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Abstract

A cross-species perspective can extend and provide testable pre-
dictions for Savage et al.’s framework. Rhythm and melody, I
argue, could bootstrap each other in the evolution of musicality.
Isochrony may function as a temporal grid to support rehearsing
and learning modulated, pitched vocalizations. Once this
melodic plasticity is acquired, focus can shift back to refining
rhythm processing and beat induction.

Musicality consists of the (neuro)biological underpinnings to per-
ceive and produce music. Research in the evolution of musicality
needs cross-species evidence. As a parallel, to understand the
evolution of bat wings, one asks why all other mammals lack
wings and why other flying animals have evolved them.
Similarly, our species only constitutes one datapoint to construct
evolutionary hypotheses on musicality. Comparisons with other
species are necessary to avoid post-hoc explanations of evolution-
ary traits.

Four concepts discussed in Savage et al. are key for under-
standing musicality, both in humans and other animals (Fig. 1).
Isochrony describes metronomic temporal regularity, similar to
the ticking of a clock (Merker, Madison, & Eckerdal, 2009;
Ravignani & Madison, 2017). Synchrony is the perfect
co-occurrence in time of two series of events, with no strong tel-
eological or mechanistic focus (Kotz, Ravignani, & Fitch, 2018;

Ravignani, 2017). Vocal learning is the ability to learn and modify
non-innate vocalizations, including melodies (Lattenkamp &
Vernes, 2018). Beat induction denotes a top-down capacity to
induce a regular pulse from music and move in synchrony to it
(Grahn & Brett, 2007; Honing, 2012).

Do other animals have these capacities supporting musicality?
Isochrony appears in many species’ communication (e.g., from lob-
ster rattles to sea lion barks: Patek & Caldwell, 2006; Schusterman,
1977), autonomously-regulated behavior or (neuro)physiology.
Synchrony is widespread but scattered across taxonomic groups
(Ravignani, Bowling, & Fitch, 2014; Wilson & Cook, 2016).
Vocal learning is rare but potentially arose multiple times in evolu-
tion because of different pressures across species (Garcia &
Ravignani, 2020; Martins & Boeckx, 2020; Nowicki & Searcy,
2014). Beat induction has only been found in a few animals, as
acknowledged by Savage and colleagues (Kotz et al., 2018; cf.
Mehr et al., claiming its presence in many species).

Savage and colleagues briefly characterize these four abilities;
this invites discussion of cross-species implications and predic-
tions as to how they evolved to support musicality. I add a fifth,
still largely unexplored capacity: vocal rhythms, which consist of
producing, perceiving, learning, or imitating signals with accuracy
in the temporal – as opposed to the spectral – domain. Although
this capacity to precisely time one’s vocalizations is related to its
spectral counterpart, vocal rhythms also have their own mecha-
nistic and communicative value (Wirthlin et al., 2019). I argue
that, across species, these five capacities are linked, mapping
them to Savage et al.’s framework.

The core of Savage et al.’s idea of melodic and rhythmic musicality
features vocal learning and beat induction. These are also at the core
of an influential hypothesis in evolutionary neuroscience (Patel, 2006),
predicting in some cases their joint co-occurrence across species.
However, a few outlier species point to a mismatch between the cur-
rent data and the hypothesis’ predictions (Cook, Rouse, Wilson, &
Reichmuth, 2013), requiring an updated theoretical framework.

Within Savage et al.’s framework, I argue that rhythm and
melody may have bootstrapped each other in humans and other
species gradually, especially in social interactions, such as chorus-
ing, turn-taking, and so forth (Christophe, Millotte, Bernal, &
Lidz, 2008; Hannon & Johnson, 2005; Höhle, 2009; Ravignani
et al., 2014). An isochronous sequence, such as the repetitive
bark of a sea lion, provides a temporal grid of predictable
sound events. Both the producer of an isochronous rhythm and
its conspecifics can rely on this periodicity to learn and experi-
ment in the spectral, hence melodic, domain during vocal learn-
ing: vocal emissions could be anchored to the onsets of the
isochronous sequence (Merker et al., 2009). Hence, rhythmic iso-
chrony may function as temporal grid to rehearse learnt vocaliza-
tions (and possibly orient attention; Bolger, Coull, & Schön, 2014;
Cason, Astésano, & Schön, 2015; Jones, 2010; Norton, 2019). In
turn, learnt, consolidated vocalizations may serve as a “spectral
anchor” to segment conspecifics’ temporal sequences (Hyland
Bruno, 2017; Lipkind et al., 2013), also generating vocal rhythms.
Therefore, melodic templates acquired via vocal learning can
afford increased attentional or cognitive resources spent on the
rhythmic domain, including temporal segmentation and regular-
ization. This provides a bootstrapping mechanism for Savage
et al.’s co-evolutionary dynamics to work, and a testbench for
some signaling hypotheses in Mehr and colleagues.

This hypothesis generates several testable predictions. First, by
testing species along the vocal learning continuum (Martins &
Boeckx, 2020), and extending this continuum to beat induction,
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species with a stronger sense of beat should be found among those
with more developed vocal learning capacities. Chickens, great
apes, parrots, and humans are examples of species predicted to
show, in this order, increasing abilities in both domains.
Second, isochrony should go hand in hand with synchrony but
not with beat induction, so that species with developed isochrony
should also synchronize. Third, empirical evidence for the
rhythm–melody scaffolding process (Cason et al., 2012;
Emmendorfer, Correia, Jansma, Kotz, & Bonte, 2020) could be
obtained from large-scale developmental datasets, which should
feature both humans and nonhuman animals, and contain data
from as many capacities as possible from Figure 1. As ontogeny
sometimes recapitulates phylogeny (e.g., Heldstab, Isler,
Schuppli, & van Schaik, 2020), one would test whether the
same stepwise processes hypothesized above appear in the first
years of human life (Höhle, 2009). Fourth, a partial neural disso-
ciation between rhythm and melody may occur early in life and
become less severe over development; the dynamics of this disso-
ciation could be tested via longitudinal neuroimaging studies
(Bengtsson & Ullén, 2006; Salami, Wåhlin, Kaboodvand,

Lundquist, & Nyberg, 2016). Fifth, within Savage et al.’s frame-
work, physiological evidence for the rhythm–melody gradual
interplay could come from measurements or manipulations of
the dopaminergic reward system and the endogenous opioid sys-
tem, testing whether they provide complementary, alternating
effects. Finally, most of these putative links can be, following
Savage et al., modulated by species-specific social factors, such
us group density and social networks. Similarly, their value as
honest signals can be tested to provide empirical support for
Mehr et al. using, among others, methods from cultural evolution
research (e.g., Lumaca et al., commentary on the target article by
Mehr et al.; Miton, Vesper, Wolf, Knoblich, & Sperber, 2020).

To conclude, the frameworks proposed in both target articles
can benefit from a finer dissection of core abilities for musicality
(Fig. 1 and Honing, commentary on the target article by Savage
et al.). These must then be tested across species to infer plausible
evolutionary scenarios.

Acknowledgments. I am grateful to Henkjan Honing, Koen de Reus, Laura
Verga, Massimo Lumaca, and Sonja Kotz for helpful discussion and feedback.

Figure 1. (Ravignani) Conceptualization of the four abilities partly explored in the target articles plus a fifth one, vocal rhythms, which deserves entering the
discussion. Isochrony, when present in acoustic or motoric behaviors, may provide a clear, extremely predictable temporal grid, similar to squared notebooks guid-
ing children who learn how to write. An isochronous pattern is, per se, neither musical nor demanding to produce or perceive. Isochrony has low entropy, definitely
lower than expected for “musical” patterns (Milne & Herff, 2020; Ravignani & Madison, 2017). Production of isochrony can result from a motoric behavior entraining
to a neural oscillator. Perception of isochrony requires, at least, comparing pairs of temporal intervals, an ability found in several species (e.g., Church & Lacourse,
1998; Heinrich, Ravignani, & Hanke, 2020; Ng, Garcia, Dyer, & Stuart-Fox, 2020). Although isochrony is characterized by equal timing in a series of events, synchrony
requires pairwise coincidence of events from two series, neither of which needs to be isochronous (Ravignani, 2017). Given an acoustic sequence (black), beat
induction consists of inferring an isochronous pulse (gray), which need not physically exist in the sequence (Honing, 2012; Kotz et al., 2018). Synchronization differs
from beat induction in being independent from isochrony, relatively inflexible, achievable for a narrow range of tempi and unimodal (Patel, Iversen, Bregman, &
Schulz, 2009). Vocal learning – here with emphasis in its spectral domain – includes, among other things, the capacity to copy (gray) a vocal signal (black)
(Lattenkamp & Vernes, 2018; Wirthlin et al., 2019). A vocal rhythm (black) is a temporal pattern of events, which conveys most information in the temporal domain
(Ravignani et al., 2019) and could also be learnt or imitated (gray).
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Abstract

Focus on the evolutionary origins of musicality has been
neglected relative to attention on language, so these new propos-
als are welcome stimulants. We argue for a broad comparative
approach to understanding how the elements of musicality
evolved, and against the use of overly simplistic evolutionary
accounts.

“there is no reason to imagine that it emerged one day wholly made by
evolution … recognize that there is no ‘music in and of itself,’ no musical
essence, but only some distinct capacities that one day converged toward
what we today call music.” (Molino, 2000, p. 169)

It is exciting to see the evolution of music, or rather, musicality
(Honing, 2018), neglected in the evolutionary sciences relative
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