On Minimum-B Stabilization of Electrostatic Drift Instabilities

R. SAISON and H.K. WIMMEL

Institut für Plasmaphysik GmbH, Garching bei München

Abstract

A check is made of a stabilization theorem of ROSENBLUTH and KRALL (Phys. Fluids 8, 1004 [1965]) according to which an inhomogeneous plasma in a minimum-B field (B<<1) should be stable with respect to electrostatic drift instabilities when the particle distribution functions satisfy a condition given by TAYLOR, i.e. when $f_o = f(W, \mu)$ and $\partial f/\partial W < 0$. Although the dispersion relation of ROSENBLUTH and KRALL is confirmed to first order in the gyroradii and in $\varepsilon \equiv dl_{\mu}B/dx$ the stabilization theorem is refuted, as also is 'the validity of the stability criterion used by ROSENBLUTH and KRALL, $\langle j \cdot E \rangle \geq 0$ for all real ω . In the case $\omega_{\mu} \gg |\Omega_{\mu}|$ equilibria are given which satisfy the condition of TAYLOR and are nevertheless unstable. For instability it is necessary to have a non-monotonic v_1 -distribution; the instabilities involved may thus be termed loss-cone unstable drift waves. In the spatially homogeneous limiting case the instability persists as a pure loss cone instability with $Re(\omega) = 0$. A necessary and sufficient condition for stability is $\mathbb{D}(\omega = \infty, k, ...) \leq k^2$ for all k, the dispersion relation being written in the form D (ω , k, K, ...) = $k^2 + K^2$. In the case $\omega_{p_i} \ll |\Omega_i|$ adherence to the condition given by TAYLOR guarantees stability.