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S I. COMPUTATIONAL DETAILS FOR 3D TWISTED GRAPHENE, WSE2 AND

BORON NITRIDE

For the calculations of 3D twisted graphene, we construct the unit cell with a twisted

double bilayer graphene at twist angles close to 0 degree, and impose periodic boundary

condition along all three dimensions. As it is not realistic to optimize such a large system

with density functional theory (DFT) calculations, we fix the lattice constant along the

out-of-plane direction to be 13.415 Å, and set the in-plane lattice constant according to

the twist angles such that it corresponds to 2.46 Å for a 1x1 cell. The atomic structure

is relaxed using the LAMMPS code [1] with the same parameters as described in [2]. The

intralayer interactions within each graphene layer are modeled via the second-generation

reactive empirical bondorder (REBO) potential [3]. The interlayer interactions are modeled

via the Kolmogorov-Crespi (KC) potential [4], using the recent parametrization of [5]. The

relaxation is performed using the fast inertial relaxation engine (FIRE) algorithm [6].

We calculate the band structures for 3D twisted graphene using the tight-binding

parametrization proposed in Ref. [7]

H0 =
X

i,j

t(ri � rj)c†icj. (1)

Here, the operator c(†)i annihilates (creates) an electron in the pz orbital of the carbon atom

at site ri. The pz electrons are coupled via Slater-Koster hopping parameters tij = t(ri� rj)

t(d) = tk(d) + t?(d)

=
�
1� n

2
�
�pp⇡ exp


�2

✓
1� |d|

c

◆�
+ n

2
�pp� exp


�1

✓
1� |d|

a

◆�
.

(2)

Due to the internal twist between adjacent graphene sheets, a sufficient description of the

interlayer hopping must include contributions from pp⇡ bonds �pp⇡ = �2.8 eV as well as

from pp� bonds �pp⇡ = 0.48 eV [7]. To this end, the factor n = d·êz
|d| captures the out-of plane

component of the electron transfer integral. Furthermore, ez is a unit vector which points

perpendicular to the graphene sheets, c = 3.364 Å is the interlayer spacing of graphite,

a = 1.42 Å is the distance between neighboring carbon atoms and �1 = 3.15 and �2 = 7.462

describe the exponential cutoff of the electron hopping.
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Figure S 1. Band structures of 3D twisted boron nitride with type I stacking at 5.08 degrees (a)
and 3.89 degrees (b). The band width of the top valence band along the in-plane at kz=0 decreases
with twist angles, while the band width along the out-of-plane direction remains highly dispersive.

For the calculations of 3D twisted WSe2 and boron nitride, we perform first principles

calculations based on DFT as implemented in the Vienna Ab initio Simulation Package

(VASP) [8] following similar methods used in previous works [9, 10]. Plane-wave basis sets

are employed with an energy cutoff of 550 eV for WSe2 and 400 eV for boron nitride. The

projector augmented wave method (PAW) [11] is used to construct the pseudopotentials felt

by the valence electrons. For the calculations of 3D twisted WSe2, the exchange-correlation

functionals are treated within the generalized gradient approximation (GGA) [12]. All the

atoms are relaxed until the force on each atom is less than 0.01 eV/Å. Van der Waals interac-

tions are included using the method of Tkatchenko and Scheffler [13] during the relaxation.

For the calculations of 3D twisted boron nitride, the exchange-correlation functionals are

treated within the local density approximation (LDA). As shown in the previous work [10],

the flat bands near the top of the valence band of twisted boron nitride do not change much

upon relaxation. Therefore, as the calculations for 3D twisted boron with twist angles down

to 2.28 degree are very heavy, we perform these large scale calculations for 3D twisted boron

nitride without relaxation.

S II. LOW-ENERGY TIGHT-BINDING MODEL FOR TWISTED BORON NI-

TRIDE

The low-energy physics of twisted hBN (thBN) is captured by an effective three-

dimensional tight-binding (TB) model that includes hopping terms between emerging charge
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Figure S 2. Band structures of 3D twisted WSe2 with type III stacking at 5.08 degrees (a) and
3.89 degrees (b). The band width along both the in-plane and the out-of-plane directions decreases
with twist angles.

localization points at Q1 = (13 ,
1
3 ,

1
2) and Q2 = (23 ,

2
3 , 0) in the moiré unit cell. The coordi-

nates are given with respect to the in-plane (k) and out-of plane (?) Bravais lattice vectors

Lk
1 = (L, 0, 0), Lk

2 = R(⇡/3)L1 and L?
3 = (0, 0, D). The lattice constant D is fixed, while L

is twist-angle dependent and it describes the spatial extent of the moiré pattern, see table

1.

The effective structure defined by the charge accumulation points resembles AA-stacked

graphene multilayers, where one of the two inequivalent sites, i.e. Q1, is shifted by D/2 in

z-direction. Hence, in each of the two "effective" planes with z-coordinate 0 and D/2 , the

charge puddles form a triangular lattice with lattice constant L.

The simplest SU(2) symmetric TB model that can be constructed for this configuration is

a single-orbital two-band model that takes up to next-nearest neighbor intra- and interlayer

hopping terms between the charge puddles into account

H0 = t1

X

hi,ji

c
†
icj + t2

X

hi,jik

c
†
icj + t3

X

hi,ji?

c
†
icj. (3)

Here, t1 denotes the hopping amplitude between neighboring Q1- and Q2-sites , whereas t2

and t3 denote hopping processes between two Q1 (Q2) sites in either the same or different

layers. The hopping parameters are determined by fitting the energy eigenvalues of H0 to

the flat bands of the ab-initio band structure of thBN. The single-particle spectrum for the
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periodic system is then modeled by the following Bloch Hamiltonian

H0 =
X

k

hk =
X

k

0

@h0(k) h1(k)

h
⇤
1(k) h0(k)

1

A , (4)

which is labeled in the order of the two charge localization points Q1,Q2. The matrix

elements are obtained by a Fourier transform of the real-space hopping matrix Eq. (3) to

(Bloch) momentum space

h0(k) = 2t2 [cos(k · (L1 � L2)) + cos(k · L1) + cos(k · L2)] + 2t3cos(k · L3),

h1(k) = t1

⇥
1 + e

�ik·L1 + e
�ik·L2

⇤ ⇥
1 + e

�ik·L3
⇤
.

(5)

The matrix hk can then be diagonalized in orbital space for each momentum k to obtain

the bandstructure ✏b(k) and orbital-to-band transformation u
b
r(k), b = 1..N :

H0 =
X

k,b

✏b(k)�†k,b�k,b with �k,b = u
b
r(k)ck,r. (6)

twist angle
✓

Hopping parameters
(meV)

Lattice constants
(Å)

t1 t2 t3 L D

5.08� 14.59 -4.35 0.00 28.31 12.92
3.89� 8.16 -1.56 2.08 37.00 12.92
3.15� 5.29 -1.17 1.72 45.70 12.92
2.64� 3.18 -0.68 2.04 63.10 12.92

Table 1. Hopping parameters of the effective SU(2)-symmetric tight-binding model for different
twist angles ✓ according to Fig. 3 in the main text. The structure constants D and L (see Fig. 3(a))
describe the spatial extent of the moiré cell in in-plane and out-of-plane direction, respectively.
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S III. FLUCTUATION EXCHANGE APPROXIMATION IN MULTI-ORBITAL

SYSTEMS

A. 3D multi-orbital susceptibility

We define the free Matsubara Green’s function in orbital-momentum (frequency) space

as

gr,r0(i!,k) = (i! � (H0(k))r,r0)�1 =
X

b

u
b
r(k)g

b(i!,k)ub⇤
r0 (k) =

r r0

(b,k)
(7)

where u
b
r are the orbital-to-band transformations that render the unperturbed Hamiltonian

H0 and the free Green’s function g
b(i!,k) = (i! � e

b(k))�1 diagonal. The orbital indices

r = {Q1,Q2} are restricted to the same unit cell and the momenta k lie in the first Brillouin

zone. To this end, we define the free polarization function �̂0(q) = �0r,r0 (q) as

�0r,r0 (q) = �0r,r0 (q, i!) =
1

N�

X

k,!0

gr,r0(i!
0
,k)gr0,r (i(!

0 + !) ,k + q). (8)

The Matsubara summation occuring in Eq. (8) can be evaluated analytically giving the

well-known Lindhard function for multi-orbital systems

�0r,r0 (q, i!) =
1

N

X

k,b,b0

nF (✏b0(k))� nF (✏b(k + q))
i! + ✏b0(k)� ✏b(k + q)

u
b0

r (k)u
b0⇤
r0 (k)u

b⇤
r (k + q)ub

r0(k + q), (9)

where nF (✏) = (1 + e
�✏)�1 is the Fermi function.

B. Random-phase approximation for multi-orbital systems

To study correlated states of matter in thBN that arise due to the presence of electron-

electron interaction, we employ a repulsive Hubbard term for electrons with opposite spin

� 2 {�1, 1} with � = �� residing on site r in moiré supercell R

V =
1

2

X

R,ri,�

UnR,ri,�nR,ri,� =
1

2N

X

k,k0,q

X

r,�

Uc
†r
k,�c

†r
k0,�c

r
k0�q,�c

r
k+q,� (10)
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Here, the occupation number operator is defined as nR,ri,� = c
†
R,ri,�

cR,ri,�. We calculate

the renormalized interactions within the random-phase approximation (RPA) to analyze

the electronic instabilities mediated by spin-fluctuation exchange between electrons to high

order in the bare coupling U . Admittedly, this approach is biased as it does not capture the

interwind fluctuations in different two-particle scattering channels, which would require the

use of unbiased fRG techniques.

r1, k1, # r2, k2, #

r1, k1 + q, " r2, k2 + q, "

=

r1, k1, # r1, k2, #

r1, k1 + q, " r1, k2 + q, "

U +

r k #

r k+q "

r0

r0

U (11)

The renormalized interaction in RPA approximation Eq. (11) is then given by V̂RPA(q) =

U/[1 + U �̂0(q)]. Magnetic instabilities can be classified according to a generalized Stoner

criterion: The effective (RPA) interaction diverges, when the smallest eigenvalue �0 of

�̂0(q, i!) reaches �1/U , marking the onset of magnetic order for all interaction strengths

U � Ucrit. = �1/�0. The corresponding eigenvector v
(0)(q, i!) is expected to dominate the

spatial structure of orbital magnetisation.

C. Pairing Symmetry

We may write the general particle-particle scattering vertex between electrons with op-

posite momenta (k1,�k1) ! (k2,�k2) as

V =
1

2N

X

s,s0

X

r1,...,r4

X

k1,k2

�r1r2!r3r4
k1,�k1!k2,�k2

c
†r3
k2s

c
†r4
�k2s0

c
r2
�k1s0

c
r1

k1s
=

r2,�k1, s0 r4,�k2, s0

r1, k1, s r3, k2, s

�r1r2!r3r4
k1,�k1!k2,�k2

(12)

For interaction values U < Ucrit the magnetic instabilities prescribed by the RPA analysis

might not be strong enough to actually occur. In this paramagnetic regime, spin and charge

fluctuations contained in the transverse and longitudinal spin channel can give rise to an

effective interaction between electrons that may lead to the formation of Cooper pairs. The
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diagrams can be separated into spin-singlet and spin-triplet contributions, depending on

whether pairing same/opposite spins, i.e. s 6= s
0 (singlet) or s = s

0 (triplet). In general, we

may separate the dependence of the gap parameter on momentum, spatial and spin degrees

of freedom

� r1r2
ks1s2 = f(k, r1, r2)�(s1, s2). (13)

Since for spin singlet gaps the spin function �(s1, s2) is antisymmetric under exchange

of indices, i.e. �(s1, s2) = ��(s2, s1), the spatial and momentum dependence must be

symmetric in order to fulfill the Pauli principle. For spin triplet gaps we hence require

f(k, r1, r2) = �f(�k, r2, r1). Since the system is assumed to be paramagnetic, pairing

same/opposite spins yields the same result after explicitly symmetrizing/anti-symmetrizing

the interaction vertex in orbital-momentum space.

Restricting the pairing to Kramer’s degenerate pairs (k1, ") and (�k1, #), the particle-

particle scattering vertex in FLEX approximation is given by transverse (t) and longitudinal

(l) spin fluctuations. For simplicity, we will use the abbreviation �r1r2!r3r4
k1,�k1!k2,�k2

= �r1,r2
k1,k2

in

the following. The diagrams contributing to these spin channels are shown below.

The effective spin-mediated interaction in the opposite spin channel thus becomes

�r1r2!r3r4
k1,�k1!k2,�k2

= �r1,r3�r2,r4


Û +

U
3
�̂
2
0(ql)

1� U2�̂2
0(ql)

�
+ �r1,r4�r2,r3


� U

2
�̂0(qt)

1 + U �̂0(qt)

�
(14)

The spin-dependence of the susceptibilities occuring in the diagrammatic expansion above

can be neglected due to the emergent SU(2) symmetry in the paramagnetic phase. To

obtain the effective interaction in the singlet (s) and triplet (t) channel, we symmetrize/anti-

symmetrize the interaction vertex, i.e.

�s/t =
1

2

r2,�k1, s0 r4,�k2, s0

r1, k1, s r3, k2, s

+ �

r2,�k1, s0 r3, k2, s

r1, k1, s r4,�k2, s0

(15)

D. Linearized Gap Equation

Assuming that spin- and charge fluctuation provide the superconducting glue in the

system, we confine our considerations to the vicinity of the Fermi surface and only treat
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r2,�k1, # r1,�k2, #

r1, k1 + q, " r2, k2 + q, "

=�tr1,r2
2k1,k2

r1 k

r1k + qt

r2

r2
U U +

k k
0

k+qtk
0+qt

U U U + ...

(a) Diagrams contributing to the transverse spin-fluctuation mediated pairing interaction �tr1,r2
2k1,k2

. The

momentum transfer occurring in the polarization function in RPA is given by qt = k1+k2 due to momentum

conservation.

r2,�k1, # r2,�k2, #

r1, k1 + q, " r1, k2 + q, "

=�lr1,r2
2k1,k2

r2,�k1, # r2,�k2, #

r1, k1 + q, " r1, k2 + q, "

U +

r2,�k1, # r2,�k2, #

r1, k1 + q, " r1, k2 + q, "

k+ql#

k#

rr1
k0+ql"

k0"

r2r
+ ...

(b) Diagrams contributing to the longitudinal spin-fluctuation mediated pairing interaction �lr1,r2
2k1,k2

. The

momentum transfer occurring in the polarization function in RPA is given by ql = k1 � k2 due to momentum

conservation. Only an even number of particle-hole bubbles is allowed in the diagrammatic expansion in order

to preserve the spin in the upper and lower leg of the pairing interaction. The diagrams that are resummed

in the longitudinal channel are connected to the particle-hole susceptibility describing screening effects of the

bare Coulomb interaction.

scattering processes of a Cooper pair from state (k,�k) on fermi surface Cb to the state

(k0
,�k0) on fermi surface Cb0 . To this end, we project the pairing vertex Eq. (14) from

orbital to band space and only take intra-band scattering into account

�bb0

s/t(k,k
0) = Re

"
X

r1,r2,r3,r4

�s/t
u
b⇤

r1(k)u
b⇤

r2(�k)ub0

r3(k
0)ub0

r4(�k0)

#
. (16)

The momenta k and k0 are restricted to the various fermi surface sheets {C}, such that

k 2 Cb and k0 2 Cb0 with b and b
0 being the band indices of the fermi sheets. Neglecting the

frequency dependence of �, we can proceed further by considering only the real part of the

pairing interaction. We then solve the linearized gap equation in order to obtain strength

and pairing symmetry of the superconducting order parameter, which takes the form of a
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generalized eigenvalue problem

� 1

VBZ

X

b0

˛
FSb0

�bb0

s/t(k,k
0)

v
b0
F (k

0)
�b0(k0) = ��b(k). (17)

Here, vbF (k) = |r✏b(k)| is the Fermi velocity at k0 in band b. The largest eigenvalue � > 0

for a given interaction kernel �bb0

s/t(k,k
0), will lead to the highest transition temperature

Tc and the corresponding eigenfunction �b(k) determines the symmetry of the gap. The

effective lattice model obtained from the charge accumulation points has point group D3h.

The symmetry of the gap can thus by classified according to the irreducible representations

of D3h that are listed in Table 2.

The linearized gap equation (17) only accounts for the leading pairing symmetry at

the transition temperature Tc of the superconducting phase. In the case of degenerate

eigenvalues (e.g. d-wave instabilities {dxz, dyz}) belonging to a two-dimensional irreducible

representation, an arbitrary linear combination might be favored for T < Tc. In order to find

the linear combination that is preferred by the system below the transition temperature, we

compute the free energy of the system

F = E � TS =
1

N

X

k,b


Eb(k)nF (Eb(k))�

|�b(k)|
Eb(k)

tanh

✓
Eb(k)
2T

◆�

+
T

N

X

k,b

[nF (Eb(k)) ln(nF (Eb(k))) + nF (�Eb(k)) ln(nF (�Eb(k)))] .
(18)

Here, Eb(k) is the energy of the Bogoliubov quasi-particles resulting from diagonalization of

the BdG Hamiltonian

HBdG =
X

k,b

 
†
bk

0

B@
✏b(k)� µ �b(k)

�†
b(k) �✏b(�k) + µ

1

CA bk =
X

k,b

 
†
bk [�b(k) · ⌧ ] bk, (19)

where �b(k) = (<[�b(k)],=[�b(k)], ✏b(k) � µ)T and ⌧ are the Pauli matrices. In the ex-

pression of the free energy Eq. (18), we only account for states at the Fermi surface as

contributions from k points far away from the Fermi surface are negligible ✏b(k) � |�b(k)|.

At the filling µ ⇡ µ0 +5meV studied in the manuscript, the leading pairing symmetry is

the d-wave which belongs to a two-dimensional irreducible representation. To minimize the
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Figure S 3. Free energy of the linear combination �b(k) = sin(✓)dxz(k) + cos(✓)ei�dyz(k) corre-
sponding to the leading pairing symmetry at µ ⇡ µ0+5meV. The system minimizes its free energy
by choosing the linear combination dxz(k)± idyz(k).

free energy of the system we make the ansatz

�b(k) = sin(✓)dxz(k) + cos(✓)ei�dyz(k), (20)

where the form factors are are given by dxz(k) = sin(kx)sin(kz) and dyz(k) = sin(ky)sin(kz).

The free parameters ✓ and � are extracted by minizing the free energy of the system

Eq. (18). In Fig. 3 we show that the linear combination �b
k / [dxz(k)± idyz(k)] =

[sin(kx)sin(kz)± isin(ky)sin(kz)] is generally preferred for the given filling.

singlet triplet
s pz

(dx2�y2 , dxy) · pz (dx2�y2 , dxy)

(dxz, dyz) (px, py)

fx(x2�3y2) · pz fx(x2�3y2)

fy(y2�3x2) · pz fy(y2�3x2)

Table 2. Pairing symmetries for the effective lattice model of thBN separated into contributions to
spin singlet and triplet channel.
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