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PROPAGATION OF POLARIZED GRAVITATIONAL WAVES

LARS ANDERSSON, JÉRÉMIE JOUDIOUX, MARIUS A. OANCEA, AND AYUSH RAJ

Abstract. The propagation of high-frequency gravitational waves can be analyzed using
the geometrical optics approximation. In the case of large but finite frequencies, the geo-
metrical optics approximation is no longer accurate and polarization-dependent corrections
at first order in wavelength modify the propagation of gravitational waves, via a spin-orbit
coupling mechanism. We present a covariant derivation from first principles of effective ray
equations describing the propagation of polarized gravitational waves, up to first-order terms
in wavelength, on arbitrary spacetime backgrounds. The effective ray equations describe a
gravitational spin Hall effect for gravitational waves, and are of the same form as those
describing the gravitational spin Hall effect of light, derived from Maxwell’s equations.

Introduction

The advent of gravitational wave observations brings a new range of phenomena related to
the dynamics of the gravitational field to our attention. Gravitational waves propagate over
cosmological distances and carry, in addition to information about their sources, imprints
of cosmological expansion and inhomogeneities in the universe. The fact that the important
sources of gravitational waves emit in a very broad range of wavelengths [19] makes it essential
to include effects beyond geometrical optics on their propagation, when considering lensing
of gravitational waves [31, 14].

Spin-orbit couplings play an essential role when analyzing the propagation of spinning par-
ticles and fields in inhomogeneous media beyond the geometrical optics and test particle limit
[10]. For the spin-1 Maxwell field, the spin Hall effect of light has been verified experimentally.
When the wavelength is small in comparison with the inhomogeneity scale of the media, a
wave packet undergoes a polarization-dependent deviation of the propagation of light beams
from the path predicted by geometrical optics [29, 8]. This can be viewed as a manifestation
of spin-orbit coupling via the Berry curvature. In general relativity, the dynamics of spinning
particles is described by the Mathisson-Papapetrou-Dixon equations [32, 37, 47, 15, 16], with
a suitable closure relation, the so-called spin-supplementary condition.

Polarization-dependent effects for the propagation of Maxwell fields in curved spacetimes
have been discussed previously in Refs. [26, 23, 42, 22, 25]. A detailed review and further
references can be found in Ref. [36]. Recently, a covariant derivation of the gravitational
spin Hall effect of light, based on first principles, has been given in Ref. [35]. Similarly, the
effective ray equations for massive spin-12 Dirac fields, beyond the geometrical optics limit,
have been discussed in Refs. [2, 39, 34]. The spin-2 nature of the gravitational field leads
one to expect that corrections to geometrical optics, involving the Berry curvature, will be
relevant also for gravitational waves [49, 50].

In this paper, we present the first covariant analysis of the spin Hall effect for gravitational
waves. Following the strategy developed in Ref. [35] for the Maxwell field, as well as the
general theory given in Ref. [30], we provide a derivation from first principles of effective
ray equations describing the propagation of gravitational waves, up to first-order terms in
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wavelength, on arbitrary spacetime backgrounds. The equations of motions are obtained
through a higher-order geometrical optics approximation using a Wentzel-Kramers-Brillouin
(WKB) ansatz. The dynamics of the polarization is described in terms of the Berry connec-
tion, and terms of first order in wavelength in the effective ray equations involve the Berry
curvature, manifesting the spin nature of the gravitational field. These corrections to the
standard trajectories of geometrical optics, the null geodesics, may be termed as the spin
Hall effect of gravitational waves [49]. It can be shown that the equations of motion are of
the same nature as the Mathisson-Papapetrou-Dixon equations for massless spinning parti-
cles [27, 34], completed by the Corinaldesi-Papapetrou spin supplementary condition (see [13,
Section 3.2.1]). Our treatment is covariant and applicable to arbitrary curved spacetimes,
in contrast to previous work present in the literature. For example, the derivation of the
spin Hall effect for gravitational waves given in Ref. [49] is not explicitly covariant, and it
is limited to propagation in static spacetimes in the weak-field limit. Our derivation of the
effect is obtained from the classical field theory of linearized gravity, in contrast with Ref.
[49] where the author argues that the effect is quantum in nature. Another derivation of a
spin Hall effect for gravitational waves was proposed in Ref. [50]. While this approach is
manifestly covariant, it is limited to stationary spacetimes.

Our starting point is the classical field theory of linearized gravity, governed by a truncated
form of the Einstein-Hilbert Lagrangian. A metric perturbation in the form of a WKB ansatz
is inserted in the action for linearized gravity, and the resulting expression is truncated after
the first order in the inverse of the frequency. This provides a Lagrangian representing the
WKB approximation of the linearized gravity field theory. The corresponding Euler-Lagrange
equations, with Lorenz gauge imposed, provide the dispersion relation and the transport
equation for the amplitude. The dispersion relation is used to define a Hamiltonian for the
effective ray equations.

The paper is organized as follows. Sec. 1 contains the general setup. The basic equations
for linearized gravity are presented in Sec. 1.1, the gauge choice is discussed in Sec. 1.2, and
the WKB Ansatz is introduced in Sec. 1.3. The WKB approximation of the action is made
in Sec. 2, and it is shown how the well-known results of geometrical optics can be obtained
from the corresponding Euler-Lagrange equations. In Sec. 2.5 we discuss the dynamics of
the polarization tensor in terms of the Berry connection. The effective dispersion relation is
derived in Sec. 2.6. Finally, the effective ray equations are discussed in Sec. 3. Appendix
A contains a discussion on some algebraic property of the symbol. Appendix B presents a
self-contained derivation of the equation of linearized gravity. Appendix C contains a basic
discussion of the Lorenz gauge.

Notations and conventions

We consider an arbitrary smooth Lorentzian manifold (M,gµν), where the metric tensor
gµν has signature (− + ++). The absolute value of the metric determinant is denoted as
g = |det gµν |. The phase space is defined as the cotangent bundle T ∗M , and phase space
points are denoted as (x, p). The Einstein summation convention is assumed. Greek indices
represent space-time indices, and run from 0 to 3. Latin indices, (a, b, c, ...), represent tetrad
indices and run from 0 to 3. We adopt the curvature conventions of [28].
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1. The Einstein field equations and linearized gravity

We consider the vacuum Einstein field equations with vanishing cosmological constant

Rαβ − 1

2
Rgαβ = 0, (1.1)

where Rαβ is the Ricci tensor, R = Rα
α is the Ricci scalar. The Einstein field equations can

be obtained as the Euler-Lagrange equations of the Einstein-Hilbert action

J(gµν) =

∫

M
d4x

√
g R(gµν). (1.2)

Our goal is to describe the propagation of gravitational waves, treated as a small metric
perturbation around a fixed background solution of the vacuum Einstein field equations. For
this purpose, in the next section we derive the linearization of the Einstein-Hilbert action and
the corresponding equations for the linearized gravitational field.

Note that, we could have treated the case of a non-vanishing cosmological constant since,
in the high-frequency analysis, the latter plays no role.

1.1. Linearization of the Einstein-Hilbert action. We remind here the form of the lin-
earized Einstein-Hilbert action, see Ref. [6]. For completeness, the derivation, which is often
not presented in detail in the literature, is performed in Appendix B. Let gµν be a solution
of the Einstein field equations in vacuum

Rαβ = 0. (1.3)

We consider a Lorentzian metric g̃µν , obtained through a small perturbation hµν of gµν :

g̃µν = gµν + hµν . (1.4)

Linearizing the Einstein-Hilbert action near gµν as in Ref. [6], we obtain

J(g̃µν) = J(gµν) + Jlin(hµν) + O(|h|3), (1.5)

where

Jlin(hµν) =

∫

M
d4x

√
g

(
−1

2
∇γhαβ∇γhαβ +

1

2
∇γh∇γh−∇αh∇βh

αβ +∇αhγβ∇γhαβ
)

(1.6)
is the action for the perturbation hµν . Index manipulation and covariant derivatives are

defined with respect to the background metric gαβ , and h = hαβg
αβ . Integrating by parts

and neglecting the boundary terms, the linearized action can be written as

Jlin(hµν) =

∫

M
d4x

√
g hαβD̂ γδ

αβ hγδ , (1.7)

where D̂ γδ
αβ is the differential operator

D̂ γδ
αβ =

1

2

(
δγαδ

δ
β∇µ∇µ − gαβg

γδ∇µ∇µ + gγδ∇α∇β + gαβ∇γ∇δ − δδβ∇γ∇α − δδα∇γ∇β

)
.

(1.8)
The corresponding Euler-Lagrange equations are

D̂ γδ
αβ hγδ = 0. (1.9)

Introducing the trace-reverse tensor

h̆αβ = hαβ − 1

2
hgαβ , (1.10)
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Eq. (1.9) becomes

∇α∇αh̆µν +∇α∇βh̆
αβgµν −∇α∇µh̆αν −∇α∇ν h̆αµ = 0. (1.11)

Taking the trace of Eq. (1.11) leads to

∇α∇αh = 2∇α∇µh̆αµ. (1.12)

1.2. The Lorenz gauge. The Einstein field equations are gauged equations. The gauge
freedom can be exploited to reduce the Einstein field equation to a hyperbolic system of
equations. A detailed discussion of this reduction in the particular case of the wave gauge
can be found in Refs. [38, Section 14.1] or [21, Section 2.4].

A similar reduction can be applied to the linearized equations (1.9). The linearization of
the gauge freedom of the Einstein field equations leads to the invariance of Eq. (1.9) by the
transformation

hµν 7→ hµν −∇µξν −∇νξµ, (1.13)

where ξµ is a one-form on M . The gauge invariance of the linearized field equations (1.9) can
be exploited to make these equations hyperbolic. The linearization of the wave gauge for the
Einstein field equations leads to the Lorenz gauge condition for the linearized field equations
(1.9):

∇αh̆
αβ = ∇α

(
hαβ − 1

2
hgαβ

)
= 0. (1.14)

The detailed derivation of this equation is presented in Appendix C. Imposing the Lorenz
gauge condition, Eq. (1.9) is reduced to the following wave equation:

∇α∇αh̆µν − 2Rνασµh̆
ασ = 0, (1.15)

and Eq. (1.12) for the trace of the perturbations decouples:

∇α∇αh = 0. (1.16)

Using the expression of h̆µν given in Eq. (1.10), and using the fact that gµν has vanishing
Ricci curvature, we obtain

∇α∇αhµν − 2Rνασµh
ασ = 0. (1.17)

1.3. WKB Ansatz. We assume that the perturbation metric hαβ admits a WKB expansion
of the form

hαβ(x) = Re
[
Aαβ(x, k(x), ǫ)e

iS(x)/ǫ
]
,

Aαβ(x, k(x), ǫ) = A0αβ(x, k(x)) + ǫA1αβ(x, k(x)) + O(ǫ2),
(1.18)

where S is a real scalar function, Aαβ is a complex amplitude, and ǫ is a small expansion
parameter. The gradient of S is denoted as

kµ(x) = ∇µS(x). (1.19)

We are allowing the amplitude Aαβ to depend on kµ(x). This is justified by the mathemat-
ical formulation of the WKB approximation [3, 18], where kµ(x) determines a Lagrangian
submanifold of x 7→ (x, k(x)) ∈ T ∗M , and the amplitude Aαβ is defined on the Lagrangian
submanifold.
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1.4. Assumption on the initial data. We consider a Cauchy surface in M , and we make
the following assumptions. Firstly, the gauge condition given in Eq. (1.14) is initially satisfied.
Secondly, the trace of the perturbation h vanishes initially. Equation (1.16) guarantees that
this condition is conserved in the future of Σ. Finally, the gravitational waves have initially
circular polarization (see Sec. 2.5).

2. The WKB approximation for linearized gravity

The WKB analysis of various field equations is generally performed by inserting the WKB
ansatz directly into the field equation, followed by an analysis of the resulting terms at each
order in the expansion parameter ǫ. However, for the purpose of studying spin Hall effects, we
find it more convenient to perform the WKB analysis by inserting the WKB ansatz into the
field action. The advantages of such a variational formulation of the WKB approximation are
extensively discussed in Ref. [46] (see also Refs. [40, 41]). In particular, a similar approach
proved to be effective in the derivation of the gravitational spin Hall effect of light [35].

2.1. Euler-Lagrange equations in the WKB approximation. We insert the WKB
ansatz (1.18) into the linearized Einstein–Hilbert action (1.7). Keeping only terms of the
lowest two orders in ǫ, we obtain

2ǫ2Jlin =

∫

M
d4x

√
g
[
A∗αβD γδ

αβ Aγδ −
iǫ

2

v
∇µD γδ

αβ

(
A∗αβ∇µAγδ −Aγδ∇µA

∗αβ
) ]

+ O(ǫ2),

(2.1)
where

D γδ
αβ =

1

2

(
kµk

µδγαδ
δ
β − kµk

µgαβg
γδ + kαkβg

γδ + kγkδgαβ − kαk
γδδβ − kβk

γδδα

)
,

v
∇µD γδ

αβ = kµδγαδ
δ
β − kµgαβg

γδ + k(αδ
µ
β)g

γδ + k(γgδ)µgαβ − k(αδ
δ
β)g

γµ − kγδµ(αδ
δ
β),

v
∇µ

v
∇νD γδ

αβ = gµνδγαδ
δ
β − gµνgαβg

γδ + δµ(αδ
ν
β)g

γδ + gµ(γgδ)νgαβ − δµ(αδ
δ
β)g

γν − gγµδν(αδ
δ
β)

(2.2)

In the above equation, D γδ
αβ represents the symbol of the operator D̂ γδ

αβ , and
v
∇µ = ∂

∂kµ

denotes the vertical derivative (see Ref. [35, Appendix A] for the definition of horizontal and

vertical derivatives). Formally, up to the expression of the symbol D γδ
αβ , the effective action

(2.1) is of the same form as the effective action obtained in the electromagnetic case [35, Eq.
(3.3)].

The effective action (2.1) depends on S(x), Aαβ(x,∇S) and A∗αβ(x,∇S), and the variation
can be performed as in [35, Appendix B]. The resulting Euler–Lagrange equations are

D γδ
αβ Aγδ − iǫ(

v
∇µD γδ

αβ )∇µAγδ −
iǫ

2
(∇µ

v
∇µD γδ

αβ )Aγδ = O(ǫ2) (2.3)

D γδ
αβ A∗αβ + iǫ(

v
∇µD γδ

αβ )∇µA
∗αβ +

iǫ

2
(∇µ

v
∇µD γδ

αβ )A∗αβ = O(ǫ2) (2.4)

∇µ

[
(
v
∇µD γδ

αβ )A∗αβAγδ −
iǫ

2
(
v
∇µ

v
∇νD γδ

αβ )
(
A∗αβ∇νAγδ −Aγδ∇νA

∗αβ
) ]

= O(ǫ2) (2.5)

In the above equations, the symbol D γδ
αβ and its vertical derivatives are evaluated at the

phase space point (x, p) = (x, k).
5



2.2. WKB approximation of the Lorenz gauge. In order to remove unwanted pure
gauge degrees of freedom, the Euler-Lagrange equations (2.3)-(2.5) should be supplemented
with additional equations. For this purpose, we impose the Lorenz gauge condition on the
metric perturbation hαβ . The WKB approximation of the Lorenz gauge condition is obtained
by inserting the WKB ansatz (1.18) into Eq. (1.14). At the lowest order in ǫ, we obtain

kαA0αµ =
1

2
kµA0, (2.6)

and at O(ǫ0) we obtain

∇αA0αµ + ikαA1αµ =
1

2
(∇µA0 + ikµA1), (2.7)

where A0 = gαβA0αβ and A1 = gαβA1αβ . These equations can also be supplemented by the
corresponding complex conjugate equations.

2.3. Equations at order ǫ0. Keeping only terms of order ǫ0, Equations (2.3)-(2.5) reduce
to

D γδ
αβ A0γδ = 0 (2.8)

D γδ
αβ A0

∗αβ = 0 (2.9)

∇µ

[
(
v
∇µD γδ

αβ )A0
∗αβA0γδ

]
= 0 (2.10)

Since Equations (2.8) and (2.9) are related by complex conjugation, it is enough to analyze

only one of them. Using the definition of the symbol D γδ
αβ , Equation (2.8) can be written as

1

2

(
kµk

µδγαδ
δ
β − kµk

µgαβg
γδ + kαkβg

γδ + kγkδgαβ − kαk
γδδβ − kβk

γδδα

)
A0γδ = 0 (2.11)

This equation admits nontrivial solutions if and only if A0γδ is in the kernel of the tensor

D γδ
αβ . The kernel of D γδ

αβ is discussed in detail in Appendix A. By imposing the Lorenz

gauge condition (2.6) in Eq. (2.11), we obtain

kµk
µ

(
A0αβ − 1

2
gαβA0

)
= 0 (2.12)

This equation can only be satisfied if either kµk
µ = 0 or A0αβ− 1

2gαβA0 = 0. However, taking

A0αβ − 1
2gαβA0 = 0 implies that A0αβ = 0. Discarding this trivial solution, we are left with

the dispersion relation

kµk
µ = 0, (2.13)

which is a well-known result of geometrical optics. Furthermore, since kµ is the gradient of a
scalar function, it satisfies

∇µkα = ∇αkµ. (2.14)

Using this property, together with the dispersion relation (2.13), we can derive the geodesic
equation for kµ:

kν∇νkµ = 0. (2.15)

Imposing the Lorenz gauge condition (2.6) in Equation (2.10), we obtain

∇µ

[
kµ

(
A0

∗αβA0αβ − 1

2
A0

∗A0

)]
= 0. (2.16)
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This equation represents a transport equation for the intensity I0 = A0
∗αβA0αβ − 1

2A0
∗A0,

which is another well-known result of geometrical optics.

2.4. Equations at order ǫ1. We continue the WKB analysis by taking equations (2.8) and
(2.9) at order ǫ1 only:

D γδ
αβ A1γδ − i(

v
∇µD γδ

αβ )∇µA0γδ −
i

2
(∇µ

v
∇µD γδ

αβ )A0γδ = 0, (2.17)

D γδ
αβ A1

∗αβ + i(
v
∇µD γδ

αβ )∇µA0
∗αβ +

i

2
(∇µ

v
∇µD γδ

αβ )A0
∗αβ = 0. (2.18)

We can simplify these equations by imposing the Lorenz gauge condition (2.6) and (2.7), and
by using equations (2.13) and (2.14). We obtain

kµ∇µ

(
A0αβ − 1

2
gαβA0

)
+

1

2

(
A0αβ − 1

2
gαβA0

)
∇µk

µ = 0, (2.19)

kµ∇µ

(
A0

∗αβ − 1

2
gαβA0

∗

)
+

1

2

(
A0

∗αβ − 1

2
gαβA0

∗

)
∇µk

µ = 0. (2.20)

Furthermore, using the lowest-order intensity I0, we can write the amplitude tensors in the
following way:

A0αβ − 1

2
gαβA0 =

√
I0a0αβ , A0

∗αβ − 1

2
gαβA0

∗ =
√

I0a0
∗αβ , (2.21)

where a0αβ is a complex tensor, describing the polarization of the gravitational wave. Note
that, due to the Lorenz gauge condition (2.6), the polarization tensor a0αβ satisfies the or-
thogonality condition

kαa0αβ = 0. (2.22)

Using the transport equation (2.16), Eqs. (2.19) and (2.20) reduce to

kµ∇µa0αβ = kµ∇µa0
∗αβ = 0. (2.23)

The parallel propagation of the complex polarization tensor a0αβ along kµ is another well-
known result of the geometrical optics approximation.

2.5. The polarization tensor in a null tetrad. The properties of the polarization ten-
sor a0αβ become more transparent when expressed in terms of a null tetrad adapted to kα.
Working with the metric signature (−,+,+,+), we establish a set of four complex null vec-
tors {kα, nα,mα, m̄α} at each point in space-time , which satisfy the following orthogonality
relations:

mαm̄
α = 1, kαn

α = −1,

kαk
α = nαn

α = mαm
α = m̄αm̄

α = 0,

kαm
α = kαm̄

α = nαm
α = nαm̄

α = 0.

(2.24)

Since the polarization tensor a0µν is symmetric, it can have at most ten independent compo-
nents. However, due to the orthogonality condition (2.22), we are left with only six indepen-
dent components. Using the null tetrad, we can write the polarization tensor as

a0µν = z1mµmν + z2m̄µm̄ν + z3m(µm̄ν) + z4kµkν + z5k(µmν) + z6k(µm̄ν), (2.25)
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where zi are complex scalar functions. Inserting this expansion of the polarization tensor into
the parallel transport equation (2.23), and making use of the orthogonality relations (2.24),
we obtain the following transport equations for the scalar functions zi:

kα∇αz1 = −2z1m̄
µkα∇αmµ, (2.26a)

kα∇αz2 = −2z2m
µkα∇αm̄µ, (2.26b)

kα∇αz3 = 0, (2.26c)

kα∇αz4 = −(z5m
µ + z6m̄

µ)kα∇αnµ, (2.26d)

kα∇αz5 = −(z3m̄
µ + 2z1m

µ)kα∇αnµ − z5m̄
νkα∇αmν , (2.26e)

kα∇αz6 = −(z3m
µ + 2z2m̄

µ)kα∇αnµ − z6m
νkα∇αm̄ν . (2.26f)

The transport equations for z1, z2 and z3 are decoupled. Furthermore, the evolution of the
trace of a0µν is described by z3, which is covariantly constant along kα, and its value will be
fixed by the choice of initial conditions. As mentioned in Sec. 1.4, we consider initial data
such that the metric perturbation is initially traceless. Thus, we impose z3 = 0. The other
components, z4, z5 and z6, describe the evolution of pure gauge degrees of freedom, which
were not fixed by imposing the Lorenz gauge. It is shown in Appendix A that the components
of the metric perturbation proportional to z4, z5 and z6 do not contribute, at the lowest order
in ǫ, to the Riemann tensor. They are in that sense pure gauge.

The non pure-gauge degrees of freedom, describing the polarization of the metric pertur-
bation are represented by the terms proportional to the complex scalar functions z1 and z2.
The tensors mµmν and m̄µm̄ν represent a circular polarization basis for linearized metric
perturbations, analogue to the circular polarization basis covectors mµ and m̄µ used in the
description of electromagnetic waves (a detailed comparison between the polarization of elec-
tromagnetic and gravitational waves can be found in [33, Sec. 35.6]). By picking initial data
such that the metric perturbation is initially traceless (which is equivalent to z3 = 0), Eq.
(2.21) implies that

a0
∗µνa0µν = z∗1z1 + z∗2z2 = 1. (2.27)

This relation restricts (z1, z2) ∈ C
2 to the unit 3-sphere S3. Furthermore, (z1, z2) and

(eiφz1, e
iφz2) (for any real φ), represent the same polarization state. Thus, the space of phys-

ically distinguishable polarization states is the complex projective line CP1 = S3/U(1) = S2

(in optics, this is called the Poincare sphere; see Refs [11, Sec. 1.4.2] [4, Sec 5.2]).
The transport equations for z1 and z2 have the same form as in the electromagnetic case

[35, Eq. (3.36)], the only difference being a factor of 2, which corresponds to the fact that
here we are dealing with a spin-2 field, instead of the electromagnetic field, which is a spin-1
field. As in Ref. [35], it is convenient to rewrite the transport equations for z1 and z2 in
terms of the Berry connection. First, we should remember that the covectors mα and m̄α are
functions of x and k(x), because of the orthogonality relations given in Eq. (2.24). Thus, we
must carefully apply the chain rule when taking covariant derivatives of mα and m̄α:

kµ∇µmα = kµ∇µ [mα(x, k)]

= kµ
(

h
∇µmα

)
(x, k) + kµ (∇µkν)

(
v
∇νmα

)
(x, k)

= kµ
h
∇µmα,

(2.28)
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where
h
∇µ is the horizontal derivative, defined in Ref. [35, Appendix A]. As in the electro-

magnetic case, the scalar functions z1 and z2 can be encoded in a 2-dimensional unit complex
vector, which is analogous to the Jones vector used in optics [20, 7, 40, 41]:

z =

(
z1
z2

)
, z† =

(
z∗1 z∗2

)
. (2.29)

The transport equations for z1 and z2 can be rewritten as

kµ∇µz = 2ikµBµσ3z, (2.30)

where σ3 is the third Pauli matrix,

σ3 =

(
1 0
0 −1

)
, (2.31)

and Bµ is the Berry connection

Bµ(x, k) =
i

2

(
m̄α

h
∇µmα −mα

h
∇µm̄

α

)
= im̄α

h
∇µmα. (2.32)

The Berry connection has the same definition as in the electromagnetic case [35]. The Berry
phase can be defined by considering a worldline xµ(τ), with ẋµ = kµ. Then, by restricting z
to the worldline xµ(τ), we obtain

ż = 2ikµBµσ3z. (2.33)

This equation can be integrated along the worldline xµ(τ) as

z(τ) =

(
e2iγ(τ) 0

0 e−2iγ(τ)

)
z(0), (2.34)

and we obtain the Berry phase γ as

γ(τ1) =

∫ τ1

τ0

dτkµBµ. (2.35)

Using equation (2.33), we can show that the following quantities are conserved along kµ:

1 = z∗1z1 + z∗2z2 = z†z,

s = 2(z∗1z1 − z∗2z2) = 2z†σ3z.
(2.36)

Based on our assumptions on the initial conditions, given in Sec. 1.4, we only consider metric
perturbations which are initially circularly polarized. This corresponds to

z(0) =

(
1
0

)
or z(0) =

(
0
1

)
. (2.37)

Thus, we have s = ±2, depending on the choice of the initial polarization state. Here, the
parameter s represents the helicity of the metric perturbation.
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2.6. Effective dispersion relation. The results derived so far are based on a standard
approach to the WKB analysis, by imposing that terms at different orders in ǫ in the Euler-
Lagrange equations (2.3)-(2.5) vanish separately. With this approach, we derived the well-
known geometrical optics results: the dispersion relation (2.13) and the transport equation
for the polarization tensor (2.23). While the dynamics of the polarization tensor in Eq. (2.23)
depends on kµ, and, hence, on the dispersion relation (2.13), there is no backreaction from the
dynamics of the polarization tensor onto the dispersion relation (2.23) and onto kµ. In other
words, the standard geometrical optics approach does not take into account all the possible
spin-orbit interactions between the external and internal degrees of freedom, here represented
by the wave vector kµ and polarization tensor a0µν .

In the derivation of the spin Hall effect, as observed in Ref. [35] (see also Ref. [10]), it is
essential to gather terms related to geometrical optics and terms involving the polarization.
This is the so-called spin-orbit coupling. This can be achieved by collating the separately
satisfied Eqs. (2.3)–(2.5) into one quantity depending on powers of ǫ at order 0 and 1, and
vanishing at order O(ǫ2).

Starting with Eqs. (2.3)–(2.5), an effective dispersion relation can be derived in the in

the following way. We contract Eq. (2.3) with A∗αβ and Eq. (2.4) with Aγδ. Adding these
equations together, we obtain

D γδ
αβ A∗αβAγδ −

iǫ

2

(
v
∇µD γδ

αβ

)(
A∗αβ∇µAγδ −Aγδ∇µA

∗αβ
)
= O(ǫ2). (2.38)

Using Aαβ = A0αβ + ǫA1αβ +O(ǫ2), the Lorenz gauge condition given in Eqs. (2.6) and (2.7),
as well as Eq. (2.2), we can rewrite the above equation as

1

2
kµkµ

[
I0 + ǫ

(
A0αβA1

∗αβ +A0
∗αβA1αβ − 1

2
A0A1

∗ − 1

2
A1A0

∗

)]

− iǫ

2
kµ

[
A0

∗γδ∇µA0γδ −A0γδ∇µA0
∗γδ +

1

2
(A0

∗∇µA0 −A0∇µA0
∗)

]
= O(ǫ)2

(2.39)

The above equation can be further simplified by introducing the O(ǫ)1 intensity as

I1 =

(
AαβA

∗αβ − 1

2
AA∗

)
+ O(ǫ)2

= I0 + ǫ

(
A0αβA1

∗αβ +A0
∗αβA1αβ − 1

2
A0A1

∗ − 1

2
A1A0

∗

)
+ O(ǫ)2.

(2.40)

Then, we can rewrite the amplitude as

Aαβ =
√

I1aαβ =
√

I1(a0αβ + ǫa1αβ) + O(ǫ)2, (2.41)

and from Eq. (2.39) we obtain

1

2
kµk

µ − iǫ

2
kµ

(
a0

∗αβ∇µa0αβ − a0αβ∇µa0
∗αβ

)
= O(ǫ2). (2.42)

This represents an effective dispersion relation, containing O(ǫ) corrections to the geometrical
optics equation (2.13). We can also introduce the notation

Kµ = kµ − iǫ

2

(
a0

∗αβ∇µa0αβ − a0αβ∇µa0
∗αβ

)
(2.43)
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and rewrite the effective dispersion relation as

1

2
KµK

µ = O(ǫ2). (2.44)

In a similar way, starting with (2.5), and considering Aαβ = A0αβ+ǫA1αβ+O(ǫ2), the Lorenz
gauge condition given in Eqs. (2.6) and (2.7), as well as Eq. (2.2), we obtain

∇µ

{
I1

[
kµ − iǫ

2
gµν

(
a0

∗αβ∇νa0αβ − a0αβ∇νa0
∗αβ

)]}
= ∇µ (I1K

µ) = O(ǫ2). (2.45)

This is an effective transport equation for the intensity I1, which includes O(ǫ) corrections to
the geometrical optics equation (2.16).

3. Effective ray equations

The transition from the WKB approximation of a field theory to an effective point-particle
description can be realized by treating the dispersion relation as a Hamilton-Jacobi equation
for the phase function [1, Sec. 46]. It has also been argued in Refs. [33, Box 25.3] [24, Sec. II]
that the physical interpretation of the effective point-particle description provided by solving
the Hamilton-Jacobi equation is related to the principle of constructive interference. One can
define a localized wave packet by considering a superposition of WKB wave functions with
slightly different wave vectors. The peak of intensity of this superposition occurs where the
waves interfere constructively and coincides with the ray trajectories given by the effective
point-particle description.

At the lowest order in ǫ, we obtained in Eq. (2.13) the dispersion relation

1

2
gµνkµkν = 0, (3.1)

where kµ = ∇µS. This can be viewed as a Hamilton-Jacobi equation, which is a nonlinear
first-order partial differential equation for the phase function S. We can solve the Hamilton-
Jacobi equation by using the method of characteristics [1, Sec. 46]. This is done by defining
a Hamiltonian function H(x, p) on T ∗M , related to the dispersion relation by

H (x,∇S) =
1

2
gµνkµkν = 0. (3.2)

In this case, the Hamiltonian function is

H(x, p) =
1

2
gµνpµpν , (3.3)

where pµ is a general covector on T ∗M , unlike kµ, which is a gradient of a scalar function.
The effective point-particle description is given by Hamilton’s equations

ẋµ =
∂H

∂pµ
= gµνpν , (3.4)

ṗµ = − ∂H

∂xµ
= −1

2
∂µg

αβpαpβ. (3.5)

Given a set of ray trajectories {xµ(τ), pµ(τ)} representing a solution of Hamilton’s equations,
we can obtain a solution of the Hamilton–Jacobi equation as [1, Sec. 46]

S(xµ(τ1), pµ(τ1)) =

∫ τ1

τ0

dτ [ẋµpµ −H(x, p)] + const. (3.6)
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Thus, at the lowest order in ǫ of the WKB approximation, we have obtained an effective
point-particle description in terms of Hamilton’s equations (3.4) and (3.5). These are the
geodesic equations of the underlying spacetime.

In order to describe spin Hall effects, higher-order terms in the WKB analysis must be
taken into account. This can be achieved by considering the effective dispersion relation
obtained in Eq. (2.42):

1

2
kµk

µ − iǫ

2
kµ

(
a0

∗αβ∇µa0αβ − a0αβ∇µa0
∗αβ

)
= O(ǫ2). (3.7)

Our aim is to treat this relation as an effective Hamilton-Jacobi equation, and to explore the
corresponding effective point-particle description. Using the expansion of the polarization
tensor a0αβ, given in Eq. (2.25), we can rewrite the effective dispersion relation as

1

2
gµνkµkν −

iǫ

2
kµ

(
z†∂µz − ∂µz

†z
)
− ǫskµBµ = O(ǫ2), (3.8)

where Bµ = Bµ(x, k) is the Berry connection defined in Eq. (2.32), and s = ±2, depending
on the initial state of circular polarization. Note that, except for the different value of the
constant s, we have obtained the same effective dispersion relation as in the electromagnetic
case [35, Eq. (4.12)]. Using Eq. (2.34), we can rewrite the second term in Eq. (3.8) in terms
of the Berry phase γ:

− iǫ

2
kµ

(
z†∂µz − ∂µz

†z
)
= ǫskµ∂µγ. (3.9)

Using the Berry phase, we can define an effective phase function S̃ = S+ ǫsγ and an effective
wave vector ∇µS̃ = k̃µ = kµ + ǫs∇µγ. Then, the effective dispersion relation can be written
as

1

2
gµν k̃µk̃ν − ǫsk̃µBµ = O(ǫ2), (3.10)

This equation can be considered as an effective Hamilton-Jacobi equation for the effective
phase function S̃. Since circularly polarized WKB metric perturbations are of the form

hαβ = Re
[√

Imαmβe
iγeiS(x)/ǫ

]
or hαβ = Re

[√
Im̄αm̄βe

−iγeiS(x)/ǫ
]
, (3.11)

the effective phase function S̃ represents the overall phase factor of the WKB ansatz, up to
order O(ǫ2). As in the previous case, we solve the effective Hamilton-Jacobi equation for the

unknown S̃ by using the method of characteristics. We are seeking a Hamiltonian function
H(x, p) on T ∗M , related to the effective dispersion relation by

H
(
x,∇S̃

)
=

1

2
gµν k̃µk̃ν − ǫsk̃µBµ = O(ǫ2). (3.12)

In this case, the Hamiltonian function is

H(x, p) =
1

2
gµνpµpν − ǫsgµνpµBν(x, p), (3.13)

and the effective point-particle description is given by Hamilton’s equations

ẋµ =
∂H

∂pµ
= gµνpν − ǫs

(
Bµ + pα

v
∇µBα

)
, (3.14)

ṗµ = − ∂H

∂xµ
= −1

2
∂µg

αβpαpβ + ǫspα

(
∂µg

αβBβ + gαβ∂µBβ

)
. (3.15)
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These equations describe the spin Hall effect of gravitational waves. The Hamiltonian, as
well as Hamilton’s equations have the same form as in the electromagnetic case presented
in Ref. [35, Eq. (4.15)-(4.17)], except for the value of the constant s. The terms of O(ǫ1)
are expressed in terms of the Berry connection, and they depend on the state of circular
polarization through s. In the limit of infinitely-high frequencies, which corresponds to ǫ = 0,
we recover the geodesic equations, as in Eqs. (3.4) and (3.5).

As observed in Ref. [35], the Hamiltonian (3.13), as well as the effective ray equations
(3.14) and (3.15) are not independent of the choice of polarization vectors mµ and m̄µ. This

is because the Berry connection Bµ is not invariant under spin rotations mµ 7→ eiφ(x)mµ.
Such transformations can be viewed as a change of gauge for the Berry connection. This is
similar to the case of a charged particle moving in an electromagnetic field, and described by
the minimally coupled Hamiltonian

H =
1

2
gµν(pµ − eAµ)(pν − eAν), (3.16)

which is not invariant under gauge transformations of the electromagnetic vector potential,
Aµ 7→ Aµ+∇µξ. Generally, this issue can be solved by introducing noncanonical coordinates,
such that the connection one-form (e.g. the electromagnetic vector potential Aµ for the case of
charged particles, or the Berry connection Bµ for the case of spinning particles) is eliminated
from the Hamiltonian, and the ray equations are expressed in terms of the curvature two-
form (e.g. the Faraday tensor Fµν = 2∇[µAν] for the case of charged particles, or the Berry
curvature for the case of spinning particles). This procedure is discussed in Ref. [43] for the
case of a charged particle, and in Ref. [30] for Hamiltonians involving the Berry connection.
Also, it is generally the case that the effective ray equations describing spin Hall effects in
optics or condensed matter physics are usually expressed in terms of the Berry curvature
[10, 8, 40, 5, 45, 48].

Noncanonical coordinates for a Hamiltonian of the form given in Eq. (3.13) were introduced
in Ref. [35], based on the general proposal of Littlejohn and Flynn [30]. The relation between
canonical coordinates (xµ, pµ) and noncanonical coordinates (Xµ, Pµ) is

Xµ = xµ + iǫsm̄α
v
∇µmα, (3.17)

Pµ = pµ − iǫsm̄α∇µmα. (3.18)

The coordinate transformation is performed perturbatively with respect to ǫ, and terms of
O(ǫ2) are ignored. We refer the reader to Ref. [35] for the details of the calculations. In
noncanonical coordinates (Xµ, Pµ), the Hamiltonian is

H(X,P ) =
1

2
gµν(X)PµPν , (3.19)

and the effective ray equations become

Ẋµ = Pµ + ǫsP ν (Fpx)
µ

ν + ǫsΓα
βνPαP

β (Fpp)
νµ , (3.20)

Ṗµ = Γα
βµPαP

β − ǫsP ν (Fxx)νµ − ǫsΓα
βνPαP

β (Fxp)
ν
µ . (3.21)
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In the above equations, we have the components of the Berry curvature, defined as

(Fpp)
νµ = i

( v
∇µm̄α

v
∇νmα −

v
∇νm̄α

v
∇µmα + m̄α

v
∇[µ

v
∇ν]mα −mα

v
∇[µ

v
∇ν]m̄α

)
,

(Fxx)νµ = i
(
∇µm̄

α∇νmα −∇νm̄
α∇µmα + m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄

α
)
,

(Fpx)
µ

ν = − (Fxp)
µ
ν = i

(
v
∇µm̄α∇νmα −∇νm̄

α
v
∇µmα

)
.

(3.22)

It can easily be verified that these equations are invariant under spin rotationsmµ 7→ eiφ(x)mµ.
However, given a null covector Pµ the orthogonal plane spanned by mµ and m̄µ is not uniquely
fixed, since one can always perform transformations of the form mµ 7→ mµ + cPµ. This
orthogonal plane can only be fixed uniquely by introducing additional structure, such as a
timelike vector tµ or another null vector nµ, orthogonal to mµ and m̄µ. From a physical point
of view, this means that the orthogonal plane spanned by mµ and m̄µ can only be fixed with
respect to a timelike observer with 4-velocity tµ.

As discussed in Ref. [35], changing the vector field tµ, defining a family of observers,
corresponds to a change of polarization vectors of the form mµ 7→ mµ+cPµ. The effective ray
equations (3.20) and (3.21) are not invariant under such transformations. This reflects the
well-known fact that the position of a massless spinning particle cannot be defined independent
of an observer. In particular, this can be viewed as a manifestation of the relativistic Hall
effect [9] and the Wigner translation for massless spinning particles [44, 17] (see also Ref. [12]
for a similar discussion in the context of the Mathisson-Papapetrou-Dixon equations). It has
been shown in Ref. [35] how Eqs. (3.20) and (3.21) incorporate these effects.

4. Conclusion

We have presented a covariant WKB analysis of gravitational waves, as described by the
linearized Einstein equations. By going beyond the standard geometrical optics approach,
we obtained effective ray equations containing polarization-dependent terms and describing
the spin Hall effect of gravitational waves propagating on arbitrary spacetimes. The effective
ray equations have the same form as in the electromagnetic case discussed in Ref. [35], the
only difference being a factor of 2, representing the spin-2 nature of the gravitational field.
Thus, considering electromagnetic and gravitational waves of the same frequency, the spin
Hall effect is twice as large in the case of gravitational waves.

In an ongoing work [27] (see also [34]), the authors prove that the resulting equations can
be cast in the form of the Mathisson-Papatreou-Dixon equations for massless particles, with
the Corinaldesi-Papapetrou spin supplementary condition. The latter is a consequence of the
derivation of the effective equations of motions. Furthermore, with [35], it provides a first
systematic covariant derivation of the equations of motions for massless spinning particles.

The spin Hall effect of gravitational waves is expected to play an important role for grav-
itational waves of finite frequency. Hence, one important perspective is to understand the
observable consequences of corrections to geometrical optics. Firstly, the corrections to ge-
ometrical optics should lead to measurable frequency-dependent corrections to gravitational
lensing, as discussed in [31, 14]. To calculate the effect, an analytic discussion of the effective
equations of motions must be performed. Secondly, the effect measured is spin-dependent.
The effective equations of motions should lead to different trajectories for electromagnetic
and gravitational wave packets. This could lead to different arrival times. These aspects will
be investigated in future works.
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Appendix A. Properties of the symbol D γδ
αβ

The kernel of the symbol D γδ
αβ , considered as a endormorphism of the space of symmetric

two-tensors, is calculated in this section. We first observe that, if bδ is any covector, then

D γδ
αβ k(γbδ) = 0. (A.1)

The tensor k(γbδ) is always in the kernel of D γδ
αβ . More generally, if Sγδ is a symmetric

complex 2-tensor in the kernel of D γδ
αβ , then

2D γδ
αβ Sγδ = kαkβS + gαβSγδk

γkδ − kγSγαkβ − kγSγβkα (A.2)

= 0. (A.3)

We consider a Newman-Penrose tetrad {kα, nα,mα, m̄α} satisfying the orthogonality relations
given in Eq. (2.24). Considering symmetric tensor products of the Newman-Penrose tetrad
elements, the only nontrivial contraction with the right-hand-side of Eq. (A.2) are those with
mαm̄β, m̄αmβ, nαmβ, nαm̄β,

kγmβSγβ = kγm̄βSγβ = kγkβSγβ = 0, (A.4)

and nαnβ,

S − 2nαkβSαβ = 0 = −2Sαβm
αm̄β. (A.5)

A similar argument can be made when kµ is not null. Hence, we obtain the following lemma:

Lemma A.1. When kµ is a null vector, the kernel of the symbol D γδ
αβ is the vector space

of complex symmetric two-tensors generated by

kαkβ, k(αnβ), k(αmβ), k(αm̄β), (A.6)

m(αmβ), m̄(αm̄β). (A.7)

When kµ is not a null vector, the elements of the kernel of D γδ
αβ are traceless symmetric

two-tensors satisfying

kαSαβ = 0. (A.8)

Using Eq. (A.5), one checks easily that, if Sγδ is in the kernel of D γδ
αβ , then its trace-

reverse Šγδ satisfies

kαŠαβ = 0, (A.9)

which is the form of the polarization tensor given in Eq. (2.25).
Finally, we observe that two-tensors generated by the elements of Eq. (A.6) are pure

gauge. The Riemann curvature tensor of the particular perturbed metric tensor g̃αβ = gαβ +

Re
(
k(αbβ)e

iS/ǫ
)
, for an arbitrary kα = ∇αS and bα complex covector, is given by,

R̃µ
ναβ = Rµ

ναβ +∇αΓ(h)
µ
νβ −∇βΓ(h)

µ
να (A.10)

R̃µ
ναβ = Rµ

ναβ + O(ǫ−1), (A.11)
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instead of the expected

R̃µ
ναβ = Rµ

ναβ + O(ǫ−2). (A.12)

Hence, a perturbation of the form hαβ = Re
(
k(αbβ)e

iS/ǫ
)
is pure gauge at the lowest order in

ǫ.

Lemma A.2. The only non pure-gauge solutions of

D γδ
αβ Sγδ = 0 (A.13)

are generated by

m(αmβ), m̄(αm̄β). (A.14)

Appendix B. Derivation of the Lagrangian for linearized gravity

In this section, we consider the full metric g̃αβ , written as a sum of a background metric
gαβ , and a small perturbation metric hαβ :

g̃αβ = gαβ + hαβ . (B.1)

Recall that, with our conventions we have

g̃αβ = gαβ − hαβ + O(|h|2). (B.2)

The Einstein-Hilbert action is for the full metric g̃αβ is
∫

M
d4x

√
g̃ R̃. (B.3)

As always, the linearization of the determinant of the metric tensor leads to

√
g̃ =

√
g

(
1 +

1

2
gαβhαβ

)
+ O(|h|2). (B.4)

We introduce the notation

Γ̃α
βγ = Γα

βγ +Υα
βγ ,

Υα
βγ =

1

2
gασ (−∇σhβγ +∇βhσγ +∇γhβσ) + O(|h|2),

(B.5)

where the Christoffel symbols Γα
βγ and the covariant derivative ∇α are defined with respect

to the background metric gαβ . As the difference between two the Christofell symbols of two
metrics, Υα

βγ is a tensor. Now, we expand the Riemann curvature tensor of g̃αβ ,

R̃µ
ναβ = Rµ

ναβ + ∇̃αΥ
µ
νβ − ∇̃βΥ

µ
να + 2

(
Υµ

σβΥ
σ
να −Υµ

σαΥ
σ
νβ

)
, (B.6)

where ∇̃α is the covariant derivative defined with respect to g̃αβ. We contract in µ and α to

get the Ricci curvature, and with inverse metric tensor g̃νβ to get the scalar curvature:

R̃νβ = R̃µ
νµβ = Rνβ + ∇̃µΥ

µ
νβ − ∇̃βΥ

µ
νµ + 2

(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)
, (B.7)

R̃ = g̃νβR̃νβ = g̃νβRνβ + g̃νβ
(
∇̃µΥ

µ
νβ − ∇̃βΥ

µ
νµ

)
+ 2g̃νβ

(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)
. (B.8)
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We consider now the Einstein-Hilbert action for the metric g̃αβ :
∫

M
d4x

√
g̃ R̃ =

∫

M
d4x

√
g̃ g̃νβ

[
Rνβ + 2

(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)]

+

∫

M
d4x

√
g̃ g̃νβ

(
∇̃µΥ

µ
νβ − ∇̃βΥ

µ
νµ

)
.

(B.9)

In the above equation, the term on the second line is a boundary term, which we drop. In
the first line, the second term can be rewritten as

g̃νβ
(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)√
g̃ = gνβ

(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)√
g + O(|h|3). (B.10)

Using the expansion of the determinant of the metric tensor, we obtain

g̃νβ
√

g̃ =
√
g

(
gνβ − hνβ +

1

2
hgνβ

)
+ O(|h|2). (B.11)

The expansion of the Einstein-Hilbert action, neglecting terms of order 3 in hαβ , takes the
preliminary form

∫

M
d4x

√
g̃ R̃ =

∫

M
d4x

√
g R−

∫

M
d4x

√
g

(
Rνβ − 1

2
Rgνβ

)
hνβ

+

∫

M
d4x

√
g RµνV

µν

+

∫

M
d4x

√
g 2gνβ

(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)
+ O(|h|3).

(B.12)

where Vµν = O(|h|2). Since we assume that the background metric gαβ satisfies the Einstein
field equations in vacuum with no cosmological constant, we have

∫

M
d4x

√
g̃ R̃ =

∫

M
d4x

√
g gνβ

(
Υµ

σβΥ
σ
νµ −Υµ

σµΥ
σ
νβ

)
+ O(|h|3). (B.13)

Using the definition of Υα
βγ , we can calculate

gνβΥµ
σβΥ

σ
νµ =

1

4
(2∇σhµν∇µhσν −∇σhµν∇σhµν) + O(|h|3) (B.14)

gνβΥµ
σµΥ

σ
νβ =

1

4
(−∇σh∇σh+ 2∇σh∇µhσµ) + O(|h|3). (B.15)

The linearized Einstein-Hilbert action, neglecting terms of order 3 in hαβ , is given by
∫

M
d4x

√
g̃ R̃ =

∫

M
d4x

√
g L+ O(|h|3), (B.16)

where L is the Lagrangian for linearized gravity, defined as

L = ∇σhµν∇µhσν −
1

2
∇σhµν∇σhµν +

1

2
∇σh∇σh−∇σh∇µhσµ, (B.17)

which agrees with the Lagrangian obtained in Ref. [6, p. 55]. Integrating by parts and
neglecting boundary terms, we obtain

∫

M
R̃
√

g̃dx =

∫

M
d4x

√
g hαβD̂ γδ

αβ hγδ , (B.18)
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where D̂ γδ
αβ is defined as

D̂ γδ
αβ =

1

2

(
δγαδ

δ
β∇µ∇µ − gαβg

γδ∇µ∇µ + gγδ∇α∇β + gαβ∇γ∇δ − δδβ∇γ∇α − δδα∇γ∇β

)
.

(B.19)

Appendix C. Lorenz gauge

C.1. Linearization of the wave gauge. We start by the standard calculation of the lin-
earization of the wave gauge. Consider a chart (U, xα), and assume that this chart is harmonic
for the metric g̃αβ . That is

g̃αβ∇̃α∇̃βx
δ = F δ, (C.1)

where the F δ are unknown functions to be chosen wisely. We expand this to get

F δ = g̃αβ∇̃α∇̃βx
δ

= g̃αβ∂xα∂xβxδ + g̃αβΓ̃µ
αβ∂xµxδ.

= g̃αβΓ̃δ
αβ

(C.2)

Using

Γ̃α
βγ = Γα

βγ +
1

2
gασ (−∇σhβγ +∇βhσγ +∇γhβσ) , (C.3)

and neglecting the quadratic terms in hαβ , we obtain

gβγΓα
βγ︸ ︷︷ ︸

order 0 in hαβ

−hβγΓα
βγ +

1

2

(
2∇βh

βα −∇αh
)

︸ ︷︷ ︸
order 1 in hαβ

= F δ (C.4)

∇β

(
hβα − 1

2
hgβα

)
= F δ − g̃βγΓα

βγ . (C.5)

For a general background metric, we choose

F δ = g̃βγΓα
βγ (C.6)

in order to obtain the Lorenz gauge condition

∇β

(
hβα − 1

2
hgβα

)
= 0. (C.7)

When gαβ is the Minkowski metric, and (U, xα) the Cartesian chart on R
4, then F δ can be

chosen equal to 0.

C.2. Propagation of the gauge. In that section, we check that the gauge condition is
conserved by the equation for linearized gravity. This is a linearization of the procedure
described in Ref. [38, Chapter 14.2]. We introduce

Gµ = ∇αhαµ − 1

2
∇µh. (C.8)

Recall that h̆αβ is the trace-reversed of hαβ . Observe that Eq. (1.9) can be rewritten as

−∇α∇αh̆µν − gµν∇α∇βh̆
αβ +∇α∇µh̆αν +∇α∇ν h̆αµ = 0. (C.9)
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By commuting the covariant derivatives as

∇α∇µh̆αν = ∇µ∇αh̆αν +Rνασµh̆
σα, (C.10)

and using the fact that gαβ is Ricci flat, we obtain

∇α∇αh̆µν − 2Rνασµh̆
σα = ∇µGν +∇νGµ − gµν∇αGα. (C.11)

Taking the divergence of the right-hand side of the previous equations, we obtain

∇α∇αGµ +RµαG
α = ∇µ

(
∇α∇αh̆µν − 2Rνασµh̆

σα
)
. (C.12)

Hence, if we consider a solution of the reduced equation

∇α∇αh̆µν − 2Rνασµh̆
σα = 0 (C.13)

and we assume that, initially,

Gµ = 0 and ∇νGµ = 0, (C.14)

then hαβ solves Eq. (1.9) in the Lorenz gauge. Furthermore, the trace of hαβ satisfies the
decoupled equation equation

∇µ∇µh = 0. (C.15)
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[31] J. Maŕıa Ezquiaga, D. E. Holz, W. Hu, M. Lagos, and R. M. Wald. Phase effects from strong gravitational

lensing of gravitational waves. arXiv e-prints, page arXiv:2008.12814, Aug. 2020.
[32] M. Mathisson. Republication of: New mechanics of material systems. General Relativity and Gravitation,

42(4):1011–1048, 2010.
[33] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman San Francisco, 1973.
[34] M. A. Oancea. Spin Hall effects in General Relativity. PhD thesis, University of Potsdam, 2021.
[35] M. A. Oancea, J. Joudioux, I. Y. Dodin, D. E. Ruiz, C. F. Paganini, and L. Andersson. Gravitational

spin hall effect of light. Phys. Rev. D, 102:024075, Jul 2020.
[36] M. A. Oancea, C. F. Paganini, J. Joudioux, and L. Andersson. An overview of the gravitational spin Hall

effect. arXiv preprint arXiv:1904.09963, 2019.
[37] A. Papapetrou. Spinning test-particles in general relativity. I. Proceedings of the Royal Society of London.

Series A, Mathematical and Physical Sciences, 209(1097):248–258, 1951.
[38] H. Ringström. The Cauchy problem in general relativity. ESI Lectures in Mathematics and Physics. Eu-

ropean Mathematical Society (EMS), Zürich, 2009.
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