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ABSTRACT 

A cross-species perspective can extend and provide testable predictions for Savage et al.’s 
framework. Rhythm and melody, I argue, could bootstrap each other in the evolution of 
musicality. Isochrony may function as a temporal grid to support rehearsing and learning 
modulated, pitched vocalizations. Once this melodic plasticity is acquired, focus can shift back to 
refining rhythm processing and beat induction. 
 
 
 

Musicality consists of the 
(neuro)biological underpinnings to perceive 
and produce music. Research in the evolution 
of musicality needs cross-species evidence. As 
a parallel, to understand the evolution of bat 
wings, one asks why all other mammals lack 
wings and why other flying animals have 
evolved them. Likewise, our species only 
constitutes one datapoint to construct 
evolutionary hypotheses on musicality. 
Comparisons with other species are necessary 
to avoid post-hoc explanations of evolutionary 
traits.  

Four concepts discussed in Savage et 
al. are key for understanding musicality, both in 
humans and other animals (Figure 1). 
Isochrony describes metronomic temporal 
regularity, like the ticking of a clock (Merker et 
al., 2009; Ravignani & Madison, 2017). 
Synchrony is the perfect co-occurrence in time 
of two series of events, with no strong 
teleological or mechanistic focus (Kotz et al., 
2018; Ravignani, 2017). Vocal learning is the 
ability to learn and modify non-innate 
vocalizations, including melodies (Lattenkamp 
& Vernes, 2018). Beat induction denotes a top-
down capacity to induce a regular pulse from 
music and move in synchrony to it (Grahn & 
Brett, 2007; Honing, 2012). 

Do other animals have these capacities 
supporting musicality? Isochrony appears in 
many species’ communication (e.g. from 

lobster rattles to sea lion barks: Patek & 
Caldwell, 2006; Schusterman, 1977), 
autonomously-regulated behavior or 
(neuro)physiology. Synchrony is widespread 
but scattered across taxonomic groups 
(Ravignani et al., 2014; Wilson & Cook, 2016). 
Vocal learning is rare but potentially arose 
multiple times in evolution due to different 
pressures across species (Nowicki & Searcy, 
2014; Garcia & Ravignani, 2020; Martins & 
Boeckx, 2020). Beat induction has only been 
found in a few animals, as acknowledged by 
Savage and colleagues (Kotz et al., 2018; cf. 
Mehr et al., claiming its presence in many 
species). 

Savage and colleagues briefly 
characterize these four abilities; this invites 
discussion of cross-species implications and 
predictions as to how they evolved to support 
musicality. I add a fifth, still largely unexplored 
capacity: vocal rhythms, which consist in 
producing, perceiving, learning, or imitating 
signals with accuracy in the temporal - as 
opposed to the spectral - domain. While this 
capacity to precisely time one’s vocalizations is 
related to its spectral counterpart, vocal 
rhythms also have their own mechanistic and 
communicative value (Wirthlin et al., 2019). I 
argue that, across species, these five capacities 
are linked, mapping them to Savage et al.’s 
framework. 
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Figure 1. Conceptualization of the four abilities partly 
explored in the target articles plus a fifth one, vocal 
rhythms, which deserves entering the discussion. 
Isochrony, when present in acoustic or motoric 
behaviors, may provide a clear, extremely predictable 
temporal grid, similar to squared notebooks guiding 
children who learn how to write. An isochronous 
pattern is, per se, neither musical nor demanding to 
produce or perceive. Isochrony has low entropy, 
definitely lower than expected for ‘musical’ patterns 
(Milne & Herff, 2020; Ravignani & Madison, 2017). 
Production of isochrony can result from a motoric 
behavior entraining to a neural oscillator. Perception of 
isochrony requires, at least, comparing pairs of 
temporal intervals, an ability found in several species 
(e.g. Church & Lacourse, 1998; Heinrich et al., 2020; 
Ng et al., 2020). While isochrony is characterized by 
equal timing in a series of events, synchrony requires 
pairwise coincidence of events from two series, neither 
of which needs to be isochronous (Ravignani, 2017). 
Given an acoustic sequence (black), beat induction 
consists in inferring an isochronous pulse (grey), which 
need not physically exist in the sequence (Kotz et al., 
2018; Honing, 2012). Synchronization differs from 
beat induction in being independent from isochrony, 
relatively inflexible, achievable for a narrow range of 
tempi and unimodal (Patel et al., 2009). Vocal learning 
- here with emphasis in its spectral domain - includes, 
among other things, the capacity to copy (grey) a vocal 
signal (black)(Lattenkamp & Vernes, 2018; Wirthlin et 
al., 2019). A vocal rhythm (black) is a temporal pattern 
of events, which conveys most information in the 
temporal domain (Ravignani et al., 2019) and could 
also be learnt or imitated (grey). 
 

The core of Savage et al.’s idea of 
melodic and rhythmic musicality features vocal 
learning and beat induction. These are also at 
the core of an influential hypothesis in 
evolutionary neuroscience (Patel, 2006), 

predicting in some cases their joint co-
occurrence across species. However, a few 
outlier species point to a mismatch between the 
current data and the hypothesis’ predictions 
(Cook et al., 2013), requiring an updated 
theoretical framework. 

Within Savage et al.’s framework, I 
argue that rhythm and melody may have 
bootstrapped each other in humans and other 
species gradually, especially in social 
interactions, such as chorusing, turn-taking, etc. 
(Christophe et al., 2008; Hannon & Johnson, 
2005; Höhle, 2009; Ravignani et al., 2014). An 
isochronous sequence, such as the repetitive 
bark of a sea lion, provides a temporal grid of 
predictable sound events. Both the producer of 
an isochronous rhythm and its conspecifics can 
rely on this periodicity to learn and experiment 
in the spectral, hence melodic, domain during 
vocal learning: vocal emissions could be 
anchored to the onsets of the isochronous 
sequence. Hence, rhythmic isochrony may 
function as temporal grid to rehearse learnt 
vocalizations (and possibly orient attention; 
Bolger et al., 2014; Cason et al., 2015; Jones, 
2010; Norton, 2019). In turn, learnt, 
consolidated vocalizations may serve as a 
‘spectral anchor’ to segment conspecifics’ 
temporal sequences (Hyland Bruno, 2017; 
Lipkind et al., 2013), also generating vocal 
rhythms. Therefore, melodic templates 
acquired via vocal learning can afford 
increased attentional or cognitive resources 
spent on the rhythmic domain, including 
temporal segmentation and regularization. This 
provides a bootstrapping mechanism for 
Savage et al.’s co-evolutionary dynamics to 
work, and a test bench for some signaling 
hypotheses in Mehr and colleagues. 

This hypothesis generates several 
testable predictions. First, by testing species 
along the vocal learning continuum (Martins & 
Boeckx, 2020), and extending this continuum 
to beat induction, species with a stronger sense 
of beat should be found among those with more 
developed vocal learning capacities. Chickens, 
great apes, parrots and humans are examples of 
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species predicted to show, in this order, 
increasing abilities in both domains. Second, 
isochrony should go hand in hand with 
synchrony but not with beat induction, so that 
species with developed isochrony should also 
synchronize. Third, empirical evidence for the 
rhythm-melody scaffolding process (Cason et 
al., 2012; Emmendorfer et al., 2020) could be 
obtained from large-scale developmental 
datasets, which should feature both humans and 
non-human animals, and contain data from as 
many capacities as possible from Figure 1. As 
ontogeny sometimes recapitulates phylogeny 
(e.g. Heldstab et al., 2020), one would test 
whether the same stepwise processes 
hypothesized above appear in the first years of 
human life (Höhle, 2009). Fourth, a partial 
neural dissociation between rhythm and melody 
may occur early in life and become less severe 
over development; the dynamics of this 
dissociation could be tested via longitudinal 
neuroimaging studies (Bengtsson & Ullén, 
2006; Salami et al., 2016). Fifth, within Savage 
et al.’s framework, physiological evidence for 
the rhythm-melody gradual interplay could 
come from measurements or manipulations of 
the dopaminergic reward system and the 
endogenous opioid system, testing whether 
they provide complementary, alternating 
effects. Finally, most of these putative links can 
be, following Savage et al., modulated by 
species-specific social factors, such us group 
density and social networks. Likewise, their 
value as honest signals can be tested to provide 
empirical support for Mehr et al. using, among 
others, methods from cultural evolution 
research (e.g. Miton et al., 2020; Lumaca et al., 
this issue). 

To conclude, the frameworks proposed 
in both target articles can benefit from a finer 
dissection of core abilities for musicality 
(Figure 1 and Honing, this issue). These must 
then be tested across species to infer plausible 
evolutionary scenarios. 
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