they are 
under more pressure to make the most out of smaller studies. Reviewers 
and editors can support authors who clearly acknowledge the limita
tions of their samples and analyses, by not letting this transparency 
affect the chances of acceptance of such a paper. It is also worth 
considering that taking steps to reduce the number of false positives in 
the literature will make it less likely that early career researchers will 
waste time and resources trying to build upon flawed results. 

2.3.2. More data from small samples 
It is also important to point out that a small sample of subjects does 

not have to mean a small sample in terms of data points. In relation to 
statistical power, the number of measurements is a particularly crucial 
factor (Smith and Little, 2018). This is also true for task-based functional 
neuroimaging studies, in which longer task duration increases the ac
curacy to detect effects due to increased temporal signal to noise ratio 
(Murphy et al., 2007). More so, under optimal noise conditions with 
large amounts of individual functional magnetic resonance imaging 
(fMRI) data, task-related activity can be detected in the majority of the 
brain (Gonzalez-Castillo et al., 2012). Even with modest sample sizes of 
around 20 participants, the replicability of results increases when more 
data is collected within individuals on the same task (Nee, 2019). This is 
because the amount of noise is reduced not only by decreasing 
between-subject variance (by collecting data from more individuals) but 
also by decreasing within-subject variance (by collecting more data per 
individual). For example, when replicability is operationalized as the 
correlation between voxels, clusters, or peaks in two or more studies 
with different samples using the same methods (cf., Turner et al., 2018), 
the correlations will become stronger when the signal to noise ratio is 
boosted. This does not mean that scanning just a few participants 
extremely long would equal scanning many participants very shortly: at 
some point the gain from decreasing within-subject variance will lead to 
little improvement in power, meaning that power can then only be 
improved by decreasing between-subject variance through increasing 
the sample size (Mumford and Nichols, 2008). 

There are several examples of highly informative cognitive 
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neuroscience investigations that deeply phenotype only a single or few 
participants (Poldrack et al., 2015; Choe et al., 2015; Filevich et al., 
2017). Following the pioneering work of the MyConnectome project by 
Poldrack et al. (2015), studies by the Midnight Scan Club are based on 
the data of only ten individuals (Gordon et al., 2017). This dataset in
cludes 10 h of task-based and resting-state fMRI data per participant, 
allowing individual-specific characterization of brain functioning and 
precise study of the different effects of individual, time, and task vari
ability (Gratton et al., 2018). These and other studies (e.g., Filevich 
et al., 2017) demonstrate that high sampling rates can solve some of the 
power issues related to small samples. Analogous to the Midnight Scan 
Club, Marek et al. (2018) managed to collect 6 h of resting-state fMRI 
data during 12 sessions in one 9 year old boy. However, highly sampling 
young participants, as would be the goal in developmental cognitive 
neuroscience investigations, warrants special consideration (e.g., feasi
bility or ethical concerns). Furthermore, deep-phenotyping does not 
reduce costs related to scanning on multiple occasions, nor is it feasible 
for many cognitive tasks to be sampled on such a frequency. Addition
ally, small samples, often with tightly controlled demographics, cannot 
inform about population variability. This means that such studies 
remain inherently limited when it comes to generalization to the wider 
population, and should be interpreted accordingly (see LeWinn et al., 
2017 for how non-representative samples can affect results in neuro
imaging studies). However, despite such caveats, within the limits of 
ethical possibilities with young participants, increasing the amount of 
within-subject data by using fewer but longer tasks within sessions, or by 
following up smaller cohorts more extensively or for a longer time, will 
increase power within subjects (see Vidal Bustamante et al. (2020) for an 
example of a study in which adolescents partake in monthly MRI scans, 
surveys and interviews). 

2.3.3. More reliable data from (sm)all samples 
For smaller sample studies, it is of the utmost importance to reduce 

sampling error on as many levels as possible. In the context of cognitive 
development, it is necessary to make sure the behavior on experimental 
paradigms is robust and reliable. High test-retest reliability - meaning 
the paradigm produces consistent results each time it is used (Herting 
et al., 2018a) - should therefore be established before a developmental 
study is performed (for both small and large samples). Psychometric 
properties such as reliability also need to be reported post hoc, since 
these are mainly properties of the test in a particular setting and sample 
(Cooper et al., 2017; Parsons et al., 2019b). Establishing reliability is 
important for several reasons: 1) it provides an estimate of how much 
the scores are affected by random measurement error, which in turn is a 
prerequisite of the validity of the results (i.e., does the test measure what 
it is supposed to measure). 2) If we want to relate the scores with other 
measures such as imaging data, low reliability in one of the measures 
compromises the correlation between the two measures. 3) With lower 
reliability, statistical power to detect meaningful relationships decreases 
(Hedge et al., 2018; Parsons et al., 2019b). 4) Many experimental tasks 
were designed to produce low between-person variability, making them 
less reliable for studying individual differences (Hedge et al., 2018). 

In addition, in the case of developmental neuroimaging, one must go 
beyond reliability of behavioral measures, but should also establish test- 
retest reliability for functional activity. Test-retest reliability of BOLD 
responses is not regularly reported, but several studies have shown poor 
to fair results for some basic tasks (Plichta et al., 2012; van den Bulk 
et al., 2013). For more complex tasks, the underlying cognitive processes 
elicited should be reliable as well, given that many more complex 
experimental tasks can be solved relying on different cognitive 

processes. For instance, it is known that across development children 
and adolescents start making use of more complex decision rules (Jansen 
et al., 2012), and that these decision rules are associated with different 
patterns of neural activity (van Duijvenvoorde et al., 2016). Such vari
ability in cognitive strategies may not be visible on the behavioral level, 
but will have a negative effect on the reliability of the neural signals. 
More so, poor test-retest reliability for task fMRI might partly stem from 
the use of tasks with poor psychometric validity. Unfortunately, psy
chometric properties of computerized tasks used in experimental psy
chology and cognitive neuroscience are underdeveloped and 
underreported, compared to self-report questionnaires (Enkavi et al., 
2019; Parsons et al., 2019b). 

In sum, especially in the case of smaller samples, replicability might 
be increased by using relatively simple and reliable tasks with many 
trials. Naturally, at some point, unrestrained increases in the length of 
paradigms might backfire (e.g., attention to task will fade, motion will 
increase), especially in younger participants. One option might be to 
increase total scan time by collecting more runs that are slightly shorter. 
For instance, Alexander et al. (2017) reported more motion in the sec
ond half of a resting state block than during the first half and subse
quently split the block into two for subsequent data collection. The 
optimal strategy for increased within-subject sampling in developmental 
studies remains an empirical question. It might therefore be good to 
point out that reliability also depends on factors related to analytic 
strategies used after data collection. Optimizing data analysis for these 
purposes, for instance by the choice of filter selection and accounting for 
trial-by-trial variability, could help to lower the minimum data required 
per individual to obtain reliable measures (Rouder and Haaf, 2019; 
Shirer et al., 2015; Zuo et al., 2019). 

2.3.4. Collaboration and replication 
Another option for increasing the value of small samples is to work 

collaboratively across multiple groups, either by combining samples to 
increase total sample sizes or by repeating the analyses across inde
pendent replication samples. One can also obtain an independent 
replication sample from the increasing number of open datasets avail
able (see section 2.4). Collaborative efforts can consist of post-hoc data 
pooling and analyses, as has for example been done within the 1000 
Functional Connectomes Project (Biswal et al., 2010) and the ENIGMA 
consortium (P. M. Thompson et al., 2020a), or even with longitudinal 
developmental samples (Herting et al., 2018b; Mills et al., 2016; Tamnes 
et al., 2017). Such collaborations can also be conducted in a more 
pre-planned fashion. For instance, to make your own data more usable 
for the accumulation of data across sites, it is important to see if stan
dardized procedures exist for the sequences planned for your study (e.g., 
the Human Connectome Project in Development sequence for resting 
state fMRI; Harms et al., 2018). These standards might sometimes con
flict with the goals of a specific study, say when interested in optimizing 
data acquisition for a particular brain region. Of course, in such cases it 
could be better to deviate from standardized procedures. But in general, 
well-tested acquisition standards such as used in the Human Con
nectome Project would aid most researchers in collecting very high 
quality data ((Glasser et al., 2016) Harms et al., 2018). With increased 
adoption of standards, such data will also become easier to harmonize 
with data from other studies. 

The ManyBabies Project is a collaborative project example that fo
cuses specifically on assessing the “replicability, generalizability, and 
robustness of key findings in infancy,” by combining data collection 
across different laboratories (https://manybabies.github.io/). In 
contrast with the Reproducibility Project (Open Science Collaboration, 
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2015), all participating labs jointly set up the same replication study 
with the goal of standardizing the experimental setup where possible 
and carefully documenting deviations from these standards (Frank et al., 
2017). Such an effort not only increases statistical power, but also gives 
more insight into the replicability and robustness of specific phenomena, 
including important insights into how these may vary across cultures 
and measurement methods. For example, within the first ManyBabies 
study three different paradigms for measuring infant preferences 
(habituation, headturn preference, and eye-tracking) were used at 
different laboratories, in which the headturn preference led to the 
strongest effects (ManyBabies Consortium, 2020). A similar project 
within developmental neuroimaging could start with harmonizing 
acquisition of resting-state fMRI and T1-weighted scans and agreeing on 
a certain set of behavioral measures that can be collected alongside 
ongoing or planned studies. In this way, the number of participants 
needed to study individual differences and brain-behavior correlations 
could be obtained through an international, multisite collaboration. A 
more far-reaching collaboration resembling the ManyBabies Project 
could be to coordinate collection of one or more specific fMRI or EEG 
tasks at multiple sites to replicate key developmental cognitive neuro
science findings. This would also provide an opportunity to collabora
tively undertake a preregistered, high-powered investigation to test 
highly influential but debated theories such as imbalance models of 
adolescent development (e.g., Casey, 2015; Pfeifer and Allen, 2016). 

2.4. New opportunities through shared data and data sharing 

Increasingly, developmental cognitive neuroscience datasets are 
openly available. These range from small lab-specific studies, to large 
multi-site or international projects. Such open datasets not only provide 
new opportunities for researchers with limited financial resources, but 
can also be used to supplement the analyses of locally collected datasets. 
For example, exploratory analyses can be conducted on large open 
datasets to narrow down more specific hypotheses to be tested on 
smaller samples. Open datasets can also be used to replicate hypothesis- 
driven work, and test for greater generalizability of findings when the 
variables of interest are similar but slightly different. Open datasets can 
also be used to prevent double-dipping, for example by defining regions 
of interest related to a given process in one dataset, and testing for brain- 
behavior correlations in a separate dataset. 

Access to openly available datasets can be established in a number of 
ways, here briefly outlined in three broad categories: large repositories, 
field or modality-specific repositories, and idiosyncratic data-sharing. 
Note that using these datasets should ideally be considered before col
lecting new data, which provides the opportunity to align one’s own 
study protocol with previous work. This can also help with planning 
what unique data to collect in a single lab study that could complement 
data available in large scale projects. Before data collection, it is also 
very important to consider the possibilities (and the obligations for an 
increasing number of funding agencies) of sharing the data to be 
collected. This can range from adapting informed consent information to 
preparing a data management plan to make the data human- and 
machine-readable according to recognized standards (e.g., FAIR prin
ciples, see Wilkinson et al., 2016). After data collection, open datasets 
can be used for cross-validation to test the generalizability of results in a 
specific sample (see also section 2.6). 

With increasing frequency, large funding bodies have expanded and 
improved online archiving of neuroimaging data, including the National 
Institute of Mental Health Data Archive (NDA; https://nda.nih.gov), and 
the database of Genotypes and Phenotypes (dbGaP; https://www.ncbi. 

nlm.nih.gov/gap/). Within these large data archives, researchers can 
request access to lab-specific datasets (e.g., The Philadelphia Neuro
developmental Cohort), as well as access to large multi-site initiatives 
like the ABCD study. Researchers can also contribute their own data to 
these larger repositories, and several funding mechanisms (e.g., 
Research Domain Criteria, RDoC) mandate that researchers upload their 
data in regular intervals. The NIMH allows for researchers who are 
required to share data to apply for supplemental funds which cover the 
associated work required for making data accessible. Thereby, the fun
ders help to ensure that scientists comply with standardized data storage 
and structures, while recognizing that these are tasks requiring sub
stantial time and skill. While these large repositories are a centralized 
resource that can allow researchers to access data to answer theoretical 
and methodological hypotheses, the format of the data in such large 
repositories can be inflexible and may not be as well-suited to neuro
imaging data. 

Data repositories built specifically for hosting neuroimaging data are 
becoming increasingly popular. These include NeuroVault (htt 
ps://neurovault.org; Gorgolewski et al., 2015), OpenNeuro (htt 
ps://openneuro.org; Poldrack and Gorgolewski, 2017), the Collabora
tive Informatics and Neuroimaging Suite (COINS; https://coins.trendsc 
enter.org; Scott et al., 2011), the NITRC Image Repository (htt 
ps://www.nitrc.org/; Kennedy et al., 2016) and the International Neu
roimaging Data-sharing Initiative (INDI; http://fcon_1000.projects. 
nitrc.org; Mennes et al., 2013). These are open for researchers to uti
lize when sharing their own data, and host both small and large-scale 
studies, including the Child Mind Institute Healthy Brain Network 
study (Alexander et al., 2017), and the Nathan Kline Institute Rockland 
Sample (Nooner et al., 2012). These data repositories are built to handle 
neuroimaging data, and can more easily integrate evolving neuro
imaging standards. For example, the OpenNeuro website mandates data 
to be uploaded using the Brain Imaging Data Structure (BIDS) standard 
(Gorgolewski et al., 2016), which then can be processed online with 
BIDS Apps (Gorgolewski et al., 2017). 

Idiosyncratic methods of sharing smaller, lab-specific, data with the 
broader community might result in less utilization of the shared data
sets. It is possible that researchers are only aware of these datasets 
through the empirical paper associated with the study, and the database 
hosting the data could range from the journal publishing the paper, to 
databases established for a given research field (e.g., OpenNeuro), or 
more general data repositories (e.g., Figshare, Datadryad). However, 
making lab-specific datasets available can help further efforts to answer 
methodological and theoretical questions, and these datasets can be 
pooled with others with similar measures (e.g., brain structure) to assess 
replicability. Further, making lab-specific datasets openly available 
benefits the broader ecosystem by providing a citable reference for the 
early career researchers who made it accessible. 

2.5. Reproducibility and replicability in the era of big data 

The sample sizes in the largest neuroimaging studies, including the 
largest developmental neuroimaging studies, are rapidly increasing. 
This is clearly a great improvement in the field. Large studies yield high 
statistical power, likely leading to more precise estimates and lower 
Type 2 error rates (i.e., less false negatives). However, critically 
considering the power of these studies paired with an overemphasis on 
statistical significance, increases the risk of over-selling small effect 
sizes. Furthermore, large and rich datasets offer a lot of flexibility at all 
stages of the research process. Both issues represent novel, though 
increasingly important, challenges in the field of developmental 
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cognitive neuroscience. 
While making data accessible is a major step forward, it can also 

open up the possibility for counterproductive data mining and dissem
ination of false positives. Furthermore, with a large dataset, traditional 
statistical approaches emphasizing null-hypothesis testing may yield 
findings that are statistically significant, but lack practical significance. 
Questionable research practices, such as conducting many tests but only 
reporting the significant ones (p-hacking or selective reporting) and 
hypothesizing after the results are known (HARKing), exacerbate these 
problems and hinder progress towards the development of meaningful 
insights into human development and its implications for mental health 
and well-being. High standards of transparency in data reporting could 
reduce the risk of such problems. This may include preregistration or 
Registered Reports of analyses conducted on pre-existing datasets, 
developing and sharing reproducible code, and using holdout samples to 
validate model generalizability (see also Weston et al., 2019, for a 
discussion). 

To describe one of these examples, reproducibility may be increased 
when analysis scripts are shared, particularly when several researchers 
utilize the same open dataset. As the data are already available to the 
broader community, the burden to collect and share data is no longer 
placed on the individual researcher, and effort can be channeled into 
creating a well-documented analytic script. Given its availability, it does 
become likely that multiple researchers ask the same question using the 
same dataset. In the best-case scenario, multiple papers might then be 
published with similar results at the same time; allowing an excellent 
opportunity to evaluate the robustness of a given study result. However, 
a valid concern may be that one study is published while another is 
being reviewed. But as mentioned in Laine (2017), it may be equally as 
likely that competing research teams end up collaborating on similar 
questions or avoid too much overlap from the beginning. It is possible, 
and has previously been demonstrated in social psychology (Silberzahn 
et al., 2018), that different teams might ask the same question of the 
same dataset and produce different results. Recently, results were pub
lished of a similar effort of 70 teams analyzing the same fMRI dataset, 
showing large variability in analytic strategies and results (Botvi
nik-Nezer et al., 2020; https://www.narps.info). Methods such as 
specification curve analysis or multiverse analysis have been proposed 
as one way to address the possibility of multiple analytic approaches 
generating different findings, detailed below in Section 3.3. 

Another way that we can proactively address the possibility of dif
ferential findings obtained across groups is to support the publication of 
meta-analyses or systematic summaries of findings generated from the 
same large-scale dataset regularly. Such overviews of tests run on the 
same dataset can help to get better insight in the robustness of the 
research findings. For example, when independent groups have looked 
at the relation between brain structure and substance use using different 
processing pipelines, the strength of the evidence can be considered by 
comparing these results. Another problem that can be addressed using 
regular meta-analyses is the increasing false positive rate when multiple 
researchers run similar, confirmatory statistical tests on the same open 
dataset. False positive rates will increase if no correction for multiple 
comparisons is applied for tests that belong to the same ‘statistical 
family’ but are being conducted by different researchers, and at different 
times W. H. Thompson et al., 2020. When the number of preceding tests 
is known, researchers can use this information to correct for new com
parisons they are about to make, alternatively some form of correction 
could be applied retrospectively (see W. H. Thompson et al., 2020b, for 
an in-depth discussion on ‘dataset decay’ with re-using open datasets). 

2.6. The danger of overfitting and how to reach generalizability 

One way of understanding the reports of high effects sizes in small 
samples studies is that they are the result of overfitting of a specific 
statistical model (Yarkoni and Westfall, 2017). Given the flexibility re
searchers have when analyzing their data it is possible that a specific 
model (or set of predictors) result in very high effect sizes. This is even 
more likely when there are many more predictors than participants in 
the study. Within neuroimaging research this is something that quickly 
happens as a result of the large number of voxels representing one brain 
volume. A model that is overfitting is basically fitting noise, and thus it 
will have very little predictive value and a small chance being repli
cated. One benefit of large samples of subjects is that they provide op
portunities to prevent overfitting by means of cross-validation (i.e., 
k-fold or leave-one-subject-out cross-validation; Browne, 2000), ulti
mately allowing for more robust results. Simply put, the data set is split 
into a training set and a validation (or testing) set. The goal of 
cross-validation is to test the model’s ability to predict new data from 
the validation set based on its fit of the training set. 

Although cross-validation can easily be used in combination with 
more classic confirmatory analyses to test the generalizability of an a 
priori determined statistical model, it is more often used in exploratory 
predictive modeling and model selection. Indeed, the use of machine- 
learning methods to predict behavior from brain measures has become 
increasingly common, and is an emerging technique in (developmental) 
cognitive neuroscience (for an overview see Rosenberg et al., 2018; or 
Yarkoni and Westfall, 2017). Predictive modeling is specifically of in
terest when working with large longitudinal datasets generated by 
consortia (e.g., ABCD or IMAGEN). These datasets often contain many 
participants but also commonly include far more predictors (e.g., 
questionnaire items, brain parcels or voxels). For this type of data, the 
predictive analyses used are often a form of regularized regression (e.g., 
Lasso or elastic net), in which initially all available, or interesting, re
gressors are used in order to predict a single outcome. A relevant 
developmental example is the study by Whelan et al. (2014), which 
investigated a sample of 692 adolescents to predict future alcohol 
misuse based on brain structure and function, personality, cognitive 
abilities, environmental factors, life experiences, and a set of candidate 
genes. Using elastic net regression techniques in combination with 
nested cross-validation this study found that from all predictors, life 
history, personality, and brain variables were the most predictive of 
future binge drinking. 

2.7. Interim summary 

Statistical power is of utmost importance for reproducible and 
replicable results. One way to ensure adequate statistical power is to 
increase sample sizes based on a priori power calculations (while ac
counting for expected dropout), and at the same time decreasing within- 
subject variability by using more intensive, reliable measures. The value 
of studies with smaller sample sizes can be increased by high standards 
of transparency and sharing of materials in order to build cumulative 
results from several smaller sample studies. In addition, more and more 
opportunities are arising to share data and use data shared by others to 
complement and accumulate results of smaller studies. When adequate 
and transparent methods are used, the future of the field will likely be 
shaped by an informative mix of results from smaller, but diverse and 
idiosyncratic samples, and large-scale openly available samples. In the 
following, we discuss the challenges and opportunities related to flexi
bility and transparency in both smaller and larger samples in more 
detail. 
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Table 1 
Selective overview of challenges in the field of developmental cognitive neuroscience.  

Phase of study Practical, technical and ethical 
issues hindering reproducibility 
& replicability 

Potential or previously suggested 
solutions 

Useful links/selected 
examples  

STATISTICAL POWER   

1. To consider prior to & throughout data collection  

Low statistical 
power / low 
effect size 

Power analysis 
G*Power; NeuroP 
owerTools; BrainPower; 
fmripower   

If no prior reliable data exists, consider a 
“smallest effect size of interest’’ consistent 
with the broader psychological community (e. 
g., ~.10 - .30; according to Gignac and 
Szodorai, 2016)    
Use of age-adequate and appealing protocols 
to increase power    
Sequential interim analyses (e.g., 
transparent data peeking to determine cut-off 
point; Lakens, 2014)  

Selective, small or non- 
representative samples    

Selective/non- 
representative 
samples (e.g., 
Western, 
educated, 
industrialized, 
rich and 
democratic 
(WEIRD) 
population) 

Measurement invariance tests (e.g., Fischer 
and Karl, 2019)    

Diversity considerations in study design & 
interpretation   

Small N due to 
rare population 
(e.g., patients or 
other populations 
more challenging 
to recruit) 

Strong a priori hypothesis (e.g., adjust search 
space on a priori-defined ROIs; caution: (s) 
harking)    

Increase power within subjects (e.g., consider 
fewer tasks with longer duration)    

Data aggregation (e.g., more data through 
collaboration or consortia or data sharing, 
which also allows evidence synthesis through 
meta-analyses) 

Exemplary data sharing 
projects/platforms: Many 
Labs Study 1; Many Labs 
Study 2; Many Babies 
Project; Psychological Sc 
ience Accelerator; Play 
and Learning Across a Year 
Project  

Ethical concerns 
(e.g., privacy, 
vulnerability, 
subject 
protection, local 
IRB-bound 
restrictions) 

Data anonymization (e.g., use suggestions by 
the Declaration of Helsinki) 

DeclarationofHelsinki   

Share and consistent use of standardized 
consent material/wording 

Open Brain Consent 
sample consent forms   

Disclosure / restricted access if required   
Biological 
considerations 
in DCN samples 
(e.g., distinct 
biology, reduced 
BOLD response, 
different 
physiology in 
MRI) 

Subject-specific solutions (e.g., child- 
friendly head coils or response buttons, specific 
sequence, use highly engaging tasks) 

CCHMC Pediatric Brain 
Templates; NIHPD 
pediatric atlases 
(4.5-18.5y); CCHMC 
Pediatric Brain Templates; 
Neurodevelopmental MRI 
Database 

2. During & throughout data collection 

FLEXIBILITY IN DATA 
COLLECTION STRATEGIES    

Researchers 
degree of 
freedom I 
(intransparent 
assessment 
choices, see  
Simmons et al., 

Increase methods knowledge across scientists 
(e.g., through hackathons and workshops) 

Brainhack Global; Open 
Science MOOC; Neuro 
Hackademy 

(continued on next page) 
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Table 1 (continued ) 

Phase of study Practical, technical and ethical 
issues hindering reproducibility 
& replicability 

Potential or previously suggested 
solutions 

Useful links/selected 
examples 

2012, for a 
21-word solution)   

Teaching reproducible research practices Mozilla Open Leadership 
training; Framework for 
Open and Reproducible 
Research Training  

Variability & 
biases in study 
administration 

Research project management tools: 
standard training and protocol for data 
collection, use of logged lab notebooks, 
automation of processes 

Human Connectome 
Project Protocols; Open 
Science Framework   

Standard operation procedure (public 
registry possible; see Lin and Green, 2016) 

Git version control (e.g., 
github.com)  

Flexible choice 
of 
measurements, 
assessments or 
procedures 

Policies / standardization / use of fixed 
protocols / age-adequate tool-& answer boxes   

Random choice 
of confounders 

Code sharing   

Data 
manipulation 
checks     

Clear documentation / detailed analysis plan 
/ comprehensive data reporting 

FAIR (Findable, 
Accessible, Interoperable 
and Re-usable) data 
principles; JoVE video 
methods journal; 
Databrary for sharing 
video data   

Preregistration  

3. Issues arising post data collection & consider 
throughout 

ISSUES IN ANALYSES CHOICES 
& INTERPRETATION     

Cross-validation (e.g., k-fold or leave-one-out 
methods)   

Generalizability 
Robustness 

Replication (using alternative approaches or 
perform replication in alternative approaches) 

Replication grant 
programs (e.g., NWO); 
Replication awards (e.g, 
OHBM Replication Award)   

Sensitivity analysis   
Transparency 
(inadequate 
access to 
materials, 
protocols, 
analysis scripts, 
and experimental 
data) 

Make data accessible also furthering meta 
analytic options (e.g., sharing of raw data or 
statistical maps (i.e., fMRI), sharing code, 
sharing of analytical choices and references to 
the foundation for doing so) ideally in line with 
community standards 

NeuroVault for sharing 
unthresholded statistical 
maps; OpenNeuro for 
sharing raw imaging data; 
Dataverse open source 
research data repository; 
Brain Imaging Data 
Structure   

Make studies auditable    

Transparent, clear labelling of confirmatory 
vs. exploratory analyses 

TOP (Transparency and 
Openness Promotion) 
guidelines 

Analytical Flexibility    
Researchers 
degree of 
freedom II 
(intransparent 
analysis choices)  

Transparency Checklist 
(Azcel et al., 2019)  

hindsight bias 
(consider results 
more likely after 
occurrence) 

disclosure / properly labeling hypothesis- 
driven vs. confirmatory research   

p-hacking (data 
manipulation to 
find p- 
significance)  

Preregistration resources 
(may be 
embargoed/time-stamped 
amendments possible); 
The use of Preregistration 
Tools in Ongoing, 
Longitudinal Cohorts 
(SRCD 2019 Roundtable); 
Tools for Improving the 
Transparency and 
Replicability of 
Developmental Research 
(SRCD 2019 Workshop) 

(continued on next page) 
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Table 1 (continued ) 

Phase of study Practical, technical and ethical 
issues hindering reproducibility 
& replicability 

Potential or previously suggested 
solutions 

Useful links/selected 
examples  

p-harking 
(hypothesizing 
after the results 
are known)    
t-harking 
(transparently 
harking in the 
discussion 
section)    
s-harking 
(secretly harking) 

Preregistration (e.g., OSF; Aspredicted.org)   

cherry-picking 
(running multiple 
tests and only 
reporting 
significant ones) 

Registered Reports (review of study, 
methods, plan prior to data collection & 
independent of outcome) 

Registered Reports 
resources (including list of 
journals using RRs); 
Secondary data 
preregistration template; 
fMRI Preregistration 
template (Flannery, 
2018); List of 
neuroimaging 
preregistrations and 
registered reports 
examples  

Circularity (e.g., 
circular data 
analysis)    
Need for 
multiple 
comparison 
correction 

p-curve analysis (testing for replicability)   

Random choice of 
covariates     

Specification curve analysis (a.k.a. 
multiverse analyses; allows quantification and 
visualization of the stability of an observed 
effect across different models) 

Specification curve 
analysis tutorial  

Overfitting Cross-validation (tests overfitting by using 
repeated selections of training/test subsets 
within data)   

Missing defaults 
(e.g., templates or 
atlases in MRI 
research), 
representative 
comparison group 
(e.g., age, 
gender), more 
motion in 
neuroimaging 
studies 

Subject-specific solutions (e.g., online motion 
control or protocols for motion control) 

Framewise Integrated 
Real-time MRI Monitoring 
(FIRMM) software   

Use of standardized toolboxes Exemplary standardized 
analyses pipelines for MRI 
analyses: fMRIPrep 
preprocessing pipeline; 
LONI pipeline 

Software issues    
Variability due 
to differences in 
software versions 
and operating 
systems 

Disclosure of relevant software information 
for any given analyses 

Docker for containerizing 
software environments  

Software errors Making studies re-executable (e.g., Ghosh 
et al., 2017)  

Research Culture    
Publication bias 
(e.g., publication 
of positive 
findings only) 

Incentives for publishing null-results / 
unbiased publication opportunities     

Publishing null results:  
Bias-selection 
and omission of 
null results (file 
drawer 
explanation: only 

Post data for evaluation & independent review Publishing null results: 
F1000 Research; bioRxiv 
preprint server; PsyArXiv 
preprints for psychological 
sciences 

(continued on next page) 
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3. Flexibility and transparency in data collection and data 
analysis 

In light of the increasing sample sizes and richness of datasets in 
developmental cognitive neuroscience available, a critical challenge to 
reproducibility and replicability is the amount of flexibility researchers 
have in data collection, analysis and reporting (Simmons et al., 2011). 
The amount of flexibility is even intensified in the case of 
high-dimensional neuroimaging datasets (Carp, 2012; Botvinik-Nezer 
et al., 2020). On top of this, in developmental studies many choices have 
to be made about age groupings, ways of measuring development or 
puberty, whilst a longitudinal component adds another level of 
complexity. In the following, we discuss some examples of designing and 
reporting studies that lead to increased transparency to aid reproduc
ibility and replicability. First we discuss how data collection strategies 
can increase replicability, followed by the importance of conducting and 
transparently reporting quality control in developmental neuroimaging. 
Next, we discuss specification curve analysis as a method in which a 
multitude of possible analyses are transparently reported to establish the 
robustness of the findings. Finally, we discuss how preregistration of 
both small- and large-scale studies can aid methodological rigor in the 
field. 

3.1. Increasing transparency in data collection strategies 

Practical and technical challenges have long restricted the use of (f) 
MRI at younger ages such as infancy or early childhood (see Raschle 
et al., 2012), whereas the adolescent period has now been studied 
extensively for over two decades. Fortunately, technical and methodo
logical advances allow researchers to conduct neuroimaging studies in a 
shorter amount of time, with higher precision and more options to 
correct for shortcomings associated with pediatric neuroimaging (e.g., 
motion). Such technical advances thus make MRI more suitable to be 
applied in children from a very young age on, opening possibilities to 

study brain development over a much larger course of development 
from birth to adulthood. One downside is that the replicability of this 
work can be impacted by the variability in data collection and pro
cessing strategies when scanning younger adolescents and children. It is 
therefore necessary to transparently report how data was collected and 
handled to aid replication and generalizability. The publication of pro
tocols can be helpful because they provide standardized methods that 
allow replication. For example, there is an increasing number of publi
cations, including applied protocols and guidelines, providing examples 
of age-appropriate and child-friendly neuroimaging techniques that can 
be used to increase the number of included participants and increase the 
likelihood to obtain meaningful data (e.g., de Bie et al., 2010; Pua et al., 
2019; Raschle et al., 2009). 

A focus on obtaining high quality, less motion-prone, MRI data can 
also mean reconsidering the kind of data we collect. One example is the 
use of engaging stimuli sets such as movies, as a way to create a positive 
research experience to get high quality data from young participants. 
Especially in younger children, movies provide an improvement in head 
motion during fMRI scanning relative to task and resting-state scans 
(Vanderwal et al., 2019). Movies might be used to probe activation in 
response to a particular psychological event in an engaging, task-free 
manner. For example, a study by Richardson and colleagues used the 
short Pixar film ‘Partly Cloudy’ to assess functional activation in Theory 
of Mind and pain empathy networks in children aged 3–12 years 
(Richardson et al., 2018). In the context of the current review it is 
mentionable that Richardson (2019) subsequently used a publicly 
available dataset (Healthy Brain Network; Alexander et al., 2017) in 
which participants watched a different movie to replicate this finding. 
This work shows the potential of movie-viewing paradigms for devel
opmental cognitive neuroscience, even with different movies employed 
across multiple samples. Apart from using movies as a stimulus of in
terest, movie viewing can also be used to reduce head motion during 
structural MRI scans in younger children (Greene et al., 2018). 

Another choice to be made before collecting data is the use of a 

Table 1 (continued ) 

Phase of study Practical, technical and ethical 
issues hindering reproducibility 
& replicability 

Potential or previously suggested 
solutions 

Useful links/selected 
examples 

positive results 
are published or 
publishing norms 
favoring novelty)   

Less reliance on all-or-nothing significance 
testing (e.g., Wasserstein et al., 2019)    
Use of confidence intervals (e.g., Cumming, 
2013)    
Bayesian modeling (e.g., Etz and 
Vandekerckhove, 2016)    
Behavior change interventions (see Norris 
and O’Connor, 2019)   

Scientist’s 
personal 
concerns (e.g., 
risk of being 
scooped leading 
to non- 
transparent 
practices) 

Citizen science (co-producing research aims)  

POPULATION SPECIFIC    
Ethical reasons 
(e.g., that 
prohibit data 
sharing) 

Anonymization or sharing of group maps over 
individual data (i.e., T-maps) 

De-identification 
Guidelines; 
Anonymisation 
Decision-making 
Framework   

Follow reporting guidelines EQUATOR reporting 
guidelines; COBIDAS 
checklist   

Maximize participant’s contribution (ethical 
benefit)   
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longitudinal or cross-sectional design. This choice is of course dependent 
on the available resources, with longitudinal research much less feasible 
for early career researchers. Notably, early career researchers might not 
even be able to collect and implement longitudinal datasets during their 
appointment. Although the majority of developmental cognitive 
neuroscience studies to date are based on cross-sectional study designs, 
these studies are limited in their ability to inform about developmental 
trajectories and individual change over time (Crone and Elzinga, 2015). 
From the perspective of reproducibility and replicability, it is also 
important to consider that longitudinal studies have much higher power 
to detect differences in measures such as brain volume that vary 
extensively between individuals (Steen et al., 2007). This is because in a 
longitudinal study, only measurement precision affects the required 
sample size, whereas in cross-sectional studies both measurement pre
cision and natural variation of brain sizes between participants affect the 
required sample size. For example, in an empirical demonstration of this 
phenomenon by Steen et al. (2007), it was found that a cross-sectional 
study of grey matter volume requires 9-fold more participants than a 
longitudinal study. Thus, when possible, using longitudinal designs is 
important not only for drawing developmental inferences but also to 
increase power. Longitudinal designs also bring other challenges, such 
as retention problems (see section 2.1). Another potential difficulty is 
the differentiation of change and error in longitudinal modelling, as 
changes might reflect a combination of low measurement reliability and 
true developmental change (see Herting et al., 2018a, for an excellent 
discussion of this topic). In all instances, transparently reporting choices 
made in data collection and acknowledging limitations of cross-sectional 
analyses are vital for the appropriate interpretation of developmental 
studies. 

3.2. Increasing methodological transparency and quality control 

For many of the methodological issues outlined in the previous 
sections, there are multiple possible strategies, all with their own pros 
and cons. Hence, increasing reproducibility and replicability is not only 
a matter of what methods are being used, but much more about how 
accurate and transparent these methods are being reported. This could 
also include ways to implement and report quality control of neuro
imaging measures. One major issue for developmental cognitive 
neuroscience is the fact that neuroimaging data quality is negatively 
impacted by in-scanner motion, which impacts measures of brain 
structure (Blumenthal et al., 2002; Ling et al., 2012; Reuter et al., 2015) 
and function (Power et al., 2012; Van Dijk et al., 2012). More prob
lematic is the fact that motion is related to age: many studies have shown 
that younger children move more, resulting in lower scan quality that 
affect estimates of interest (Alexander-Bloch et al., 2016; Klapwijk et al., 
2019; Rosen et al., 2017; Satterthwaite et al., 2012; White et al., 2018). 
The way quality control methods deal with motion artifacts can even
tually impact study results. In one study that investigated the effect of 
stringent versus lenient quality control on developmental trajectories of 
cortical thickness, many nonlinear developmental patterns disappeared 
when lower quality data was excluded (Ducharme et al., 2016). Simi
larly, in case-control studies more strict quality control can lead to less 
widespread and less attenuated group differences. This was demon
strated in a recent multicenter study that investigated cortical thickness 
and surface area in autism spectrum disorders, in which 1818 from the 
initial dataset of 3145 participants were excluded after stringent quality 
control (Bedford et al., 2019). These and other studies underline the 
importance of quality control methods for neuroimaging studies, but 
there are currently no agreed standards for what counts as excessive 
motion or when to consider a scan unusable (Gilmore et al., 2019; 
Vijayakumar et al., 2018). It is therefore crucial to use strategies to 
minimize the existence and impact of motion and at the same time in
crease the transparency and reporting of these strategies in manuscripts. 

Before and during data collection, there are different options to 
consider that can reduce the amount of in-scanner motion. Some of these 

strategies to improve data quality can be nontechnical, such as 
providing mock scanner training or using tape on the participant’s 
forehead to provide tactile feedback during actual scanning (de Bie 
et al., 2010; Krause et al., 2019). Many researchers also use foam pad
dings to stabilize the head and reduce the possibility for motion. A more 
intensive and expensive, but probably effective method is the use of 
3D-printed, individualized custom head molds to restrain the head from 
moving (the current cost of $100− 150 per mold would still be sub
stantially lower than an hour of scanning lost to motion). These custom 
head molds have been shown to significantly reduce motion and in
crease data quality during resting-state fMRI in a sample of 7− 28 year 
old participants (Power et al., 2019). Importantly, these authors report 
that participants, including children with and without autism, find these 
molds comfortable to wear, suggesting it does not form an additional 
burden when being scanned. Another recent paper found that molds 
were not more effective than tape on the forehead during a 
movie-viewing task in an adult sample (Jolly et al., 2020), stressing the 
need for more systematic work to establish the effectiveness of head 
molds. 

With the availability of methods to monitor real-time motion during 
scanning, opportunities have arisen to prospectively correct for motion, 
to provide real-time feedback to participants or to restart a low-quality 
scan sequence. For structural MRI, methods are available to correct for 
head motion by keeping track of the current and predicted position of 
the participant within the scanner and use selective reacquisition when 
needed (Brown et al., 2010; Tisdall et al., 2012; White et al., 2010). For 
resting state and task-related functional MRI, Dosenbach et al. (2017) 
developed software called FIRMM (fMRI Integrated Real-time Motion 
Monitor; https://firmm.readthedocs.io/) that can be used to monitor 
head motion during scanning. This information can be used to scan each 
participant until the desired amount of low-movement data has been 
collected or to provide real-time visual motion feedback that can sub
sequently reduce head motion (Dosenbach et al., 2017; Greene et al., 
2018). 

Overall, it is important to use quality control methods to establish 
which scans are of usable quality after neuroimaging data collection. 
More so, the methods used for making decisions about scan quality 
should be reported transparently. As has been noted by (Backhausen 
et al., 2016), many studies only report very briefly that quality control 
was performed without much detail. With more details, for example by 
using established algorithms or links to protocols used for visual in
spection, the ability to recreate study results increases. Some form of 
preliminary quality control is commonly implemented by most research 
teams, using visual or quantitative checks to detect severe motion. For 
example, functional MRI studies can use a certain threshold of the mean 
volume-to-volume displacement (framewise displacement) to exclude 
participants (Parkes et al., 2018). Likewise, standardized preprocessing 
pipelines may be used that provide extensive individual and group level 
summary reports of data quality, such as fMRIprep for functional MRI 
(https://fmriprep.readthedocs.io; Esteban et al., 2019) and QSIprep for 
diffusion weighted MRI (https://qsiprep.readthedocs.io). For extensive 
quality assessments of raw structural and functional MRI data, software 
like MRIQC (https://mriqc.readthedocs.io; Esteban et al., 2017) and 
LONI QC (https://qc.loni.usc.edu; Kim et al., 2019) provide a list of 
different image quality metrics that can be used to flag low quality scans. 
Decisions about the quality of processed structural image data can 
further be aided by the use of machine-learning output probability 
scores, as for instance implemented in the Qoala-T tool for FreeSurfer 
segmentations (Klapwijk et al., 2019). These software packages can help 
to reduce the subjective process of visual quality inspection by providing 
quantitative measures to compare data quality across studies, ultimately 
leading to more transparent standards for usable and unusable data 
quality. With increasing sample sizes, automated quality control 
methods also become a necessity. 

A clear reporting of quality control methods in developmental neu
roimaging studies is one important example of how to increase 
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transparency. But given the high level of complexity of (developmental) 
neuroimaging studies, there are many other facets of a study that need to 
be reported in detail to properly evaluate and potentially replicate a 
study. The Committee on Best Practices in Data Analysis and Sharing 
(COBIDAS) within the Organization for Human Brain Mapping (OHBM) 
published an extensive list of items to report (see Nichols et al., 2017), 
and recently efforts have been made to make this a clickable checklist 
that automatically generates a method section (https://github. 
com/Remi-Gau/COBIDAS_chckls). We encourage both authors and re
viewers to use guidelines such as COBIDAS or another transparency 
checklist (e.g., Aczel et al., 2019) in their work, in order to increase 
methodological transparency and the potential for replication of study 
results. 

3.3. Addressing analytical flexibility through specification curve analysis 

A potential solution to addressing flexibility in scientific analyses is 
to conduct a specification curve analysis (Simonsohn et al., 2015), a 
method that takes into account multiple ways in which variables can be 
defined, measured, and controlled for in a given analysis. The impetus 
for developing the specification curve analysis approach was to provide 
a means for researchers to present the results for all analyses with 
“reasonable specifications,” that are: informed by theory, statistically 
valid, and not redundant with other specifications included in the set of 
analyses run in a given specification curve analysis (Simonsohn et al., 
2015). This approach presents a way for researchers with dissimilar 
views on the appropriate processing, variable definition or covariates to 
include in a given analysis to address how these decisions impact the 
answer to a given scientific question. This will give more insight in the 
robustness of a given finding, that is the consistency of the results for the 
same data under different analysis workflows (The Turing Way Com
munity et al., 2019). 

Specification curve analysis is an approach that works well for large 
datasets, and is gaining popularity within developmental science (e.g., 
Orben and Przybylski, 2019a, 2019b; Rohrer et al., 2017) and neuro
imaging research (Cosme et al., 2020). To conduct a specification curve 
analysis, researchers must first decide on the reasonable specifications to 
include within a given set. Although specification curve analysis is often 
viewed as an exploratory method, the decisions regarding what to 
include within a given analysis can be preregistered (e.g., https://osf. 
io/wrh4x). Running a specification curve analysis does not mean that 
the researcher must include (or even could include) all possible ways of 
approaching a scientific question, but rather it allows the researcher to 
test a subset of justifiable analyses. The resulting specification curve aids 
in understanding how the variability in specifications can impact the 
likelihood of obtaining a certain result (i.e., can the null hypothesis be 
rejected). Each specification within a set is categorized as demonstrating 
the dominant sign of the overall set, which allows researchers to assess 
whether the variability in analytic approaches resulted in similar esti
mates for a given dataset. Running bootstrapped permutation tests that 
shuffle variables of interest can then be used to generate a distribution of 
specification curves when the null hypothesis is true. This can then be 
compared to the number of specifications that reject the null hypothesis 
in a given specification curve analysis. 

To provide an application of specification curve analysis in devel
opmental cognitive neuroscience one could for example address the 
multiplicity of ways how cortical thickness relates to well-being in 
young adolescents across the ABCD, Healthy Brain Network, and Phil
adelphia Neurodevelopmental Cohort. Cortical thickness can be esti
mated using several software packages, which can lead to considerably 
different regional thickness measures (Kennedy et al., 2019). If, for 
instance, the estimates generated by CIVET 2.1.0, Freesurfer 6.0, and the 
ANTS cortical thickness pipeline are used, this creates 3 possible ways of 
assessing cortical thickness within the set of specifications included in 
this specification curve analysis. But also, adolescent well-being can be 
assessed with different questionnaires and scales (Orben and Przybylski, 

2019b), and the number of specifications will be limited by the in
struments included in a given study. Finally, the relevant covariates to 
include in the analysis need to be specified and addressed in the analysis. 

3.4. Reaching transparency through preregistration and registered reports 

An effective solution to decrease biases in data analysis that can lead 
to inflated results is to use preregistration, in which the research ques
tions and analysis plan are specified before observing the research data 
(Nosek et al., 2018). In this way, several biases are avoided that can 
easily lead researchers to HARKing or to see results as predictable only 
after seeing the actual results (hindsight bias). Note that preregistration 
is only used for confirmatory research planned to test hypotheses and for 
which one has specific predictions. It does not preclude exploratory 
research used to generate new hypotheses. Instead preregistration 
clearly separates confirmatory from exploratory analyses, thereby 
increasing the credibility of research findings. In the case of neuro
imaging, one can think of specifying the analysis pipelines and regions of 
interest in advance, thereby eliminating the possibility of trying out 
different strategies that lead to inflated significant results by chance. 
Extensive information on preregistration and how to start registering 
your own study can be found on the Center for Open Science website (htt 
ps://cos.io/prereg/). This can be done using basic preregistration forms 
that answer brief questions about study design and hypotheses (e.g., http 
://aspredicted.org/). There are also more extensive preregistration 
templates available specifically aimed at preregistering fMRI studies 
(see Flannery, 2018; and see also Table 1, for more resources on pre
registration and Registered Reports). 

With the growing number of open datasets, and for efficient reuse of 
existing datasets, preregistration for secondary data analysis also be
comes more common. With existing data it might be harder to prove that 
one has not tested some of the preregistered hypotheses before prereg
istration, but this argument can in principle also be used for pre
registrations of primary data. Preregistrations are partly based on trust, 
and dishonest researchers can theoretically also find ways to preregister 
studies that have already been conducted (Weston et al., 2019). In 
addition, in ongoing studies like the ABCD study, analyses can be pre
registered for upcoming data releases. A time-stamped preregistration 
does in that case show that the researcher has not looked at the data yet. 
But in general, preregistration does not provide watertight guarantees 
that a researcher has not looked at the data or that the quality of the 
research is necessarily high-class. However, a well-written and 
thought-out preregistration for the analysis of existing data increases 
transparency of the analyses and reduces the risk of counterproductive 
cherry picking and data-fishing expeditions. 

Some of the problems with preregistration may be solved using a 
more extensive form of preregistration, namely a Registered Report in 
which the preregistration is submitted to a journal before data collection 
(Chambers, 2013; for more information see https://cos.io/rr/). Hence, 
Registered Reports can be thought of as preregistrations that are peer 
reviewed. Consequently, modifications and improvements of the study 
plan can be made prior to actual data collection. In addition, once the 
proposal is approved, the paper receives an ‘in principle acceptance’ 
before any data is collected, analyses are performed or results are re
ported. Therefore, publication bias is eliminated since publication is 
independent of the results of a given study. Despite the advantages of 
external feedback and in principle acceptance of the manuscript, one of 
the drawbacks of Registered Reports for researchers is that it can take 
more time to start data collection. On the other hand, time is saved after 
data collection as large parts of the manuscript are already prepared and 
reviewed, there is also no need to engage in time intensive ‘journal 
shopping’. As argued above, Registered Reports can be very useful to 
decrease analytical flexibility of confirmatory studies with smaller 
datasets and in large-scale (openly available) datasets. Although Regis
tered Reports usually need to be submitted before data collection at a 
moment that researchers can still revise the study’s methods, there are 
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also possibilities for Registered Reports in the context of existing data
sets. For example, after the first data release of the ABCD study, the 
journal Cortex hosted a special issue on Registered Reports for this 
ongoing study (http://media.journals.elsevier.com/content/files/corte 
xabcd-27122755.pdf). Authors were asked to propose hypotheses and 
analysis plans for the upcoming data release, with the possibility to use 
the previous data release as a testing sample for exploratory hypothesis 
generation and pipeline validation. As of May 2020, the Developmental 
Cognitive Neuroscience journal also publishes Registered Reports, with 
the explicit opportunity to submit secondary Registered Reports after 
data collection but before data analysis (Pfeifer and Weston, 2020). 

3.5. Interim summary 

Flexibility in data collection, analysis and reporting is an important 
challenge to reproducibility and replicability, but increasing trans
parency in all stages of the research cycle could prevent or diminish 
much of the unwanted flexibility. Methodological challenges specific for 
developmental studies may, for instance, be mitigated with the use and 
detailed reporting of age-appropriate scan protocols (e.g., mock scan
ning, movie-viewing paradigms), and sophisticated longitudinal 
modeling. Apart from the methods being used, critical evaluation and 
possible replication of studies furthermore greatly benefit from accurate 
and transparent reporting of those methods. As an example, we dis
cussed available opportunities to deal with participant motion and its 
consequences and how to report choices made in this analysis step. To 
formally and transparently test the impact of such different choices, an 
emerging analysis method with high potential within our field is spec
ification curve analysis. Finally, preregistration can be used to increase 
transparency and minimize undesired flexibility both in single site and 
openly available (longitudinal) studies. 

4. What can researchers at different stages of their careers do? 

4.1. Early career researchers 

There are many utilitarian, economic, cultural and democratic ar
guments to adapt reproducible and replicable research principles, but 
we likewise highlight personal gains as well as risks. Both the benefits 
and potential drawbacks of adopting new research practices have been 
previously discussed specifically for early career researchers (Allen and 
Mehler, 2019; Poldrack, 2019). As for the concerns, first, early career 
researchers typically have fewer financial opportunities and a greater 
pressure to quickly produce research results and publications. This may 
limit the possibility to collect sufficiently large amounts of data or the 
time to learn to use open science tools or practices. Second, early career 
researchers may lack access to already collected data, research assis
tants, or necessary computing facilities. Based on this, Poldrack (2019) 
suggests that early career researchers can pivot to research questions 
where they are able to make progress, focus on collaboration, use shared 
data, or focus on theory and methods. Practically, early career re
searchers could take advantage of sequential data peeking to reduce 
expenses in collecting data (see section 2.1), although assuming some 
risk that the data collected will be enough to generate a dataset of value 
to the researcher’s goals (e.g., pilot data that can at least establish 
feasibility for grant applications). The option to primarily turn to open 
datasets means that early career researchers cannot always work on the 
questions they might be most interested in, simply because the specific 
data needed has not been collected. For more methodologically oriented 
researchers this might not be a problem, but those who want to launch 
their career addressing specific, novel, hypotheses might be put at a 
disadvantage. As noted earlier, such researchers might opt for collecting 
new samples mainly suited for exploratory analysis, which should be 
clearly labeled as such and evaluated accordingly by reviewers and 
editors (see Flournoy et al., 2020, for how to distinguish more clearly 
between confirmatory and exploratory analysis in developmental 

cognitive neuroscience). Such exploratory studies may accommodate 
more exciting and complex designs, which can be followed up by larger 
well-funded, confirmatory studies. 

4.2. Established researchers 

Discussions related to traditional versus open science research 
practices often, albeit with many notable exceptions, tend to follow 
power structures in academia. It can be argued that established re
searchers, publishers, journals and scientific societies that have been 
successful in the current system have less incentive to change, or even 
financial interests in keeping current practices. However, in order to 
make large changes in our research practices and improve replicability 
and reproducibility of developmental cognitive neuroscience, grant 
agencies and research institutes, boards at universities, senior re
searchers and faculty play critical roles. Changes such as obligations for 
data sharing and shifting incentive structures have to be made - and are 
being made in many places - at policy and institutional levels. Imple
mentation of reproducible research practices is now for a large part done 
by graduate students and others early in their career. Here, established 
researchers can make a difference by supporting open science principles 
for their students and for future research. For senior researchers this 
might be more important and feasible than, for example, to make all 
their past research open access post-hoc. 

4.3. Stageless 

There are also many reasons why reproducible science practices can 
be beneficial to individual researchers at all stages. In the long run, 
working reproducibly helps to save time, mistakes are easier to spot and 
correct early on, and diving back into a project after months or years is 
much easier (see Markowetz, 2015, for more ‘selfish’ reasons to work 
reproducibly). Despite the opportunities that these practices provide for 
researchers, many solutions require extensive training (e.g., learning 
new tools) and changes in existing workflows. Therefore, to make 
progress as a field towards increased reproducibility and replicability, 
every incremental step taken by an individual researcher is welcome. 
There are many possibilities for stepwise contribution towards the goal 
of increasing the quality of research; working reproducibly is not a 
matter of all-or-nothing. 

Regardless of career stage, several practical tools and strategies can 
be implemented in order to increase reproducibility and replicability of 
our work. As reviewed by Nuijten (2019), in addition to adopting pre
registration, conducting multi-lab collaborations, and sharing data and 
code, which we have discussed above, this also includes working to 
improve our statistical inferences. She argues that many of the current 
problems in psychological science might relate to the (mis-)use and 
reporting of statistics. Generally, the solution to this is to improve sta
tistical training at all levels, which can be addressed through asyn
chronous access to openly available courses and workshop materials, 
but also through immersive training experiences such as workshops and 
hackathons (e.g., the Brainhack format; Craddock et al., 2016). There 
have been specific workshops and hackathons specific to working with 
data in developmental cognitive neuroscience, including several spe
cifically focused on using the ABCD dataset. Further, there are often 
pre-conference workshops associated with Flux Congress focused on 
topics specific to developmental cognitive neuroscience such as longi
tudinal modeling and analyzing complex neuroimaging data across 
multiple age periods. 

Open science can be promoted in nearly all our academic activities. 
First, faculty and senior researchers are encouraged to lead by example, 
taking steps to improve the reproducibility of the research their groups 
conduct. Second, faculty and lecturers can cover and discuss the repli
cation crisis and open science practices in their teaching (from under
graduate to postgraduate level courses; see Parsons et al. (2019a)for an 
open science teaching initiative). Third, it is critical that supervision and 
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mentoring foster accurate and complete reporting of methods and re
sults and interpretations that account for shortcomings of the work. An 
increased focus on research questions, hypotheses and rigorous methods 
rather than on results would beneficially impact the commonly 
mentioned replicability and replication crisis. Fourth, established re
searchers, promotion and hiring committees and review boards can 
work towards changing the incentives system to promote reproducible 
practices. One concrete example is to include use and promotion of open 
science research practices as a qualification when announcing positions, 
and to use this as one of several criteria when ranking applicants, or 
when evaluating faculty for promotions. Similarly, research funders can 
include practices like data and/or code sharing, open access publication, 
replication, and preregistration as formal qualifications, and encourage 
or demand such practices upon funding research projects. Research 
funders can also tailor specific calls promoting open science. For 
example, the Dutch Research Council (NWO) has specific calls for 
replication studies. Finally, journals and research societies can imple
ment awards for reproducible research or replications (e.g., OHBM 
Replication Award). Several of these suggestions have been included in 
the DORA declaration (https://sfdora.org/). 

5. Conclusion 

There are currently unprecedented possibilities for making progress 
in the study of the developing human brain. These opportunities to in
crease the reproducibility and robustness of developmental cognitive 
neuroscience studies are partly thanks to technological advances such as 
web-based technologies for sharing data and analysis tools (Keshavan 
and Poline, 2019). We realize that there are still many steps to be taken 
to realize the full potential of these advances, not in the least by slowing 
down the pace of the current system and changing incentives (Frith, 
2020). But in the meantime, we can embrace many of the opportunities 
offered by the current “credibility revolution” in science (Vazire, 2018), 
some of which were discussed in the current paper. We would therefore 
like to end with the words of Nuijten (2019): “Even if you pick only one 
of the solutions above for one single research project, science will 
already be more solid than it was yesterday” (Nuijten, 2019, p. 538). 

6. Citation diversity statement 

Recent work in several fields of science has identified a bias in 
citation practices such that papers from women and other minorities are 
under-cited relative to the number of such papers in the field (Caplar 
et al., 2017; Dion et al., 2018; Dworkin et al., 2020; Maliniak et al., 
2013; Mitchell et al., 2013). Here we obtained predicted gender of the 
first and last author of each reference by using databases that store the 
probability of a name being carried by a woman (Dworkin et al., 2020; 
Zhou et al., 2020). By this measure (and excluding self-citations to the 
first and last authors of our current paper), our references contain 18.8 
% woman(first)/woman(last), 8.1 % man/woman, 17.4 % woman/man, 
53.7 % man/man, and 2 % unknown categorization. We look forward to 
future work that could help us to better understand how to support 
equitable practices in science. 

Data statement 

NA 

Declaration of Competing Interest 

None. 

Acknowledgements 

ETK received funding from the European Research Council (ERC) 
under the European Union’s Horizon 2020 research and innovation 

programme (grant agreement No. 681632; awarded to Eveline A. 
Crone). WB is supported by Open Research Area (ID 176), the Jacobs 
Foundation, the European Research Council (ERC-2018-StG-803338) 
and the Netherlands Organization for Scientific Research (NWO- 
VIDI016.Vidi.185.068). CKT is funded by the Research Council of Nor
way (223273, 288083, 230345) and the South-Eastern Norway Regional 
Health Authority (2019069). NMR is funded by the Jacobs Foundation 
(Grant no. 2016 1217 13). KLM is funded by the National Institute of 
Mental HealthR25MH120869. The authors thank the Jacobs Foundation 
for funding a networking retreat for this collaboration. We thank João 
Guassi Moreira and an anonymous reviewer for critically reading the 
manuscript and suggesting substantial improvements. 

References 

Aczel, B., Szaszi, B., Sarafoglou, A., Kekecs, Z., Kucharský, Š, Benjamin, D., et al., 2019. 
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