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SUMMARY 

Human erythropoiesis is exquisitely controlled at multiple levels and its dysregulation leads to 

numerous human diseases. Despite many functional studies focused on classical regulators, we 

lack a global, system-wide understanding of post-translational mechanisms coordinating 

erythroid maturation. Using the latest advances in mass spectrometry (MS)-based proteomics 

we comprehensively investigate the dynamics of protein and post-translational regulation of in 

vitro reconstituted CD34+ HSPC-derived erythropoiesis. This quantifies and dynamically tracks 

7,400 proteins and 27,000 phosphorylation sites. Our data reveals differential temporal protein 

expression encompassing most protein classes and numerous post-translational regulatory 

cascades. Drastic cell surface remodeling across erythropoiesis include numerous orchestrated 

changes in solute carriers, providing new stage-specific markers. The dynamic 

phosphoproteomes combined with a kinome-targeting CRISPR/Cas9 screen reveal coordinated 

networks of erythropoietic kinases and downregulation of MAPK signaling subsequent to c-Kit 

attenuation as key drivers of maturation. Our global view of erythropoiesis establishes a central 

role of post-translational regulation in terminal differentiation. 
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INTRODUCTION  

Human erythropoiesis is a multistep 

developmental process that maintains stable 

erythroid homeostasis throughout life and 

replenishes more than 200 billion 

erythrocytes lost by senescence in healthy 

humans (Palis, 2014). Lineage-committed 

erythroid progenitors, including burst-

forming unit-erythroid (BFU-E) and their 

colony-forming unit-erythroid, (CFU-E) 

progeny, undergo enormous expansion, 

followed by morphological signs of terminal 

maturation. The first recognizable erythroid 

precursors are proerythroblasts (ProE), 

which mature progressively into early 

basophilic (EBaso) and late basophilic 

(LBaso) erythroblasts, polychromatic 

erythroblasts (Poly), orthochromatic (Ortho) 

erythroblasts and reticulocytes. Terminal 

erythroid maturation is distinguished by 

progressive reductions in proliferative 

capacity and cell size, chromatin 

condensation, loss of most organelles 

including the nucleus, and remarkable 

streamlining of the proteome with expression 

of specialized cytoskeletal and plasma 

membrane proteins and finally massive 

accumulation of hemoglobin (Moras et al., 

2017; Nguyen et al., 2017; Zhao et al., 

2016b). This finely tuned developmental 

process generates mature erythrocytes with 

the highly specialized function of circulatory 

oxygen/carbon dioxide transport. 

 

Our knowledge of human erythropoiesis has 

been greatly advanced by in vitro 

differentiation systems in which primary 

multipotent CD34+ hematopoietic stem cell 

progenitors (HSPCs) are cultured with 

defined cytokines and other bioactive 

components to generate reticulocytes (Seo et 

al., 2019). Erythropoiesis is controlled by the 

essential cytokines stem cell factor (SCF) and 

erythropoietin (EPO), and their cognate 

receptors c-Kit and EPOR (Broudy, 1997; 

Ingley, 2012; Nocka et al., 1989; Wu et al., 

1997; Wu et al., 1995; Zhang and Lodish, 

2008). In general, c-Kit acts to promote 

progenitor proliferation during early 

erythropoiesis, while EPOR fosters survival 

and maturation at later stages, although there 

is substantial overlap in their activities and 

some evidence for cross-regulation 

(Klingmuller, 1997; Wojchowski et al., 1999; 

Wu et al., 1997). Moreover, c-Kit and EPOR 

trigger remarkably similar signaling 

pathways including Ras/Raf/MAPK, 

PI3K/Akt, and JAK2/STAT5 (Bouscary et 

al., 2003; Carroll et al., 1991; Ghaffari et al., 

2006; Linnekin et al., 1997; Miura et al., 

1994; Socolovsky et al., 1999; Wandzioch et 

al., 2004). In concert with cytokine signaling, 

several key erythroid-restricted transcription 

factors (including GATA-1, FOG-1, 

SCL/TAL-1, EKLF/KLF1) associate with 

generalized cofactors to activate the 

transcription of erythroid-specific genes and 

suppress those of alternate lineages (Akashi 

et al., 2003; Cantor and Orkin, 2002; Cross 

and Enver, 1997; Hattangadi et al., 2011; 

Perkins et al., 1995; Pevny et al., 1991; 

Shivdasani et al., 1995; Tsang et al., 1997). 

 

While focused studies on erythroid cytokine 

signaling and transcription factors have 

generated tremendous functional insights 

into erythropoiesis, they do not provide a 

systems-wide view. A comprehensive view 

of erythroid gene expression has been 

provided by global analysis of erythroid 

transcriptomes and the epigenome in purified 

bulk populations and single cells ((Tusi et al., 

2018) and reviewed in (An et al., 2015)). 

These approaches necessarily use global 

mRNA levels as proxies of protein 

abundance and infer signaling activity 

indirectly. A truly system-wide 

understanding of post transcriptional and 
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translational mechanisms that drive and 

coordinate terminal maturation is clearly still 

lacking. Such a dynamic map would 

complement transcriptome studies to broadly 

describe the molecular basis of the pathways 

involved and to understand how cytokine 

receptor signaling and transcription factors 

together shape the erythroid proteome. 

 

In contrast to transcriptome and epigenetic 

studies of erythropoiesis, relatively few 

proteome studies to date provide a global 

analysis of the protein landscape. Due to 

technical limitations, these studies examined 

only selected maturation stages in limited 

depth or focused on defined protein families 

(Amon et al., 2019; Bell et al., 2013; Chu et 

al., 2018; Gautier et al., 2018; Gillespie et al., 

2020; Liu et al., 2017; Pasini et al., 2006; 

Roux-Dalvai et al., 2008; Wilson et al., 

2016). A recent analysis described dynamic 

changes in protein expression during in vitro 

erythroid differentiation of CD34+ HSPCs 

(Gautier et al., 2016). However, because 

relatively large numbers of cells were 

required for proteomic characterization, this 

study examined semisynchronous erythroid 

cultures consisting of cells at different stages 

of maturation. Given the recent dramatic 

advances in mass spectrometry and label-free 

quantitative proteomics (Aebersold and 

Mann, 2016; Bekker-Jensen et al., 2017), we 

reasoned that it may now be possible to 

obtain accurate high coverage proteome and 

phoshoproteome quantification from 

relatively low numbers of purified erythroid 

precursors at distinct developmental stages. 

 

We developed a pipeline combining 

fluorescence activated cell sorting (FACS) 

enrichment procedures with our state-of-the-

art proteomics workflow. We uncovered the 

temporal staging of developmental regulation 

through proteome remodeling. To identify 

the distinct proteome defining each 

maturation stage from proerythroblast to 

orthochromatic erythroblast, we developed a 

bioinformatic deconvolution approach which 

revealed stage-specific proteins and protein 

families. Importantly, our proteomics 

workflow enabled detection of more than one 

thousand membrane proteins, and identified 

distinct combinations of solute carrier (SLC) 

family proteins as stage-specific maturation 

markers. Pursuing post-translational 

regulation further, in-depth sensitive 

quantitation of the global phosphoproteome 

with our EasyPhos platform (Humphrey et 

al., 2015; Humphrey et al., 2018) provided 

direct evidence for intricate developmental 

stage-specific regulation by post-

translational modification. To functionally 

explore the identified signaling modules, we 

performed a kinome-targeting CRISPR/Cas9 

screen, which in combination with our 

proteomic studies, identified distinct 

signaling requirements for erythroid 

maturation. Focusing on networks amongst 

over 27,000 phosphosites and kinase 

functions uncovered the sequential 

attenuation of c-Kit and EPOR/JAK2 

signaling, pinpointing downregulation of 

Ras/MAPK signaling in promoting terminal 

maturation. Our system-wide data provide a 

wealth of molecular information regarding 

the functional dynamics of complex 

phosphosignaling networks in erythropoiesis, 

expanding our knowledge and data for 

cellular principles of regulation through 

proteome remodeling. 

 

RESULTS 

Establishing stage-specific proteomes of 

human erythropoiesis 

To investigate the remodeling of the 

proteomics landscape during human 

erythropoiesis, we cultured human peripheral 

blood-derived CD34+ HSPCs under 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.18.102178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.102178


4 
 

conditions to support erythroid 

differentiation (Methods). We obtained 

highly enriched populations of erythroid 

precursors at specific developmental stages 

by FACS using CD235a (GYPA), CD49d 

(ITGA4), and Band 3 (SLC4A1) markers 

(Figure 1A-B and Figure S1A) (Hu et al., 

2013). We isolated early maturation stages 

(progenitors, ProE, EBaso, LBaso) after 7 

days of culture, while later maturation stages 

(LBaso, Poly and Ortho) were purified at day 

14. According to published guidelines, 

LBaso stage precursors were isolated after 

both 7 days and 14 days of culture using the 

same markers (Figure 1B) Note that SCF 

was present at 7 days but not at 14 days. 

Purified cell populations were 

morphologically homogeneous as judged by 

May-Grünwald-Giemsa staining (Figure 

S1B). Due to relatively low cell yields, ProE 

and EBaso populations were combined in 

equal cell numbers prior to subsequent 

analysis. The resulting five 

populations/stages are henceforth color-

coded as follows: progenitors (mostly CFU-

E) (Hu et al., 2013; Li et al., 2014a; Yan et 

al., 2017), yellow; ProE/EBaso, blue; LBaso 

day7, light pink; LBaso day14, dark pink; 

Poly, dark blue, and Ortho, orange (Figure 

1A-B). 

 

Each population was processed in four 

biological replicates and their tryptic peptides 

were analyzed in single shots in Data 

Independent Acquisition (DIA) mode 

(Methods, Figure 1A). To generate a 

project-specific library, we separated 

peptides by high pH reversed-phase 

chromatography into fractions, followed by 

data-dependent acquisition (DDA) and 

analysis with Spectronaut. The resultant 

library contained more than 9,000 protein 

groups, 7,479 of which could be matched into 

the DIA runs of at least one maturation stage 

(q-value less than 1% at protein and precursor 

levels, Figure 1C). In the DIA method, small 

m/z precursor windows are fragmented in a 

cyclical manner, which turned out to be 

crucial for preserving the dynamic range of 

peptide detection in the presence of the very 

large hemoglobin peptide peaks that would 

otherwise complicate analyses at later 

developmental stages. Remarkably, 84% of 

all detected proteins were consistently 

quantified at varying levels across all 

maturation stages and a relatively small 

percentage was only matched in a single 

stage. Quantitative accuracy was high, with 

Pearson correlations > 0.95 and CVs < 20% 

for 72% of all proteins between the four 

biological replicates (Figure 1D and Figure 

S1C). MS signals spanned abundance ranges 

of five (progenitors) to seven (Ortho) orders 

of magnitude. As expected, globin proteins 

increased by approximately one thousand-

fold from progenitor to Ortho stage (Figure 

S1D). 

 

As biological interpretation is facilitated by 

absolute rather than relative concentration 

measurements, we employed  the ‘proteomic 

ruler’ method, which uses the fixed 

relationship between histones and DNA to 

estimate proteome-wide copy numbers per 

cell (Wisniewski et al., 2014). Considering 

that chromatin condensation during 

erythropoiesis is associated with partial 

release of major histones from the nucleus 

and subsequent degradation in the cytoplasm 

(Zhao et al., 2016a), we first assessed the 

overall histone content of cells in our system, 

which indeed declined with progressive 

differentiation (Figure S1E). Taking this into 

account for the proteomic ruler calculations, 

we measured an almost four-fold reduction in 

total protein copy numbers per cell during 

differentiation with median copy numbers 

dropping from 23,380 ± 371 in progenitors to 
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12,395 ± 1342 at the LBaso stage (Figure 1E 

and Table S1). In contrast, the average copy 

numbers of proteins annotated as 

“erythrocyte maturation” and “heme 

biosynthesis” by Gene Ontology (GO) 

increased by approximately 50-fold from 

progenitor to Ortho stage (Figure 1E and 

Table S1). Quantitative comparison and 

copy number estimation of LBaso stages 

isolated at ether day7 or day14 confirmed 

their close resemblance at the global 

proteome level, including marker proteins, 

such as GYPA, CD49d, Band 3, c-Kit, and 

several hemoglobin subunits that did not 

significantly change (Figure 1E and Figure 

S2A-C). Thus, they were combined for 

further proteomic analysis unless otherwise 

noted. 

 

Dynamic and stage-specific proteome 

remodeling in erythropoiesis 

The five stages of human erythropoiesis 

clustered separately by principal component 

analysis (PCA) with very high concordance 

between replicates (Figure 2A). Hierarchical 

clustering of 4,316 proteins with statistically 

different expressions (ANOVA, FDR<0.01), 

revealed drastic differences in the stage-

specific proteomes. Rather than 

straightforward increase or decrease in 

protein levels across differentiation, proteins 

cluster into one of six distinct profiles of 

temporal co-expression dynamics (Figure 

2B and Table S3). In addition to known 

developmental themes in each cluster, GO 

enriched terms point to novel state-specific 

regulation (summarized in Figure S3). In 

pairwise comparisons between successive 

stages, 2,157 proteins (29%) changed 

significantly at the first transition (Figure 

2C). The overall proteome was more stable 

from ProE/EBaso to Poly stages, with 8.5% 

proteins up- or down-regulated. In contrast, 

almost 20% of the proteome significantly 

changed in the last investigated transition, 

reflecting the specialization towards mature 

erythrocytes (Figure 2C). 

 

To discover unique stage-specific marker 

proteins we compared all stages against each 

other (Figure S4A). Interestingly, the Poly 

stage can be distinguished by the 

centralspindlin and chromosomal passenger 

complexes (Benjamini-Hochberg, 

FDR<0.01). These proteins regulate 

cytokinesis in the late stages of cell division 

and also likely participate in erythroblast 

enucleation. Indeed, mutations in the kinesin 

KIF23B cause congenital dyserythropoietic 

anemia associated with erythroid 

multinuclearity and impaired erythropoiesis 

(Liljeholm et al., 2013). This analysis, like 

the ANOVA results, revealed the most 

drastic proteome changes occurring at the 

transition from progenitors to ProE/EBaso 

and from Poly to Ortho (Figure S4B). The 

cumulative proteome remodeling from the 

progenitors was reflected in a very large 

fraction of differentially represented proteins 

at the later maturation stages, Poly and Ortho 

(44% and 57%, respectively, two sample test, 

FDR<0.01 and S0=0.1) (Figure 2D). 

 

Taken together, our stage-specific proteomic 

data enable accurate, quantitative and in-

depth monitoring of global protein 

expression during human erythropoiesis. The 

identified proteins are potentially important 

for the functional specialization of erythroid 

cells towards mature erythrocytes and 

represent excellent starting points for more 

detailed mechanistic studies. 

 

Dramatic remodeling of the 

transmembrane proteome in 

erythropoiesis 

Our data captures distinct regulation of 

proteins that contribute to the highly 
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specialized erythroblast membrane at later 

developmental stages. Despite identification 

of several transmembrane proteins as 

markers of erythropoiesis over the years 

(Chen et al., 2009), there is still limited 

systems-wide information on them. Our 

optimized lysis and digestion protocol 

enabled unbiased access to the membrane 

proteome and provided a comprehensive 

view of membrane proteins during 

differentiation. Across the differentiation 

stages, we quantified 1,033 plasma 

membrane proteins (~21% of the total 

genome-encoded plasma membrane 

proteome in humans and ~14% in our study), 

of which 692 changed significantly (Table 

S1). Our data identifies a plethora of new 

examples that will aid in pinpointing 

maturation stages and in better understanding 

of of erythroid biology. 

 

Of the significantly changing membrane 

proteins, we could map 86% to pathways, 

with transport of small molecules across 

plasma membranes among the most 

represented (p 8.7 E-09). Further functional 

classification showed markedly strong 

enrichment of ‘SLC (solute carrier)-mediated 

transmembrane transport’ (Figure 3A). The 

roles of SLCs in biology has arguably been 

understudied, but now there are systematic 

efforts characterizing their roles (Cesar-

Razquin et al., 2015). Notably, since 

identification of “Band 3” as a solute carrier 

protein (SLC4A1) 35 years ago (Kopito and 

Lodish, 1985), it has become clear that SLC 

proteins must have widespread roles in 

erythropoiesis. Remarkably, our data 

quantified 101 SLCs, 68 of which 

significantly change in at least one transition 

(Figure 3B), likely reflecting remarkable 

changes in metabolic requirements along the 

stages of maturation. As summarized in 

Table S2, 62 of these have known or 

purported substrates associated with them.  

 

Only 22 of the significantly regulated SLCs 

have previously been linked to erythrocytes, 

erythropoiesis or anemia. For instance, 

Mitoferrin-1 (SLC25A37), with a continuous 

upregulation during erythroid maturation, is 

a mitochondrial iron importer essential for 

heme biosynthesis in erythroblasts (Shaw et 

al., 2006). For some SLCs, roles in 

transporting nutrients including glucose and 

amino acids, and ions such as zinc, and 

necessary functions as redox regulators in 

erythropoiesis have already been described 

(Table S2). In addition, our dataset also 

contains many transporters – including for 

vitamins, lipids,  and whose substrates have 

not yet been identified – vastly extending the 

repertoire of SLCs and transported molecules 

associated with erythropoiesis.   

 

Among the prominent observations emerging 

from our data were the several differentially 

expressed SLCs attributed to a common 

ligand. We first focused on hexose/glucose 

transporters. It has been known that cellular 

metabolism in mature red blood cells is 

strictly limited to glycolysis, which makes 

glucose uptake cruical for erythrocyte 

development. Glucose uptake during 

maturation appeared to roughly track with 

EPOR expression, reaching a maximal value 

when EPO response was highest, perhaps 

because of regulation by EPO stimulation in 

erythroid progenitor cells, as reported 

previously (Rogers et al., 2010). In line with 

the growing need for glucose during 

maturation, two out of four identified SLCs 

transporting glucose (SLC2A1 and SLC2A4) 

gradually increased from progenitors to 

Ortho (Figure 3B-C, Table S2) and their 

concordant profiles have been described 

recently (Justus et al., 2019). The other two 
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glucose transporters (SLC2A3 and 

SLC45A3) are highly expressed specifically 

in progenitors, and to our knowledge have 

not been associated with erythropoiesis; their 

regulation would be interesting to investigate 

in the future. 

 

A second remarkable example concerns 

SLCs for transporting metal ions (14 

identified in total) with a full eight of them 

dedicated to zinc import and export. 

Maintainence of intracellular zinc levels 

controlled by GATA/heme circuit has 

recently been discovered as a vital 

determinant of erythroid maturation 

(Tanimura et al., 2018). This indicates the 

adaptation of differentiating cells to stage-

specific metabolic requirements and their 

interaction with the environment. Apart from 

the zinc importer SLC30A1 and zinc exporter 

SLC39A8, previously described in a “zinc 

switch” model reflecting their reciprocal 

expression during terminal erythropoiesis 

(Tanimura et al., 2018), we here uncovered 

additional three upregulated exporters 

(SLC39 family) and three downregulated 

importers (SLC30 family) during maturation 

(Figure 3B-C, Table S2). Only one of these 

had prior implications in erythrocyte 

homeostasis (Ryu et al., 2008), suggesting 

even more intricate and possibly redundant 

regulation of zinc homeostasis. 

 

Computational extraction and 

characterization of stage-specific protein 

markers  

Given the distinct stage-specific expression 

patterns of the SLCs, we wondered if they 

could even serve as marker and selection 

proteins. The standard approaches for 

distinguishing erythroid developmental 

stages rely on canonical cell surface markers, 

including the ones we employed for FACS 

enrichments (Chen et al., 2009). Our 

proteomics analysis revealed that drastic 

proteome-wide changes of numerous 

proteins occurred at transitions, in particular 

from progenitors to ProE/EBaso and from 

Poly to Ortho, implying the expression of 

numerous new stage-specific protein markers 

that might be exploited for refining the 

isolation and quantification of each 

differentiation stage. Panels of proteins with 

characteristic profiles could also be useful for 

in silico deconvolution of mixed 

developmental populations.  

 

As a starting point, we investigated a known 

marker set of 22 proteins as well as FACS 

sorting markers (Table S2). These proteins 

correlated well with their expected 

expression profiles along the differentiation 

process. We next constituted a marker set of 

18 SLCs on the basis of the most consistent 

quantification profiles (Figure 3B). As a 

final set, we selected 18 stage-specific 

proteins from our proteomics data 

comprising the top three most significant 

ones for each of the six clusters in Figure 2A 

(cluster Top3 set, smallest ANOVA q-

values) (Table S2). Among those, KLF13, 

which  activates the promoters of several 

erythroid genes in vitro, was gradually 

upregulated until very late stages, consistent 

with its reported role in mouse erythroblast 

maturation (Asano et al., 2000; Gordon et al., 

2008). 

 

With these four protein panels in hand 

(sorting and known markers, cluster Top3, 

SLCs), we developed an in silico 

deconvolution approach to distinguish 

different developmental stages. Briefly, we 

used these marker panels to define signature 

matrices which we applied in 500 random in 

silico mixtures of aggregated abundances 

from a linear combination of the five 

differentiation stages at predefined ratios. We 
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evaluated the results by comparing the 

estimated ratios to the predefined ratios of the 

in silico mixtures (Figure 3D-E). 

 

The sorting and known markers reasonably 

estimated the fraction of the Ortho stage in 

the mixtures, but performed worse for all 

other stages (diagonal orange markers in 

Figure 3D). Remarkably, the cluster Top3 

and SLC markers better characterized the 

differentiation process than previously 

known proteins and produced more accurate 

estimations for both Ortho and progenitor 

fractions in the computational mixture 

populations (diagonal orange and yellow 

markers in Figure 3D). However, they were 

still less effective at distinguishing stages 

from ProE to Poly, in line with their smaller 

proteome differences in our data (Figure 

3D). A combined set of 62 proteins 

outperformed all others, even in estimating 

intermediate, adjacent differentiation stages 

as judged by a quantitative error analysis and 

compared to random controls (Methods, 

Figure 3E). In addition to recent advances in 

single cell transcriptomics (Tusi et al., 2018), 

our deconvolution approach could further aid 

the identification of specific populations 

amongst bulk pools obtained during 

erythropoiesis, for example in the study of 

differentiation dynamics from in vivo 

samples. The proteins selected in this 

analysis, especially the SLCs add to our 

resource as they are interesting candidates for 

investigating stage-specific mechanisms in 

follow up studies. 

 

An orchestrated network of erythropoietic 

kinases and their downstream targets 

Several kinases act in or have already been 

implicated in a complex regulatory network 

in erythropoiesis. To advance our 

understanding of the dynamic phospho-

regulatory network during erythropoiesis, we 

assessed temporal kinase activities at a global 

scale across terminal maturation. Mining of 

our proteome data revealed an astounding 

270 kinases and 90 phosphatases that were 

differentially expressed with clear stage-

specific profiles during differentiation 

(Figure 4A). To investigate their activities, 

we turned to phosphoproteomics which 

globally captures their substrates (Figure 

4B). We enriched phosphopeptides from the 

same differentiation stages in biological 

quadruplicates using the EasyPhos platform 

(Figure 4B) (Humphrey et al., 2015; 

Humphrey et al., 2018). This streamlined 

protocol enabled deep profiling of 

phosphoproteomes at specific developmental 

stages in single-run DDA measurements 

from only 80 µg of protein lysates, capturing 

27,166 distinct phosphosites on more than 

4,200 proteins (Figure 4B). Almost 20,000 

sites were identified in more than two 

replicates of at least one maturation stage and 

3,604 were novel sites according to the 

PhosphoSitePlus database (Hornbeck et al., 

2012) (Figure 4C and Table S3). Given the 

prominent changes in the plasma membrane 

proteome, it was interesting to see that 401 of 

them had phosphosites, often multiple ones 

within proximity in linear sequence stretches. 

This encompassed 23 of the aforementioned 

SLCs, sugesting stage-specific signaling 

roles (Taylor, 2009) in addition to their 

dynamic expression across stages. 

Specifically, our phosphoproteomics also 

identified Ser/Thr phosphorylation sites on 

Band 3, whose tyrosine phosphorylation is 

known to enable docking of cytoplasmic 

signaling molecules (Brunati et al., 2000; 

Yannoukakos et al., 1991). 

 

For further statistical analysis, we used a 

stringently filtered dataset of 12,216 

phosphopeptides quantified in all four 

replicates of at least one differentiation stage. 
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Strikingly, about half of these phosphosites 

significantly changed in at least one 

developmental transition (ANOVA, 

FDR<0.05) and a quarter of all phosphosites 

(3,089) were dephosphorylated from Poly to 

Ortho stage (Figure 4D and Table S3). 

 

To compare the dynamics of the 

phosphoproteomes to the proteomes, we 

visualized fold change distributions of 

quantified proteins (grey) and 

phosphopeptides (pink) for three pairwise 

comparisons: (i) progenitor vs ProE/EBaso, 

(ii) ProE/EBaso vs Poly, and (iii) Poly vs 

Ortho (Figure 4E). The fold change 

distributions of phosphopeptides were 

considerably more scattered than those of 

proteins in all three comparisons, reflecting 

dynamic, large scale phosphoregulation. The 

largest fold change of regulated 

phosphopeptides occurred between early 

stages of progenitor to ProE/EBaso and the 

later stages, Poly to Ortho (Figure 4E). The 

highly dynamic changes in global 

phosphorylation landscape likely reflects 

critical roles for distinct kinases at specific 

maturation stages. 

 

Next, we inferred kinase activities from the 

phosphoproteome by stage-dependent 

enrichment analysis using PhosFate profiler 

(Figure 4F) (Ochoa et al., 2016). This 

method predicts changes in kinase activity by 

testing the enrichment of differentially 

regulated, annotated kinase-substrate motifs. 

Substrates peaking during the early stages of 

differentiation (ProE/EBaso) were enriched 

with motifs for kinases of the MAPK 

signaling network (BRAF, MAPK1, 

MAPK3, FYN, SRC), which are known to 

promote cell cycle and proliferation (Carroll 

et al., 1991; Geest and Coffer, 2009; 

Sakamoto et al., 2000). Interestingly, the 

observed substrate phosphorylations suggest 

that CDK1 and many other cell cycle 

associated kinases (AURKB, BUB1, 

CDK14, CDK16, CDK2, CDK3, CDK4, 

CDK5, CDK6, and DYRK3) remain active 

until very late stages (Poly and Ortho). DNA 

damage checkpoint kinases (ATM, ATR, and 

CHEK2) were also enriched, presumably to 

maintain genome stability during erythroid 

differentiation. Together, our data reveal a 

rich network of temporally activated kinases 

during differentiation of human erythrocytes. 

 

 CRISPR/Cas9 screen reveals critical 

functions of the erythropoietic kinome 

The proteomics analysis established a 

“kinome atlas” revealing dynamic changes in 

kinase abundance and activity at distinct 

stages of erythropoiesis, with a dramatic 

decrease in the global phosphoproteome 

during late maturation. To investigate 

potential functional implications of these 

changes, we performed a CRISPR/Cas9 

screen in HUDEP-2 cells, an immortalized 

human erythroblast line that proliferates in an 

immature state and can be induced to undergo 

terminal maturation by manipulation of 

culture conditions (Kurita et al., 2013). 

HUDEP-2 cells stably expressing Cas9 

(HUDEP-2Cas9) were transduced at low 

multiplicity of infection with a lentiviral 

vector library encoding 3,051 single guide 

(sg) RNAs targeting the coding regions of 

most known kinases (n=482) and a green 

fluorescence protein (GFP) reporter gene 

(Grevet et al., 2018; Tarumoto et al., 2018) 

(Figure 5A). Two days later, GFP+ cells were 

flow cytometry-purified, and split into pools 

for further expansion or induced maturation, 

followed by next generation sequencing 

(NGS) to assess sgRNA abundance (Figure 

5A and S5A-D). Compared to cells at two 

days post-transduction (“day0”), 30 sgRNAs 

were underrepresented after 10 days of 

expansion (FDR<0.05), reflecting candidate 
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kinase genes that promote survival and/or 

proliferation of immature erythroblasts 

(Figure 5B and Table S4). These genes 

encoded cyclin-dependent kinases (CDK1, 

CDK7, CDK9), cell signaling components 

(KIT, JAK2), DNA damage checkpoint 

response proteins (ATR, CHEK1) and a 

regulator of ion flux (OXSR1), several of 

which exhibited maturation stage-specific 

expression in our proteome analysis (e.g. 

CDK1, CDK9, ATR, KIT, and JAK2) (Figure 

4F). The KIT and JAK2 genes are essential 

signaling molecules for erythropoiesis 

(Munugalavadla and Kapur, 2005; Neubauer 

et al., 1998; Parganas et al., 1998). Previous 

proteomic studies identified OXSR1 (OSR, 

oxidative stress-responsive kinase 1) as one 

of the most abundant Ser/Thr kinases in 

reticulocytes and mature erythrocytes 

(Gautier et al., 2018). The OXSR1 protein 

phosphorylates Na+–K+ and K+–Cl− 

membrane co-transporters to activate and 

inhibit their activities, respectively (de Los 

Heros et al., 2014). Our data suggest a role 

for OSXR1 in the maintenance of erythroid 

precursors. 

 

Transduced HUDEP-2 cells induced to 

undergo terminal maturation were cultured 

for 3 days, fractionated according to their 

expression of the late-stage erythroid marker 

Band 3, and analyzed by NGS for sgRNA 

abundance. Single guide RNAs for five genes 

were significantly overrepresented in 

immature (Band3-) cells, indicating that these 

genes are positive effectors of maturation, 

while sgRNAs for nine genes were 

overrepresented in mature (Band3+) cells, 

representing candidates that inhibit 

maturation (Figure 5C and Table S5). There 

was minimal overlap between genes that 

affect expansion or maturation (Figure S5E). 

Notably, eight kinases identified as 

regulating differentiation in the 

CRISPR/Cas9 screen are also identified 

amongst the stage-specific active kinases 

predicted by phosphorylation of their cognate 

motifs (Figure 4F and Figure S5F). 

 

We noted that disruption of numerous genes 

stimulating the Ras/MAPK signaling 

pathway caused accelerated erythroid 

maturation (Figure 5C). Three of the 

corresponding proteins, RAF1, BRAF1 and 

MAPK1, are members of the canonical 

Ras/MAPK family, while LYN is known to 

engage and potentiate RAF1 (Tilbrook et al., 

2001). In non-erythroid cells, PIM1 kinase 

has been shown to phosphorylate ERK and 

activate Ras/MAPK signaling (Wang et al., 

2012). To validate these candidates, we 

transduced Cas9-expressing HUDEP-2 cells 

with individual sgRNAs for each gene and 

then induced erythroid maturation. 

Consistent with results of the screen, 

knockout of RAF1, BRAF1, MAPK3, LYN or 

PIM1 resulted in significantly accelerated 

terminal maturation (Figure 5D-E and S5G-

I). Together, these findings indicate that 

downregulation of the Ras/MAPK pathway 

promotes terminal erythroid maturation. 

Consistent with this hypothesis, the TGFRB2 

gene, identified as positive regulator of 

maturation (Figure 5C), is known to inhibit 

MAPK signaling (Li et al., 2014b). 

 

Results of the screen identified PIM1 as a 

candidate gene that both drives erythroid 

precursor expansion and inhibits maturation 

(Figures 5B-C and S5H). Consistent with 

the latter, PIM1 protein levels were 

undetectable after the LBaso stage (Figure 

5F). The PIM1 gene encodes a serine-

threonine kinase oncoprotein that stimulates 

cell survival and cell cycle progression by 

phosphorylating numerous substrates that 

have been identified in non-erythroid cell 

types. To identify potential effectors of PIM1 
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signaling in erythroid cells, we searched our 

phosphoproteomics data for previously-

described PIM1 substrates (Hornbeck et al., 

2012) and identified 25 significant 

phosphosites (out of 100) that coincided with 

PIM1 expression (Figure 5G). We then 

generated a PIM1 phosphorylation site 

consensus motif using the PhophoSitePlus 

database (Hornbeck et al., 2012) (Figure 

5H), and investigated whether the motif is 

enriched in the erythroid maturation stage-

dependent phosphoproteome. This identified 

79 phosphorylation targets of which 54% 

have maturation stage-dependent profiles 

correlating with PIM1 protein abundance 

(Figure 5I). GO-term analysis revealed 

significant enrichment of terms associated 

with “chromatin remodeling”, 

“transcriptional regulation”, 

“kinase/phosphatase activity”, and 

“ubiquitylation” (Figure 5J). Of particular 

interest were Ras/MAPK family members 

such as MAP3K1, MAP3K5 and MAP3K2, 

consistent with a regulatory role of  PIM1 in 

Ras/MAPK signaling. 

 

System-wide dissection of c-Kit and EPOR 

phosphosignaling in erythropoiesis 

Phosphoprotein analysis and a CRISPR-

Cas9-sgRNA screen defined a dynamic, 

developmental stage-specific kinome during 

erythropoiesis and indicated that Ras/MAPK 

downregulation might be critical for 

erythroid maturation. We explored this 

further by examining our proteomics dataset 

for Ras/MAPK signaling components in 

relation to the expression and activities of c-

Kit and EPOR. The kinetics of Ras/MAPK 

protein expression varied across erythroid 

maturation with MAPK1, MAPK3 and RAF1 

persisting into late maturation stages (Figure 

6A), suggesting that their activity may be 

suppressed post-translationally. In 

agreement, activating T185/Y187 

phosphorylations on ERK indicated maximal 

activity during ProE/EBaso and termination 

by the LBaso stage (Figure 6B) (Gupta and 

Prywes, 2002; Michaud et al., 1995). The 

activating S63 phosphorylation on ATF1, a 

distal target of Ras/MAPK signaling, peaked 

later (at the LBaso stage) and persisted 

throughout erythroid maturation (Figure 

6B). The RSK kinase, which phosphorylates 

ATF1, is activated by both MAPK and 

PI3K/Akt-mTOR signaling (Koh et al., 

1999). 

 

The erythroid cytokine receptors c-Kit and 

EPOR have distinct roles in erythropoiesis, 

although their signaling pathways overlap 

considerably (Figure 6C). Our erythroid 

culture system contained both SCF (c-Kit 

Ligand) and EPO in the first and second 

phase (day0-7) and EPO only in the third 

phase (day12-14) (Figure 1A).  The rationale 

for this culture system is based on findings 

that persistently elevated SCF-c-Kit 

signaling inhibits terminal erythroid 

maturation (Haas et al., 2015; 

Munugalavadla et al., 2005; Muta et al., 

1995). The levels of c-Kit and EPOR/JAK2 

proteins decreased during differentiation but 

with differing kinetics (Figures 6D). c-Kit 

levels declined after the ProE stage, similar 

to ERK activity. Tyrosine phosphorylation in 

the c-Kit cytoplasmic domain, which reflects 

receptor activity (Lennartsson and 

Ronnstrand, 2012), was maximal in erythroid 

progenitors and ProE/EBaso and decreased 

by the LBaso stage, even with SCF present in 

the culture media (Figure 6D). ERK2 

phosphorylation declined at the same stage, 

even with SCF present in the culture medium 

(LBaso day7) and was undetectable in LBaso 

day14 when SCF was not present in the 

medium. Thus, c-Kit protein levels and its 

phosphorylation, along with downstream 

Ras/MAPK signaling are downregulated 
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relatively early in erythroid maturation, 

consistent with the literature (Figure 6E-F) 

(Gautier et al., 2016; Matsuzaki et al., 2000). 

 

Compared to c-Kit, EPOR/JAK2 levels were 

stable until the Poly stage. We were not able 

to detect phosphorylation of EPOR or JAK2, 

perhaps because the levels of these proteins 

are relatively low. Compared to ERK, 

STAT5 phosphorylation declined more 

slowly and persisted until the later stages of 

erythropoiesis, similar to the kinetics of 

EPOR expression (Figure 6G). Thus, ERK 

phosphorylation levels parallel the 

expression and activation of c-Kit, while 

phospho-STAT5 levels correlate with 

expression of EPOR, likely reflecting 

preferential signaling activities of the two 

cytokine receptor pathways. Together, our 

findings suggest that Ras/MAPK activity 

occurs during early stages of erythropoiesis, 

delays terminal maturation and is c-Kit 

driven. This is consistent with the established 

role for c-Kit in supporting proliferation and 

survival of early erythroid progenitor cells 

and a requirement for c-Kit downregulation 

during normal erythropoiesis (Bernstein et 

al., 1991; Muta et al., 1995; Nocka et al., 

1989). 

 

Phosphorylation is also regulated by 

phosphatases. Of 51 phosphatases implicated 

in inhibiting the Ras/MAPK pathway 

(Kondoh and Nishida, 2007; Li et al., 2013), 

16 were detected in our data, 6 of which were 

induced during terminal maturation (Figure 

6H). The majority of these phosphatases are 

novel candidate genes whose roles in 

erythropoiesis need further exploration.  

 

DISCUSSION 

Here we show that in-depth quantitative 

proteomic and phosphoproteomic analysis of 

purified erythroid precursors at distinct 

maturation stages is now made possible by 

state-of-the art MS-based proteomics and our 

EasyPhos technology, allowing us to assess 

erythroid maturation at the level of the 

proteins, the main functional cellular entities. 

The breadth and depth of coverage achieved 

by these technologies offers unbiased system 

wide insights into the regulation of  

erythropoiesis, which we complemented 

further by performing an unbiased 

CRISPR/Cas9 screen to interrogate the 

erythroid kinome. 

 

Our analyses of proteins mediating solute 

transport and phospho-based signaling 

highlight two examples by which the data can 

be mined for hypothesis generating discovery 

and focused problems related to erythrod 

biology. The key emerging concept is that 

proteome-wide changes accompanying 

differentiation from early erythroid 

progenitors into nearly mature erythrocytes 

involves remarkable regulation of and by 

signaling pathways – at the protein level. 

 

Tracking the levels across particular families 

of proteins defined numerous distinctive 

stage-specific profiles, exemplified by 

coordinated expression of specific cohorts of 

SLCs, kinases, and phosphatases. For some 

of these SLCs, previous reports established 

roles in transporting crucial molecules for 

erythropoiesis (Table S3). However, the 

much larger repertoire of SLCs of unknown 

biological function likely reflects erythroid 

stage-specific metabolic requirements to be 

elucidated in future studies. Beyond this, 

both the substrate diversity of SLCs and their 

widespread phosphorylation (average of 

three per SLC) point toward exquisite fine-

tuning and coordination of transporters with 

stage-specific signaling pathways. So far, 

very few examples of this mode of regulation 

have been described, most prominently the 
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tyrosine phosphorylation of the SLC Band 3, 

which mediates docking of cytoplasmic 

signaling molecules (Brunati et al., 2000). 

The prevalence of stage-specific SLC 

phosphorylation observed here may indicate 

system-wide coordination of small molecule 

transport with cytoplasmic signaling 

throughout erythroid maturation and across 

many transporters. SLCs are relevant to 

therapeutics of several human diseases and to 

drug discovery, either as drug targets 

themselves or as mediators of drug uptake 

(Cesar-Razquin et al., 2015). It now seems 

likely that the varying expression of SLCs 

with overlapping selectivities, as well as their 

regulation by post-translational modification, 

will also contribute to pathology and provide 

opportunities for therapeutic development 

(Noomuna et al., 2020). Importantly, our data 

provide a framework for systemwide studies 

of SLC small molecule flux and signaling 

throughout the differentiation process. The 

dynamics of SLCs, together with more than 

700 other quantified membrane proteins may 

furthermore contribute to our understanding 

of changing cell membrane properties 

required for erythropoiesis. 

 

The distinct cohorts of kinases and 

phosphatases expressed coordinately and 

with varying kinetics across the erythrocyte 

maturation pathway likewise reflect 

extensive protein-level regulation, in this 

case through post-translational modification.  

With this notion in mind, we complemented 

the quantitative stage-specific proteome 

measurements with a kinome-targeting 

CRISPR/Cas9 screen and 

phosphoproteomics, which provides a profile 

of system-wide signaling across erythroid 

maturation. Pursuing PIM1, the highest 

scoring hit for erythroid maturation of 

HUDEP-2 cells, we defined a composite 

profile based on (1) stage-specific 

expression, (2) phosphorylation kinetics of 

known substrates, and (3) a PIM1 consensus 

sequence by correlation. Further analysis 

then provided a list of candidate PIM1 

substrates that kinetically parallel PIM1 

activity and may coordinate PIM1 activity 

with that of other diverse signaling effectors 

including epigenetic regulators, regulators of 

ubiquitin signaling, and more, whose 

functional roles in erythropoiesis can now be 

studied. 

 

We also took advantage of our data to mine 

the stage-resolved phosphoproteomics of the 

SCF- and EPO-triggered signaling network, 

based on its crucial role in erythropoiesis, and 

opportunities offered by our culturing and 

FACS-based protocol. Combining 

phosphoproteomics and a functional screen, 

our data highlights a general decrease in 

kinase activity across the erythroid proteome 

during terminal maturation and in particular 

a critical role for downregulation of 

Ras/MAP kinases activity is suggested. 

Previous studies have demonstrated defective 

terminal maturation in systems expressing 

either constitutively active forms of c-Kit  or 

Ras proteins (Haas et al., 2015; Matsuzaki et 

al., 2000). Our systems-wide analysis of 

erythropoiesis derived from primary healthy 

donor human CD34+ cells suggests c-Kit 

drives expansion of early erythroid 

precursors and inhibits terminal maturation 

via Ras/MAPK signaling whereas EPOR 

drives signaling predominantly via the JAK-

STAT5 pathway to foster later stages of 

terminal maturation. These examples 

demonstrate the ability to gain insight on 

regulation of complex signaling systems 

during erythropoiesis using our 

phosphoproteomics dataset and provide a 

framework for future studies to interrogate 

stage-specific erythroid cytokine signaling 
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and regulatory pathways that dampen this 

signaling. 

 

Given the unexpectedly large role of 

phosphosignaling during erythropoiesis 

defined by our unbiased global, high 

resolution proteomic study, it will now be 

interesting to investigate other post 

translational protein modifications, which 

could employ different enrichment steps but 

similar strategies for bioformatic and 

functional follow up. In this regard, we 

already observed distinct regulation of more 

than a hundred members of the ubiquitin 

machinery, making this post-translational 

modification particularly exciting for further 

explorations. 
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Figure 1. Establishing differentiation stage-specific proteomes of human erythropoiesis 

(A) Top panel depicts culture conditions for in vitro erythroid differentiation of CD34+ cells. 

Shading indicates the presence of SCF and EPO (yellow), or EPO alone (pink). The lower 

panels indicat the workflow of our study, including FACS gating/sorting strategy of erythroid 

precursors and single shot DIA analysis. 

(B) FACS gating regime to enrich for ProE, EBaso, LBaso, Poly, and Ortho erythroblasts. 

(C) Number of different proteins quantified in each differentiation stage. 

(D) Correlation based clustering illustrating the reproducibility between biological replicates. 

High (1.0) and lower (0.8) Pearson correlations are denoted in pink and blue, respectively. 

(E) Estimated copy numbers of total molecules (purple) and mean copy numbers of the proteins 

with GO annotations “erythrocyte maturation” and “heme biosynthesis” (green) per cell across 

maturation stages. 
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Figure 2. Dynamic and stage-specific proteome remodeling in erythropoiesis 

(A) PCA of differentiation stages along with their biological replicates based on their proteomic 

expression profiles. 

(B) Heat map of z-scored protein abundances (log2 DIA intensities) of the differentially 

expressed proteins (ANOVA, FDR<0.01) after hierarchical clustering reveals six main profiles. 

Mean z-scores with standard errors (SEM) are shown in each stage. 

(C) Number of differentially expressed proteins in pairwise comparisons of succcessive stages 

of human erythroid differentiation. 

 (D) Individual Volcano plots of the (-log10) p-values vs. the log2 protein abundance 

differences between progenitor and the four differentiation stages. Selected significant proteins 

and previously reported marker proteins are labeled in pink and blue, respectively and 

significance lines (FDR<0.01) are shown. 
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Figure 3. Solute carriers in erythroid maturation and computational extraction of stage-

specific protein markers  

(A) Plot shows the overrepresented Reactome pathways (Jassal, 2011; Jassal et al., 2020) with 

their corrected p-values (-log10) and the ratios of given entities from a particular pathway vs 

all entities from that pathway (n=1,882). 

(B) Heat map of z-scored SLC protein abundances (log2 DIA intensities) across differentiation. 

The proteins in red were used to generate the input matrix for the SLCs marker set used in D 

and E. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.18.102178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.102178


18 
 

(C) Expression of four different glucose transporters during erythrocyte development (log2 DIA 

intensities, left panel). Counterveiling expression regulation of zinc importers and exporters 

during erythrocyte development (log2 DIA intensities, right panel).  

(D) Computation sorting quality comparing pre-defined versus estimated ratios of cells in the 

five differentiation stages. 

(E) Accuracy of cell type prediction based on different protein marker stets as measured by a 

weighted error metric (y-axis, also see Methods). The blue violin plots illustrate the underlying 

distribution reaching from minimum to maximum. The black box plots depict the quartiles of 

the distribution with whiskers extending to the quartiles ± 1.5 x interquartile range. The orange 

horizontal lines indicate the median and the orange dot highlights the mean of the distribution. 
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Figure 4. An orchestrated network of erythropoietic kinases and their downstreat targets 

(A) Heat map of z-scored and differentially regulated kinase and phosphatase abundances (log2 

DIA intensities) across differentiation. 

(B) Experimental design of the phosphoproteomic study, performed on the same populations 

as collected for the full proteome analyses (also see Figure 1A). Analytical workflow including 

phospho-enrichment, single shot DDA acquisition and data analysis. 

(C) Number of identified and quantified Class 1 sites (localization probability to a single amino 

acid  > 0.75) after filtering for 50% data completeness in at least one differentiation stage. Total 

number of phosphoproteins is also shown. 
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(D) Significantly regulated phosphorylated sites in pairwise comparisons of ProE/EBaso vs 

Progenitor, Poly vs ProE/EBaso, and Ortho vs Poly. 

(E) Distributions of phosphopeptides and their matching proteins based on their log10 

intensities (Y-axis) vs log2 test differences (X-axis) are illustrated for ProE/EBaso vs 

Progenitor (left), Poly vs ProE/EBaso (middle), and Ortho vs Poly (right). Pink represents 

phosphopeptides whereas grey represents proteins.  

(F) Stage-specific predicted active kinases based on targeted sites identified by PhosFate 

profiler (http://phosfate.com). Left boxes represent kinases whose substrates are preferentially 

detected at the earlier stage of differentiation and right boxes represent those whose substrates 

are preferentially detected at the later stage. 
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Figure 5. Kinome-targeting CRISPR/Cas9 screen in HUDEP-2 cells 

(A) Workflow of a CRISPR/Cas9 screen with an sgRNA library targeting 482 human kinase 

genes to identify those that alter erythroid precuresor expansion or terminal maturation.  

(B) Volcano plots showing FDR vs log2 fold-change in sgRNA abundance between Day 0 and 

Day 10 of expansion. Results were analyzed using Mageck (Methods). Each dot represents a 
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single kinase gene based on the enrichment of four sgRNAs. Significantly different genes 

(FDR<0.05; log2fold-change<-1) are shown in red. 

(C) Volcano plots showing FDR vs log2 fold-change in sgRNA abundance between Band3 high 

and low fractions after three days of maturation. Results were analyzed using Mageck 

(Methods). Each dot represents a single kinase gene based on the enrichment of four sgRNAs. 

The significant positive or negative regulators for maturation (FDR <0.05; log2 fold-change<-

0.5 and  log2 fold-change>0.5) are shown in purple and green, respectively. 

(D) HUDEP-2 cells expressing Cas9 were were transduced with lentiviral vectors encoding 

single sgRNAs targeting the indicated genes, induced to undergo terminal maturation and 

analyzed after 3 days. Graph shows fraction of Band3+ cells. Error bars represent mean ± SEM 

of 3 biological replicates. *P < 0.05, **P < 0.01, ***P < 0.005; n.s., not significant; unpaired 

t-test. 

(E) Effects of two different PIM1-targetign sgRNAson erythroid maturation of HUDEP-2 cells, 

performed as described for panel D. Error bars represent mean ± SEM of 3 technical replicates. 

***P < 0.005, ****P < 0.0001; unpaired t-test. 

(F) Protein abundances (log2) of PIM1 during terminal differentiation of primary erythroblasts. 

Yellow highlighting indicates that SCF and EPO were present in the culture medium, while 

pink indicates EPO only. 

(G) Heat map showing z-scored (log2) phosphopeptide intensities detected in known PIM1 

substrates. 

(H) Consensus PIM1 kinase motif from PhosphoSitePlus database (Hornbeck et al., 2012). 

(I) Heat map of z-scored (log2) phosphopeptide intensities of potential PIM1 kinase targets 

identified by motif analysis. 

(I) Gene Ontology (GO) enrichment analysis of potential PIM1 kinase targets, performed using 

Fischer’s exact test. 5% threshold was applied to Benjamini-Hochberg FDR to determine the 

significance. 
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Figure 6. System-wide dissection of c-Kit and EPOR phosphosignaling 

(A) Protein abundances (log2 DIA intensities) normalized to progenitor stage. In all panels, 

stages shaded yellow were cultured with SCF and EPO, while those shaded pink were cultured 

with EPO only. Data is plotted if quantified in at least 50% of biological replicates. Error bars 

represent mean ± SEM of at least two biological replicates. 

(B) Profiles of phosphorylations (log2 DDA intensities) normalized to progenitor stage.  

(C) Major signaling pathways downstream of c-Kit and EPOR activation by their corresponding 

ligands stem cell factor (SCF) and erythropoietin (EPO). Shaded genes indicate those 

indentified to inhibit erythroid maturation in the CRISPR/Cas9 screen described in Figure 5. 

(D) Protein abundances (log2 DIA intensities) of c-Kit, EPOR, and JAK2, normalized to 

progenitor stage. 
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(E) Following activation by SCF, phosphorylated tyrosine residues on c-Kit receptor serve as 

binding sites to key signal transduction molecules (SRC, GRB2, and PI3K) resulting in 

activation of downstream signaling pathways. 

(F) Heat map of z-scored (log2) phosphopeptide intensities of c-Kit receptor. 

(G) Profiles of STAT5A/B phosphorylations (log2 DDA intensities) normalized to progenitor 

stage.  

(H) Heat map of z-scored protein abundances (log2 DIA intensities) of phosphatases. 

 

 

ACKNOWLEDGEMENT 

This work was supported by the Max-Planck Society for the Advancement of Science and by 

the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHU 3196/1-

1“. We thank Florian Meier, Igor Paron, Christian Deiml, Philipp Geyer, Johannes B Mueller, 

Fynn M Hansen, Sebastian Virreira Winter and all the members of the departments of 

Proteomics and Signal Transduction and Molecular Machines and Signaling at Max-Planck-

Institute of Biochemistry for their assistances and helpful discussions. We also thank the NCI 

Cancer Center grant to St. Jude (NIHP30CA021765) and St Jude Core facilities including Flow 

Core for cell sorting, Hartwell Center for NGS, and Image Core for Cytospin Scanning.  

 

AUTHOR CONTRIBUTIONS 

OK performed proteomics experiments and analyzed the data. PX and YY performed FACS 

sorting, tissue culture experiments and CRISPR/Cas9 screen and biological validation assay for 

PIM1. IB developed the bioinformatics deconvolution approach to validate markers. ARFC and 

ASD helped with the bioinformatics analysis of phosphoproteome data. SVB helped with the 

analysis and the interpretation of the data. OK, PX, AFA, SVB, BAS, MW and MM designed 

the study and wrote the paper. BAS, AFA, MW and MM coordinated and supervised. 

 

DECLARATION OF INTERESTS 

The authors declare no competing interests. 

 

STAR METHODS 

CD34+ cell culture and manipulation 

Human CD34+ cells were obtained under human subject research protocols that were approved 

by local ethical committees: St. Jude Children’s Research Hospital protocol “Bone marrow for 

hemoglobinopathy research” (NCT00669305). CD34+ hematopoietic stem and progenitor cells 

(HSPCs) were mobilized from normal subjects by granulocyte colony-stimulating factor, 

collected by apheresis, and enriched by immunomagnetic bead selection using an autoMACS 

Pro Separator (Miltenyi Biotec), according to the manufacturer’s protocol. At least 95% purity 

was achieved, as assessed by flow cytometry using a PE-conjugated anti-human CD34 antibody 

(Miltenyi Biotec, clone AC136, #130-081-002). A 3-phase culture protocol was used to 

promote erythroid differentiation and maturation. In phase 1 (days0–7), cells were cultured at 

a density of 105–106 cells/mL in IMDM with 2% human AB plasma, 3% human AB serum, 1% 

penicillin/streptomycin, 3 IU/mL heparin, 10 µg/mL insulin, 200 µg/mL holo-transferrin, 1 IU 

EPO, 10 ng/mL SCF, and 1 ng/mL IL-3. In phase 2 (days8–12), IL-3 was omitted from the 
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medium. In phase 3 (days12–18), cells were cultured at a density of 106/mL, with both IL-3 and 

SCF being omitted from the medium and the holo-transferrin concentration increased to 1 

mg/ml. Erythroid differentiation and maturation were monitored by flow cytometry, using 

FITC-conjugated anti-CD235a (BD Biosciences, clone GA-R2, #561017), APC-conjugated 

anti-Band3 (gift from Xiuli An Lab in New York Blood Center), and VioBlue-conjugated anti-

CD49d (Miltenyi, clone MZ18-24A9, #130-099-680). 

 

CRISPR/Cas9 screen with kinase-domain library 

The kinase domain-focused sgRNA library was designed based on the human kinase gene list 

from a previous study (Manning et al., 2002). The kinase enzymatic domain information was 

retrieved from NCBI database conserved domain annotation. Six independent sgRNAs were 

designed for targeting each individual domain regions. All the sgRNAs were designed using 

the same design principle reported previously and the sgRNAs with the prediction of high off-

target effect were excluded (Hsu et al., 2013). Domain targeting and positive/negative control 

sgRNAs were synthesized in duplicate or triplicate in a pooled format on an array platform 

(Twist Bioscience) and then PCR cloned into the BsmB1-digested LRG2.1 vector (Addgene: 

#108098) using Gibson Assembly kit (NEB). Approximately 12 × 106 HUDEP-2 cells stably 

expressing Cas9 were transduced at a multiplicity of infection (MOI) of ~0.3 to minimize the 

transduction of any cell with more than 1 vector particle and achieve an approximately 1000-

fold library coverage (100ul Virus per 2 M cells) such that 40% cell were GFP positive. Two 

days after infection, GFP+ cells were sorted by FACS and then maintained in the expansion 

medium for 6 days (total 8 days post-infection). Then, half of total cells were kept in expansion 

culture for additional 10 days and the other half were transitioned to differentiation media and 

induced maturation for 3 days. Erythroid maturation was monitored by flow cytometry, using 

FITC-conjugated anti-CD235a (BD Biosciences, clone GA-R2), APC-conjugated anti-Band3 

(gift from Xiuli An Lab in New York Blood Center), and Violet Blue–conjugated anti-CD49d 

(Miltenyi, clone MZ18-24A9). Band3+ and Band3– cell populations from the CD235a+ cell 

fraction was purified by fluorescence-activated cell sorting (FACS). Library preparation and 

deep sequencing were performed as previously described 46,47. Briefly, genomic DNA was 

extracted using the DNeasy Blood and Tissue kit (Qiagen). Reactions were done with 24 cycles 

of amplification with 200 ng of gDNA in 25 µL CloneAmp enzyme system and 8 parallel 

reactions were performed to maintain sgRNA library representation. PCR reactions were then 

pooled for each sample and column pfrified with QIAGEN PCR purification kit. PCR products 

were analyzed on an agarose gel, and the DNA band of expected size was excised and purified. 

Miseq 250-bp paired-end sequencing (Illumina) was performed. For data analysis, FastQ files 

obtained after MiSeq sequencing were demultiplexed using the MiSeq Reporter software 

(Illumina). Paired reads were trimmed and filtered using the CLC Genomics Workbench 

(Qiagen) and matched against sgRNA sequences within the library. Read counts for each 

sgRNA were normalized against total read counts across all samples. Mageck method were 

used for differential analysis for sgRNA and Gene ranking (Li et al., 2014c; Wang et al., 2019). 

A P < 0.05 was considered to be statistically significant. 

 

HUDEP-2 cell culture and induced maturation 
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Mycoplasma-free HUDEP-2 cells were cultured as described (Kurita et al., 2013). Immature 

cells were expanded in the StemSpan serum-free medium (SFEM; Stem Cell Technologies) 

supplemented with 1 µM dexamethasone, 1 µg/mL doxycycline, 50 ng/mL human stem cell 

factor (SCF), 3 units/mL erythropoietin (EPO), and 1% penicillin–streptomycin. To induce 

erythroid maturation, HUDEP-2 cells were cultured in a differentiation medium composed of 

IMDM base medium (Invitrogen) supplemented with 2% FBS, 3% human serum albumin, 3 

units/mL EPO, 10 µg/mL insulin, 1000 µg/mL holo-transferrin, and 3 units/mL heparin. 

Erythroid differentiation and maturation were monitored by flow cytometry, using FITC-

conjugated anti-CD235a (BD Biosciences, clone GA-R2, #561017), APC-conjugated anti-

Band3 (gift from Xiuli An Lab in New York Blood Center), and VioBlue-conjugated anti-

CD49d (Miltenyi, clone MZ18-24A9, #130-099-680). 

 

CRISPR/Cas9–mediated genome editing of HUDEP-2 cells  

The sgRNA sequences were selected from the CRISPR library, generated as oligonucleotides. 

After annealing, construct was cloned into the BbsI or BsmBI site of the pXPR_003 vector. 

Lentivirus supernatant were prepared from 293T cells. For cell pool genome editing, HUDEP-

2 cells stably expressing Cas9 were transduced with lentiviral vector (pXPR_003) encoding 

individual sgRNAs. Cells were incubated for 7–10 days with 10 µg/mL blasticidin and 1 µg/mL 

puromycin to select for transduction with sgRNA and Cas9 vectors, respectively. On-target 

insertion/deletion mutations were characterized by PCR, followed by next-generation 

sequencing or TIDE-seq analysis from Sanger sequencing datasets.  

 

Cell lysates and immunoblot analysis 

Cells were suspended in Thermo Scientific Pierce IP Lysis Buffer (ThermoFisher #87787) 

supplemented with  1 mM phenylmethylsulfonyl fluoride, and 1:500 protease inhibitor cocktail 

(Sigma–Aldrich). Proteins were resolved on polyacrylamide gels (BioRad), transferred to a 

PVDF membrane, and incubated in blocking buffer (5% milk in TBST). Antibody staining was 

visualized using the Odyssey CLx Imaging System. 

 

(Phospho)proteome sample preparation for MS analysis  

All MS experiments were performed in biological quadruplicates. Cell pellets were lysed in 

SDC buffer (4% Sodium deoxycholate in 100 mM Tris pH 8.5) and heated for 5 min at 95°C. 

Lysates were cooled on ice and sonicated. Protein concentration was determined by Tryptophan 

assay as described previously (Kulak et al., 2014). We later made samples up to the equal 

amounts (120 μg) and in the same volumes (270 μl) and reduced disulphide bonds and 

carbamidomethylate cysteine residues by adding TCEP and 2-Chloroacetamide to the final 

volumes of 10 mM and 40 mM, respectively, for 5 min at 45°C. Next, samples were transferred 

into a 96-deep well plate (DWP). Protein was subsequently digested by the addition of 1:100 

LysC and Trypsin overnight at 37°C with agitation (1,500 rpm). Next day, 20 μg of protein 

material was aliquoted and processed using an in-StageTip (iST) protocol as described 

previously (Kulak et al., 2014). After peptide clean-up step, concentration was estimated by 

UV spectrometry and approximately 500 ng was used for single shot DIA analysis. 

Furthermore, ~10ug of clean peptides were fractionated using the high-pH reversed-phase 
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`Spider fractionator` into 8 fractions as described previously to generate deep proteomes to 

build spectral library (Kulak et al., 2017). 

 

The rest of digested peptides (~100 μg) in the DWP were used for phophospeptide enrichment 

using the EasyPhos workflow as described previously (Humphrey et al., 2015; Humphrey et 

al., 2018). After mixing peptides with Isopropanol and EP enrichment buffer (48% TFA, 8 mM 

KH2PO4), they were enriched with 5mg of TiO2 beads which were prepared at a concentration 

of 1 mg/μl in loading buffer (6% TFA/80% ACN (vol/vol)) and incubated at 40°C with shaking 

(2,000 rpm) for 5 min. Afterwards, the phosphopeptide containing TiO2 beads were further 

washed with 4ml wash buffer (5% TFA/60% ISO (vol/vol)), and treated with elution buffer 

(40% ACN, 15% NH4OH). Eluted phosphopeptides were concentrated in a SpeedVac for 

20min at 45 °C, during which process the volatile salts such as NH4OH and ABC are removed. 

The samples were then desalted using StageTips loaded with SDB-RPS discs, and again 

concentrated in a SpeedVac until dry. 6 μl MS loading buffer (0.2% TFA/2% ACN (vol/vol).) 

was added to the samples, which were then sonicated for 5 min in a bath sonicator. 

 

Liquid chromatography-MS analysis 

Nanoflow LC-MS/MS measurements were carried out on an EASY-nLC 1200 system 

(ThermoFisher Scientific) combined with the latest generation linear quadrupole Orbitrap 

instrument (Q Exactive HF-X) coupled to a nano-electrospray ion source (Thermo Fisher 

Scientific). We always used a 50 cm HPLC column (75 μm inner diameter, in-house packed 

into the tip with ReproSil-Pur C18-AQ 1.9 μm resin (Dr. Maisch GmbH)). Column temperature 

was kept at 60°C by a Peltier element containing in-house developed oven. 

 

500 ng peptides were analyzed with a 100 min gradient. Peptides were loaded in buffer A (0.1% 

formic acid (FA) (v/v)) and eluted with a linear 80 min gradient of 5-30% of buffer B (80% 

acetonitrile (ACN) plus 0.1% FA (v/v)), followed by a 4 min increase to 60% of buffer B and 

a 4 min increase to 95% of buffer B, and a 4 min wash of 95% buffer B at a flow rate of 300 

nl/min. Buffer B concentration was decreased to 4% in 4 min and stayed at 4% for 4 min.  

 

For the analysis of the fractions to build the project-specific spectral library, the instrument was 

operated in the DDA mode (Top12). The resolution of the Orbitrap analyzer was set to 60,000 

and 15,000 for MS1 and MS2, with a maximum injection time of 20 ms and 60 ms, respectively. 

The mass range monitored in MS1 was set to 300–1,650 m/z. The automatic gain control (AGC) 

target was set to 3e6 and 1e5 in MS1 and MS2, respectively. The fragmentation was 

accomplished by higher energy collision dissociation at a normalized collision energy setting 

of 27%. Dynamic exclusion was 20 sec.  

 

For single shot samples, the instrument was operated in the DIA mode. Every MS1 scan (350 

to 1650 m/z, 120,000 resolution at m/z 200, AGC target of 3e6 and 60 ms injection time) was 

followed by 33 MS2 windows ranged from 300.5 m/z (lower boundary of first window) to 

1649.5 m/z (upper boundary of 33rd window). This resulted in a cycle time of 3.4 s. MS2 

settings were an ion target value of 3 x 106 charges for the precursor window with an Xcalibur-

automated maximum injection time and a resolution of 30,000 at m/z 200. The fragmentation 
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was accomplished by higher energy collision dissociation with stepped collision energies of 

25.5, 27 and 30%. The spectra were recorded in profile mode. The default charge state for the 

MS2 was set to 3. Data were acquired with Xcalibur 4.0.27.10 and Tune Plus version 2.1 

(Thermo Fisher). 

 

Phosphopeptides were analyzed with a 100 min gradient. Peptides were loaded in buffer A 

(0.1% formic acid (FA) (v/v)) and eluted with a linear 60 min gradient of 3-19 of buffer B (80% 

acetonitrile (ACN) plus 0.1% FA (v/v)), followed by a 30 min increase to 41% of buffer B and 

a 5 min increase to 90% of buffer B, and a 5 min wash of 90% buffer B at a flow rate of 350 

nl/min. The instrument was operated in the DDA mode (Top10). The resolution of the Orbitrap 

analyzer was set to 60,000 and 15,000 for MS1 and MS2, with a maximum injection time of 

120 ms and 50 ms, respectively. The mass range monitored in MS1 was set to 300–1,600 m/z. 

The automatic gain control (AGC) target was set to 3e6 and 1e5 in MS1 and MS2, respectively. 

The fragmentation was accomplished by higher energy collision dissociation at a normalized 

collision energy setting of 27%. Dynamic exclusion was 30 sec. 

 

MS data analysis 

The fractions (DDA) and the single shot samples (DIA) were used to generate a DDA-library 

and direct-DIA-library, respectively, which were combined into a hybrid library in Spectromine 

version 1.0.21621.8.15296 (Biognosys AG). The hybrid spectral library was subsequently used 

to search the MS data of the single shot samples in Spectronaut version 12.0.20491.9.26669 

(Biognosys AG) for final protein identification and quantification. All searches were performed 

against the Human UniProt FASTA database (2017, X entries). Carbamidomethylation was set 

as fixed modification and acetylation of the protein N-terminus and oxidation of methionine as 

variable modifications. Trypsin/P proteolytic cleavage rule was used with a maximum of two 

miscleavages permitted and a peptide length of 7-52 amino acids. When generating the spectral 

library generation, minimum and maximum of number of fragments per peptide were set to 3 

and 6, respectively. A protein and precursor FDR of 1% were used for filtering and subsequent 

reporting in samples (q-value mode).  

For the phosphoproteome, raw MS data were processed using MaxQuant version 1.6.2.10 (Cox 

and Mann, 2008; Cox et al., 2011) with an FDR < 0.01 at the peptide and protein level against 

the Human UniProt FASTA database (2017). Enzyme specificity was set to trypsin, and the 

search included cysteine carbamidomethylation as a fixed modification and N-acetylation of 

protein and oxidation of methionine and phosphorylation (SYT) as variable modifications. Up 

to two missed cleavages were allowed for protease digestion, and peptides had to be fully 

tryptic.  

 

Bioinformatics data analysis 

We mainly performed data analysis in the Perseus (version 1.6.0.9) (Tyanova et al., 2016), 

Microsoft Excel and data visualized using GraphPad Prism (GraphPad Software) or RStudio 

(https://www.rstudio.com/). Apart from coefficient of variation, log2-transformed protein 

intensities were used for further analysis. Coefficients of variations were calculated for raw 

protein intensities between replicates individually. Phosphopeptides that were identified in the 
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decoy reverse database were not considered for data analysis. Both data sets were filtered to 

make sure that identified proteins and phosphopeptides showed expression in all biological 

triplicates of at least one differentiation stage and the missing values were subsequently 

replaced by random numbers that were drawn from a normal distribution (width=0.3 and down 

shift=1.8). PCA analysis of differentiation stages and biological replicates was performed as 

previously described in (Deeb et al., 2015). Multi-sample test (ANOVA) for determining if any 

of the means of differentiation stages were significantly different from each other was applied 

to both mRNA and protein data sets. For truncation, we used permutation-based FDR which 

was set to 0.05 in conjunction with an S0-parameter of 0.1. For hierarchical clustering of 

significant proteins, median protein abundances of biological replicates were z-scored and 

clustered using Euclidean as a distance measure for row clustering. Gene ontology (GO) 

enrichments in the clusters were calculated by Fischer’s exact test using Benjamini-Hochberg 

false discovery rate for truncation, setting a value of 0.02 as threshold. Mean log2 ratios of 

biological triplicates and the corresponding p-values were visualized with volcano plots. We 

chose a significance cut-off based on a FDR<0.05 in volcano plots.  

 

Copy number calculation  

Intensities were converted to copy number estimations using the proteomic ruler (Wisniewski 

et al., 2014). The proteomic ruler plug-in v.0.1.6 was downloaded from the Perseus plugin store, 

for use with Perseus version 1.5.5.0. Protein intensities were filtered for 100% data 

completeness in at least one stage. Protein groups were annotated with amino acid sequence 

and tryptic peptide information for the leading protein ID, using the .FASTA file used for 

processing data. Copy numbers were estimated using the following settings; averaging mode – 

‘All columns separately’, molecular masses - ‘average molecular mass’, scaling mode – 

“Histone proteomic ruler’, ploidy ‘2’, total cellular protein concentration – ‘200 g/l’.  

 

Selection of marker proteins for cell type deconvolution 

To compare the ability of different marker proteins to separate an in silico generated mixture 

population of cells in different differentiation stages we started from the quantitative protein 

matrix. Six different sets of marker proteins were selected: ‘sorting’ markers, ‘known’ markers, 

‘cluster’ markers, ‘SLC’ markers, ‘combined’ markers and a set of randomly selected 20 

proteins (‘any20’). All marker sets (except of ‘any20’) were filtered for an ANOVA q-value < 

0.01. For the cluster markers, the top three most significant (smallest ANOVA q-value) proteins 

for each cluster were selected. The combined markers contain all proteins from the sorting 

markers, known markers, cluster markers and SLC markers. The ‘any20’ markers were selected 

by randomly picking 20 proteins from the unfiltered protein list, excluding proteins included in 

any of the other marker lists. 

 

Generation of a cell type specific signature matrix 

A signature matrix was generated for each of the six marker sets. Only two out of the four cell 

type replicates, replicate 2 and 4, were used for generating the signature matrices. The signature 

matrices contain averaged, non-logged intensity values of each marker protein.  

 

Generation of in silico mixture populations 
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The two replicates that were not used for the generation of the signature matrix (replicates 1 

and 3) were subsequently used for creating in silico mixture populations. We generated 

mixtures for the intensity averages of replicates 1 and 3, but also for each replicate separately. 

 

The ratios for mixing the different cell types were determined by randomly picking 500 

combinations of 5 values (corresponding to the 5 cell types) that add up to 1:  

(1) ∑ ai

5

i=1

= 1 

The mixture intensity Imix of each protein k was then determined by summing up the intensity 

of protein k in cell type i, Ii
k, multiplied by the fraction of cells from cell type ai: 

(2)   Imix
k

= ∑ Ii
k

5

i=1

ai  

 

Deconvolution of the mixture populations 

Using the mixture intensities Imix of each marker protein k (Eq. 2) as well as the signature 

matrix, we set out to estimate the fractions of cells contributed by each of the five cell types ȧi. 

The closer the estimations ȧi are to the true mixing ratios ai, the better the marker set is for 

deconvoluting and differentiating the five cell types.  

 

Writing equation 2 in matrix form when several proteins are evaluated at the same time, the 

model expands to the following: 

(3)   imix = Ia ̇   

 

Here, imix  is a vector of mixture intensities for each evaluated marker protein k , I  is the 

signature matrix containing the intensities of each evaluated marker protein k (rows) in each 

cell type i (columns), and a ̇  is the vector with the fractions of cells in each cell type i that we 

aim to estimate. 

 

To estimate a ̇ , we can solve the linear equation system (Eq. 3) by using a minimum least 

squares optimization (python scipy.optimize.minimize). Boundary conditions set the minimum 

possible values of a ̇  to zero in order to avoid negative values. After an initial estimation of a ̇ , 

only the top 90th percentile of marker proteins for which the estimates fit best are kept for 

solving the linear equation system (Eq. 3) in a second iteration. The estimated vector of 

fractions, a ̇ , is finally normalized by the Manhattan (L1) norm. 

 

Evaluation of the cell type deconvolution 

To evaluate the results of the deconvolution step, we implemented a weighted error metric to 

estimate how close the estimated ratios a ̇  are to the true ratios a. Here, mistakes in assigning 

neighboring cell types (e.g. between P3 and P4) contribute less to the overall error than mistakes 

between far distant cell types (e.g. Progenitors and P5). In addition to evaluating the six sets of 

protein markers, three controls were generated: ‘random’ uses a random ratio estimation; 
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‘uniform’ assumes a uniform ratio estimation (ai 
̇ = 0.2); and ‘center’ assumes that all cells are 

of type P3 (a3 
̇ = 1). 
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SUPLEMENTARY TABLES 

 

Table S1. DIA proteome_all quantified proteins with copy numbers.xlsx 

Table S2. Dynamically expressed SLCs and characterized stage-specific markers  

Table S3. DDA phosphoproteome_all quantified phosphosites .xlsx 

Table S4. Expansion hits.xlsx 

Table S5. Maturation hits_Band3 high vs low.xlsx 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

 
 

Figure S1, Related to Figure 1 

(A) FACS gating/sorting regime to enrich for CD235a- progenitor population. 

(B) Characterization of the differentiation stages in culture. May-Grünwald-Giemsa staining of 

erythroid cells is shown. Scale bar, 20 M.  

(C) Coefficient variations (CVs) of four biological replicates for each protein were calculated 

in all stages to show the reproducibility of our system. Dashed line shows the cutoff line of 20% 

CV.  

(D) Cumulative protein abundance and dynamic range in five differentiation stages. 

Hemoglobin subunits (HBB, HBA1, HBE1 and HBG1) are labeled as progenitor (yellow) and 

Ortho (orange) stages.  

(E) Estimated median copy numbers of histones per cell across all measured stages. 
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Figure S2, Related to Figure 2 

 

(A-C) Volcano plots of the (-log10) p-values vs. the log2 protein abundance differences 

between LBaso-Day7 and LBaso-Day14 (left), LBaso-Day7 and ProE-EBaso (middle), and 

LBaso-Day14 and ProE-EBaso (right) with the significance lines (FDR < 0.05 and S0=0.1). 

Selected marker proteins are labeled in blue.  
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Figure S3, Related to Figure 2 

Gene Ontology (GO) enrichment analysis of six clusters of significant proteome shown in 

Figure 2A was performed using Fischer’s exact test. 2% threshold was applied to Benjamini-

Hochberg FDR to determine the significance. 
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Figure S4, Related to Figure 2 

 

Hawaii plots that overlay all volcano plots of protein enrichments in a specific stage over all 

other stages plotted against corresponding p-values. Two cut-off lines were placed graphically, 

defining two confidence classes with FDRs of 0.01 and 0.05 (S0=0.1). Sorting and cluster 

markers, and selected outliers are labeled in dark red, light blue and dark blue, respectively.  
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Figure S5, Related to Figure 5  

 

(A) Flow cytometry strategy based on GFP, CD235a, CD49d and Band3 to determine the 

significant hits from the genome-scale CRISPR-Cas9 screen. 

(B) Histogram of the sgRNA distribution in each sample in the CRISPR-Cas9 kinase screen. 

(C) Evenness of the sgRNA reads in each sample in the CRISPR-Cas9 kinase screen. 

(D) Correlation based reproducibility analysis between replicates in the CRISPR-Cas9 kinase 

screen. High and low correlation values are denoted in yellow and orange, respectively. 

(E) Overlap between expansion hits and positive or negative maturation regulators. 

(F) Overlap of kinases whose activities were inferred by stage-specific substrate profiling from 

phosphoproteomics in Figure 4F and the genomic CRISPR-Cas9 kinase screen.  

(G) FACS analysis of Band3 vs CD49d expressions after three days of differentiation in 

negative control non-targeting and individual sgRNA targeting MAPK1, MAPK3, MAP2K1, 

LYN, RAF1, BRAF cells. 

(H) Immunoblot analysis with indicated antibodies of whole cell lysates of non-targeting and 

PIM1-targeting HUDEP-2 cells. Actin served as protein loading control. 

(I) Non-targeting and PIM1-targeting (PIM1-sg1 and PIM1-sg2) HUDEP-2 cells were 

subjected to maturation protocol, followed by flow cytometry of CD235a and Band3/CD49d 

expressions after three and five days, respectively. 
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