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We develop a method that uses truncation-order-dependent reexpansions constrained by generic strong-
coupling information to extrapolate perturbation series to the nonperturbative regime. The method is first
benchmarked against a zero-dimensional model field theory and then applied to the dilute Fermi gas in one
and three dimensions. Overall, our method significantly outperforms Padé and Borel extrapolations in these
examples. The results for the ground-state energy of the three-dimensional Fermi gas are robust with respect to
changes in the form of the reexpansion and compare well with quantum Monte Carlo simulations throughout
the BCS regime and beyond.

I. INTRODUCTION

A common situation in physics is that properties of a system
can be computed analytically in a weak-coupling expansion,
but only numerically at discrete points in the nonperturbative
regime. The constrained extrapolation problem is to construct
approximants that combine these two sources of information.

Consider an observable F(x) defined relative to the nonin-
teracting system, e.g., the ground-state energy E/E0. Its per-
turbation series (denoted PT), truncated at order N in the cou-
pling x, reads

F(x)
x→0
' 1 +

N∑
k=1

ck xk + o(xN) . (1)

While Eq. (1) provides precise information about the behavior
of F(x) as x→ 0, it generally fails to yield viable approxima-
tions away from weak coupling. Indeed, the PT is often a di-
vergent asymptotic series, with large-order coefficients obey-
ing, e.g., ck

k→∞
∼ k! [1, 2].

Experiment or computational methods can give access to
the behavior of F(x) at a specific point x0. Since x0 can be
mapped to infinity by a conformal transformation, we may
take x0 = −∞. Weak-to-strong-coupling extrapolants can then
be defined as functions FN(x) that reproduce both the PT to or-
der N and the strong-coupling limit F(−∞) = ξ. FN(x) may
also incorporate available information on the leading coeffi-
cient(s) dk in the strong-coupling expansion (SCE):

F(x)
x→−∞
' ξ +

M∑
k=1

dk

xk + o(x−M) . (2)

The goal is then to find extrapolants FN(x) that converge
rapidly and smoothly to the correct F(x) as N → ∞. As of-
ten only a few PT coefficients are known, from a practical
perspective, FN(x) should be well converged at low orders.
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A textbook example that has been the focus of many exper-
imental and theoretical studies in the past two decades is the
dilute Fermi gas [3, 4]. Here x = kFas, where kF is the Fermi
momentum and as is the s-wave scattering length. Due to its
universal properties, the dilute Fermi gas serves as an impor-
tant benchmark for neutron matter [5, 6] and neutron stars [7].
Its ground-state energy F = E/E0 has been studied from weak
attractive coupling through the BCS-BEC crossover with ul-
tracold atoms [8] and sophisticated quantum Monte Carlo
(QMC) simulations [9–11]. The Bertsch parameter ξ has been
determined experimentally as ξ = 0.376(4) [8] and from QMC
as ξ = 0.372(5) [10]. Moreover, the weak-coupling expansion
has been calculated to N = 4 [12]. On the SCE side, one has
viable estimates for d1 and d2 only, with d1 known more pre-
cisely [13]. Such a situation is typical when only limited data
are available in the nonperturbative region.

Padé approximants [14, 15] are a standard approach to the
extrapolation problem. However, when applied to the dilute
Fermi gas, several Padé approximants give flawed approxi-
mants with poles in the BCS region. Therefore, in this pa-
per we develop a new extrapolation method that evades such
deficiencies and is flexible enough to generate approximants
FN(x) that give well converged results at low orders. Our
method improves on the order-dependent mapping (ODM) ap-
proach introduced by Seznec and Zinn-Justin [16] (see also
Ref. [17]) and builds in information on the leading strong-
coupling coefficients, d1 and d2. We refer to our method as
order-dependent-mapping extrapolation (ODME).

For benchmarks we consider, in addition to the dilute Fermi
gas in three dimensions (3D), also its 1D variant (both for
spin 1/2) and a 0D model problem that has long been a prov-
ing ground for extrapolation methods. We first summarize the
PT and SCE information available for these problems, and
then briefly discuss Padé approximants. We then introduce
the ODME and test it for the 0D model and the 1D Fermi gas
where we find that it outperforms Padé approximants, pro-
ducing very accurate approximants already at low orders. Our
main results are for the 3D Fermi gas, where we find that the
ODME leads to well converged extrapolants that are consis-
tent with QMC within uncertainties. We conclude that ODME
constitutes a powerful new method for constrained extrapola-
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Figure 1. Different weak-to-strong-coupling extrapolants for the 3D (a) and 1D Fermi gas (b) as well as the 0D model (c). The new ODME[N],
where N denotes the order up to which PT information is included, is compared with PT[N] for N = 2, 4, two two-point Padé approximants,
SCE[2], and with exact results. For better comparison, in the 1D case we plot the scaled function f (x) given by Eq. (8). In each case, the inset
magnifies the behavior at intermediate coupling. The exact results correspond to the numerical evaluation of Eq. (3) for the 0D model, the
Bethe ansatz (1D), and QMC computations (3D Fermi gas) from Ref. [11]. The errors of the QMC data include, in addition to the statistical
uncertainty [11], an uncertainty based on QMC systematics [32, 33]. The latter is taken to be ∆FQMC(x) = q[1 − FQMC(x)], with q = 0.038
obtained from the difference between ξ = 0.390 from Ref. [11] and the updated value ξ = 0.372(5) [10].

tions, applicable to a variety of physical problems. The Ap-
pendix provides additional details and shows that ODME also
outperforms various Borel extrapolants.

II. PT AND SCE DETAILS

A. 0D model

A well known benchmark for resummation methods is the
0D field theory model [2, 16, 18–23]

Z(g) =
1
√
π

∫ ∞

−∞

dϕ e−ϕ
2−gϕ4

. (3)

Its weak-coupling coefficients are given by

ck = (−1)k (4k)!
24k(2k)!k!

k→∞
−−−−→

1
√

2π
(−4)k(k − 1)! , (4)

and its SCE involves fractional powers of g, Z(g) =

g1/4 ∑∞
k=1 dk g−k/2, with dk =

(−1)k−1

2
√
π

Γ(k/2−1/4)
(k−1)! . The SCE of the

0D model has infinite radius of convergence, but Fig. 1(c)
shows that for low truncation orders it is not very accurate,
even for comparatively large values of g (see also Fig. 2).

B. 1D Fermi gas

The dilute Fermi gas confined to 1D is also known as the
Gaudin-Yang model [24–27]. In this case, x = cπ/(2kF),

where −2c is the interaction strength [28], so that the weak-
coupling limit is approached as the density increases. We con-
sider a repulsive interaction, so c < 0. In the strong-coupling
limit, x → −∞, E/E0 → 4, so ξ = 4 here [29]. The ex-
act E/E0 of the Gaudin-Yang model can be computed via
the Bethe ansatz [27, 29, 30]. Its PT is known to high or-
ders [28, 29], with the first few coefficients being

ck =

(
−

6
π2 ,−

1
π2 ,−

12ζ(3)
π6 ,−

18ζ(3)
π8 ,−

36ζ(3)
π10 , . . .

)
, (5)

and their large-order behavior is ck
k→∞
∼

(k−2)!
(π2)k [28, 29]. More-

over, the first three SCE coefficients are known exactly: d1 =

16 ln 2, d2 = 48(ln 2)2, and d3 = 128(ln 2)3 − 32ζ(3)π2/5 [31].

C. 3D Fermi gas

For the 3D case, the PT coefficients have recently been cal-
culated to fourth order [12]:

ck =

(
10
9π
,

44 − 8 ln 2
21π2 , 0.0303088(0),−0.0708(1), . . .

)
. (6)

Note that for spins higher than 1/2, logarithmic terms (and
three-body parameters) appear in the PT [12]. On the SCE
side, from QMC one finds d1 ≈ −0.9 and d2 ≈ −0.8 [13].
Comparing the gap between PT and SCE in Figs. 1(a) and
1(b) suggests that the PT and the SCE constrain F(x) less in
the 3D case than in 1D.
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Figure 2. Truncation-order dependence of the ODME error |ZN − Z| and | fN − f |, compared with PT and SCE errors, for the 0D model (left
panels) and 1D Fermi gas (right panels) at g = 1, 10 and x = −1,−10, respectively. In the 1D case we show ODME results for two different
mappings: Eq. (13) (solid lines) and w(x) = −x/(α − x) (dashed lines).

III. PADÉ APPROXIMANTS

The strong-coupling limit of the 3D and 1D Fermi gas can
be described by “diagonal Padé approximants” only (see also
Refs. [12, 34]), which are given by

Padé[n,m = n](x) =
1 +

∑n
k=1 ak xk

1 +
∑n

k=1 bk xk . (7)

“Two-point Padé approximant” are constructed by matching
ak and bk to both the PT and the SCE up to specified orders.
The diagonal two-point Padé results of Fig. 1 are obtained
by matching their 2n coefficients to ξ and d1 and 2n − 2 PT
coefficients. This is equivalent to matching a Padé[n − 1,n]
approximant to a rescaled version of F(x) that approaches 0
as x→ −∞:

f (x) =
F(x) − ξ

1 − ξ
. (8)

In the 0D case we use square roots of Padé[n,n + 1] functions
such that successive orders in the SCE (g−1/4, g−3/4, etc.) are
correctly reproduced [21, 22].

A problem with Padé approximants is that they can have
spurious poles in the region of interest [14, 15]. In the case of
the 3D Fermi gas, the two-point Padé[2, 2] approximant pro-
vides good results in the BCS region, but not beyond. How-
ever, matching a two-point Padé[3, 3] approximant to either
(ξ, d1, c1,2,3,4) or (ξ, d1, d2, c1,2,3) produces poles at negative
real coupling and hence a flawed extrapolant, see Fig. 1(a).
In the 1D case many two-point Padé approximants give good
results at negative x (although some higher-order ones have
poles there). However, their continuation beyond the strong-
coupling limit produces spurious poles at a small positive
value of 1/x, see Fig. 1(b).

IV. METHOD OF ORDER-DEPENDENT MAPPINGS

To avert problems that occur with overly restrictive classes
of extrapolants such as Padé approximant, we now consider

the more general form

fN(x) = [1 − w(x)]
N∑

k=0

hk[w(x)]k . (9)

Here, w(x) is chosen such that no poles occur on the negative
real axis and the analytic structure of fN(x) matches that of
f (x). Thus, it satisfies w(0) = 0 and w(−∞) = 1, with the pref-
actor [1 − w(x)] enforcing the correct strong-coupling limit.
The coefficients hk are chosen to reproduce the first N terms
of the PT. For this, we multiply the PT of f (x) by 1/(1 − w),
substitute x = x(w), and expand in powers of w to determine

hk =
1

(1 − ξ)k!

k∑
n,m=0

cnγn,m(0) , (10)

with γn,m(x) =
∂m[x(w)]n

∂wm

∣∣∣
w=w(x). An approximant fN(x) is speci-

fied through the mapping w(x), which can contain control pa-
rameters {αi}. In the following (as in the original ODM [16]),
a single parameter α is used.

For the 0D model, approximants ZN(g) consistent with its
SCE are obtained if we use the mapping [16]

w(g) =

√
α2 + 4αg − α√
α2 + 4αg + α

, (11)

and construct

ZN(g) =
√

1 − w(g)
N∑

k=0

hk[w(g)]k . (12)

A possible choice for the mapping in Eq. (9) that builds in the
SCE for the 1D and 3D Fermi gas, Eq. (2), is

w(x) = −
x

α + (α2 + x2)1/2 . (13)

The method is called ODM because the parameter α is a func-
tion of N; that is, it will be adjusted at each truncation order
according to some criterion. This is similar to perturbation
theory with an order-dependent reference point [16, 35–38].
The values of α(N) can be complex, in which case the ODM
approximant is defined as the real part of fN(x) [or ZN(g)], see
also Refs. [39–41].
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V. CONSTRAINED EXTRAPOLATION WITH
ORDER-DEPENDENT MAPPINGS

In the original ODM by Seznec and Zinn-Justin [16] the pa-
rameter α(N) is fixed by requiring that hN = 0, corresponding
to the notion of “fastest apparent convergence” (FAC) [42].
This yields several possibilities for α(N), of which one is se-
lected according to an additional criterion, e.g., smallest hN−1.
For the 0D model this approach converges to the exact solu-
tion as N → ∞ {the imaginary part of ZN(g) converges to zero
for g ∈ [0,∞]}; the FAC criterion is not crucial for this, but
suitable N dependence of α is [16, 18, 23, 37, 43, 44].

In the ODME we fix α(N) by ensuring that the SCE of fN(x)
has a first-order coefficient equal to d1. This again yields sev-
eral possibilities for α(N); we select the one that minimizes
the difference between d2 and the corresponding coefficient in
fN(x). (A different approach to include SCE information in
an order-dependent reexpansion was proposed in Ref. [45].)
The set of approximants { fN(x)} corresponding to the uncer-
tainty in the input (ξ, d1, d2) and different choices for w(x) is
then assessed according to the convergence behavior of fN(x),
see below. The ODME thus improves on the (original) ODM
in two ways: First, the mapping parameter α(N) is fixed not
heuristically but via strong-coupling constraints; second, low-
order convergence is engineered explicitly.

A. 0D and 1D benchmarks

Figure 1(c) shows that in the 0D case, the ODME leads to
high-precision approximants, already at low N. These signifi-
cantly outperform two-point Padé approximants. The ODME
precision at higher N is examined in Fig. 2. While for large
g and N the ODME converges less rapidly and smoothly than
the SCE, at low orders it is more accurate even at relatively
large coupling. At g = 10, ODME outperforms the SCE for
N 6 4 (similarly at g = 100; see Appendix).

For the 1D Fermi gas, Figs. 1(b) and 2 show that also there,
ODME [with the mapping (13)] produces excellent approxi-
mants, again already at low orders. The ODME convergence
is less pronounced compared with 0D, but Fig. 2 shows that
this can be improved by using mappings other than Eq. (13).
More details are given in the Appendix.

Altogether, the study of the 0D model and the 1D Fermi
gas suggests that ODME can produce accurate approximants
already at low N, and is more broadly applicable than Padé
(and Borel) extrapolation.

B. Approximants for the 3D Fermi gas

We now discuss our results for the 3D Fermi gas. In
Fig. 1(a) we show that the ODME with the mapping (13) and
using (ξ, d1, d2) = (0.376,−0.9,−0.8) leads to approximants
with good convergence behavior throughout the BCS regime
and even into the BEC region. While the ODME results are
below the central (variational) QMC values, the deviations de-
crease as N is increased. For example, the QMC value at

x = −2 is FQMC(−2) = 0.676(12), and ODME gives FN(−2) ≈
(0.644, 0.660, 0.663, 0.665) for N = (1, 2, 3, 4). This can be
extrapolated (via Shanks transformation [15]) to F∞(−2) ≈
0.670.

Next, we explore the sensitivity of the ODME predic-
tions with respect to the choice of mapping and the val-
ues chosen for (d1, d2). For this, we have investigated the
class of mappings of the form w(x) = −w0x/D(x;α), with
w0 = lim

x→−∞
D(x;α)/x. A general form for D(x;α) consis-

tent with the SCE of the 1D and 3D Fermi gas is, e.g.,
D(x;α) = κ1α − κ2x + (κ3α

µ + (−x)ν)1/ν. In principle large
sums of such terms are permitted. However, we find that to
have well converged results at low N, excessively complicated
forms of D(x;α) are disfavored.

The ODME results for the 3D Fermi gas for different
choices of D(x;α) are shown in Fig. 3. The bands there rep-
resent the spread of results after accounting for uncertainties
in the values d1 = −0.90(5) and d2 = −0.8(1) while using the
experimental ξ = 0.376. Other mappings are considered in
the Appendix (including ones with ν > 2). The mappings
shown in Fig. 3 produce the ODME approximants that are
best converged at fourth order; that is, the sum of the de-
viations {averaged over x ∈ [0,−∞] and (d1, d2) values} of
consecutive-order approximants,

∑M
N=2 σN |FN(x) − FN−1(x)|,

is smallest for M = 4. (Here, σN are suitably chosen weights,
e.g., σN = N.) The explicit forms of the two best converged
ODME approximants are given in the Appendix.

A more sophisticated algorithm would be to select se-
quences of ODME approximants according to their conver-
gence for each (ξ, d1, d2) input value. Fully implementing
this requires improved uncertainties for (ξ, d1, d2), in partic-
ular concerning error correlation. This requires further QMC
input and is left to future work.

The ODME approximant sequences FN(x) with good con-
vergence behavior produce results that are fully consis-
tent with the QMC data, but generally lie below the cen-
tral (variational) QMC values. This is most pronounced
for the third mapping in Fig. 3. Using ξ = 0.376 and
the central values of d1 and d2 quoted above, this case
gives ODME values FN(−2) ≈ (0.642, 0.651, 0.655, 0.657)
at x = −2; for example, using d1 = −0.95 instead yields
FN(−2) ≈ (0.646, 0.656, 0.661, 0.662). For the other map-
pings with good convergence properties the ODME results for
N > 2 are somewhat closer to the central QMC values. As-
sessing the variability in the ODME result over the four map-
pings of Fig. 3 and from uncertainty in the input (ξ, d1, d2)
specified above, we predict (N → ∞ extrapolated via Shanks
transformation), for example, FODME(−2) = 0.664(7) at
x = −2.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have developed the ODME method to provide powerful
weak-to-strong coupling extrapolants constrained by limited
data on strong-coupling behavior. For a 0D model and the 1D
Fermi gas the ODME produces very accurate approximants
already for low PT truncation orders. We then focused on
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Figure 3. Convergence with N of ODME extrapolants FN(x) = ξ + (1 − ξ) fN(x) for the 3D Fermi gas for different mappings
w(x) = −w0 x/D(x;α) (shown in the different panels). The second panel is the mapping used in Fig. 1(a). The bands for given N result
from the uncertainties in the SCE coefficients d1 = −0.90(5) and d2 = −0.8(1) used to constrain the mappings.

the dilute Fermi gas in 3D. For this universal many-body sys-
tem the weak-coupling PT is known to fourth order and lim-
ited strong-coupling data are available from experiment and
QMC computations. With this input, the ODME yields robust
approximant sequences with good convergence properties (in
contrast to Padé approximants). The predicted ground-state
energies agree very well with the available QMC data over
the entire range of intermediate couplings and even into the
BEC side.

It is important to understand for which conditions the
ODME works so well, especially in regard to the smooth-
ness of the behavior from weak to strong coupling. This
question is related to the way that nonperturbative features
are encoded in weak-coupling asymptotics, and how different
resummation methods capture them. For Padé [14, 15] and
Borel methods [2, 46–50] general results regarding such is-
sues have been obtained. Comparison to these methods shows
that the ODME often performs better. It will be interesting to
see if the ODME can be studied in similar mathematical gen-
erality as these standard resummation methods. In particular,
the ODME can likely be improved by incorporating further
analyticity constraints for the specific system of interest.

The ODME method is very flexible and broadly applicable.
Interesting future applications include the unitary Fermi gas
at finite temperature, where the virial expansion has recently
been extended to fifth order [51], as well as hot and dense
QCD matter from strong to weak coupling. Accurate methods
to connect these regimes will also enable further progress for
the nuclear equation of state in astrophysical simulations.
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APPENDIX

Here, we provide more details on the performance of the
ODME. We first compare ODME results against those from
various Borel methods for the 0D model as well as the 1D (and
3D) Fermi gas. We then provide a more detailed assessment
of the sensitivity of the ODME for the 3D and 1D Fermi gas
to the choice of mapping and the input (ξ, d1, d2).

1. Brief review of Borel extrapolation methods

Borel extrapolation is based on the Borel(-Le Roy)-
transformed perturbation series

B(t)
t→0
' 1 +

∞∑
k=1

ck

Γ(k + 1 + β0)
tk , (A.1)

which is constructed to have a finite convergence radius. That
is, the large-order behavior ck

k→∞
∼ akΓ(k + 1 + β), together

with the choice of β0, determines the nature of the leading
singularity of B(t) at t = 1/a [46, 49, 50]. From a given ap-
proximant BN(t) for B(t), constructed from the truncated-at-
order-N Borel transformed perturbation series (see below), the
corresponding approximant BN(x) for F(x) is obtained via the
inverse Borel transform:

BN(x) =

∫ ∞

0
dt e−t t β0BN(tx) . (A.2)

If BN(tx) has poles on the positive real axis one can shift
the integration path infinitesimally off the real axis. In this
case the approximant for F(x) may be taken as the real part
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Figure A.1. Truncation-order dependence of the ODME error |ZN(g) − Z(g)| for the 0D model, for different values of g. Also shown are
errors of various Borel extrapolants. Moreover, for comparison we also show the PT and SCE errors as well as those of reexpansion (ODM)
approximants with α(N) fixed by the FAC criterion; that is, α(N) is chosen such that hN = 0 and |hN−1| is as small as possible. See text for
details.

of BN(x); when applied to the (analytically continued) exact
B(tx) this prescription often gives the correct result [2, 16, 29,
47].

There are several methods to construct approximants BN(t)
from incomplete perturbative information. The most straight-
forward is the Padé-Borel method, i.e., matching Padé approx-
imants to the (truncated version of the) Borel series (A.1). If
one has knowledge of the large-order behavior (specifically, if
a is known), more sophisticated methods are available. In the
“conformal-Borel” [2, 49, 50] approach one constructs BN(t)
by reexpanding the (truncated) Borel series in terms of the
conformal mapping

w(t) =

√
1 − at − 1
√

1 − at + 1
(A.3)

that maps the cut Borel t plane to the interior of the unit
disk [2, 50]; that is,

BN(t) =

N∑
k=0

rk[w(t)]k . (A.4)

Furthermore, in the “Padé-conformal-Borel” [49] method one
uses for BN(t) Padé approximants matched to Eq. (A.4).

The Borel extrapolants discussed so far are “pure ex-
trapolants” in that they include no strong-coupling con-
straints. One can also construct “constrained Borel extrap-
olants” where the strong-coupling limit F(−∞) = ξ is incor-
porated. “Constrained-conformal-Borel“ (CCB) extrapolants
for f (x) =

F(x)−ξ
1−ξ are obtained by reexpanding the (truncated)

Borel series of f (x) as [46]

BN(t) = (1 − w(t))η
N∑

k=0

sk[w(t)]k , (A.5)

and choosing η such that the known analytic structure at infin-
ity is best reproduced. We choose η = 1/2 for the 0D model,

and η = 1 otherwise. Finally, “Padé-constrained-conformal-
Borel” (PCCB) extrapolants correspond to matching Padé ap-
proximants to Eq. (A.5). The implementation of further SCE
constraints is less straightforward, and not considered here. A
study of this problem can be found in Ref. [22], where it was
found that two-point Padé-Borel extrapolants do not improve
upon two-point Padé approximants.

Standard Borel resummation corresponds to β0 = 0 in
Eq. (A.1). The conformal transformation (A.3) yields a func-
tion that has a square-root branch point at t = 1/a. Based
on this, a refinement of conformal Borel extrapolants cor-
responds to setting β0 = β + 3/2, since then the exact Borel
transform has the same feature [46]. With this, for the 0D
model where a = −4 and β = −1, CCB and PCCB give for all
N > 0 the exact result

Z(g) =
2
√
π

∫ ∞

0
dt e−t t3/2

√√
1 −

√
1 + 4gt − 1√
1 + 4gt + 1

=
1

2
√
πg

e1/(8g) K1/4(1/(8g)) , (A.6)

with K1/4(x) being a modified Bessel function. Equation (A.6)
matches the exact Z(g) given by Eq. (3) for g ∈ [0,∞] and also
provides its complex analytic continuation. [In fact, other in-
tegral expressions for the exact Z(g) are obtained for N ≥ n
from CCB by using β0 = β + (3 + 2n)/2.] However, apart
from the case of (P)CCB extrapolants for the 0D model, we
found that using β0 = β + 3/2 does not yield substantial im-
provement compared with the standard choice β0 = 0. There-
fore the Borel results shown in Figs. A.1 and A.2 are obtained
using β0 = 0.

2. 0D model results

For the 0D model the reexpansion (ODM) approximants
ZN(g;α) [see Eq. (12)] converge to the exact Z(g) [Eq. (3)]
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Figure A.2. Truncation-order dependence of the errors | fN(x) − f (x)| of different approximants for the 1D Fermi gas for different coupling
strengths x; see text for details. The conformal Borel extrapolants are constructed using a = 1/π2 and β0 = 0 (using β0 = β + 3/2 = −1/2 gives
similar results).

α+(α+x2)1/2

α+(α2+x2)1/2

2α-x+(α+x2)1/2

α-x+(2α+x2)1/2

α+(α+x2)1/2+(α+x4)1/4     
α-2x+(α+x2)1/2

α-x+(α+x2)1/2

α-x

x = -1

|f N
-f

|

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

0.01

0.1

N
0 2 4 6 8 10

x = -10

10−5

10−4

10−3

0.01

0.1

N
0 2 4 6 8 10

x = -100

10−6

10−5

10−4

10−3

N
0 2 4 6 8 10

Figure A.3. Same as Fig. A.2 but here we compare the errors of ODME approximants for the 1D Fermi gas constructed using different
mappings w(x) = −w0 x/D(x;α). The different D(x;α) are given in the first panel; they are listed in the order they appear in Fig. A.4 below.

for g ∈ [0,∞], provided the mapping parameter α scales ap-
propriately with N: α(N) N→∞

∼ 1/Nγ, with 1 (≤) γ < 2 [37]. In-
deed, ZN(g) then converges to the complex analytic continu-
ation of Z(g), Eq. (A.6) [37]; see also Ref. [19]. In the orig-
inal ODM method [16], this is implemented by fixing α(N)
via the “fastest apparent convergence” (FAC) criterion hN = 0
(see also Refs. [18, 23]). Another heuristic prescription is
the “principle of minimal sensitivity” (PMS) [37, 42], mean-
ing that α(N) should be chosen such that ZN(g;α) is least
sensitive to variations of α about its chosen value (see also
Refs. [17, 19, 39–41, 43–45]).

Clearly, the optimal choice of α(N) is that which gives
the most accurate results, with a smoothly converging se-
quence of approximants ZN(g). In Fig. A.1 we show that our
ODME method—which fixes α(N) by matching to the SCE
coefficients (d1, d2) (see main text)—produces better approx-
imants than the FAC criterion. We tried other prescriptions

(e.g., PMS), which were similarly outperformed by ODME.
Of course, this is not really surprising: ODME includes more
information about the exact Z(g) than FAC and PMS.

In Fig. A.1, we also compare ODME against the vari-
ous Borel extrapolants discussed above (using β0 = 0). For
Padé-Borel, Padé-conformal-Borel and PCCB extrapolants
we use Padé[n,m] functions with n = m − 1 = (N − 1)/2 and
n = m = N/2, respectively, for odd and even truncation or-
ders N. The Borel extrapolants all perform better than simple
(i.e., non-Borel) one-point Padé approximants (see Ref. [20]),
and exceptionally good results are obtained from the PCCB
method. (By comparison, the Padé-conformal-Borel extrap-
olants do not improve much upon the conformal-Borel extrap-
olants.) For small coupling g . 1, several Borel extrapolants
are more accurate than ODME, but for g & 1, ODME is out-
performed only by PCCB (and the SCE) at large orders. How-
ever, for low PT truncation orders N . 6 the ODME method
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gives the best approximants. This ability to produce accurate
approximants at low N is a crucial asset for applications in
realistic problems.

3. Results for the 1D (and 3D) Fermi gas

The exact ground-state energy density E(x) of the 1D Fermi
gas can be computed with the Bethe ansatz, i.e., by solv-
ing numerically a Fredholm integral equation of the sec-
ond kind [27, 29, 31]. From this, we compute the errors
| fN(x) − f (x)| of approximants fN(x) to the exact solution for
the rescaled energy f (x) given by Eq. (8).

Our results are shown in Fig. A.2 (and Fig. A.3; see be-
low). For ODME and FAC approximants we use the map-
ping (13). One sees that again the ODME leads to much better
approximants than FAC, even for smaller x where one might
expect that additional strong-coupling information does not
improve the accuracy. For the conformal Borel extrapolants
we use the recently determined large-order behavior, a = 1/π2

(and β = −2) [28, 29]. At small couplings |x| . 1 the vari-
ous Borel extrapolants are very precise, but their accuracy de-
creases with increasing coupling strengths; for |x| & 10 they
fail badly. (The Borel extrapolants with the correct strong-
coupling limit often have local extrema at large x. Note also
that here the conformal mapping technique does not improve
upon Padé-Borel.)

We have applied the various Borel extrapolants also to the
3D Fermi gas. (For the conformal Borel methods we have
used, e.g., the conjectured large-order behavior a = −1/π (and
β = 0) [29].) The results are similar to the 1D case: While
accurate results are obtained for |x| . 1, for larger couplings
the various Borel extrapolants disperse strongly. Note also
that no simple analytic continuation into the BEC region is
available in the Borel case, in contrast to ODME and Padé.

In summary, compared with the 0D model the Fermi gas in
1D (and, even more so, in 3D) represents a more difficult ex-
trapolation problem. Nevertheless, although there the ODME
is not as precise as in the 0D case (and the decrease of the er-
rors with increasing N is diminished), it gives accurate results
in the whole range x ∈ [0,−∞], in contrast to Borel methods.
In addition, the ODME also reliably extrapolates the 1D (and
3D) Fermi gas to positive x, see Fig. 1.

4. Sensitivity to SCE input and mapping choice

Here, we study in more detail for the 3D and 1D Fermi gas
the class of one-parameter mappings w(x) = −w0x/D(x;α)
[where w0 = lim

x→−∞
D(x;α)/x], for different choices of D(x;α).

If the inverse mapping x(w) is not available in closed form,
the coefficients γn,m in Eq. (10) can be calculated iteratively
starting from

γn,1(x) = nxn−1
[
∂w(x)
∂x

]−1

. (A.7)

The iterations can be formulated in terms of polylogarithms;
that is, starting from

γ̃n,1(x) = nxn−1Li−1/2(ex) (A.8)

we calculate

γ̃n,m+1(x) = Li−1/2(ex)
∂γ̃n,m(x)
∂x

. (A.9)

The γn,m(x) are then obtained from the γ̃n,m(x) by substituting

Li(1−2k)/2(ex)→
∂k−1

∂xk−1

[
∂w(x)
∂x

]−1

. (A.10)

In Fig. A.3 we compare the ODME results for the 1D Fermi
gas for different D(x;α). One sees that many mappings per-
form better than our initial choice D(x;α) = α + (α2 + x2)1/2

[see Eq. (13)]. The overall trend of the results is, however,
similar for all D(x;α); that is, the increase in precision with
increasing N diminishes at larger couplings. We note that,
while for x ∈ [0,−∞] some two-point Padé approximants are
more accurate than ODME with the mapping (13), the better
mappings of Fig. A.3 achieve a high precision that is simi-
lar to those Padé approximants. (For further discussion of the
precision and pitfalls of two-point Padé approximants, see the
main text.)

The 3D Fermi gas results for the same mappings are shown
in Fig. A.4, where we include uncertainties in the values of
d1 = −0.90(5) and d2 = −0.8(1). For comparison, we also
show the results obtained for a smaller range d1 = −0.90(1)
with the same d2 = −0.8(1) in Fig. A.5. In both cases we use
the experimental ξ = 0.376.

In Fig. A.4, the mappings are ordered according to the con-
vergence of the BCS results with increasing N, i.e., from
smallest to largest deviations. A weighted average of the devi-
ation |FN(x) − FN−1(x)| over orders N ∈ {2, 3, 4} together with
an average over x ∈ [0,∞] and the input (d1, d2) is used for
this purpose; see also the main text. While our focus here is
on the BCS region, note that the ODME predictions for the
BEC region may be improved by extending the convergence
analysis to include values 1/x > 0.

The obtained ordering depends to some degree on the val-
ues of (d1, d2) as well as the precise form of the quanti-
tative convergence criterion. Qualitatively, the ordering in
Fig. A.4 is as follows. For the two best converged mappings,
D(x;α) = α + (α + x2)1/2 and D(x;α) = α + (α2 + x2)1/2, the
N = 2, 3, 4 results are very similar. For the third mapping,
D(x;α) = 2α − x + (α + x2)1/2, the deviations FN(x) − FN−1
decrease monotonically. The results of the fourth mapping are
very similar for N = 3 and N = 4. The fifth, sixth, and sev-
enth mappings appear about as well converged as the third or
fourth. On the other hand, the eighth mapping D(x;α) = α − x
clearly has worse convergence behavior, see in particular the
change from N = 3 to N = 4 in the plot with d1 = −0.90(1)
(last panel in Fig. A.5).

The sensitivity to mapping choice is more pronounced in
the 3D case than in 1D. This reflects the fact the 1D ex-
trapolation problem is more strongly constrained by the PT
and SCE. The convergence behavior of different mappings
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Figure A.4. ODME extrapolants for the 3D Fermi gas obtained from different mappings w(x) = −w0 x/D(x;α) and varying (d1, d2) according
to d1 = −0.90(5) and d2 = −0.8(1). The eight panels are ordered according to the convergence rate of the results (best to worst). The first row
is identical to Fig. 3.

deviates from the 1D case also in terms of which map-
pings perform better. In particular, for the 3D Fermi gas the
simple mapping with D(x;α) = α − x gives approximant se-
quences with unfavorable convergence properties. [Note that
this mapping also has the most irregular dependence on d1
(see Figs. A.4 and A.5), and for N = 1, 2 it performs poorly
in the BEC region.] For all the other mappings considered,
the ODME approximants FN(x) approach the QMC data with
increasing N, and the extrapolated (N → ∞) values are well
within the QMC errors.

We have examined several mappings other than those
shown in Figs. A.4 and A.5. Among the ones not shown,
those that have good convergence properties give results for
the 3D Fermi gas similar to the results obtained from the

first seven mappings of Fig. A.4. The input sensitivity of
the ODME extrapolants is well controlled for many mappings,
such as the ones used in Figs. A.4 and A.5, for (ξ, d1, d2) var-
ied in ranges comparable to the ones specified there. Approx-
imant sequences with poor convergence behavior can appear
for these mappings if one allows larger input variations, but
this can be dealt with by selecting sequences of ODME ap-
proximants according to their convergence for each (ξ, d1, d2)
input; see also the main text.

Finally, we provide for the central values of d1 and d2 the
explicit form of the fourth-order ODME approximants for the
two best converged mappings, D(x;α) = α + (α + x2)1/2 and
D(x;α) = α + (α2 + x2)1/2, i.e.,

F4(x) = ξ + (1 − ξ)
(
1 +

x

α +
√
α + x2

) 1 − h1
x

α +
√
α + x2

+ h2
x2(

α +
√
α + x2

)2 − h3
x3(

α +
√
α + x2

)3 + h4
x4(

α +
√
α + x2

)4

 ,
(A.11)

where α ≈ 0.5496 and h1,2,3,4 ≈ (0.2683, 0.7638, 0.0223, 0.5699), with the predicted values for the fifth PT coefficient and the
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Figure A.5. Same as Fig. A.4 but with d1 = −0.90(1) instead of d1 = −0.90(5). The range of d2 is the same, d2 = −0.8(1).

second SCE coefficient given by c5 ≈ −0.041 and d2 ≈ −0.83, and

F4(x) = ξ + (1 − ξ)
(
1 +

x

α +
√
α2 + x2

) 1 − h1
x

α +
√
α2 + x2

+ h2
x2(

α +
√
α2 + x2

)2 − h3
x3(

α +
√
α2 + x2

)3 + h4
x4(

α +
√
α2 + x2

)4

 ,
(A.12)

where α ≈ 1.0327 and h1,2,3,4 ≈ (−0.1707, 1.0978, −0.5009,
−0.0296), with the predicted values of the fifth PT coeffi-
cient and the second SCE coefficient given by c5 ≈ −0.057

and d2 ≈ −0.73. The predicted values of F(x) at x = −2 are
F4(−2) ≈ 0.664 and F4(−2) ≈ 0.665, respectively [the QMC
value is FQMC(−2) = 0.676(12)].
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