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ABSTRACT
Coarse-grained (CG) conformational surface hopping (SH) adapts the concept of multisurface dynamics, initially developed to describe
electronic transitions in chemical reactions, to accurately describe classical molecular dynamics at a reduced level. The SH scheme couples
distinct conformational basins (states), each described by its own force field (surface), resulting in a significant improvement of the approxi-
mation to the many-body potential of mean force [T. Bereau and J. F. Rudzinski, Phys. Rev. Lett. 121, 256002 (2018)]. The present study first
describes CG SH in more detail, through both a toy model and a three-bead model of hexane. We further extend the methodology to non-
bonded interactions and report its impact on liquid properties. Finally, we investigate the transferability of the surfaces to distinct systems and
thermodynamic state points, through a simple tuning of the state probabilities. In particular, applications to variations in temperature and
chemical composition show good agreement with reference atomistic calculations, introducing a promising “weak-transferability regime,”
where CG force fields can be shared across thermodynamic and chemical neighborhoods.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0031249., s

I. INTRODUCTION

In the realm of multiscale models for soft matter and biomolec-
ular systems, particle-based coarse-grained (CG) resolutions have
offered tremendous insight.1–9 CG models average over the faster
degrees of freedom by lumping several atoms into super-particles
or beads. When adequately built and parameterized, these models
can strike an excellent balance between accuracy and computational
efficiency. Their success stems largely from a mapping commen-
surate with the system’s scale separation and an adequate use of
physics-based modeling. The latter aspect is the main topic of this
study.

Coarse-graining replaces the coveted potential-energy sur-
face (PES) with a configuration-dependent free-energy function
known as the many-body potential of mean force (MB-PMF).10,11

Over the last two decades, the community has been developing
and improving a number of systematic methods aimed at tar-
geting the MB-PMF.11–17 While early efforts established a strong

theoretical and practical foundation for these methods, a num-
ber of fundamental challenges have arisen, which largely prevent
a more widespread utilization of systematic (i.e., bottom-up) CG
models.9,18 Transferability—the capability of a given model to be
accurately applied to systems and thermodynamic state points dis-
tinct from those used for parameterization—is an intrinsic prob-
lem for coarse-graining, since the MB-PMF is inherently state-point
dependent.9,19 As a consequence, there has been a continued effort
to systematically investigate the temperature, density, and solvent-
mixture transferability properties of CG models.20–26 In limited
cases, it has been demonstrated that CG interactions can repro-
duce the temperature dependence of a liquid structure through an
ad hoc linear interpolation,27,28 although a systematic approach has
been lacking. Recent work has begun to fill this gap through either
Bayesian techniques29 or approaches that approximate the entropic
contributions to the effective potentials, allowing for explicit pre-
dictions of state-point dependence.30–33 These studies have focused
on CG representations without significant intramolecular flexibility.
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Beyond thermodynamic-state-point dependence, few studies have
reported detailed characterizations of the chemical transferability of
bottom-up CG models.34–38

Even for a single system or thermodynamic state point, per-
sistent efforts have not led to steady improvements in the qual-
ity of the force fields—the accuracy being limited less by the per-
formance of the methods and more by the molecular-mechanics
terms used to approximate the MB-PMF. Because these terms only
offer an incomplete representation of the full MB-PMF, a CG
model’s accuracy critically depends on two aspects: (i) an opti-
mized mapping that most effectively simplifies the form of the
MB-PMF39–43 and (ii) interaction-potential forms that are flex-
ible enough to describe complex physical phenomena, such as
interfaces or environment-dependent conformational changes.44,45

Going beyond the typical interaction terms—especially non-bonded
pairwise interactions—can have significant impact, as seen by recent
investigations that considered physics beyond pairs, such as three-
body interactions46–50 or local density-dependent potentials.51–55

However, these approaches are also limited by the functional forms
applied, and how to generalize them for optimal improvement in
modeling accuracy may not be obvious. Recent applications using
machine learning can provide a more accurate reproduction of the
MB-PMF either through a multi-body decomposition or by a direct
interpolation of the many-body forces.56–61 This improved accu-
racy typically comes with added computational cost—a significantly
larger evaluation time needed for the force prediction,62 which can
be mitigated with the use of tabulated potentials.60

We recently introduced a complementary approach to improve
the description of cross correlations between interaction terms in a
force field.63 This approach was inspired by the modeling of chem-
ical reactions, where distinct electronic configurations are decom-
posed onto separate surfaces in order to overcome limitations of
the force field by coupling distinct PESs—notable examples include
(multisurface) empirical valence bond and surface-hopping (SH)
schemes.64–66 Instead of describing transitions between electronic
states, our method considers switching between conformational
basins: Distinct force fields describe interactions for a subset of con-
formational space. There have been a number of previous efforts to
couple internal states in various ways within the context of classical
molecular simulations.67–73 These studies have avoided explicit hop-
ping schemes through approaches that either (i) linearly interpolate
between two force fields (e.g., multi-state Gō models) or (ii) describe
the force-field change as an analytic function of a continuous order
parameter (e.g., local density-dependent potentials). Dama et al. for-
malized the employment of internal states within simulation models
through a bottom-up “ultra-coarse-graining” framework,74 origi-
nally used to develop models that stochastically and discretely transi-
tion between internal states.75,76 These studies considered the regime
in which there exists a clear timescale separation for internal state
transitions. The framework was later extended to the regime of
“rapid local equilibrium”77—transitions occur very quickly relative
to the translational motion of the CG sites—and deployed to accu-
rately describe interfacial properties78 and hydrogen-bonding53 in
molecular liquids while using only single-site representations for the
CG molecules. In contrast, the surface-hopping method considers
an intermediate regime, where transitions between local conforma-
tional basins occur on timescales that are on par with other molec-
ular motions. As a result, we focus on identifying conformational

basins according to intramolecular CG degrees of freedom. Sharp et
al. recently extended this idea, based on an empirical valence bond
perspective, to describe transitions between conformational basins
defined along a set of collective variables.79

Coupling interaction terms of the Hamiltonian offers the pos-
sibility to rescue cross correlations beyond the typical global sepa-
ration of variables. By focusing on the coupling of intramolecular
interactions, we reported significant improvements in the accu-
racy of the approximation to the MB-PMF for a three-bead model
of hexane, as compared to the baseline force-matching-based
multiscale-coarse-graining (MS-CG) method.63 Furthermore, the
surface-hopping model for a tetra-alanine peptide in water not only
resulted in significant improvements of the two-dimensional pro-
jection of the MB-PMF but also reproduced (within error bars)
the ratio of mean-first passage times between helical and extended
states. The latter is significant: it shows that a faithful representation
of the MB-PMF can offer an accurate reproduction of the barrier-
crossing dynamics up to a speedup factor. While equilibrium prop-
erties depend exponentially on the free-energy minima, an accurate
reproduction of the barrier-crossing dynamics critically depends on
the free-energy barriers.80–82

The present report extends our previous work in several ways.
We first provide a more detailed account of the methodology start-
ing from a toy example—a single particle in a double-well potential.
Next, we extend the methodology to non-bonded pairwise interac-
tions and report results on liquid properties. Finally, we investigate
“weak-transferability” properties, corresponding to the transfer of
surfaces while solely tuning the state probabilities (i.e., their pre-
factors). We observe a monotonic—almost linear—variation in state
probabilities as a function of temperature and chemical compo-
sition. The results suggest that decomposing CG force fields into
surfaces may facilitate transfer across state-point neighborhoods.

II. METHODOLOGY
For completeness, we first recall the protocol applied to

intramolecular interactions.63 This is followed by the extension to
intermolecular interactions.

A. Intramolecular interactions
We recall the example presented in our previous publica-

tion:63 We consider a two-dimensional potential U = U(x, y) with
the corresponding canonical equilibrium distribution p = p(x, y)
∝ exp(−βU(x, y)), where β = (kBT)−1 is the inverse temperature.
Standard molecular-mechanics force fields apply a global separation
of variables on the potential, such that U(x, y) ≈ Ux(x) + Uy(y),
also impacting the equilibrium distribution p(x, y) ≈ px(x)py(y). As
a result, we cannot ensure an accurate reproduction of cross cor-
relations between x and y. For instance, the intramolecular inter-
actions of a three-particle, linear molecule made of two bonds, b1
and b2, and one bending angle θ will typically be modeled by a
potential of the form U(b1, b2, θ) = Ub1(b1) + Ub2(b2) + Uθ(θ).
While significantly advantageous from a computational standpoint,
the separation of variables can drastically hamper the accuracy of the
(free-)energy landscape. Figure 1(a) illustrates the potential issues of
such an approach. In particular, if there exist two local minima along
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FIG. 1. (a) Standard force fields apply a global separation of variables on the
probability distribution p = p(x, y), leading to p ≈ px (x)py (y). (b) Surface hop-
ping, while retaining the separation of variables, ascribes one local force field per
conformational basin. Adapted from Ref. 63.

each degree of freedom, a model that employs the global separation
of variables will likely sample all four combinations of these minima,
regardless of the true underlying distribution.

The conformational surface-hopping (SH) scheme retains the
same form of the Hamiltonian, as well as the separation of vari-
ables, but ascribes a local force field for a subset of conformational
space—a conformational basin, say. In the case of two surfaces, the
SH equilibrium distribution takes the form p(x, y) ≈ p(1)x (x)p

(1)
y (y)

+ p(2)x (x)p
(2)
y (y), allowing for the description of a wider range of

cross correlations between the degrees of freedom [see Fig. 1(b)].
This prescription trivially generalizes to n surfaces. An SH force-field
parameterization thereby consists of the following steps:

1. A clustering of (intramolecular) conformational space is per-
formed (here with respect to variables x and y) to iden-
tify homogeneous regions, ideally leading to unimodal one-
dimensional distribution functions along each (intramolecu-
lar) degree of freedom. Each cluster is assigned a center, μ(i)

= (μ(i)x ,μ(i)y ), corresponding to the local maximum of proba-

bility density, and a spatial extent, σ(i) = (σ(i)x , σ(i)y ), related
to the standard deviation of configurations belonging to the
cluster.

2. A linear transformation is applied to the conformational
space in order to enhance the isotropy of the clusters: σ(i)

= (σ(i)x , σ(i)y ).
3. n − 1 surfaces are defined according to the clustering, while an

additional surface is introduced which covers the remaining
configurations. This surface will be referred to as the “fallback”
surface.

4. A structure-based parameterization of n force fields is per-
formed (e.g., via force matching), one for each surface.

Each SH force field, fi(R) = −∇U i(R), is related to a typical
molecular mechanics potential, U i(R), which employs a global sep-
aration of variables. In the SH method, the net force for any config-
uration of the system can be written as a linear combination of the

individual force fields,

f(R) =
n

∑
i=1

wifi(R), (1)

where the coefficients or weights are restricted to 0 < wi < 1. The
force field i will contribute to the net force according to the prox-
imity of the system’s instantaneous configuration to the cluster i.
Practically, wi is computed as a Euclidean distance of the system’s
CG interaction variables (x, y) to the cluster center,

di =

¿
Á
Á
ÁÀ
(x − μ(i)x )2

σ(i)x
+
(y − μ(i)y )2

σ(i)y
. (2)

di is then compared to the spatial extent of the cluster ∣σ(i)∣. When
di < ∣σ(i)∣, the system is completely within the cluster i and its force
field receives the full weight, wi = 1, while all other force fields are
neglected. In the case that the system’s configuration is not inside
one of the clusters, the SH approach will connect surfaces together to
ensure a smooth hopping. To this end, the force-field weight is expo-
nentially suppressed with respect to the distance from the boundary
of the cluster, di − ∣σ(i)∣,

wi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, di < ∣σ(i)∣

exp(− di−∣σ(i) ∣
α ), otherwise.

(3)

The sharpness of this suppression is determined via the scaling
parameter α, which can assist in avoiding numerical instabilities in
the simulations. On the other hand, we stress the importance of
keeping α small, as it blurs the force-field boundaries.

Mixing different force fields can lead to unphysical behavior,
for instance, if the aggregate contributions yield large net forces.
This is especially relevant at the boundaries between conformational
basins, where a localized force field will have large restoring forces
at the boundaries [see, for instance, panels (a) and (b) of Fig. 2].
We hinder this behavior by restricting mixing to occur between
only two force fields: one corresponding to the closest cluster and
one corresponding to the fallback surface. More specifically, we first
compute the initial wi for each of the first n − 1 surfaces accord-
ing to Eq. (3). The largest weight, wl = maxi<nwi, is kept, while the
remaining weights are set to zero. Then, the final weight is assigned
to the fallback surface: wn = 1 − wl. This approach assumes that the
fallback surface is well connected to all of the surfaces and, con-
sequently, is well-defined broadly across the conformational space
of the system. Akin to force-based adaptive resolution simulations,
the present protocol can lead to non-conservative forces, requiring
the use of a local thermostat (e.g., via Langevin dynamics; see also
Fig. S1 in the supplementary material).83

As described thus far, the algorithm leads to surface hopping
but does not ensure the correct probability of sampling each con-
formational basin. To this end, we enforce that the time average of
the probabilities to be within each state roughly matches a set of
target reference probabilities, available upon partitioning conforma-
tional space. This approach, both simple to implement and effective,
is described in more detail in our previous work,63 as well as below.
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FIG. 2. (a) Potential energy U(x) and (b) force −∇U(x) of the toy model. The global surface is shown in thick blue, while the two surfaces S1 and S2 are alternatively described
by harmonic potentials. Time trajectories under Brownian dynamics over (c) the global surface and (d) surface hopping between S1 and S2. (e) Boltzmann distributions of the
reference model (thick blue) as well as the surface-hopping model (SH) and the alternative without matching probability (“SH-noprob”). See also (f) for the color-coding. (f)
Time evolution of the probability of populating S1 for SH and SH-noprob as compared to the reference probability obtained from the global surface. [(g) and (h)] Probability
distribution of escape times of the toy model between basins S1 and S2 for (g) the global surface and (h) surface hopping. While the characteristic timescales are different
between the models, the ratio of characteristic timescales is conserved.

B. Intermolecular interactions
Having described an SH model that switches between force

fields according to the order parameters governing intramolecular
interactions, we now turn to the treatment of intermolecular inter-
actions. In this work, the intermolecular interactions rely on the SH
state definition, determined by the intramolecular order parameters,
which effectively couples the two types of interactions. However, the
local (non-bonded) environment of each molecule does not play a
role in defining the SH state. For instance, consider two particles of
types A and B belonging to distinct molecules. For each particle, we
compute their most contributing surface—a function of, for exam-
ple, the bond distances and bending angles of each molecule. Let
these surfaces be denoted j and k for particle types A and B, respec-
tively. Then, the resulting pairwise non-bonded interaction between
these particles will depend not only on the pair of particle types A–B
but also on the combination j–k. The parameterization of the inter-
molecular interactions consists of appropriate filtering of the refer-
ence trajectory: we gather statistics between particles A and B that
also have internal states j and k, respectively. Computationally, the
non-bonded interaction switches nearly instantaneously according
to the pair of internal states, as defined by the bonded interactions.
The relatively small difference between non-bonded potentials helps
avoid numerical instabilities.

III. COMPUTATIONAL METHODS
The protocol applied here largely follows our previous study.63

A. All-atom simulations
In this work, we consider four small molecules: hexane, octane,

hexanediamine, and hexanediol. For each molecule, we performed

simulations of (i) a single molecule in vacuum and (ii) 267 molecules
in the liquid phase at various temperatures. These simulations
employed the OPLS-AA force field84 to model interactions and were
performed with the Gromacs 4.5.3 simulation suite85 according to
standard procedures, described in more detail in the supplementary
material.

B. Coarse-grained representation and interactions
For hexane, we considered a three-site representation, which

represents subsequent pairs of carbon atoms with a CG site. The CG
potential included two identical bonded interactions between subse-
quent pairs of sites along the chain and a bending-angle interaction
between the three CG sites. This representation and set of interac-
tions have been applied in several previous studies.39,63,86,87 Octane,
hexanediamine, and hexanediol can be considered “extensions” to
the hexane molecule, through the addition of a functional group
on each end of the molecule. To assess to what extent the SH state
definitions can be transferred between molecules, we employed the
hexane mapping and interaction set to these other three molecules.
That is, each pair of carbon atoms was represented by a CG site,
while the terminal functional groups were not explicitly represented
[see Fig. 5(d)]. For each of these three-site models, the terminal CG
sites were represented by identical types, denoted CT. The center CG
site was represented by a distinct type, denoted CM. We considered
both the case in which pairwise non-bonded interactions were trans-
ferred between molecules and the case in which distinct interactions
were employed between each unique pair of bead types.

C. Partitioning of conformational space
To obtain the SH state definitions, we performed a density-

based clustering analysis88 to the atomistic trajectories of single
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molecules in vacuum, after mapping each configuration to the CG
representation. This clustering analysis was performed along the
order parameters governing the intramolecular CG interactions,
i.e., the two bond distances and bending angle. Before clustering,
these intramolecular order parameters were transformed to mean-
centered and normalized values for regularity. Clustering used a
search radius R = 0.1. The initial clusters were grouped into coarser
states manually via visualization of the cluster distributions along
each order parameter, although an automated dynamics-based algo-
rithm89 yielded similar results.

For the three-bead representations of both hexane and octane,
the clustering resulted in a set of seven clusters, representing differ-
ent combinations of bond and bending-angle values. This is consis-
tent with a previous analysis of the intramolecular conformations
of molecules in liquid hexane,39 which showed that the six possi-
ble dihedral states in the AA representation (three dihedrals times
two possible states each, trans or gauche) are mapped to seven
CG intramolecular states. This result already indicates some consis-
tency between the intramolecular states sampled by these distinct
molecules. In the following, we will consider a three-state SH model,
where the two most populated clusters (representing ≈60% of the
intramolecular conformations) determined the states denoted 3S-1
and 3S-2, while the rest of the configurations were lumped into the
fallback surface (3S-3). Our previous work demonstrated that this
three-surface representation was sufficient to nearly quantitatively
reproduce the bond-angle cross correlations of hexane in vacuum.63

In Sec. V, we first assess the properties of the SH model for hex-
ane, both in vacuum and in the liquid phase, using the state defini-
tions determined from the AA simulations of hexane. Subsequently,
the transferability of the SH state definitions across chemistry is
assessed. For this investigation, a single set of state definitions, deter-
mined from the AA simulations of octane, was applied for each
molecule.

D. Generation of the coarse-grained potentials
In this work, all CG force fields are derived using the frame-

work of the force-matching-based multiscale coarse-graining (MS-
CG) method. The MS-CG method approximates the MB-PMF via a
mathematical projection of the many-body mean force, i.e., the neg-
ative gradient of the MB-PMF, into the space of force fields spanned
by the chosen basis set representation for the CG force field.11,12 This
corresponds to matching the average force on each CG particle sam-
pled in the simulation of the underlying, higher-resolution model.
Practically, the projection is expressed as a linear least squares prob-
lem in the basis function coefficients, i.e., the CG force-field param-
eters, ϕ, and can be written in the normal equation representation as

bAA
= GAAϕMS-CG. (4)

Here, bAA is a vector of ensemble averages that can be expressed as a
set of either force11,90 or structural16,91,92 correlation functions. The
latter is possible through a generalized Yvon–Born–Green (g-YBG)
framework, which connects the MS-CG method to traditional liquid
state theory.16,91 For a non-bonded, pairwise interaction represented
by a set of spline basis functions, bAA is directly related to the corre-
sponding radial distribution function (RDF) generated by the refer-
ence model but mapped to the CG representation.92 GAA is a matrix

that quantifies the cross correlations between pairs of CG degrees
of freedom generated by the reference model. If the model derived
from the MS-CG method fails to reproduce the target vector of these
equations, i.e., bAA, it implies that the cross correlation matrix gen-
erated by the higher resolution model does not accurately represent
the correlations that would be generated by the resulting CG model.
This indicates a fundamental limitation of the model representa-
tion and interaction set. Nevertheless, the system of equations can
be solved self-consistently to determine the force field ϕ∗ that repro-
duces the target vector, albeit at the expense of the representation of
the cross correlations of the underlying model,39

bAA = G(ϕ∗)ϕ∗. (5)

This approach has been previously denoted an iterative g-YBG (iter-
gYBG) method.39,93,94 In the following, we consider both ϕMS-CG and
ϕ∗ (denoted the iter-gYBG model), simulated according to stan-
dard techniques, for comparison with the SH simulation method
described above.

Using the partitioning of configuration space described above,
we also determine sub-ensemble-specific CG potentials by solv-
ing Eq. (4), but employing trajectories containing only configura-
tions from a specific sub-ensemble to calculate each of the correla-
tion functions. Although structure-based methods are often applied
to conformational ensembles at equilibrium, several studies have
demonstrated the benefit of performing parameterizations over sub-
ensembles or biased ensembles.17,38,95,96 The formal theory for such
calculations in the context of the MS-CG method has been detailed
by Voth and co-workers.74,75 All force-field calculations in this
work were performed using the BOCS package.97 Further numeri-
cal details for these calculations are provided in the supplementary
material. While the main text compares force fields via graphical or
qualitative means, the supplementary material contains a quantita-
tive comparison of the accuracy of the force fields by means of the
Jensen–Shannon divergence.

E. Coarse-grained simulations
We performed CG simulations of the SH models using a modi-

fied version of ESPRESSo++.98 Simulations in the canonical (NVT)
ensemble were performed using a Langevin thermostat at vari-
ous temperatures (more details below), where a friction constant
Γ = 10τ−1 was applied. Here, τ corresponds to the intrinsic unit of
time of the CG model. We integrated the equations of motion with
a time step δt = 0.001τ. All cluster sizes {σi} were scaled by a factor
of 0.4 to significantly localize each surface. The smoothness scaling
parameter was set to a small value, α = 0.05, to ensure numerical sta-
bility of the dynamics while minimally distorting the individual force
fields. An ESPRESSo++ implementation of the CG surface-hopping
scheme, including support for non-bonded interactions, is available
online.99

We performed CG simulations of the MS-CG and iter-gYBG
models using version 4.5.3 of the GROMACS package,85 according
to standard procedures (see the supplementary material).

IV. EXAMPLE: TOY MODEL
We first illustrate the method using a toy model: a single

particle dynamically evolving in a one-dimensional double-well

J. Chem. Phys. 153, 214110 (2020); doi: 10.1063/5.0031249 153, 214110-5

© Author(s) 2020

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0031249
https://www.scitation.org/doi/suppl/10.1063/5.0031249
https://www.scitation.org/doi/suppl/10.1063/5.0031249
https://www.scitation.org/doi/suppl/10.1063/5.0031249


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

potential.100 The potential U(x), which we will refer to as the global
surface, is shown in Fig. 2(a), while panel (b) displays the corre-
sponding force −∇U(x). Throughout this section, we express the
results in the natural units of the model: energy (ϵ), length (σ),
mass (M), and time (T = σ

√
M/ϵ). The system is simulated using

Brownian dynamics according to the stochastic differential equation

dx
dt
= −

D
kBT
∇U(x) +

√
2DR(t), (6)

where R(t) is a white-noise process, T = ϵ/kB is the temperature of
the system, and D = 102 σ2

/T is the diffusion constant. We use an
integration time step δt = 10−7 T. Integration of Eq. (6) leads to a
time trajectory of the coordinate, x(t) in Fig. 2(c), and an equilibrium
distribution, Peq(x) in Fig. 2(e), featuring the two expected peaks.

We now turn to a surface-hopping model of the system. We
split the global surface into two components: a surface correspond-
ing to the global minimum S1 [violet curves in panels (a) and (b)
of Fig. 2] and a higher-energy surface S2 (orange curves). Two dis-
tinct potentials are fitted to best reproduce the local basins of U(x)
within a harmonic approximation. The resulting energy functions,
and also the corresponding force curves, show high fidelity to all
parts of the global surface except around the barrier (x ≈ 0.25σ).
We connect the two surfaces S1 and S2 by means of an instanta-
neous switching at x = 0.25, leading to a discontinuity in the force
[red dashed line in Fig. 2(b)]. This generates a cusp in the potential
energy, leading to inaccuracies in the shape of the potential energy
around the barrier. A straightforward integration of the equations of
motion of this surface-hopping model (denoted “SH-noprob”) qual-
itatively samples the two surfaces by regularly switching between
them [Fig. 2(d)] but leads to noticeable discrepancies in the equi-
librium distribution. Figure 2(e) demonstrates that the SH-noprob
simulation slightly overpopulates S1. This overrepresented sampling
of S1 is clearly displayed in the time evolution of the probability
of that surface [Fig. 2(f)], which converges to around PS1(t → ∞)
= 0.70 instead of 0.65.

A correction to the inaccurate representation of the barrier
can be obtained by enforcing the probability of sampling S1. To
this end, we restrict the hopping between surfaces by adjusting the
force interpolation scheme based on the instantaneous time aver-
age of the probability of sampling each surface in the simulation.
More specifically, once the system completely enters a cluster, the
weight given to the corresponding force field is fixed to be 1 until the
probability of sampling the cluster exceeds a given target probabil-
ity.63 The surface-hopping simulations with this restriction, denoted
simply “SH,” converge by construction to the target probability PS1

(t → ∞) = 0.65, leading to an improved description of equilibrium
distribution [Fig. 2(e)]. Thus, enforcing the target probabilities mit-
igates potential issues due to an inaccurate modeling of the bound-
aries between surfaces. We emphasize the need for a small interpola-
tion regime between surfaces: too large of a region would lead to the
inclusion of unreasonably large forces from the less favored surface,
resulting in artifacts at the interface. We also note that an alternative
approach could consist of interpolating between potential energies,
although this would require shifting each surface by an appropriate
amount.

To further probe the dynamics, Figs. 2(g) and 2(h) present
the probability distribution of escape times between basins S1 and

S2. Assuming single-exponential kinetics, we focus on the charac-
teristic timescales of the forward and backward processes, kS1→S2

and kS2→S1 , respectively. While the integration of the global sur-
face and the surface-hopping surfaces [panels (a) and (b), respec-
tively] leads to different characteristic timescales, their ratios are
similar: kS1→S2/kS2→S1 ≈ 1.47 and 1.55, respectively. This is on par
with our previous conclusions about the method’s capability to con-
serve the barrier-crossing dynamics, as illustrated on a tetra-alanine
peptide.63

V. RESULTS
A. Hexane

In the following, we consider the coarse-graining of hexane
to a three-bead representation. We first simulate a single molecule
in vacuum, effectively focusing on the intramolecular interactions.
Later, we turn to intermolecular interactions by probing the liquid
state.

1. Hexane in vacuum
The modeling of hexane in vacuum using a three-site CG repre-

sentation, though presumably straightforward at first sight, displays
remarkably rich cross correlations between the bond and bending-
angle degrees of freedom. This offers a stringent test for molecu-
lar mechanics force fields. The system was first studied by Rühle
et al.86 using the force-matching-based multiscale coarse-graining
(MS-CG) method and later by Rudzinski and Noid, focusing on the
cross correlations and presenting results based on the iterative gen-
eralized Yvon–Born–Green (iter-gYBG) scheme.39 Some of the anal-
ysis presented here was described in the previous work,63 although
the present work provides additional details and uses the previous
analysis as a basis to dive further into various features of the method.

To build the SH model of hexane, we first partitioned the
conformational space defined by the two order parameters govern-
ing CG interactions: bond, b, and bending angle, θ. The torsional
degrees of freedom at the atomistic level give rise to a bimodal dis-
tribution of CG bond distances and an approximately trimodal dis-
tribution of angles (violet curves in Fig. 3). The angle distribution
also displays a tail at short distances, which corresponds to a par-
tially hidden fourth mode, described further below. By separating
each order parameter into distinct states based on these distribu-
tions, the intramolecular state of the molecule can be described as
a discrete set of two bond states and an angle state. The AA model
then samples ∼6 unique intramolecular states, with varying equi-
librium probabilities.39 The surface-hopping model simplifies this
description with a three-state representation for the intramolecular
configuration of the hexane molecule. This leads to the definition of
three surfaces denoted 3S-1, 3S-2, and 3S-3, which we will charac-
terize below. Notably, an analysis of the reference AA simulation
provides the probability of sampling each surface: 0.45, 0.14, and
0.41, respectively.

Figure 3 shows both the potential energy and resulting distri-
bution functions for the bond, b, and bending angle, θ, from the
reference all-atom model projected onto the CG variables (AA),
force matching (MS-CG), and the three-state SH model (3S). Pan-
els (a) and (b) of Fig. 3 show that the MS-CG model is capable of
reproducing the bond distribution, characterized by a short bond
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FIG. 3. Bond and bending-angle properties of the CG hexane molecule from the
reference all-atom distribution projected onto the CG variables (AA), force match-
ing (MS-CG), and the three-state SH model (3S). Bond (a) potential energy and
(b) probability distribution; angle (c) potential energy and (d) probability distribu-
tion. [(e) and (f)] Free-energy surfaces of the hexane molecule as a function of the
bond, b, and bending angle, θ, from (e) the CG three-state surface hopping and
(f) reference AA. Free energies are expressed in kBT. Adapted from the study of
Bereau and Rudzinski.63

(b ≈ 0.24 nm) and a long bond (b ≈ 0.26 nm). The 3S model gen-
erates essentially the same distribution, interestingly using a rich
combination of bond potentials [Fig. 3(a)]. While 3S-1 is dedicated
to describing the long bond, 3S-2 is shifted to values that are even
larger—the small probability of sampling this surface leads to a vir-
tually negligible impact on the bond probability distribution. Lastly,
3S-3 describes both the long bond—with a basin aligned with 3S-1—
and the short bond that is energetically offset. This surface alone is
responsible for the smaller peak in Fig. 3(b).

Turning to the bending-angle potential and probability distri-
bution [panels (c) and (d) of Fig. 3], the MS-CG model displays
severe discrepancies: it significantly under-samples the two larger
angles (θ ≈ 170○ and θ ≈ 155○) and over-stabilizes the two lower
angles (θ ≈ 105○ and θ ≈ 125○). This discrepancy has been demon-
strated to be due to complex AA cross correlations between the bond
and angle degrees of freedom, which are used as a proxy for CG cor-
relations within the MS-CG procedure.39 Unlike the MS-CG model,
the iter-gYBG model presented by Rudzinski and Noid is capable
of reproducing the one-dimensional distribution function pθ(θ) but
does not accurately reproduce the cross correlations p(b, θ).39,63 The
3S model also matches the AA bending-angle distribution nearly
quantitatively but describes the sub-populations of the distribu-
tion in greater detail through the multi-surface representation. 3S-1
focuses solely on the largest-angle state, while 3S-2 focuses on the
two intermediate angles. We note that despite the predominance of
the lower intermediate angle (θ ≈ 125○) within 3S-2, the higher inter-
mediate angle displays a higher population due to 3S-3. 3S-3 does
not target a particular conformational basin but, instead, broadly
covers the entire dynamic range of populated angles with various
weights.

The major improvements of the SH model can be seen through
the cross correlations, namely, the free-energy surface −kBT ln
p(b, θ), displayed in Figs. 3(e) and 3(f). We previously showed that
the iter-gYBG model yields exceedingly symmetric features, illustra-
tive of the additivity of the interactions.63 On the other hand, the
three-state SH model displays a much more accurate free-energy
surface.

2. Liquid hexane
We now turn to assessing the capabilities of the SH models to

describe liquid properties. As a test system, we focus on a homo-
geneous bulk liquid of hexane, comprised of 267 molecules in a
cubic box of size L = 3.89 nm simulated at T = 300 K. In principle,
the surface definitions could be extended to depend on additional
order parameters, e.g., as a function of local density. However, since
the benefit of local density-dependent potentials has already been
characterized by others,51–55 here we focus on the extent to which
a more accurate treatment of the intramolecular structure impacts
the resulting properties of the liquid. To this aim, we employ the
surface definitions derived from the vacuum case, described above.
While the surface definition does not depend on the intermolec-
ular environment, the intermolecular interactions do depend on
the intramolecular state of the molecule. That is, we calculate dis-
tinct pairwise interactions as a function not only of the set of bead
types but also of the surface of each molecule. As an illustrative
example, we focus on the interactions between terminal beads, CT,
but additional results for other interactions can be found in the
supplementary material.

Figures 4 (a)–4(c) show a comparison of the pairwise interac-
tion potential U(rCT–CT) for the MS-CG, iter-gYBG, and SH mod-
els. The MS-CG and iter-gYBG potentials are purely repulsive and
only very weakly attractive, respectively, consistent with a variety of
work which has demonstrated that structure-based methods tend to
underestimate the cohesive energy of liquids.18,101–103 Interestingly,
while the SH potentials do include some more repulsive interac-
tions on par with the MS-CG and iter-gYBG potentials, there are
also some significantly more attractive interactions. The 3–3 SH
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FIG. 4. Hexane liquid properties. CT–CT non-bonded potentials from (a) MS-CG, (b) iter-gYBG, and (c) SH. The latter shows each surface individually. (d) CT–CT radial
distribution functions across the three CG methods and AA. Cross correlations between the bending angle θ and the intermolecular distance rCT–CT from (e) MS-CG, (f)
iter-gYBG, (g) SH, and (h) AA.

potential between fallback surfaces roughly resembles the MS-CG
potential, although it displays an additional small distant attractive
basin around rCT–CT ≈ 0.8 nm. On the other hand, the 1–3 and 2–3
SH potentials show a dip that is akin to the iter-gYBG model, with
a depth of about 0.5 kJ/mol, albeit without a large barrier around
r ≈ 0.7 nm. This is quite striking, since such barriers and secondary
potential minima have been associated with a type of over-fitting
that occurs in structure-based models.104 Furthermore, the 1–1, 1–2,
and 2–2 SH potentials show a deeper minimum (1.3 kJ/mol). This
results in a significant reduction in the average pressure throughout
the (NVT) simulation, as seen in Table I, although the SH models
still overestimate the cohesive energy. We found that this reduced
pressure effect occurs systematically for SH models constructed for
three other chemistries (Table I, discussed further below and in the
supplementary material). Critically, we emphasize that there is a
clear clustering of the set of SH potentials into three families: (i)
the interaction between two molecules both in the fallback surface
(3–3), (ii) interactions of a molecule in the fallback surface with a

TABLE I. Average pressure, P, from NVT simulations. For consistency, SH model
results correspond to chemistry-specific models for each molecule, presented in detail
in the supplementary material.

P (kbar)

T (K) MS-CG iter-gYBG SH

Hexane 300 2.277 1.217 0.659
Octane 350 2.540 2.550 1.500
Hexanediamine 435 2.992 2.249 1.629
Hexanediol 470 4.389 3.765 1.501

molecule in one of the other two surfaces (1–3 and 2–3), and (iii)
interactions between two molecules not in the fallback surface (1–1,
1–2, and 2–2). Natural groupings such as these provide a clear strat-
egy for addressing the combinatorial explosion of the SH framework
as the numbers of surfaces and bead types increase.

Figure 4(d) presents the CT–CT radial distribution functions
(RDFs) generated by the various models, demonstrating that cal-
culating the pairwise interactions as a function of the intramolec-
ular state within the force-matching framework is robust (i.e.,
does not result in errors in the structural properties). In fact, the
SH model actually demonstrates an improvement with respect to
the MS-CG model, which shows small deviations after the first
solvation shell. These deviations are, of course, at least partially
associated with the inaccurate determination of the MS-CG angle
potential. Figures 4(e)–4(h) further characterize the structural prop-
erties of the models via the cross correlations between the bend-
ing angle and the pairwise distance rCT–CT. These cross correla-
tions correspond to sub-blocks of the correlation matrix employed
in Eqs. (4) and (5) and are described in detail elsewhere.105 Com-
pared to the AA cross correlations [panel (h)], the cross correlations
generated by the MS-CG model [panel (e)] demonstrate signifi-
cant discrepancies, largely due to the inaccurate description of the
bending-angle distribution [Fig. 3(d)]. In contrast, the cross correla-
tions generated by the iter-gYBG and SH models demonstrate better
agreement with the AA model, despite some discrepancies at very
short distances (r ≈ 0.4 nm). The intramolecular cross correlations
demonstrate analogous behavior as in vacuum, with the SH model
exhibiting a significantly improved representation of the bond-
angle correlations (Fig. S6). While traditional molecular mechan-
ics potentials fail to describe the intramolecular cross correlations
(Fig. 3), distance-dependent pairwise interaction potentials are capa-
ble of reasonably describing the intermolecular cross correlations of
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hexane. This is consistent with the good performance of the MS-CG
model in terms of accurately describing the RDFs. Still, our results
demonstrate that the description of intermolecular interactions as a
function of the intramolecular state may assist in alleviating some
of the standard problems experienced with structure-based coarse-
graining (e.g., overly repulsive and over-fitted potentials) while
providing a straightforward approach for characterizing the envi-
ronment dependence of CG interactions. Finally, we observe a com-
putational cost of running the SH simulation to be a factor of 2.0
larger than that of the standard CG simulation with the iter-gYBG
potentials (i.e., 6.6 ms/step and 3.3 ms/step, respectively, for a box of
267 molecules).

B. Surface transferability
While our previous study,63 as well as the results so far, high-

lighted the improved accuracy of conformational surface hopping
over traditional CG structure-based schemes for a single system
or thermodynamic state point, this section explores prospects of
transferability. Without transferability, a new potential would be
required for each new state point in order to reproduce some target
observable. At the other end of the spectrum, excellent transfer-
ability implies that the change in a thermodynamic parameter, for
instance temperature, results in the appropriate change in the tar-
get observable without adjusting the potential. Here, we work in an
intermediate, weaker transferability regime: We carry over identical
conformational surfaces and reparameterize their state probabili-
ties (i.e., the prefactor or weight for each surface). This approach
emphasizes how conformational basins may be shared between state
points while allowing for an adjustment in the overall probability of

that state in a restricted way (i.e., without changing the correspond-
ing potential). We focus on two aspects: temperature and chemical
composition.

1. Temperature and compositional variation
We consider a set of three molecules that are chemically similar

to hexane: octane, hexanediamine, and hexanediol. They correspond
to the same alkane backbone with different terminal substitutions of
methyl hydrogen on each end: carbon, nitrogen, and oxygen, respec-
tively (with appropriate saturation), as shown in Fig. 5(d). Figure 5
shows the variation of the state probabilities as a function of both
chemical composition and temperature. The former is described via
the electronegativity parameter χ of the substitution atoms H, C, N,
and O corresponding to hexane, octane, hexanediamine, and hex-
anediol, respectively. While we do not provide a formal justification
for the use of χ, it is motivated by the change in the electron density
in the terminal substitutions considered. χ offers a convenient proxy
to describe the change in chemical composition through a contin-
uous variable. Furthermore, we have observed monotonic changes
in our results with respect to χ. We will show below that χ offers a
convenient parameter for scaling the non-bonded interactions.

Panels (a)–(c) of Fig. 5 show a two-dimensional projection of
the state probabilities for each conformational surface: PS1(χ,T),
PS2(χ,T), and PS3(χ,T). Panels (e)–(h) show one-dimensional
projections, highlighting the smooth—almost linear—temperature
dependence. The most significant difference between the three sur-
faces is their range of state probabilities: larger for S1 and S3, while
smaller for S2. Surface S1 varies significantly with respect to both
parameters, S2 is more sensitive to composition, and S3 varies mostly

FIG. 5. Temperature and compositional transferability. State probabilities of the three surfaces, (a) PS1 , (b) PS2 , and (c) PS3 , as a function of the electronegativity of the
substitution atom, χ, and temperature T. Note the different ranges for the color-coding. Substitution atoms H, C, N, and O corresponding to hexane, octane, hexanediamine,
and hexanediol, respectively, are highlighted in red; molecules are depicted in (d). The different CG bead colors denote the different underlying chemical compositions. (e)–(h)
One-dimensional projections highlight the smooth temperature dependence of the state probabilities. The CG SH individual force fields were all constructed from octane while
only tuning the state probabilities for each compound separately.

J. Chem. Phys. 153, 214110 (2020); doi: 10.1063/5.0031249 153, 214110-9

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

against temperature. Their unique behavior sheds light on the con-
formational basin they represent: for instance, the population of S2
is sensitive to the chemistry, but its low temperature dependence
suggests an enthalpic stabilization. On the other hand, S3 is rather
insensitive to the chemistry but significantly varies with temper-
ature. While this could mean that S3 is stabilized by entropy, we
also note that as the fallback surface, it amounts to a collection
of different conformational basins. PS3(χ,T) varies remarkably lit-
tle with respect to chemical composition, given its heterogeneous
nature. In what follows, we explore to what extent these smooth
variations of the state probabilities can be leveraged to extend the
range of applicability of a set of force-field surfaces to different state
points.

2. Temperature transferability
We first explore surface transferability across temperature.

Starting from the three conformational surfaces obtained from ref-
erence AA simulations at T = 300 K (see Sec. V A 1), we retain
these surfaces and only tune the state probabilities to transfer to
the other temperatures T = {250, 350, 400, 450} K. A comparison
of the bond and bending-angle distributions generated by the AA
and SH models is shown in Figs. 6(a)–6(d). The distributions show
similar features to those found in Fig. 3, monotonically evolving as
a function of temperature. In particular, we find a strong temper-
ature dependence of the long bond (b ≈ 0.26 nm) and the longest
angle (θ ≈ 170○), while the other features show virtually no tem-
perature dependence. Figures 6(e) and 6(f) also present the CT–CT
RDFs, which show reasonable agreement, although the SH distri-
butions are somewhat too temperature dependent. In comparison
with standard transferability properties, we note that the iter-gYBG
model parameterized at T = 300 K and extrapolated to the other state
points leads to similar performance for the one-dimensional distri-
butions (Figs. S8 and S9). This is consistent with previous studies
that have demonstrated that temperature-dependent, often linearly
scaled, interactions are necessary for accounting for the entropic
contributions to the effective potentials.27,28,30–32 However, the SH
model really shines when considering the description of cross cor-
relations involving the bending angle (Figs. 3, S11, and S12), which
standard parameterizations cannot reproduce.

Our weak transferability scheme offers an accurate reproduc-
tion of the distribution functions for all temperatures, despite the
use of a single set of conformational surfaces. The results strongly
suggest a large overlap in conformational space between the temper-
atures, adequately captured by retaining the conformational surfaces
and simply adapting the state probabilities to each state point. We
defer a deeper analysis of the temperature dependence of the state
probabilities to Sec. V B 1.

3. Compositional transferability
Beyond the transfer of force fields across temperatures, we now

turn to the more challenging case of compositional transferability—
across chemistry. We first assessed the transferability of surfaces in
the gas phase, by employing the surface definitions obtained from
octane to each of the other molecules. In this case, all molecules were
simulated at T = 300 K. We note that hexane stands as an outlier in
the set of compounds, due to its absence of heavy atoms beyond the
six carbon atoms. The impact of this difference will be illustrated
below.

FIG. 6. Temperature transferability. Comparison of [(a) and (b)] bond and [(c) and
(d)] bending-angle properties of gas-phase hexane between AA and CG reso-
lutions. [(e) and (f)] Comparison of the RDFs of the CT–CT interactions in the
liquid phase. The CG SH individual force fields were all constructed from the state
point at T = 300 K while only tuning the state probabilities for each temperature
separately.

Panels (a) and (b) of Fig. 7 show a comparison of the bond
distributions generated by the AA and SH models for the four
molecules. All curves display overall similar behavior. Most strik-
ingly, we observe a shift in the reference AA distributions: hexane
shows its largest peak at larger values of b, while the others are
shifted to lower values, by up to 0.5 Å. The reason for this shift is our
choice of mapping: for consistency reasons, we have kept the termi-
nal CG bead defined as the center of mass of the two same carbon
atoms in the chain. Because of sterics, the presence of heavy atoms
in octane, hexanediamine, and hexanediol has pushed these carbon
atoms slightly inward, resulting in the shifts observed in Fig. 7(a).
The interesting aspect here is the impact this has on our CG mod-
els: the use of a single set of surfaces will necessarily collapse all CG
curves, only allowing for vertical shifts (by varying state probabili-
ties). Interestingly, we see little to no such vertical shifts, unlike what
we had observed for temperature variations (Fig. 6).
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FIG. 7. Compositional transferability. Comparison of [(a) and (b)] bond and [(c)
and (d)] bending-angle properties of gas-phase hexane, octane, hexanediamine,
and hexanediol between AA and CG resolutions. [(e) and (f)] RDFs of the CT–CT
interactions in the liquid phase at each reference temperature.

The bending-angle distributions show variations more in line
with the above-mentioned temperature-variation study: all curves
show similar behavior, i.e., peaks at the same places, with only
variations in their heights. The results are different from the tem-
perature variation with respect to the relative height differences
between peaks: while varying T led to strong variations in the largest
peak, it had virtually no effect on the second. In contrast, here we
observe variations of similar magnitude between these two peaks.
This strengthens the idea that a local change in chemical compo-
sition can be associated with a perturbation of the conformational
space, akin to the changing temperature. However, the local changes
between peaks indicate that alterations occur at a more local level
than an overall temperature rescaling. As a result, it would seem
unlikely to reach compositional transferability of CG force fields
by merely scaling it by a global prefactor. Thus, the SH models
offer a useful compromise between a limited prefactor rescaling

and state-point dependent potentials and highlight the overlap in
conformational space of the different molecules.

We also assessed chemical transferability in the liquid state. We
first directly transferred the non-bonded force field for octane while
adjusting the state probabilities as described above. Each SH force
field was probed at a distinct temperature Tref. Tref—corresponding
to 300 K, 350 K, 435 K, and 470 K for hexane, octane, hexanedi-
amine, and hexanediol, respectively—was chosen to lie in approxi-
mately the same location with respect to the liquid phase existence
for each molecule. This simple transfer of non-bonded interactions
resulted in an underestimate of the changes in the CT–CT and CT–
CM RDFs and an overestimate of the changes in the CM–CM RDF
while providing a good description of the intramolecular distribu-
tions (see Figs. S15 and S16). The discrepancies in the RDFs are not
surprising, as we expect that the non-bonded interaction strengths
associated with the CT bead should change as a function of chem-
istry. To test the impact of such changes, we performed a simple scal-
ing of the octane non-bonded interactions. In particular, we applied
a scaling factor to each of the CT–CT potentials equal to the ratio
of electronegativity values of the corresponding substituted atoms:
UM ;CT–CT = (χM/χoctane)Uoctane;CT–CT, where M = hexane, hexanedi-
amine, or hexanediol. Similarly, the CT–CM potentials were scaled
by the square root of the same ratio (assuming an effective geometric
mean combination rule): UM;CT–CM = (

√
χM/χoctane)Uoctane;CT–CM.

The original octane CM–CM interactions were employed without
adjustment. The full set of scaled potentials is presented in Figs. S13
and S14.

Remarkably, as shown in panels (e) and (f) of Fig. 7, this heuris-
tic scaling of potentials along with the adjusted state probabilities
results in an accurate description of the local CT bead packing
as a function of changes in chemistry, despite employing a sin-
gle set of surfaces for the molecules. The accuracy of the CT–CM
RDFs is also improved (relative to the non-scaled SH model) while
retaining a good description of the intramolecular distributions,
although the discrepancy in the CM–CM RDF is somewhat exacer-
bated (Fig. S16). We note that the absolute accuracy of all CG CM–
CM RDFs (i.e., also for the MS-CG and iter-gYBG models) is slightly
degraded due to the challenging representation applied to the non-
hexane molecules, as demonstrated in detail in the supplementary
material. Of all the molecules, hexane yields the largest discrepan-
cies. Its smaller excluded volume relative to the other molecules
represents a larger change in conformational space: a mere trans-
fer of the conformational surfaces along with a variation of the
non-bonded potentials does not suffice. These results illustrate the
link between shared conformational surfaces and the distance in
chemical space.

VI. CONCLUSIONS
This work extends our previous presentation of the coarse-

grained (CG) conformational surface-hopping (SH) methodology:
analogous to switching between different electronic states, we define
one force field per conformational basin and hop between them.63

Each force field is parameterized by applying force matching (i.e.,
the MS-CG method) while using only configurations from the
corresponding basin. Our illustration of the method using a toy
example highlights the benefits of enforcing a set of target state
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probabilities, which avoids possible errors due to an inaccurate
description of the global surface at the barrier between two con-
formational states. While the SH models employ standard molec-
ular mechanics interaction functions in the Hamiltonian, the focus
on reproducing local properties of each surface results in increased
accuracy relative to standard models. The results are particularly
striking for the gas-phase properties of a three-bead hexane rep-
resentation: the correlations between the bond and the bending
angle, notoriously problematic for the MS-CG method, are accu-
rately represented by the SH approach while employing only three
surfaces.

We have also presented an extension of the SH method to inter-
molecular interactions: conformational surfaces are defined based
on the intramolecular state of the molecule, while the intermolecular
interactions depend on the pair of surfaces involved. For instance,
the three-surface model for hexane consists of two distinct bead
types, which corresponds to a total of 18 unique interactions (i.e.,
six interactions for each pair of bead types). The resulting SH mod-
els retain an accurate description of the local packing while also
demonstrating slight improvements in the RDFs compared with the
MS-CG model. Perhaps more interestingly, an assessment of the
SH potentials demonstrated promising properties with respect to
the other structure-based potentials. In particular, the SH potentials
tended to be more attractive with a single local minimum, coun-
teracting two common problems with structure-based models: (i)
the underestimation of the cohesive energy in liquids and (ii) an
over-fitting of the features at the state point of parameterization.

We further investigated the capabilities of the SH models by
examining their transferability properties. We focused on a so-called
“weak-transferability regime,” in which one state point determines
the surface definitions; these surfaces are then transferred to other
state points while adjusting their state probabilities (i.e., the pre-
factor or weight for each surface). In particular, we considered the
transfer of state definitions across both temperature and chemical
composition. In the latter case, where the strength of the interac-
tions is expected to change as a function of chemistry, the use of
the electronegativity parameter, χ, provided a useful proxy to scale
the non-bonded interactions. Our results demonstrate that the SH
models not only accurately describe the trends in the intramolec-
ular distributions, which are largely reproduced with traditional
models, but also better represent intramolecular cross correlations
throughout the liquid state. The SH approach demonstrates sim-
ilar results with respect to the description of local packing as a
function of temperature for the molecules considered but slightly
overestimates the temperature dependence of the RDFs. It would be
interesting in this context to explore the entropic contributions to
the SH potentials.30–32 The investigation of chemical transferabil-
ity focuses on terminal substitutions via the comparison between
hexane, octane, hexanediamine, and hexanediol. Notably, we find
limitations in modeling the bond distributions, as the substitution
of hydrogen atoms to heavy atoms (i.e., moving from hexane to
one of the other three molecules) shifts the distribution. Aside from
this limitation, the tuning of individual state probabilities appears to
be a promising framework for considering the construction of CG
models that are not restricted to one state point, but rather applica-
ble to a neighborhood of thermodynamic parameters and chemical
compositions. An almost linear variation of the state probabilities
is observed across both temperature and electronegativity, making

it straightforward to interpolate across this set of state points. Here,
we did not intend to make predictions across chemical space, but
rather explore to what extent transferability via (only) changes in
thermodynamic variables can be facilitated through their impact on
individual surfaces. The approach highlights overlaps of conforma-
tional basins across neighborhoods of chemical space. We foresee
the weak-transferability regime brought forward here to be of use
when parameterizing not just one reference simulation, but col-
lections of state points or compounds. This will be of use in the
context of parameterizing CG models across subsets of chemical
space.

Finally, we stress the conceptual and practical advantage of
parameterizing the SH models using the MS-CG technique. The
combined approach offers an enhanced capability to describe com-
plex cross correlations between degrees of freedom that arise
additively in the Hamiltonian while using a direct inverse param-
eterization scheme. Since the MS-CG method results in errors
whenever the AA cross correlations represent an inappropriate
proxy for the cross correlations of the resulting CG model, the
approach provides an automatic validation of the surface defini-
tions. In other words, if there remain cross correlations within a
single surface that cannot be reproduced by a molecular mechanics
force field, errors will likely appear in the description of the modes
along each distribution function corresponding to the inadequate
surface. Moreover, the potentially large number of force fields—
up to one per conformational basin—can be derived indepen-
dently, an aspect that would not be straightforward using iterative
methods.

SUPPLEMENTARY MATERIAL

See the supplementary material to this article with further
methodological details as well as additional results. An ESPRESSO++

implementation of the CG surface-hopping scheme, including sup-
port for non-bonded interactions, is available online.99
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