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We introduce the use of autoregressive normalizing flows for rapid likelihood-free inference of binary
black hole system parameters from gravitational-wave data with deep neural networks. A normalizing flow
is an invertible mapping on a sample space that can be used to induce a transformation from a simple
probability distribution to a more complex one: if the simple distribution can be rapidly sampled and its
density evaluated, then so can the complex distribution. Our first application to gravitational waves uses an
autoregressive flow, conditioned on detector strain data, to map a multivariate standard normal distribution
into the posterior distribution over system parameters. We train the model on artificial strain data using a
model for the gravitational-wave signal that includes inspiral, merger and ringdown and draw waveforms
from a five-parameter ðm1; m2;ϕ0; tc; dLÞ prior and stationary Gaussian noise realizations with a fixed
power spectral density. This gives performance comparable to current best deep-learning approaches to
gravitational-wave parameter estimation. We then build a more powerful latent variable model by
incorporating autoregressive flows within the variational autoencoder framework. This model has
performance comparable to Markov chain Monte Carlo and, in particular, successfully models the
multimodal ϕ0 posterior. Finally, we train the autoregressive latent variable model on an expanded
parameter space, including also aligned spins ðχ1z; χ2zÞ and binary inclination θJN , and show that all
parameters and degeneracies and most uncertainties are well-recovered. In all cases, sampling is extremely
fast, requiring less than two seconds to draw 104 posterior samples.
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I. INTRODUCTION

The task of gravitational-wave parameter estimation is to
determine the system parameters that gave rise to observed
detector strain data. This is accomplished using Bayesian
inference. Assuming a likelihood model pðyjxÞ for strain
data y conditioned on system parameters x, and a prior
distribution pðxÞ, one obtains through Bayes’ theorem the
posterior distribution,

pðxjyÞ ¼ pðyjxÞpðxÞ
pðyÞ ; ð1Þ

where the normalization pðyÞ is called the model evidence.
Generally, one can evaluate the likelihood explicitly
(although this may be computationally expensive) and
the prior is also known, so this allows for calculation of
the posterior up to normalization. One can then use an
algorithm such as Markov chain Monte Carlo (MCMC) to
obtain samples from the posterior.
Standard sampling algorithms are effective, but they can

be computationally costly. Indeed, for binary black holes,
obtaining a sufficient number of posterior samples can take
on the order of days, whereas for binary neutron stars, this
extends to weeks [1,2]. Especially for binary neutron stars,
which might have multimessenger counterparts [3], it is
critical to reduce this time to provide accurate information
to electromagnetic observers.
There have recently been several efforts to speed up

parameter estimation by using deep learning [4–6]. The
main tool of deep learning is the neural network, which
is a trainable and very flexible function approximator.
Neural networks can have millions of parameters, which
are tuned through stochastic gradient descent to optimize a
loss function. In this way, very complex functions can be
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approximated. Since conditional distributions can be para-
metrized by functions, neural networks can be used to
model gravitational-wave posteriors.
A key observation of [4,5] is that Bayes’ rule can be

applied in such a way that training only requires samples
from the prior and the gravitational-wave likelihood, i.e.,
strain realizations y ∼ pðyjxÞ. Although the network learns
the posterior distribution, posterior samples are not needed
for training. Training also does not require any likelihood
evaluations, and for this reason this approach is known as
likelihood-free inference. Since obtaining posterior sam-
ples and evaluating the likelihood are expensive, the
likelihood-free approach is very fast in comparison. It is
also applicable in contexts where a simulation of the data
generative process is available, but the likelihood function
may be unknown.
In [4], this approach was applied successfully with a

multivariate Gaussian posterior model, i.e., pðxjyÞ ¼
N ðμðyÞ;ΣðyÞÞ, where the mean μðyÞ and covariance
matrix ΣðyÞ are given by neural networks. Once trained
on simulated waveforms and noise realizations, the
Gaussian posterior model is trivial to sample.
The challenge, then, is to define a sufficiently flexible

model distribution for the posterior. Gaussians are good
approximations for very high signal-to-noise ratio, but
posteriors can in general have higher moments and multi-
modality. Reference [4] also experimented with Gaussian
mixture models and posterior histogram outputs. The
performance of the Gaussian mixture, however, was not
a significant improvement over the single Gaussian, and
although the histogram was effective, it is limited to
describing one or two parameters.
A promising approach to increase the flexibility of a

posterior model is to introduce latent variables z and
perform variational Bayesian inference. The posterior is
then given by marginalization over the latent variables, i.e.,
pðxjyÞ ¼ R

pðxjz; yÞpðzjyÞdz. With pðxjz; yÞ and pðzjyÞ
both taken to be Gaussian, this nevertheless gives non-
Gaussian pðxjyÞ. This can be implemented using the
variational autoencoder framework [7,8], and recent results
[5] for gravitational-wave parameter estimation with a
conditional variational autoencoder (CVAE) have demon-
strated the recovery of non-Gaussian posteriors (although
not multimodality).
In this work, we use the method of normalizing flows [9]

to define very flexible model distributions with improved
ability to approximate complex gravitational-wave poste-
riors. A normalizing flow f∶X → X is an invertible map-
ping on a sample space X, with a simple Jacobian
determinant. Using the change of variables rule for prob-
abilities, this induces a transformation,

pðxÞ ¼ πðf−1ðxÞÞ
���� det ∂ðf

−1
1 ;…; f−1n Þ

∂ðx1;…; xnÞ
����; ð2Þ

from a base distribution πðuÞ to a new distribution pðxÞ.
Here n ¼ dimX. Starting from a simple standard normal
distribution for πðuÞ, one can obtain a more complex
distribution by applying a normalizing flow. To describe
a conditional distribution, such as a gravitational-wave
posterior, a normalizing flow can be made to depend on
additional variables; for our application, we take f ¼ fyðuÞ
to depend on detector strain data y.
The fact that f is invertible means that the normalizing

flow enables both sampling and density evaluation of pðxÞ,
provided this is possible for πðuÞ. To sample x ∼ pðxÞ, one
first samples u ∼ πðuÞ and then sets x ¼ fðuÞ. For given x,
to evaluate the density, the inverse mapping u ¼ f−1ðxÞ is
used in the right-hand side of (2).
Normalizing flows may be used to model gravitational-

wave posterior distributions directly, and this is the first
application that we describe. We fix the base distribution
πðuÞ to be a multivariate standard normal of the same
dimension as the system parameter space. We define the
normalizing flow fyðuÞ in terms of a neural network, as a
masked autoregressive flow (MAF) [10]. The posterior
model pðxjyÞ is then defined through (2). Since the density
can be evaluated directly and differentiated with respect to
the neural network parameters defining the flow, the model
can be trained using stochastic gradient descent to maxi-
mize the likelihood that the training data [ðx; yÞ pairs] came
from the model.
Normalizing flows can also be incorporated into the

CVAE: they can be used to enhance the flexibility of the
encoder, decoder, and prior component networks, thereby
increasing the overall flexibility of the model [11,12]. In
Sec. II of this work, we describe all of the above networks
in further detail.
In Sec. III we present the results of our experiments in

using these models to describe gravitational-wave posteri-
ors over a five-dimensional space of system parameters.
Following [5], we study binary black hole waveforms over
the parameters ðm1; m2;ϕ0; tc; dLÞ, with added noise drawn
from a stationary Gaussian distribution with fixed power
spectral density. We work in the time domain. We find that
the basic MAF network achieves results comparable to [5],
but with the advantage of not having any latent variables to
marginalize over. In our experiments, however, neither of
these networks successfully models the posterior over ϕ0,
which is multimodal. We next test the more powerful
autoregressive CVAE, which does succeed in modeling the
multimodality in ϕ0. To validate our recovered posteriors,
we present p–p plots consistent with uniformly distributed
percentile scores in each parameter, as well as comparisons
to MCMC sampling.
We then expand the parameter space to include aligned

spins ðχ1z; χ2zÞ and binary inclination θJN in Sec. IV. We
train the CVAE network with autoregressive flows to model
the posterior over this eight-dimensional space. We find
that the network once again successfully models all
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parameters, although the mass uncertainty is slightly
overestimated. The various degeneracies, e.g., between
χ1z and χ2z, and between θJN and dL, are well recovered.
We validate our results again with a p–p plot.
This work is organized as follows. In the following

section we describe in more detail the various types of
neural networks that we use for parameter estimation.
In Sec. III we describe our experiments with the five-
dimensional parameter space, and in Sec. IV the enlarged
eight-dimensional space. Finally, in Sec. V we conclude
with a discussion of potential further improvements.
Software: All of our neural networks are implemented in

PyTorch [13], with the autoregressive network imple-
mented using Pyro [14]. We used emcee [15] to generate
MCMC comparisons and ChainConsumer [16] to produce
corner plots.
Notation: The various vector spaces, along with their

dimensionalities are given in Table I.

II. PRELIMINARIES

In this section we review important deep-learning con-
cepts, and we discuss them in the context of gravitational-
wave parameter estimation. The first two subsections
describe ideas that have already been implemented for
parameter estimation, in [4,5], respectively, and the last
two describe the autoregressive flows that we explore in
this work.

A. Neural network models of
gravitational-wave posteriors

Suppose we have a posterior distribution ptrueðxjyÞ. Our
aim is to train a neural network to give an approxima-
tion pðxjyÞ to ptrueðxjyÞ. The “true” posterior is itself a
model for the physical system. For gravitational waves, it is
defined through Bayes’ theorem in terms of a prior ptrueðxÞ
over the system parameters x and a likelihood ptrueðyjxÞ.
The likelihood depends on a choice of waveform model h
and a measured noise power spectral density (PSD) SnðfÞ:
it is the probability density that the residual n ¼ y − hðxÞ is
drawn from a stationary Gaussian noise distribution with
PSD SnðfÞ. For further details on the noise model and
likelihood, see, e.g., [17].
For stationary Gaussian noise and known hðxÞ, it is

trivial to sample from the likelihood. In contrast, the
“inverse problem” of sampling from the posterior—
sampling over parameters x—requires an algorithm such
as MCMC and many evaluations of the waveform model

and the likelihood. This repeated comparison between
model waveforms and data is computationally expensive,
and for this reason we wish to develop the neural network
model, pðxjyÞ.
The first step in developing the model is to parametrize

the posterior in terms of a neural network. For now, we
take as our model a multivariate normal distribution [4],
although our main interest later will be in defining more
flexible models. That is, we take

pðxjyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnj detΣðyÞjp

× exp

�
−
1

2

Xn
ij¼1

ðxi − μiðyÞÞΣ−1
ij ðyÞðxj − μjðyÞÞ

�
;

ð3Þ
where the mean μðyÞ and covariance matrix ΣðyÞ are
functions of data y defined by a feedforward neural
network. [To ensure ΣðyÞ is positive definite and sym-
metric, it is in practice better to take the Cholesky
decomposition, ΣðyÞ ¼ AðyÞAðyÞ⊤, where AðyÞ is lower
triangular with positive diagonal entries. AðyÞ is then
modeled with the neural network.]
Feedforward neural networks can have a variety of

configurations, but the simplest consists of a sequence of
fully connected layers. The output of the first hidden layer
(of dimension d1) is

h1 ¼ σðW1yþ b1Þ; ð4Þ

where W1 is a d1 ×m matrix, and b1 is a d1-dimensional
vector. σ is an element-wise nonlinearity, typically taken to
be a rectified linear unit,

σðuÞ ¼
�
u if u > 0;

0 if u ≤ 0:
ð5Þ

The output h1 is then passed through a second hidden layer,

h2 ¼ σðW2h1 þ b2Þ; ð6Þ

and so on, for as many hidden layers as desired. A final
affine transformationWphp−1 þ bp is then applied, and the
outputs repackaged into a vector μ and lower-triangular
matrix A. A suitable nonlinearity should be applied to
ensure positive diagonal components of A, but otherwise
the components of μ and A should be unconstrained. The
weight matrices Wi and bias vectors bi are initialized
randomly (see, e.g., [18]) and then trained through sto-
chastic gradient descent to optimize a loss function.
With the posterior defined, the loss function should be

chosen so that after training, pðxjyÞ is a good approxima-
tion to ptrueðxjyÞ. We therefore take it to be the expectation
value (over y) of the cross entropy between the two
distributions,

TABLE I. Vector spaces.

Space Dimension Description

X n System parameters
Y m Strain data
Z l Latent variables
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L ¼ −
Z

dxdyptrueðxjyÞptrueðyÞ logpðxjyÞ; ð7Þ

i.e., we maximize the likelihood over the network para-
meters (the weights and biases) that the training data came
from the model. Minimizing L is equivalent to minimizing
the expectation value of the Kullback-Leibler (KL) diver-
gence between the true andmodel posteriors, since ptrueðxjyÞ
is fixed.
The loss function in the form (7) is actually not ideal for

our purposes. The reason is that it requires sampling from
ptrueðxjyÞ—a very costly operation. Instead, as pointed out
by [4,5], we can use Bayes’ theorem in a very advantageous
way, to write

L ¼ −
Z

dxdyptrueðyjxÞptrueðxÞ logpðxjyÞ: ð8Þ

To train the network now requires sampling from the
likelihood, not the posterior. On a minibatch of training
data of size N, we approximate

L ≈ −
1

N

XN
i¼1

logpðxðiÞjyðiÞÞ; ð9Þ

where xðiÞ ∼ ptrueðxÞ and yðiÞ ∼ ptrueðyjxðiÞÞ. The loss func-
tion can be explicitly evaluated using expression (3).
The gradient of L with respect to the network parameters

can be calculated using backpropagation (i.e., the chain
rule), and the network optimized with stochastic gradient
descent. The training set consists of parameter samples x
and waveforms hðxÞ; random noise realizations are added
at train time to obtain data samples y.

B. Variational autoencoders

One way to increase the flexibility of the model is to
introduce latent variables z, and define the gravitational-
wave posterior by first sampling from a prior over z, and
then from a distribution over x, conditional on z. In other
words,

pðxjyÞ ¼
Z

dzpðxjz; yÞpðzjyÞ: ð10Þ

If one takes pðxjz; yÞ and pðzjyÞ to both be multivariate
Gaussians, then pðxjyÞ is a Gaussian mixture of Gaussians.
In this way one can describe a more flexible posterior.
At first glance it is not clear how to train such a model:

the posterior (10) is intractable, since evaluation involves
marginalizing over z. If one knew the posterior1 pðzjx; yÞ,
then

pðxjyÞ ¼ pðxjz; yÞpðzjyÞ
pðzjx; yÞ ð11Þ

could be evaluated directly, but pðzjx; yÞ is also intractable.
A (conditional on y) variational autoencoder [7,8] is a

deep-learning tool for treating such a latent variable model.
It introduces a recognition (or encoder) model qðzjx; yÞ,
which is an approximation to the posterior pðzjx; yÞ. As
with the first two networks, the recognition network should
have tractable density and be easy to sample, e.g., a
multivariate Gaussian. One can then take the expectation
(over z) of the logarithm of the posterior,

logpðxjyÞ ¼ Eqðzjx;yÞ logpðxjyÞ

¼ Eqðzjx;yÞ log
pðx; zjyÞ
qðzjx; yÞ

þDKLðqðzjx; yÞkpðzjx; yÞÞ
≡ LþDKLðqðzjx; yÞkpðzjx; yÞÞ; ð12Þ

where the last term is the KL divergence,

DKLðqðzjx; yÞkpðzjx; yÞÞ≡ Eqðzjx;yÞ log
qðzjx; yÞ
pðzjx; yÞ : ð13Þ

Since this is non-negative, L is known as the variational
lower bound on logpðxjyÞ. If qðzjx; yÞ is identical to
pðzjx; yÞ, then L ¼ logpðxjyÞ.
The variational autoencoder maximizes the expectation

of L over the true distribution. The associated loss function
can be written

LCVAE ¼ EptrueðxÞEptrueðyjxÞ½−L�
¼ EptrueðxÞEptrueðyjxÞ½−Eqðzjx;yÞ logpðxjz; yÞ
þDKLðqðzjx; yÞkpðzjyÞÞ�: ð14Þ

The three networks, pðzjyÞ, pðxjz; yÞ, and qðzjx; yÞ, are
trained simultaneously. To evaluate the loss, the outer two
expectation values are treated the same as in the previous
subsection. The inner expectation value is evaluated using a
Monte Carlo approximation, typically with a single sample
from qðzjx; yÞ. For Gaussian qðzjx; yÞ and pðzjyÞ the KL
divergence term may be calculated analytically; otherwise,
a single Monte Carlo sample suffices.
For training, it is necessary to take the gradient of the

loss with respect to network parameters. The stochasticity
of the Monte Carlo integral estimates must, therefore, be
carefully treated. This can be done by using the repar-
ametrization trick [7,8], namely, by treating the random
variable as an additional input to the network drawn from
a fixed distribution. For example, if qðzjx; yÞ is a multi-
variate Gaussian with mean μðx; yÞ and Cholesky matrix
Aðx; yÞ, then

1The variational posterior pðzjx; yÞ should not be confused
with the gravitational-wave posterior pðxjyÞ. It should be clear
from context to which posterior distribution we are referring.
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z ¼ μðx; yÞ þ Aðx; yÞϵ; with ϵ ∼N ð0; 1Þl; ð15Þ

is a sample from qðzjx; yÞ. With this trick, one can now take
the gradient of z with respect to network parameters.
This setup is called a variational autoencoder because

the first term in the loss function has the form of an
autoencoder. The recognition network qðzjx; yÞ is known as
the encoder, and pðxjz; yÞ as the decoder. This first term
(the reconstruction loss) is minimized if x is recovered after
being encoded into z and then decoded. The other term
in the loss function (the KL loss) pushes the encoder to
match the prior pðzjyÞ and acts as a regulator. When the
variational autoencoder works as an autoencoder, the latent
variables z can give a useful low-dimensional representa-
tion of x.
Recent work [5] used a CVAE with diagonal Gaussian

networks to model gravitational-wave posterior distribu-
tions, achieving excellent results over the four parameters
ðm1; m2; tc; dLÞ. In the following two subsections we
describe the use of masked autoregressive flows to build
even more general distributions.

C. Masked autoregressive flows

In this subsection we review the concept of a masked
autoregressive flow, a type of normalizing flow that we use
in our work to map simple distributions into more complex
ones. We refer the reader to [10] for a much more in-depth
discussion.
Consider a probability density pðxÞ. Without any loss of

generality, this may be written using the chain rule as

pðxÞ ¼
Yn
i¼1

pðxijx1∶i−1Þ: ð16Þ

An autoregressive model restricts each conditional distri-
bution in the product to have a particular parametrized
form. We will take this to be univariate normal [10],

pðxijx1∶i−1Þ ¼ N ðμiðx1∶i−1Þ; expð2αiðx1∶i−1ÞÞÞ; ð17Þ

for i ¼ 1;…; n. (The mean μi and variance e2αi that define
this distribution are functions that will ultimately be given
as outputs of a neural network.)
In [11] it was observed that an autoregressive model

defines a normalizing flow. In other words, suppose
u ∼N ð0; 1Þn. Then

xi ¼ μiðx1∶i−1Þ þ ui expαiðx1∶i−1Þ ð18Þ
gives a sample from pðxÞ. This mapping f∶u ↦ x is
defined recursively in (18), but the inverse mapping,

ui ¼ ½xi − μiðx1∶i−1Þ� exp ð−αiðx1∶i−1ÞÞ; ð19Þ
is nonrecursive. Because f is autoregressive, the Jacobian
determinant is very simple,

���� det ∂ðf
−1
1 ;…; f−1n Þ

∂ðx1;…; xnÞ
���� ¼ exp

�
−
Xn
i¼1

αiðx1∶i−1Þ
�
: ð20Þ

Hence, f defines a normalizing flow. Starting from a simple
base distribution, the change of variables rule (2) can be
used to evaluate the density pðxÞ.
An autoregressive flow can be embedded within a neural

network [19]. For the affine flow (18), the network takes as
input x1∶n, and gives as output μ1∶n and α1∶n. To preserve
the autoregressive property (i.e., that μi and αi depend only
on x1∶i−1), however, there can be no path from input xi to
output μ<i or α<i. Such a network can be constructed
by starting with a fully connected network (in general,
including hidden layers) and applying a mask to the weight
matrices in such a way that these paths are absent. An
algorithm for constructing this mask is given in [19]; the
resulting model is called a MADE (masked autoencoder
density estimator).
For the inverse flow (19), a single pass through the

MADE network is needed to obtain μ1∶n and α1∶n, since all
components x1∶n are known [11]. The forward direction
(18), however, requires n passes: to calculate μi and αi, one
requires x1∶i−1, which is turn requires μ1∶i−1 and α1∶i−1.
Thus, the forward flow takes n times longer to calculate.
So, although the flow is invertible, the model should be
designed to use only the inverse flow during training, when
many applications of the flow are needed. At evaluation
time, however, the forward pass may be required.
For an autoregressive model such as MADE, the order of

the components of x is important: components have
distributions conditional on only lower-index components.
Moreover, x1 is independent of all other components, and
follows a fixed normal distribution. To achieve sufficient
generality, it is necessary to stack several MADEs in
sequence, permuting the order of the components between
each pair [11]. This is called a MAF [10]. For stability
during training it is also useful to insert batch normalization
layers [20] between the MADE blocks, and between the
base distribution and the first MADE block; in the context
of a flow, these also contribute to the Jacobian [10]. MAFs
and related networks have been used to model very
complex distributions over high-dimensional spaces,
including audio [21] and images [22].
In the context of gravitational-wave parameter estima-

tion, the sample space is relatively low dimensional,
n ¼ Oð10Þ. To model the posterior distribution, each
MADE block must be made conditional on the (high-
dimensional) strain data y, while maintaining the autore-
gressive property over x. In other words, the masked
networks that define the MADEs take y as additional
input, but no masking is applied between y and the first
hidden layer of the network. We can then take a standard
normal base distribution, and flow it through all the MADE
blocks and batch normalization layers, to obtain the
complex posterior. The loss function is the same as in
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Sec. II A, but with the change of variables rule used to
evaluate the density, i.e.,

L ¼ EptrueðxÞEptrueðyjxÞ

�
− logN ð0; 1Þnðf−1y ðxÞÞ

− log

���� det ∂ðf
−1
y;1;…; f−1y;nÞ

∂ðx1;…; xnÞ
����
�
; ð21Þ

where now fy denotes the entire sequence of flows in the
network, and we have made explicit the dependence on
strain data y. Notice that this involves only the inverse flow
f−1y , which, compared to the forward flow fy, is fast to
evaluate because it does not involve recursion.

D. Combined models

More powerful models can be obtained by combining
autoregressive flows with the variational autoencoder. Each
of the three networks comprising the CVAE—the encoder
qðzjx; yÞ, the decoder pðxjz; yÞ, and the prior pðzjyÞ—can
be made more flexible by applying autoregressive flows to
their sample spaces. We discuss each of these possibilities in
turn. In our experiments, we found that the best performance
was achieved when combining all three. In all cases, the
CVAE loss function (14) is optimized, with the change of
variables rule used to evaluate the component densities.

1. Encoder with inverse autoregressive flow

Normalizing and autoregressive flows were first pro-
posed as a way to increase the flexibility of the encoder
network [9,11]. This is important because the CVAE loss
function (14) differs from the desired cross-entropy loss (8)
by the expectation of the KL divergence between qðzjx; yÞ
and the intractable pðzjx; yÞ. If this can be made smaller,
then the two losses converge; hence, qðzjx; yÞ should be as
flexible as possible.
A flexible encoder is also desired to avoid a situation called

“posterior collapse.”The reconstruction andKL loss terms are
in competition during training, and if the KL loss term
collapses to zero, the network can fail to autoencode. In this
situation, the encoder matches the prior, so it ignores its x
input; the latent variables z contain no information about x
beyondwhat is contained in y. This can happen either because
the loss gets stuck in an undesired local minimum during
training, or the configuration with vanishing KL loss is
actually the global minimum [12]. The former can be allevia-
ted by careful training strategies such as annealing theKL loss
term [23]. The latter can occur because the use of latent
variables incurs a cost related to DKLðqðzjx; yÞkpðzjx; yÞÞ
[12]. If the decoder is sufficiently powerful such that it can
model pðxjyÞ on its own, then pðzjx; yÞ → pðzjyÞ and
LCVAE → L is the global minimum. The network simply
decides it is not worthwhile to use the latent variables.
Thus, a flexible encoder is important for performance

and to make full use of latent variables. To make the

encoder distribution more flexible, one could start with a
Gaussian encoder, as in Sec. II B, and then apply a
normalizing flow to the sample space. Since evaluation
of LCVAE requires sampling from qðzjx; yÞ, an inverse
autoregressive flow (IAF) should be used [11]. Sampling is
fast since the inverse flow (19) does not involve recursion.
The density evaluation needed for the KL loss term only
needs to take place for z sampled from qðzjx; yÞ, so caching
may be used.
Each MADE block comprising the encoder IAF may be

conditioned on x and y. In addition, one is free to output an
additional context variable w from the network that
specifies the normal distribution, and condition the IAF
on this. (The reason for this additional variable is simply to
provide additional information paths from the encoder
inputs x and y to the IAF, in order to improve training.
The initial work [11] conditioned the IAF only onw.) In our
experiments we found it most effective to condition only on
w and x.

2. Decoder with masked autoregressive flow

To increase the flexibility of the Gaussian decoder of
Sec. II B, one can similarly apply a normalizing flow to its
sample space. However, this time a forwardMAF should be
used, because at train time, a density evaluation of pðxjz; yÞ
is required to evaluate the reconstruction loss term in
LCVAE. The MADE blocks may be conditioned on y (as
in the basic MAF of Sec. II C) and the latent variable z. This
powerful decoder increases the risk of posterior collapse, so
it is useful to use also the IAF encoder.

3. Prior with masked autoregressive flow

As shown in [12], a normalizing flow applied to the
sample space of the prior network pðzjyÞ effectively adds
flexibility to both the encoder network and the decoder
network. For fast training, one should again use a forward
MAF because a density evaluation of pðzjyÞ is needed to
compute the KL loss term in LCVAE. The MADE blocks
should be conditioned on y.
Although a prior MAF and an encoder IAF are very

closely related, in that both transform the latent space, they
differ in that the encoder IAF can be conditioned on x. We
found that this had a significant impact on performance,
and therefore included both autoregressive flows in our
models.

III. NONSPINNING BINARIES

In this section we describe our experiments in using
deep-learning models to describe the posteriors of non-
spinning coalescing black hole binaries. Binaries are
described by five parameters: the masses m1 and m2, the
luminosity distance dL, the time of coalescence tc, and the
phase of coalescence ϕ0. These parameters and their ranges
are chosen to facilitate comparison with [5].
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A. Training data

Training data for our models consist of pairs of param-
eters x and strain time series y. Parameters are sampled
from a prior distribution pðxÞ, which is uniform over each
parameter except for the volumetric prior over dL,
pðdLÞ ∝ dVc=ddL, where Vc is the comoving volume.
This volumetric prior assumes sources are distributed
uniformly in comoving volume and is the standard prior
used in LIGO/Virgo analyses. In practice there is likely to
be evolution in the rate of mergers which will mean the true
distribution in luminosity distance is different, but it is
straightforward to reweight posterior samples to alternative
priors as required. Parameter ranges are taken from [5],

35 M⊙ ≤ m1; m2 ≤ 80 M⊙; ð22aÞ

1000 Mpc ≤ dL ≤ 3000 Mpc; ð22bÞ

0.65 s ≤ tc ≤ 0.85 s; ð22cÞ

0 ≤ ϕ0 ≤ 2π: ð22dÞ

We also take m1 ≥ m2.
Strain realizations are in the time domain and 1 s long

(0 ≤ t ≤ 1 s) with a sampling rate of 1024 Hz. (We found
that the sampling rate of 256 Hz of [5] was not sufficient to
eliminate Gibbs ringing.) Strain data consist of a waveform
hðxÞ, deterministic from parameters x, and random noise n,
sampled from the Advanced LIGO [24] Zero Detuned High
Power PSD [25]. In this analysis we consider the response
of a single gravitational-wave detector only. With a single
detector it is not possible to determine the extrinsic
parameters of the gravitational-wave source that describe
the location of the source on the sky, its polarization, and its
orientation with respect to the detector. There is therefore
no point in including these parameters in the waveform
model. Therefore, we take hðxÞ to be the “þ” polarization
of IMRPhenomPv2waveforms [26], which, following [5],
we whitened in the frequency domain using the PSD before
taking the inverse Fourier transform to the time domain.
Finally, we rescaled our waveforms by dividing by

ffiffiffiffiffiffiffiffi
2Δt

p
so that in the end, time domain noise is described by a
standard normal distribution in each time sample, i.e.,
n ∼N ð0; 1Þm.
The whitening and rescaling procedure serves two

purposes: it means that we can easily draw noise realiza-
tions at train time by sampling from a standard normal
distribution, and it ensures that the input data to the neural
network has approximately zero mean and unit variance.
Similarly, we rescale x to have zero mean and unit variance
in each component across the training set. This “stand-
ardization” of training data is a standard approach, which
improves training speed and ensures all inputs are equally
weighted initially [27].

Our dataset consists of 106 ðx; hÞ pairs, which we split
into 90% training data and 10% validation data. Noise
realizations n are sampled at train time to give strain data
y ¼ hþ n; a sample time series is given in Fig. 1. The
median signal-to-noise ratio (SNR) of our training set is
25.8, and the complete SNR distribution is given in Fig. 2.
Our dataset is the same size as that of [5] and a factor of 103

smaller than the effective dataset of [4]. Larger datasets are
generally preferred to prevent overfitting, but they are also
more costly to prepare and store. We would like to build a
system that can generalize well with as small a dataset as
possible in order to minimize these costs when moving to
more complicated and longer waveforms in the future. By
keeping track of performance on the validation set when
training our models, we found that our training set was
sufficiently large to avoid overfitting. We also experi-
mented with a 105-element dataset; this had a slightly
reduced, but still acceptable, performance.

B. Experiments

We modeled our gravitational-wave posteriors with the
three types of neural network described in Sec. II: a CVAE
(similar to [5]), a MAF, and a CVAE with autoregressive

FIG. 1. Sample waveform h and strain realization y. The SNR
for this injection is 24.9.

FIG. 2. Histogram of SNR values for our training set.
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flows appended to the three subnetworks (denoted
CVAEþ). We selected hyperparameters based on choices
in the literature [5,10] and on sweeps through hyper-
parameter space. Approximate network sizes and training
times for each architecture are listed in Table II, and final
loss functions after training in Table III.
All of our networks use rectified linear unit nonlinear-

ities. They were trained for 250 epochs with a batch size of
512, using the Adam optimizer [28]. The learning rate was
reduced by a factor of 2 every 80 epochs. We trained all
networks for the same number of epochs in order to have a
fair comparison, and we felt that 250 epochs represented a
reasonable tradeoff between performance gain and training
time. After 250 epochs the learning rate has been reduced
by a factor of 8, significant improvements in performance
are unlikely and overfitting becomes increasingly probable.
Sampling performance results for the three network archi-
tectures are collected in Figs. 3 and 4.

1. CVAE

Our CVAE network is designed to be similar to that of
[5]. The encoder, decoder, and prior distributions are all
taken to be diagonal Gaussians, each parametrized by fully
connected neural networks with three hidden layers of
dimension 2048. The latent space is of dimension l ¼ 8.
We used the same initial training rate as [5], of 0.0001.
To train the CVAE, we optimize the variational lower

bound loss LCVAE of (14), with a single Monte Carlo
sample to estimate the expectation value over qðzjx; yÞ.
Since LCVAE is only an upper bound on the cross-entropy
loss L, the value of the loss function alone is not entirely
indicative of performance. Indeed, when posterior collapse

occurs (see Sec. II D 1), the gap between LCVAE and L can
vanish; in this case, the value of L is larger than that of a
network with the same LCVAE and no posterior collapse.
For this reason, it is important to also use other metrics to
evaluate performance. For CVAE models we always quote
the KL loss as an indication that the latent space is
being used.
To encourage use of the latent space, we found it to

be beneficial to use KL annealing during training, i.e.,
we multiplied the KL loss part of LCVAE by a factor
between zero and one during the early stages. This reduces
the importance of the KL loss term compared to the
reconstruction loss. For all CVAE-based models, we adopted
a cyclic KL annealing strategy [29]: for the first 6 epochs we
used annealing factors of ð10−5; 1=3; 2=3; 1; 1; 1Þ, and we
repeated this cycle 3 more times; see Fig. 5. We also ignored
the KL loss term whenever it was less than 0.2.
In Fig. 3(a), we show a posterior distribution corre-

sponding to the strain data y of Fig. 1. This is constructed
from N ¼ 5 × 104 posterior samples, obtained using
formula (10) with the prior and decoder networks as
follows: (1) pass y through the prior network to obtain
the distribution pðzjyÞ, (2) draw N latent-space samples zðiÞ
from the prior, (3) pass these through the decoder network
to obtain N distributions pðxjzðiÞ; yÞ, and finally (4) draw
one sample xðiÞ from each of these distributions.
By inspection of the posterior, it is clear that the latent

space is being used in the model, since the distribution is not
a diagonal Gaussian. The distributions for most of the
parameters look reasonable, and they cover the true values
of the parameters. The phase of coalescence, ϕ0, is, however,
not being captured at all. Indeed, ϕ0 should be precisely π
periodic because our training set waveforms only contain the
ðl; mÞ ¼ ð2; 2Þ mode of the signal. Moreover, since we are
taking a single polarization, ϕ0 should be resolvable.
We can evaluate the performance of the network with a

p–p plot [30]. To do this, we compute posterior distribu-
tions, each comprised of 104 samples, for 103 different
strain realizations [i.e., y ¼ hðxÞ þ n for x drawn from the
prior over parameters and n a noise realization]. For each
one-dimensional posterior, we then compute the percentile
within the posterior at which the true parameter lies. For
each parameter, the p–p curve is then the cumulative
density function of the percentile values. This is shown
in Fig. 4(a) for the CVAE network. If the CDF is diagonal,
then the percentile values are distributed according to a
uniform distribution, as one would expect for the true one-
dimensional posteriors. We can see that the CVAE appears
to capture all of the one-dimensional distributions except
for ϕ0.
To confirm that the percentile scores are well distributed,

we also performed a Kolmogorov-Smirnov test. We calcu-
lated the KS statistic to compare the distribution of
percentile scores to a uniform distribution. We found that
ϕ0 had miniscule p value, as expected, the p value of tc was

TABLE II. Network depth, number of trainable parameters, and
training time. Numbers of trainable parameters are approximated
as the numbers of weights; for autoregressive flows, we included
an estimate of the number of unmasked weights.

Model Layers Parameters (×106) Train time (h)

CVAE 12 31.6 5.6
MAF 20 4.0 6.5
CVAEþ 72 18.8 14.8

TABLE III. Final values of training and validation set loss
functions after 250 epochs. Lower overall values of the loss
indicate better performance, and small differences between
training and validation loss indicate that the networks are not
overfitting the training data. Loss values are not directly com-
parable to [5] due to differences in data standardization.

Model Train loss Val loss KL train loss KL val loss

CVAE −4.52 −4.31 4.33 4.49
MAF −4.43 −4.42 � � � � � �
CVAE+ −7.00 −6.95 6.76 6.77
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(a)

(c)

(b)

FIG. 3. One- and two-dimensional marginalized posterior distributions for the strain realization shown in Fig. 1, comparing output
from (a) CVAE, (b) MAF, and (c) CVAEþ neural networks. Each figure is constructed from 5 × 104 neural network samples, and
contours represent 50% and 90% credible regions. MCMC results are overlayed for comparison. The CVAEþ network is the only one
capable of capturing the multimodality in the ϕ0 posterior.

GRAVITATIONAL-WAVE PARAMETER ESTIMATION WITH … PHYS. REV. D 102, 104057 (2020)

104057-9



0.15, and all other p values were greater than 0.29. This
indicates that all parameters are well recovered, except
for ϕ0.

2. MAF

Next, we modeled the gravitational-wave posterior
pðxjyÞ directly using a masked autoregressive flow. As

described in Sec. II C, the MAF network describes the
posterior in terms of an invertible mapping fy from a five-
dimensional standard normal distribution N ð0; 1Þ5ðuÞ into
the gravitational-wave posterior pðxjyÞ. The flow fyðuÞ is
autoregressive over u and has arbitrary dependence on
strain data y. The MAF network does not involve latent
variables, and optimizes the cross entropy with the data

(a) (b)

(c)

FIG. 4. p–p plots for (a) CVAE, (b) MAF, and (c) CVAEþ neural network models. For each marginalized one-dimensional posterior
distribution, the curve represents the cumulative distribution function of the percentile scores of the true values of the parameter. Each
plot is constructed from the same 103 parameter choices and strain realizations. Deviations from the diagonal represent a failure of the
model to learn the true posterior for that parameter. KS test p values are provided in the legends.
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distribution. Thus the loss function L [given in (21)] can be
used to directly compare performance for different models.
Our best performing MAF network consists of five

MADE blocks, each with three hidden layers of dimension
512, and conditioned on y. We also inserted batch nor-
malization layers between each pair of MADE blocks, and
between the first MADE block and the base space. We
found this to be important for training stability. We were
able to train the MAF successfully at a higher initial
learning rate than the CVAE, of 0.0004. Following [10],
at the end of each training epoch, before computing the
validation loss, we set the stored mean and variance vectors
of the batch normalization layers to the mean and variance
over the entire training set. (We did this also for the
CVAEþ network below.)
In Fig. 3(b), we show a corner plot for the same strain

data as before. Samples are obtained by first sampling from
the standard normal base space, u ∼N ð0; 1Þ5 and then
applying the flow fyðuÞ. All quantities appear to be well
modeled except, again, for ϕ0.

2 This is consistent with the
p–p plot shown in Fig. 4(b). The KS statistic p values were
0.14 for tc, and they were greater than 0.5 for all other
parameters (except for ϕ0). (The p–p plots for all networks
are computed from the same strain realizations, so it is
consistent to see the same KS statistic p values for the
different networks.)
The performance of the MAF network is comparable to

that of the CVAE described in [5], but with one eighth the

number of trainable parameters.3 In both cases, all param-
eters except for ϕ0 are well modeled by the networks. In
addition, the final loss values given in Table III are very
close for both networks, with a slight edge in validation loss
for the MAF. However, since LCVAE is an upper bound on
L, the cross-entropy loss for the CVAE network may
actually be lower than that of the MAF. Indeed, the fact
that the CVAE made use of the latent space suggests that
this gap is nonzero. Comparison of the training and
validation loss functions shows slight overfitting for the
CVAE, but none for the MAF.

3. CVAE+

Finally, we experimented with combinations of CVAE
and MAF networks. As described in Sec. II D, all three
component distributions of the CVAE can be made more
flexible by applying MAF transformations to the diagonal
Gaussian distributions, thereby increasing the total model-
ing power of the network [11,12]. Indeed, Appendix A of
[11] shows that a single linear autoregressive flow is
capable of generalizing a Gaussian distribution from
diagonal to generic covariance.
For the combined models, the initial Gaussian distribu-

tions (the base spaces for the autoregressive flows) are
modeled in the same way as in Sec. III B 1, as fully
connected three-hidden-layer networks. However, we
reduced the size of hidden layers to 1024 dimensions.
We also kept the l ¼ 8 dimensional latent space. We found
that best performance was achieved by applying autore-
gressive flows to all three component distributions as
follows:

qðzjx; yÞ: We added an IAF after the initial Gaussian
encoder. This was made conditional on x and an extra
eight-dimensional context output w from the initial
encoder; see Sec. II D 1. We also experimented with
conditioning on y, but found this to reduce per-
formance.

pðxjyÞ: We added a MAF after the initial Gaussian prior
network. This was made conditional on y.

pðxjz; yÞ: We added a MAF after the initial Gaussian
decoder network. This was conditional on y and z.

In all cases the MAF/IAF parts consist of five MADE
blocks (three hidden layers of 512 dimensions each) and
batch normalization layers. Although the CVAEþ network
contains far more layers than the basic CVAE, it has
roughly half the number of free parameters since we
reduced the width of the hidden layers in the Gaussian
components.
Training was performed by optimizing LCVAE, with the

change of variables rule used to evaluate the component

FIG. 5. Training and validation loss for each epoch for the
CVAEþ network. Spikes at early stages arise from the cyclic KL
annealing. Since training and validation loss coincide, there is
negligible overfitting. The qualitative behavior of the CVAE and
MAF networks is similar, so we reported only final values in
Table III.

2In some experiments with deeper MAF networks, we were in
fact able to properly resolve the ϕ0 posterior. This was, however,
difficult to reproduce and somewhat unstable because MAF
networks use element-wise affine transformations (18), and these
may not be flexible enough to consistently resolve multimodality.
We leave further investigation to future work.

3It is possible that the number of trainable parameters in the
CVAE could be reduced without a significant decrease in
performance, but we assume that [5] optimized hyperparameters
appropriately.
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densities. Sampling was similar to the basic CVAE, but
now with the appropriate flows applied after sampling from
the Gaussians.
We found that optimization was best when we trained the

Gaussian distributions at a learning rate of 0.0001, and the
autoregressive networks at a higher rate of 0.0004, com-
bining the rates of the previous two subsections. As always,
the learning rate was reduced by half every 80 epochs.
It is especially important for the CVAEþ to apply some

sort of KL annealing to encourage use of the latent space.
An important difference compared to the basic CVAE of
Sec. III B 1 is that now the decoder network is sufficiently
powerful to model much of the posterior on its own. Indeed,
it is just as flexible as the MAF network of the previous
subsection, which produced the posterior in Fig. 3(b), and it
is well known that a CVAEwill often ignore latent variables
if the decoder is sufficiently powerful [12,23]. This strategy
combined with the flexible encoder distribution resulted in
higher KL validation loss for the CVAEþ network (6.77)
than the basic CVAE (4.49) by the end of training; see
Table III. A plot showing the KL and total loss terms as
training proceeds is given in Fig. 5.
A sample gravitational-wave posterior distribution for

CVAEþ is given in Fig. 3(c). In contrast to the simpler
models, this captures the periodicity in ϕ0. Sampling was
very fast, requiring ≈0.7 s to obtain 104 samples. The p–p
plot in Fig. 4(c) shows excellent statistical performance,
with all KS statistic p values greater than 0.35.
For validation of our network against standard methods,

Fig. 3 also includes samples obtained using MCMC. We
used the emcee ensemble sampler [15] with the same prior
and likelihood as defined by our training set construction.
The ensemble sampler stretch move scale parameter was
chosen to be a ¼ 1.4, we used 500 walkers for 70,000
steps, and we finally thinned samples by a factor of 10.
There is clear agreement between MCMC sampling
and neural network sampling for the CVAEþ network
in Fig. 3(c), with slight deviation in the mass posteriors.
This might be partially due to sampling fluctuations in the
MCMC results, but we expect that any residual differences
in the CVAEþ results could be reduced with hyperpara-
meter improvements or further training.
The KL divergence between the two distributions shown

in Fig. 3(c) was estimated using the method described in
[31]. Because of the computational cost of the approach, we
computed the KL divergence using 10,000 samples drawn
from each posterior. The exact value obtained depends on
the particular samples drawn, but it was typically of order
0.3. To put this in context, we used the same approach to
compute KL divergences between two sets of samples
drawn from the same posterior (either the neural network
posterior or the MCMC posterior). These KL divergences
were less than but of the order of 0.1. This is consistent with
the slight deviations between the neural network and
MCMC posteriors seen in Fig. 3(c).

IV. INCLINED BINARIES WITH
ALIGNED SPINS

To test our method with a more challenging dataset,
we augmented the parameter space to include nonzero
aligned spins and inclination angle. We took uniform priors
on χ1z, χ2z, and cos θJN between −1 and 1, keeping the rest
of the prior distribution unchanged. The neural network
was trained to model posterior distributions over the
eight-dimensional parameter space x ¼ ðm1; m2;ϕ0; tc; dL;
χ1z; χ2z; θJNÞ. We held the dataset size fixed at 106 elements,
and again split 90% into the training set and 10% into the
validation set. The median SNR for this training set is 17.2,
the mean is 19.1, and the range is (6.1,100.9).
We tested only the CVAEþ model, since this performed

best in previous experiments. Because gravitational-wave
posteriors over the eight-dimensional parameter space have
increased complexity, we increased the capacity of our
network by doubling the latent-space dimension to l ¼ 16,
the number of MADE blocks to 10 per component network,
and the dimension of the IAF context variable to 16. We
also found performance was best when we froze the
Gaussian part of the prior network, but aside from this
all other hyperparameters were unchanged. This increased
the total number of trainable parameters to 25.2 × 106.
We trained again for 250 epochs, with final total loss

values of −0.83 (train) and −0.73 (validation), and final KL
loss values of 11.05 (train) and 11.14 (validation), showing
very little overfitting. This also indicates that for the
extended parameter space, the network made heavier use
of the latent space. (This observation motivated the
increased size of the latent space.)
In Fig. 6 we show a representative posterior distribution

produced by the neural network, as well as a corresponding
MCMC posterior. The neural network continues to capture
the m1–m2 degeneracy, as well as the new χ1z–χ2z and
dL–θJN degeneracies that arise in the extended parameter
space. The distribution over masses, however, is slightly
too broad in the neural network posterior. With improve-
ments to network architecture, or additional training, we
expect further convergence of the neural network to
MCMC. We note also that in contrast to the smaller
parameter space of the previous section, the posterior over
ϕ0 is simply the prior. The reason for this is that in our
waveform model, there is a three-parameter degeneracy
between the two spins χ1z, χ2z, and the phase ϕ0, where
small changes in the spins cause large changes in the phase.
The inset in Fig. 6 shows the posterior distribution over

the chirp mass M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5, asymmet-
ric mass ratio q ¼ m2=m1, and effective spin parameter
χ ¼ ðm1χ1z þm2χ2zÞ=ðm1 þm2Þ. These are derived quan-
tities, with sampling done instead over the parameters listed
above. Although posteriors are simpler over the derived
parameters, to test our method we chose to sample over
parameters with more nontrivial posteriors that include
non-Gaussianities and correlations between parameters.
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We see that in comparison to MCMC, M and χ are well
recovered, but the neural network posterior over q is
slightly too broad, reflecting the broad m1–m2 posterior
in the main figure. A p–p plot for the extended parameter
space is presented in Fig. 7. By inspection, this shows good
recovery of all parameters. Moreover, all parameters have
KS p values greater than 0.2. Although in the particular
case of Fig. 6, the mass-ratio posterior does not agree as
well with the emcee results as the other parameters, the

posterior clearly differs from the prior, and the p–p plots for
the masses are diagonal. Therefore these differences are not
affecting the overall performance of the network, but they
are nevertheless an area in which improvements could be
made in the future.
Sampling from the larger CVAEþ model used for the

extended parameter space is slightly slower than the smaller
model of the previous section, now requiring ≈1.6 s to
obtain 104 posterior samples. This is partially due to the

FIG. 6. Sample posterior distribution for eight-dimensional parameter space, from 5 × 104 samples of CVAEþ. Inset shows derived
quantities: chirp mass M, asymmetric mass ratio q, and effective spin parameter χ. The waveform injection has a SNR of 29.6.
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larger 16-dimensional latent space: the forward pass
through a MAF is recursive, so twice as many passes
are required to sample from the variational prior and
decoder. Both MAFs also have twice as many layers.

V. CONCLUSIONS

In this work we introduced the use of masked autore-
gressive flows for improving deep learning of gravitational-
wave posterior distributions. These learnable mappings on
sample spaces induce transformations on probability distri-
butions, and we used them to increase the flexibility of
neural network posterior models. The models that we built
can all be rapidly sampled, requiring <2 s to obtain 104

samples.
For nonspinning, quasicircular binary black holes, and

a single gravitational-wave detector (a five-dimensional
parameter space) we compared models involving a single
MAF, a CVAE, and a CVAE with autoregressive flows
applied to the encoder, decoder, and prior networks
(CVAEþ). We found that the performance of the single
MAF and CVAE models were comparable, and that best
performance was achieved by the CVAEþ model. The
CVAEþ model was able to capture the bimodality in the
phase ϕ0, which eluded the other models.
We then considered a larger eight-dimensional parameter

space, with aligned spins and nonzero binary inclination
angle. With a higher-capacity CVAEþ network, we suc-
cessfully recovered the posterior distribution over all
parameters, except for the mass ratio, which was slightly
too broad. This demonstrates that our approach extends to

higher-dimensional parameter spaces. A modest increase in
network capacity may, however, be required.
Although best performance was achieved with the

CVAEþ model, an advantage of models without latent
variables (such as the MAF alone) is that it is possible to
directly evaluate the probability density function. Since the
posterior distribution that the MAF models is normalized,
one could then calculate the Bayesian evidence by sepa-
rately evaluating the likelihood and prior. (In CVAE+, this
would require marginalization over z.) Moreover, since the
MAF loss function is just the cross-entropy loss with the
true distribution, this means that loss functions of com-
peting models can be compared directly. It would therefore
be worthwhile to also try to improve the performance of the
basic MAF model.
In contrast to typical applications of these deep-learning

tools, the space Y on which all of our models are
conditioned is of much higher dimensionality than the
space X that we are modeling. One way to improve
performance further may be to introduce convolutional
neural networks to preprocess the strain data y and
compress it to lower dimensionality. In the future, when
we extend our models to treat longer waveforms, higher
sampling rates, and additional detectors, this will become
even more important.
Going forward, it will also be important to understand

better the uncertainty associated to the neural network
itself, particularly in regions of parameter space that are not
well covered by training data. The training data is drawn
from the prior and so, in principle, regions of the parameter
space that have few samples in the training data are less
likely to be observed astrophysically. However, the
assigned priors are just reasonable guesses and the actual
distribution of observed events may well differ from these
assumptions. In addition, parts of the parameter space may
have greater variation in the waveforms than others and
therefore require a higher density in the training set to be
properly learnt by the network. If the goal is to obtain
unbiased posterior inference for every event observed then
we might want to use training data drawn from a different
prior that ensures equal accuracy over all possible param-
eters, and reweight the posterior samples to the desired
prior at the end. In addition, or as an alternative, we need to
obtain uncertainty estimates for the neural network output.
Rather than taking the maximum likelihood estimate for the
neural network parameters, as we did in this work, it is
possible to model them as random variables with some
probability distribution. This distribution can be learned
through variational inference, and ultimately marginalized
over, resulting in a slightly broader posterior over system
parameters [6,32]. In our work, overfitting was not a
problem, but such approaches to neural network uncer-
tainty could be useful in situations where the binary system
parameter space is not well covered due to high waveform
generation costs.

FIG. 7. p–p plot for one-dimensional posteriors for eight-
dimensional parameter space, modeled with the CVAEþ
network. Constructed from 103 injections.
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As the rate of detected gravitational-wave events grows
with improved detector sensitivity, methods for rapid
parameter estimation will become increasingly desirable.
For deep-learning approaches to become viable alternatives
to standard inference methods, they must be extended to
cover the full space of binary system parameters, and to
treat longer duration waveforms from multiple detectors
with detector PSDs that vary from event to event. Of
particular interest is to extend this work to include inference
of the sky location, as this will be beneficial for triggering
multimessenger follow up of interesting events. There are
no obvious conceptual obstacles to extending the network
to inference of the extrinsic parameters. The dimensionality
of the parameter space increases, as does the dimensionality
of the input space, since such inference relies on using data
from multiple detectors. As we saw in this paper, increasing

the dimensionality does increase the difficulty of designing
and training the neural network, but not insurmountably
and this is an obvious direction for further work. The
methods discussed in this paper are an important first step
toward the long term goal of building a rapid parameter
estimation tool for characterizing arbitrary gravitational-
wave detections.
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