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Abstract
The cabbage aphid Brevicoryne brassicae is a notorious agricultural pest that specializes on plants of the Brassicaceae fam-
ily, which are chemically defended by glucosinolates. By sequestering glucosinolates from its host plants and producing its 
own activating enzyme (myrosinase), this aphid employs a self-defense system against enemies paralleling that in plants. 
However, we know little about the metabolic fate of individual glucosinolates during aphid sequestration and activation and 
about the biochemical effects of this defense on aphid enemies. Here, we probed these questions focusing on B. brassicae 
and a predatory lacewing, Chrysoperla carnea. We found that distinct glucosinolates were accumulated by B. brassicae at 
different rates, with aliphatic glucosinolates being taken up more quickly than indolic ones. B. brassicae myrosinase enzy-
matic activities toward different glucosinolates were strongly correlated to their rates of accumulation in vivo. Surprisingly, 
after simulated predation, the production of toxic isothiocyanate products (ITCs) was quantitatively outweighed by less 
toxic products such as nitriles and ITC-conjugates. Nevertheless, the defensive cocktails significantly impaired C. carnea 
development. Tissue-specific quantification of glucosinolate metabolites revealed that the lacewings employ both conjuga-
tion and mobilization to reduce the toxicity of aliphatic ITCs, but these strategies were only partially effective. These results 
clarify the metabolic fates of glucosinolates after sequestration by an aphid herbivore and further in a higher trophic level, 
as well as the consequences for predator survival and development, and might be instructive for integrative pest management 
approaches targeting the cabbage aphid.

Keywords Brevicoryne brassicae · Detoxification · Insect chemical defense · Isothiocyanates · Multi-trophic interaction · 
Plant chemical defense

Key message

• The cabbage aphid selectively accumulates and activates 
glucosinolates, affecting higher trophic level enemies.

• Glucosinolates with varying side chains are accumu-
lated at different rates, and uptake selectivity matches 
the enzymatic activity of the insect myrosinase.

• The toxic aphid-derived aliphatic isothiocyanates over-
whelm the detoxification capacity of a lacewing predator, 
impairing its development.

• High foliar aliphatic glucosinolate concentrations might 
interfere with the use of lacewings for cabbage aphid 
control.
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Introduction

Plants of the order Brassicales, such as those in the Bras-
sicaceae and Capparaceae families, produce glucosi-
nolates and myrosinases as an effective two-component 
defensive system against non-adapted herbivores and 
pathogens. In spite of these defenses, the yields of glu-
cosinolate-containing crop plants are greatly affected by 
pests. Glucosinolates are glucosylated pro-toxins that are 
constitutively and abundantly accumulated in sulfur-rich 
S-cells (Koroleva and Cramer 2011), whereas the activat-
ing enyzmes, myrosinases (β-thioglucoside glucohydro-
lases), are present in protein-enriched idioblasts called 
myrosin cells (Andréasson and Jørgensen 2003; Rask et al. 
2000; Wittstock and Gershenzon 2002). Such a physical 
compartmentation avoids the self-intoxication that could 
result from the unintended hydrolysis of glucosinolates 
by myrosinases, so that mixing of hydrolytic activating 
enzymes and their glucosinolate substrates occurs only 
upon tissue damage, e.g., during attack by a herbivore. 
The aglucones thus produced are unstable and rearrange to 
form an array of downstream metabolites including isothi-
ocyanates (ITCs), simple nitriles (CNs), thiocyanates, and 
epithionitriles. The outcome of hydrolysis is dependent 
on the glucosinolate side chains, the presence of protein 
modulators (specifier proteins), as well as reaction condi-
tions and the presence of metal ions and other cofactors 
(Eisenschmidt-Bönn et al. 2019). Among the products of 
glucosinolate hydrolysis, the chemically reactive ITCs 
(containing an –N=C=S functional group) play major 
roles in plant–herbivore interactions. Other hydrolysis 
products, such as CNs, are thought to be less toxic than 
ITCs and can have a role in indirect defense (Burow et al. 
2006).

Glucosinolates are amino acid-derived, glucosylated 
specialized metabolites (Blažević et  al. 2020). The 
basic structure of glucosinolates comprises three build-
ing blocks: a β-thioglucose moiety, a sulfonated oxime 
moiety, and a structurally diverse side chain that allows 
the characterization of glucosinolates into three major 
categories, namely aliphatic, indolic, and benzenic glu-
cosinolates (Agerbirk and Olsen 2012). In general, the 
toxicity of glucosinolate-derived ITCs is conferred by the 
electrophilic –N=C=S functional group that reacts with 
intracellular nucleophiles (Hanschen et al. 2012; Jeschke 
et al. 2016). However, the side chain structure can affect 
the toxicity too. ITC side chains help dictate post-hydrol-
ysis reactivities, and toxicity is altered for example by a 
rapid loss of the –N=C=S group (e.g., to form the carbi-
nol products of indolic glucosinolates) (Wittstock et al. 
2016). Additionally, the lipophilicity of the side chain 
can facilitate the diffusion of ITCs through the cellular 

lipid bilayer membranes to reach the intracellular envi-
ronment. While electron-withdrawing groups on the side 
chain can increase overall electrophilicity and reactivity, 
electrostatic attraction or steric hindrance between the side 
chain and target proteins will also promote selective reac-
tivity (Brown et al. 2011). Hence, in addition to the unique 
properties of the electrophilic –N=C=S functional group, 
the structural diversity of various types of ITC side chains 
expands their potency to a broader range of targets.

The cabbage aphid Brevicoryne brassicae (L.) (Hemip-
tera: Aphididae) is a piercing-sucking herbivore, and as such 
can avoid the glucosinolate-myrosinase defense system by 
minimizing tissue damage (Louis et al. 2012). This insect 
is a pest of crop plants from the family Brassicaceae world-
wide, stunting plant growth and transmitting at least 20 
viruses (Kessing and Mau 1991). This insect completes an 
average of 15 generations per year, causing yield losses of up 
to 85% (Gabrys 2008; Mpumi et al. 2020). B. brassicae has 
been found to accumulate glucosinolates from host plants 
(Kos et al. 2011). However, how distinct glucosinolates are 
dynamically accumulated has not been clarified. In addi-
tion to sequestering certain ingested glucosinolates in its 
hemolymph, B. brassicae produces its own endogenous 
myrosinase (BMY, B. brassicae β-thioglucoside glucohydro-
lase) in its head and thoracic muscles (Kazana et al. 2007). 
The extent to which endogenous BMY selectively acts on 
the glucosinolates actually sequestered by the insect is yet 
unknown. As in the plant, once insect tissues are disrupted 
by predators, sequestered glucosinolates and BMY meet 
resulting in the formation of toxic ITCs, giving B. bras-
sicae the moniker “walking mustard oil bomb” (Kazana 
et al. 2007). However, the factors influencing glucosinolate 
hydrolysis in B. brassicae are not fully understood despite 
their ecological importance.

The glucosinolates sequestered by B. brassicae and their 
resulting activation products may move up the food chain 
and cause further negative effects on higher trophic levels 
(Kazana et al. 2007; Kos et al. 2011). As an important bio-
control organism, the common green lacewing Chrysoperla 
carnea has received increasing research attention for its 
ability to handle prey like aphids and soft caterpillars. It 
has recently been shown that C. carnea larvae can toler-
ate dietary 4-methylsulfinylbutyl glucosinolate (4MSOB-
GSL), by detoxifying the hydrolysis product 4MSOB-ITC 
via the general mercapturic acid pathway, and storing some 
of these compounds into its anal defensive secretion. In spite 
of 4MSOB-ITC slightly delaying larval development, this 
compound had no impact on pupal mortality and adult egg-
laying capacity (Sun et al. 2019). However, the content of 
toxic glucosinolate metabolites produced by B. brassicae 
differs markedly from that in the Plutella xylostella larvae 
used in that previous study. Thus, the physiological and met-
abolic responses of C. carnea to preying on B. brassicae 
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remain unknown and cannot be directly inferred from those 
previous results.

Here, we examine in detail the metabolism of glucosi-
nolates in this aphid-lacewing interaction and its ecological 
effects. First, we quantified the accumulation of Arabidopsis 
thaliana glucosinolates by B. brassicae over time. Second, 
we characterized the catalytic specificity of aphid BMY 
toward a repertoire of A. thaliana glucosinolates. Third, 
we determined the activation products of the sequestered 
glucosinolates in B. brassicae in response to a predation-
like mechanical stimulus. Subsequently, we measured the 
physiological impact caused by toxic glucosinolate metabo-
lites produced by B. brassicae on the predatory lacewing C. 
carnea. Together, this study advances our understanding of 
how the cabbage aphid successfully co-opts a plant defense, 
and the fate of a predatory lacewing that encounters these 
defenses in its prey.

Materials and methods

Plants and insects

Arabidopsis thaliana land race Columbia-0 (Col-0) acces-
sion wild-type plants (with wild-type glucosinolates), 
transgenic myb28myb29 knockout mutant plants (without 
aliphatic glucosinolates) (Sønderby et al. 2007), and myb-
28myb29cyp79b2cyp79b3 knockout mutant plants (without 
any glucosinolates) (Mikkelsen et al. 2003) were used for 
experiments. Brussels sprouts plants (Brassica oleraceae 
var. gemmifera) were used for rearing of insect cultures. 
Plants were grown in climate-controlled short-day envi-
ronmental chambers at 21 °C, 60% relative humidity, and 
a 14:10 h light:dark photoperiod. Brevicoryne brassicae 
colonies, generously provided by Dr. Rieta Gols (Wagen-
ingen University & Research, Wageningen, Netherlands), 
were fed on Brussels sprouts plants and maintained in a cli-
mate-controlled long-day environmental chamber at 21 °C, 
60% relative humidity, and a 16:8 h light:dark photoperiod. 
Chrysoperla carnea eggs were purchased from Katz Bio-
tech AG (Baruth, Germany) and were used for experiments. 
Newly hatched C. carnea larvae were fed on separate B. 
brassicae populations feeding on either A. thaliana wild-
type or myb28myb29 plants in the same controlled long-day 
environmental chamber. Experiments were conducted in a 
similarly controlled long-day environmental chamber.

Sequestration of glucosinolates from host plants 
by B. brassicae

To measure the accumulation of various host plant glu-
cosinolates in B. brassicae aphids, we analyzed the glu-
cosinolate content of B. brassicae and plants of their host 

A. thaliana Col-0, at the time points of 1 h, 3 h, 6 h, 9 h, 
1 day, 2 days, 3 days, 4 days, and 6 days post-infestation. 
First, we purged the glucosinolate content of B. brassicae 
by rearing aphids on A. thaliana myb28myb29cyp79b-
2cyp79b3 plants over 10 days. Then, we transferred 40 
adult aphids to each A. thaliana wild-type plant, with 56 
plants being infested in total. At each time point, 10 adult 
aphids were collected from each of four randomly selected 
plants, with aphids from each plant being pooled into a 
1.5 mL Eppendorf tube as one sample (i.e., four inde-
pendent replicates per time point, with nine time points 
in total). Leaves from these plants were sampled and col-
lected in 5 mL tubes, and the used plants were then dis-
carded and not used for later time points. Additionally, on 
day 6, we also collected second- and fourth-instar nymphs 
(15 nymphs pooled per sample, n = 4 replicates), as the 
offspring of the adults initially transferred. Samples were 
immediately frozen in liquid nitrogen. Leaf material was 
ground using a tissue-grinding pestle. The samples were 
kept under -80 °C and then weighed (FW, fresh weight) 
before metabolite extraction and detection as described in 
the supplementary materials.

Myrosinase assay with A. thaliana wild‑type 
glucosinolates

To measure the glucosinolate substrate preference of recom-
binant BMY and a protein extract of B. brassicae fourth-
instar nymphs, enzyme activities were determined with 
extracted A. thaliana glucosinolates. Soluble protein of B. 
brassicae fed on A. thaliana myb28myb29cyp79b2cyp79b3 
plants was extracted by homogenizing in citric acid buffer 
(50 mM, and 10% glycerol; pH 4.1). Recombinant BMY 
protein produced in Escherichia coli cells was purified as 
described in the supplementary materials. Protein concentra-
tion was measured using the Bradford reagent (Serva Elec-
trophoresis). A 2 µg quantity of protein from each sample 
in 100 µL citric acid buffer (50 mM, pH 4.1) was reacted 
with 10 µL crude glucosinolate extract from A. thaliana 
wild-type plants (described in the supplementary materi-
als) at 28 °C. Aliquots containing 10 µL of the reaction 
solution were taken out at 0 min, 5 min, 10 min, 15 min, 
30 min, and 60 min reaction time points and added to 90 
µL pure methanol to immediately stop the reaction. Mean-
while, denatured B. brassicae protein extracts, which had 
been heated at 100 °C for 1 h, and protein of empty vector-
transformed E. coli cells were processed as controls to look 
for non-enzymatic and non-BMY degradation of glucosi-
nolates. Subsequently, the concentration of remaining intact 
glucosinolates was determined by LC–MS/MS (described in 
the supplementary materials) to calculate the percentage of 
glucosinolate hydrolysis.
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Myrosinase assay with pure glucosinolates

To determine the substrate specificity of recombinant BMY 
toward pure glucosinolates, 1 µg of purified recombinant 
BMY was individually incubated with 2 mM final concentra-
tions of glucosinolates in citric acid buffer (50 µL, 50 mM, 
pH 4.1) for 60 min at 28 °C. The reactions were terminated 
by boiling for 2 min at 100 °C, and the formation of glu-
cose removed from glucosinolates was determined by the 
glucose oxidase procedure using the Glucose Assay Kit 
(Sigma, St. Louis, Missouri, USA) according to the manu-
facturer’s instructions. The absorbance of colored products 
used for glucose concentration quantification was measured 
at 540 nm using an Infinite M200 Luminescence Microplate 
Reader (Tecan, Männedorf, Switzerland). Glucosinolates 
used for assays are listed in Table S2.

Kinetic characterization of BMY

Enzyme assays were conducted to measure recombinant 
BMY activity with different concentrations of glucosi-
nolates. A 0.3 µg amount of purified recombinant BMY 
protein (53.74 kDa) was reacted with 1 µM to 1500 µM of 
each glucosinolate in citric acid buffer (50 µL, 50 mM, pH 
4.1) for 10 min at 28 °C. The reaction was terminated by 
adding 450 µL of pure ice-cold methanol. The concentra-
tion of remaining glucosinolates was measured by LC–MS/
MS to calculate the percentage of hydrolyzed glucosinolates.

Glucosinolate‑derived metabolites in B. brassicae 
damaged tissues

To detect the formation of glucosinolate-derived metabolites 
in vivo, B. brassicae fourth-instar nymphs were attacked 
with a brush until a small amount of hemolymph was visible 
on the body surface, to mimic damage caused by an enemy 
attack. Forty aphids on each of 5 A. thaliana wild-type plants 
were injured and allowed to continue feeding on the host 
plants. At the time points of 0 min, 5 min, and 20 min post 
tissue damage, 10 surviving aphids from each plant were 
pooled into a 1.5 mL Eppendorf tube as one sample. Sam-
ples were immediately frozen in liquid nitrogen. Metabolite 
extraction and the measurement of glucosinolate-derived 
metabolites are described in the supplementary materials.

Conversion of glucosinolate to simple nitrile 
in the presence of Fe (II)

To determine the correlation of the Fe (II) concentration 
with simple nitrile (CN) formation during glucosinolate 
hydrolysis catalyzed by B. brassicae myrosinase, 4MSOB-
GSL was hydrolyzed by recombinant BMY or extracted B. 
brassicae proteins in the presence of different concentrations 

of Fe (II). A 2 µg portion of purified recombinant BMY or 
proteins extracted from B. brassicae fourth-instar nymphs 
were assayed with 1 mM 4MSOB-GSL in citric acid buffer 
(100 µL, 50 mM, pH 4.1) with EDTA (50 mM, conjugation 
agent to deplete endogenous Fe(II)); or 0 mM, 0.01 mM, 
0.05 mM, 0.1 mM, or 0.5 mM  (NH4)2Fe(SO4)2 at 28 °C 
for 30 min. The reaction was stopped by adding 400 µL 
of pure methanol. As a negative control, the proteins were 
incubated in 100 µL of citric acid buffer without a glucosi-
nolate substrate under the same conditions. Subsequently, 
the formation of products from 4MSOB-GSL was measured 
by LC–MS/MS as described in the supplementary materials.

C. carnea larval development, pupation, and adult 
weights

To determine how the glucosinolate accumulation in B. 
brassicae physiologically impacts its predator C. carnea, 
larvae of C. carnea were continuously given B. brassicae 
fed on either A. thaliana wild-type or myb28myb29 plants 
since hatching. Each C. carnea larva was kept in a 35 mL 
transparent plastic vial with sufficient prey according to the 
developmental stage of the predator, with additional prey 
added twice daily to ensure ad libitum feeding. The larval 
development time, larval mortality, pupation percentage, and 
adult emergence of C. carnea were recorded. The weights of 
30 C. carnea larvae from each group were determined at 5, 
7, 9, 11, 13, 15, and 17 days post-hatching. Meanwhile, the 
percentage of larval mortality for a cohort of 60 C. carnea 
larvae was recorded during 7–21 days post-hatching, and the 
percentage of larval pupation in each group was recorded 
during 13–25 days post-hatching. Moreover, the numbers of 
adults emerged (from 30 pupae) in each group were recorded 
during 11–17 days post-pupation, and the percentages of 
emergence and the duration until emergence were calculated. 
The adults were sexed and weighed.

Glucosinolate‑derived metabolites in C. carnea

C. carnea preying on B. brassicae fed on A. thaliana wild-
type plants were collected for metabolite analyses. Third-
instar C. carnea larvae were collected (one larva as one 
sample). The anal secretions of C. carnea larvae (from 
three larvae pooled as one sample) were collected with a 
10 µL pipette. Larvae transferred the secretion droplet to 
the pipette tip as a defense reaction when touched by the 
tip on their dorsal abdomen. Collected anal secretions were 
washed in extraction solvent (200 µL, 60% methanol in 
water, pH 3.0) immediately and kept under −20 °C until 
further analysis. Pupal pellets left in the cocoons (from three 
cocoons pooled as one sample) were collected after adult 
emergence. The meconium excreted by the adults (from 
three adults pooled as one sample) in the first few hours after 
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emergence was collected simultaneously with adults (one 
adult as one sample). All collected tissues (five replicates 
for each) were immediately frozen in liquid nitrogen and 
stored under −80 °C until further analysis. The weighed tis-
sues were homogenized in extraction solvent (200 µL, 60% 
methanol in water, pH 3.0) with ceramic beads. Samples 
were centrifuged to separate undissolved particles. Clear 
supernatants were analyzed by LC–MS/MS as described in 
the supplementary materials to detect the concentration of 
4MSOB-GSL and its metabolites.

Statistical analyses

Data were analyzed using R v.3.6.1, including the “agri-
colae,” “car,” and “survival” packages. Figures were cre-
ated using Origin 2019 and Adobe Illustrator CS5. Signifi-
cant differences between means (± s.e.) of metabolites and 
enzyme assay results were determined by Tukey HSD tests 
in combination with one-way/two-way ANOVA. Signifi-
cance of C. carnea weight differences between medians was 
determined by two-tailed Mann–Whitney U Test. C. carnea 
larval mortality, larval pupation, and adult emergence were 
analyzed by Kaplan–Meier survival tests. Data analyzed by 
ANOVA were checked for statistical prerequisites such as 
homogeneity of variances and normality.

Results

B. brassicae accumulates glucosinolates at different 
rates

The cabbage aphid B. brassicae sequesters certain glu-
cosinolates from its cruciferous host plants, but the rela-
tive rates of accumulation of individual glucosinolates have 
not been studied. In order to measure the uptake of those 
compounds, glucosinolate-free aphid adults were first gen-
erated by rearing on glucosinolate-deficient mutant plants, 
and then transferred to A. thaliana Col-0 wild-type plants. 
The glucosinolates accumulated by the aphids were then 
quantified at selected time points during a 6-day experi-
ment (Fig. S1). The contents of glucosinolates sequestered 
by the aphids were further compared with the content of the 
host plant. Overall, the relative accumulation rates revealed 
that sequestration of aliphatic glucosinolates occurred more 
rapidly than that of indolic glucosinolates: the concentra-
tions of aliphatic glucosinolates in B. brassicae exceeded 
those in A. thaliana within one day, while at least 2 days 
were required for indolic glucosinolates to reach the same 
concentrations as in the host plant (Fig. 1a). Interestingly, 
the four aliphatic glucosinolates with a methylsulfinyl group 
(with a MeS = O functional group on the side chain) had 
different accumulation rates; the glucosinolate with the 

longest side chain, 8-methylsulfinyloctyl glucosinolate 
(8MSOO-GSL), was remarkably more efficiently accu-
mulated (Fig. 1b). Quantitatively, the most highly concen-
trated glucosinolates accumulated by day 6 were the three 
aliphatic glucosinolates 4MSOB-GSL, 8MSOO-GSL, and 
4MTB-GSL (4-methylthiobutyl glucosinolate), respectively 
(Fig. 1c, dark-orange bars). Of note, 4MSOB-GSL, which 
dominates the total foliar glucosinolate pool of A. thaliana 
wild-type Col-0 plants (around 55%), was also highly accu-
mulated in B. brassicae. Although the indolic glucosinolate 
I3M-GSL (indolyl-3-methyl glucosinolate) also accumulated 
by day 6, its concentration was much lower than that of its 
aliphatic counterparts. The two other indolic glucosinolates 
remained at very low levels (Fig. 1c). Glucosinolate accu-
mulation was also quantified in second- and fourth-instar B. 
brassicae nymphs, with concentrations found to be similar 
to those in the adult insects (Fig. 1c). Taken together, these 
results show that different glucosinolates are accumulated 
at different rates during all life stages of the aphid, and the 
length of the side chains determines the selective accumula-
tion of aliphatic glucosinolates.

The catalytic activity of B. brassicae BMY correlates 
with glucosinolate sequestration patterns

Given that aliphatic glucosinolates were selectively more 
highly accumulated, we sought to determine if this is 
reflected in the activity of the endogenous aphid myrosi-
nase BMY. In a first step, we quantified the transcript level 
of the BMY-encoding gene bmy in aphids when feeding on 
wild-type A. thaliana plants. We found that bmy was con-
stitutively expressed in both nymph and adult stages (Fig. 
S2a). Moreover, we did not detect any significant alterations 
in bmy expression induced by feeding on three genotypes of 
host plants differing in glucosinolate content, as exempli-
fied by testing fourth-instar nymphs (Fig. S2b). Furthermore, 
the myrosinase activities in crude aphid protein extracts 
toward two substrates (the aliphatic glucosinolate 4MSOB-
GSL and the indolic glucosinolate I3M-GSL) were similar 
among aphid life stages and after feeding on plants differing 
in glucosinolate contents (Fig. S2c–f). These results suggest 
that bmy is constitutively expressed in B. brassicae, and that 
BMY activity is independent of aphid development and host 
glucosinolate content.

Next, we sought to examine the catalytic activity of BMY 
toward the mixture of glucosinolates in A. thaliana wild-
type Col-0 plants. We therefore heterologously expressed 
bmy in E. coli and affinity-purified the recombinant BMY 
protein (Fig. S3). When mixed with a plant glucosinolate 
extract, BMY had higher activity toward aliphatic glucosi-
nolates than indolic glucosinolates (Fig. 2a), in agreement 
with a parallel test using a crude protein extract from fourth-
instar B. brassicae (Fig. 2b). BMY hydrolyzed 74%–91% of 
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aliphatic glucosinolates within 60 min, but only up to 62% 
of indolic glucosinolates (Fig. 2b). Irrespective of its native 
or recombinant form, BMY did not appear to use the indolic 
glucosinolate 4MOI3M-GSL as a substrate (Fig.  2a,b). 
We additionally quantified the glucose released during 
hydrolysis of 10 selected pure glucosinolates (Fig. 2c). 
Consistent with the results above, BMY had highest activi-
ties toward pure aliphatic glucosinolates than toward ben-
zenic or indolic glucosinolates (Fig. 2c). Among the tested 

substrates, sinigrin and 3MSOP-GSL, two shorter chain 
aliphatic substrates, supported the highest rate of activation 
(Fig. 2c). This observed catalytic preference was further 
confirmed by the enzyme kinetic parameters of BMY for 
selected substrates, with the shorter chain aliphatic glucosi-
nolates 3MSOP-GSL and 4MSOB-GSL serving as the best 
substrates (Table 1). Denatured B. brassicae proteins and 
proteins of empty vector-transformed E. coli both failed to 
degrade any substrates, as expected (Supplementary file). 

Fig. 1  Dynamic accumulation of distinct glucosinolates in the cab-
bage aphid B. brassicae. a A heatmap shows the dynamic patterns of 
the sequestration of host plant glucosinolates in B. brassicae adults 
fed with A. thaliana wild-type Col-0 plants, highlighting the prefer-
ence for glucosinolates with different side chains. The colors repre-
sent the log2 (fold change) of the content of each accumulated glu-
cosinolate in the body of B. brassicae relative to those of the host 
plants measured at each time point post-aphid infestation. The actual 
glucosinolate concentrations in both B. brassicae and the host plants 
are shown in Fig. S1. b The relative accumulation of individual ali-
phatic glucosinolates containing methylsulfinyl groups in their side 
chains occurred at differential rates, roughly increasing with side 
chain length (time: F8,108= 123.7,  P ≤ 0.001; metabolites:  F3,108= 
75.30, P ≤ 0.001; time × metabolites: F24,108= 3.37, P ≤ 0.001; n = 4 

in all points). c The patterns of accumulation of aliphatic glucosi-
nolates in B. brassicae did not differ among developmental stages. 
Accumulation quantity was tested at day 6 post-infestation (organ-
isms: F3,96= 247.2, P ≤ 0.001; metabolites: F7,96= 708.2, P ≤ 0.001; 
organisms × metabolites: F21,96= 72.85, P ≤ 0.001; n = 4 in all bars). 
3MSOP-GSL, 3-methylsulfinylpropyl glucosinolate; 4MSOB-GSL, 
4-methylsulfinylbutyl glucosinolate; 5MSOP-GSL, 5-methylsulfi-
nylpentyl glucosinolate; 8MSOO-GSL, 8-methylsulfinyloctyl glu-
cosinolate; 4MTB-GSL, 4-methylthiobutyl glucosinolate; I3M-GSL, 
indolyl-3-methyl glucosinolate; 1MOI3M-GSL, 1-methoxyindol-
3-ylmethyl glucosinolate; 4MOI3M-GSL, 4-methoxyindol-3-ylme-
thyl glucosinolate. Significant differences (P ≤ 0.05) between means 
(± SE) were determined by Tukey HSD tests in conjunction with a 
two-way ANOVA
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Fig. 2  The enzymatic activity of B. brassicae myrosinase (BMY) 
is biased toward aliphatic glucosinolates. Aliphatic glucosinolates 
were degraded much more quickly than indolic glucosinolates by 
purified recombinant BMY (a) and by a crude protein extract from 
B. brassicae  (b). The protein extract was from B. brassicae third-
instar nymphs fed on A. thaliana myb28myb29cyp79b2cyp79b3 (no 
glucosinolates) plants (B. brassicae protein: F7,16= 3086, P ≤ 0.001; 
recombinant BMY: F7,16= 192.2, P ≤ 0.001; n = 3 in all points). c 
Quantification of glucose formed by BMY activation of selected glu-
cosinolates from the three classes (F9,50= 249.1, P ≤ 0.001; n = 6 in 

all bars). Sinigrin: 2-propenyl glucosinolate; 3MSOP-GSL, 3-methyl-
sulfinylpropyl glucosinolate; 4MSOB-GSL, 4-methylsulfinylbutyl 
glucosinolate; 5MSOP-GSL, 5-methylsulfinylpentyl glucosinolate; 
8MSOO-GSL, 8-methylsulfinyloctyl glucosinolate; 4MTB, 4-meth-
ylthiobutyl glucosinolate;  I3M-GSL, indolyl-3-methyl glucosinolate; 
1MOI3M-GSL, 1-methoxyindol-3-ylmethyl glucosinolate; 4MOI3M-
GSL, 4-methoxyindol-3-ylmethyl glucosinolate; benzyl-GSL: benzyl 
glucosinolate; sinalbin: p-hydroxybenzyl glucosinolate. Significant 
differences (P ≤ 0.05) between means (± SE) were determined by 
Tukey HSD tests in conjunction with one-way ANOVA
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Together, these results demonstrate that the catalytic activ-
ity of BMY is highest toward aliphatic glucosinolates, in 
particular those with shorter side chains.

Glucosinolate metabolites found in B. brassicae 
after simulated predation

The rupture of aphid tissues triggers the activation of 
sequestered glucosinolates, but the metabolites thereby 
formed have not been examined in detail, in spite of their 
important physiological implications. Therefore, we used 
a brush to gently stroke B. brassicae, mimicking an initial 
predator attack, and then analyzed the products resulting 
from hydrolysis of 4MSOB-GSL, the major aliphatic glu-
cosinolate present in both A. thaliana wild-type Col-0 plants 
and aphids fed upon it (Fig. 1c). 4MSOB-GSL hydrolysis by 
the aphids led to both 4MSOB-ITC and the corresponding 
simple nitrile 4MSOB-CN as primary products (Fig. 3a). A 
significant drop (25%) in accumulated 4MSOB-GSL levels 
occurred during the 5 min after external mechanical stimu-
lation, paired with a concomitant generation of three types 
of 4MSOB-metabolites, namely, 4MSOB-CN, 4MSOB-
ITC, and 4MSOB-ITC-GSH (glutathione-ITC conjugate) 
(Fig. 3a,b). These three 4MSOB-metabolites were abundant, 
with the formation of 4MSOB-ITC (6.3-fold increase after 
external mechanical damage) being higher than the other 
two metabolites (2.1- and 3.5-fold increase for 4MSOB-CN 
and 4MSOB-ITC-GSH, respectively). Therefore, 4MSOB-
ITC represents only a portion of 4MSOB-GSL metabolites 
produced upon a stimulus mimicking predation. Twenty 
minutes after mechanical damage, the concentrations of two 
downstream ITC-conjugates of the mercapturic acid pathway 
(4MSOB-ITC-CG (cysteinyl-glycine) and 4MSOB-ITC-Cys 
(cysteine)) were also elevated; the presumed final product 
of the mercapturic acid pathway, 4MSOB-ITC-NAC, was 
undetectable at all time points (Fig. 3b). We additionally 
quantified products of the activation of I3M-GSL, the major 
indolic glucosinolate accumulated in B. brassicae. In stark 

contrast to 4MSOB-GSL, the direct hydrolysis product 
(indole-3-acetonitrile) was too scarce for detection; instead, 
several likely non-toxic metabolites downstream of I3M-
ITC, namely, I3C and I3M-ascorbate, were detected after 
I3M-GSL activation (Fig. S4). Overall, these results sug-
gest that B. brassicae activates both classes of glucosinolates 
during an attack, with the aliphatic 4MSOB-GSL being con-
verted into both the corresponding ITC and simple nitrile, 
and the hydrolysis products are partially converted to non-
toxic conjugates.

In plants of the Brassicales order, the formation of 
4MSOB-CN from 4MSOB-GSL is mediated by the pres-
ence of specifier proteins and the cofactor Fe (II) (Eisen-
schmidt-Bönn et al. 2019). To examine the factors affecting 
glucosinolate hydrolysis in B. brassicae aphids, we con-
ducted in vitro enzyme assays using both a crude B. bras-
sicae protein extract and purified BMY, and determined that 
formation of 4MSOB-CN was in apparent competition with 
the production of 4MSOB-ITC and relied on Fe (II) in a con-
centration-dependent manner, apparently without the need 
for an additional specifier protein (Fig. 3c). We further com-
pared Fe (II) contents in B. brassicae and A. thaliana; the 
Fe (II) content in aphids exceeded that in the plant by about 
30-fold, irrespective of whether the aphid had fed on plants 
containing or lacking aliphatic glucosinolates (Fig. 3d).

Prey‑derived aliphatic ITCs negatively affect growth 
and development of a lacewing predator

We next asked how interfering with glucosinolate accumu-
lation by the aphid would affect higher trophic levels. We 
focused on the generalist predatory lacewing C. carnea. To 
manipulate levels of glucosinolates in aphids, we fed them 
two genotypes of A. thaliana differing only in endogenous 
glucosinolate content: Col-0 wild-type plants with their nat-
ural glucosinolate content, and myb28myb29 plants without 
aliphatic glucosinolates. We then quantified the growth and 
development of C. carnea fed with aphids from either of 

Table 1  Enzyme kinetic 
parameters of BMY toward 
different glucosinolates

The activity of affinity-purified recombinant BMY toward selected glucosinolates was measured with con-
centrations ranging from 1 to 1500 µM (10 min at 28 °C)

Glucosinolates vmax KM kcat kcat/KM

µmol mg−1 min−1 mM s−1 mM−1 s−1

3MSOP-GSL 12.44 ± 1.37 0.44 ± 0.12 11.14 ± 1.23 25.58 ± 2.82
4MSOB-GSL 10.40 ± 1.17 0.59 ± 0.14 9.32 ± 1.04 15.79 ± 1.77
5MSOP-GSL 13.57 ± 2.37 0.72 ± 0.26 12.15 ± 2.13 16.78 ± 2.94
8MSOO-GSL 11.73 ± 1.95 0.75 ± 0.25 10.51 ± 1.75 13.93 ± 2.32
1MOI3M-GSL 5.06 ± 0.55 0.63 ± 0.15 4.53 ± 0.49 7.16 ± 0.77
I3M-GSL 2.75 ± 0.53 0.52 ± 0.22 2.46 ± 0.47 4.74 ± 0.91
Benzyl-GSL 8.78 ± 3.00 2.40 ± 1.17 7.86 ± 2.69 3.28 ± 1.12
Sinalbin 6.99 ± 0.96 1.33 ± 0.31 6.26 ± 0.86 4.71 ± 0.65
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those groups. A striking reduction in body weight occurred 
in lacewing larvae fed with wild-type-reared aphids rela-
tive to myb28myb29-reared aphids; a statistical difference in 

predator weights emerged as early as 5 days post-hatching 
and became more dramatic during the rest of our experimen-
tal period (17 days post-hatching) (Fig. 4a). This pattern did 

Fig. 3  4MSOB-GSL metabolism in B. brassicae after simulated 
predation. a An overview of the general pathways for 4MSOB-GSL 
hydrolysis and ITC conjugation. Note that the substrate 4MSOB-GSL 
is metabolized into two distinct pathways, forming either the nitrile 
or the ITC derivatives, respectively. b Quantification of 4MSOB-
GSL metabolites induced by simulated predation. Fourth-instar stage 
B. brassicae nymphs underwent a gentle simulated attack by brush 
stroking. n = 5 in all bars. 4MSOB-GSL, F2,12 = 19.22, P ≤ 0.001; 
4MSOB-CN, F2,12 = 5.891, P ≤ 0.05; 4MSOB-ITC, F2,12 = 78.22, 
P ≤ 0.001; 4MSOB-ITC-GSH, F2,12 = 16.71, P ≤ 0.001; 4MSOB-
ITC-CG, F2,12 = 20.07, P ≤ 0.001; 4MSOB-ITC-Cys, F2,12 = 33.16, 
P ≤ 0.001; 4MSOB-ITC-NAC, F2,12 = 2.395, P ≥ 0.05. c Conversion 
of 4MSOB-GSL to 4MSOB-CN requires the presence of Fe (II) and 

BMY. The extracted B. brassicae protein (treatments: F6,28= 1077, 
P ≤ 0.001; metabolites: F1,28= 16625, P ≤ 0.001; treatments × metab-
olites: F6,28= 1079, P ≤ 0.001; n = 3 in all bars) and recombinant 
BMY (treatments: F6,28= 1052, P ≤ 0.001; metabolites: F1,28= 18164, 
P ≤ 0.001; treatments × metabolites: F6,28= 690.2, P ≤ 0.001; n = 3 in 
all bars) were incubated with 4MSOB-GSL in the presence of other 
co-factors. 4MSOB-CN formation is positively correlated with the 
addition of  (NH4)2Fe(SO4)2 in the reaction system, but is blocked by 
adding the Fe (II) scavenger EDTA. d Fe (II) contents in fourth stage 
B. brassicae nymphs and in the aphid host plant. Significant differ-
ences (P ≤ 0.05) between means (± s.e.) were determined by Tukey 
HSD tests in conjunction with one-way ANOVA in b, and two-way 
ANOVA in c 



1156 Journal of Pest Science (2021) 94:1147–1160

1 3

not differ between male and female insects. The mortality 
of lacewing larvae reached approximately 70% after 20 days 
feeding on wild-type-reared aphids; however, only 15% of 
lacewings fed with myb28myb29-reared aphids died over the 
same time span (Fig. 4b). C. carnea larvae fed with wild-
type-reared aphids also had much lower pupation success 
(less than 30%) than counterparts fed with myb28myb29-
reared aphids (around 80%) at the end of the experiment 
(25 days post-hatching) (Fig. 4c). Further, C. carnea fed 
with myb28myb29-reared aphids exhibited a shortened dura-
tion of the pupal stage, followed by a higher emergence suc-
cess compared with lacewings fed with aphids reared on 
wild-type A. thaliana (Fig. 4d).

Ingestion of high amounts of 4MSOB‑ITC 
overwhelms the detoxification capability of C. 
carnea

The severely impaired development of the predatory lace-
wing C. carnea exposed to ITCs (Fig. 4) suggested that its 
intrinsic detoxification capacity was insufficient against the 
high levels of ITCs ingested from its B. brassicae prey. To 
examine the efficiency of ITC detoxification in C. carnea, 
we provided C. carnea larvae with a constant diet of aphids 
fed on wild-type Col-0 A. thaliana starting from hatching. 
We then profiled the 4MSOB-metabolites in these lacewing 
larvae 15 days post-hatching (third-instar larval stage). 
Strikingly, large quantities of the non-toxic ITC metabolite 
4MSOB-ITC-NAC were detected in both the larval anal 
secretion and its body (Fig. 5). While 4MSOB-ITC-NAC 
was itself absent in aphids (Fig. 3), the concentration of this 
metabolite in lacewing larvae was higher than other glucosi-
nolate derivatives. The toxic 4MSOB-ITC was also abundant 
in the anal secretion, together with ITC-conjugates, while 
lower concentrations of 4MSOB-ITC remained in the lace-
wing larval body (Fig. 5). The simple nitrile 4MSOB-CN, 
another metabolite produced by B. brassicae, was present 
in high concentrations both in the anal secretion and larval 
bodies. Of note, the concentration of 4MSOB-CN was about 
twofold higher than 4MSOB-ITC in lacewing larval bod-
ies, in stark contrast to aphids (Fig. 3). In pupae and adult 
lacewings, significantly lower concentrations of 4MSOB-
metabolites were detected, except only for 4MSOB-ITC-
NAC in the meconium, eventually resulting in adults free 
from 4MSOB-metabolites (Fig. 5). In all, these results show 
that C. carnea larvae expend a large amount of energy deal-
ing metabolically with the high concentrations of toxic 
4MSOB-ITC ingested, leading to stark negative effects on 
their growth and survival. Nevertheless, surviving insects 
can excrete both 4MSOB-ITC and its derivatives, in spite 
of their metabolism being insufficient to deactivate all of 
the ingested toxin.

Fig. 4  Ingestion of glucosinolate-containing cabbage aphids severely reduces 
growth and survival of larvae of the predatory lacewing, C. carnea. a Weights 
of C. carnea larvae fed on B. brassicae that were reared on either wild-type 
A. thaliana Col-0 plants (wild-type glucosinolates) or myb28myb29 plants 
(no aliphatic glucosinolates) (5  day, Z = 2.536, P ≤ 0.05, n = 30 for both; 
7  day, Z = 2.868, P ≤ 0.01, n = 30 for both; 9  day, Z = 2.964, P ≤ 0.01, n = 28 
and 30, respectively; 11 day, Z = 2.764, P ≤ 0.01, n = 23 and 27, respectively; 
13  day, Z = 3.925, P ≤ 0.001, n = 22 and 24, respectively; 15  day, Z = 4.564, 
P ≤ 0.001, n = 19 and 21, respectively; 17 day, Z = 4.754, P ≤ 0.001, n = 15 and 
18, respectively; male, Z = 4.112, P ≤ 0.001, n = 14 for both; female, Z = 2.802, 
P ≤ 0.01, n = 6 for both). b The larval mortality of C. carnea preying on aphids 
reared on either wild-type or myb28myb29 plants as food sources (Log Rank, 
Χ2 = 39.909, P ≤ 0.001; n = 60 for all treatments). c Pupation rate of C. carnea 
larvae (Log Rank, Χ2 = 44.185, P ≤ 0.001; n = 60 for all treatments) and d sub-
sequent adult emergence rate after feeding on aphids reared on either wild-type 
or myb28myb29 plants (Log Rank, Χ2 = 8.965, P ≤ 0.01; n = 30 for all treat-
ments). Significant differences (P ≤ 0.05, two-tailed assay) between medians 
were determined by Mann–Whitney U Test in a, and significant differences 
(P ≤ 0.05) were determined by Kaplan–Meier survival analyses in b–d. Aster-
isks represent: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001
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Discussion

The cabbage aphid is a destructive agricultural pest that spe-
cializes on plants of the order Brassicales, including crops 
such as cabbages and mustards. Although Brassicales spe-
cies produce a wide variety of glucosinolates, our results 
clearly show that the cabbage aphid accumulates predomi-
nantly aliphatic glucosinolates (Fig. 1), in line with other 
studies (Kos et al. 2011). Moreover, the accumulation of 
aliphatic glucosinolates occurs at different rates, dependent 
on the side chain structure (Fig. 1b). Although the mecha-
nism dictating the selective sequestration of particular 
glucosinolates is not understood, it likely involves specific 
transporters such as the ABC transporters that allow translo-
cation of plant-derived materials across cellular membranes 
(Petschenka and Agrawal 2016; Strauss et al. 2013).

Sequestration of plant defense compounds is more typical 
for specialist than generalist herbivores (Beran et al. 2014; 
Bramer et al. 2017; Kazana et al. 2007; Müller et al. 2001). 
It is one of a range of adaptations of Brassicales-feeding 
herbivores to facilitate the colonization of glucosinolate-
containing host plants (Cao et al. 2018; Cole 1997; Louis 
et al. 2012). Sequestration may remove intact glucosinolates 
from the gut before they can become activated by the plant 
myrosinases (Abdalsamee et al. 2014), which can resist 
digestion and might act in the insect gut lumen (Vassão 
et al. 2018). When later activated by the insect, these same 
glucosinolates can serve as defenses against predators and 
parasitoids (Chaplin-Kramer et al. 2011; Kos et al. 2011). 
The selectivity of glucosinolate sequestration in the cabbage 
aphid may result from a preference for compounds that are 
more effective in defense. Selectivity, such as the prefer-
ence against indolic glucosinolates, could also help reduce 
the risk of autotoxicity. In that regard, certain indolic glu-
cosinolates and their derivatives have been shown to cause 

negative effects on the performance and physiology of some 
aphids (Kim and Jander 2007; Kim et al. 2008). Aphids 
might also break down indolic glucosinolates during feed-
ing to limit their uptake (Fig. 1) (Kos et al. 2011).

The endogenous cabbage aphid myrosinase (BMY) ena-
bles the cabbage aphid to produce defensive ITCs from the 
sequestered glucosinolates (Jones et al. 2002; Kazana et al. 
2007) as long as the enzyme is able to accept the sequestered 
glucosinolates as substrates. We report here for the first time 
that the preference of BMY toward different glucosinolate 
substrates in vitro corresponds well to the pattern of glu-
cosinolates sequestered by the aphid in vivo (Figs. 1 and 
2). Aliphatic glucosinolates may be preferred as substrates 
because of more favorable interactions with enzymatic bind-
ing sites (Husebye et al. 2005). Preference for shorter chain 
aliphatic glucosinolates may be due to the specific active site 
architecture and could have been selected for since shorter 
chain ITCs have greater volatility than longer chain ITCs 
and thus serve as better signals in aphid colonies to warn of 
predation. The hydrolysis products of some shorter chain 
aliphatic glucosinolates enhance neuronal response to the 
alarm pheromone of aphids (Dawson et al. 1987; Kazana 
et al. 2007) and impair the performance and physiology 
of aphid predators (Kos et al. 2011). The weak activity of 
BMY with indolic glucosinolates corresponds to their low 
accumulation level. BMY is completely inactive with the 
substrate 4MOI3M, and this glucosinolate is barely detected 
in the body of cabbage aphid (Fig. 1).

In addition to ITCs, our results reveal that the cabbage 
aphid produces substantial amounts of nitriles as well as 
ITC-conjugates upon glucosinolate activation (Fig. 3). In the 
presence of BMY, the diversion of aliphatic glucosinolates 
into nitriles requires Fe (II) in a concentration-dependent 
manner (Fig. 3), possibly in tandem with a nitrile-specifier 
protein (NSP) as in plants (Wittstock et al. 2016). The simple 

Fig. 5  C. carnea alleviates the toxicity of the 4MSOB-ITC from 
ingested aphids by conjugation and mobilization. Detoxification of 
ingested 4MSOB-ITC includes metabolism into the detoxified prod-
uct 4MSOB-ITC-NAC via the general mercapturic acid pathway 
and mobilization into the anal secretion. The remaining 4MSOB-

ITC-NAC is excreted in the meconium after adult emergence. 
Significant differences (tissues: F4,140 = 15.99, P ≤ 0.001; metabo-
lites: F6,140 = 21.82, P ≤ 0.001; tissue × metabolites: F24,140 = 5.295, 
P ≤ 0.001; n = 5 in all bars) between means (± s.e.) were determined 
by Tukey HSD test in conjunction with a two-way ANOVA



1158 Journal of Pest Science (2021) 94:1147–1160

1 3

nitriles formed are known to be less toxic than ITCs, but 
benefit plants by attracting parasitoids or deterring herbivore 
oviposition (Mumm et al. 2008). They may also have roles as 
defensive signals for aphids, but further research is needed. 
If nitriles do function in defense, the cabbage aphid’s use of 
both Fe (II) and BMY in glucosinolate hydrolysis might help 
adjust the balance of glucosinolate metabolites.

The widespread application of toxic chemicals for the 
management of pest herbivores can have strong negative 
effects on nontargeted organisms, including pollinators. 
Hence, the application of natural enemies is increasingly 
considered as a more environmentally friendly part of inte-
grated pest management strategies. However, how plant-
produced defensive metabolites might affect the multiple 
trophic levels involved in such applications is often not 
well understood. It has been shown in some cases that such 
compounds can move up the food chain and affect not only 
the consuming pest herbivores, but subsequently also her-
bivore natural enemies (Gauld et al. 1992; Hartmann 2004; 
Harvey et al. 2003; Petschenka and Agrawal 2016), with 
potential unintended effects for plant protection. In Brassi-
cales plants more specifically, plant-produced glucosinolates 
have been shown to influence predators (Sporer et al. 2020; 
Sun et al. 2019) and parasitoids (Sun et al. 2020) of her-
bivores. Cabbage aphid predators, such as C. carnea, can 
suffer significantly from ingesting insects containing glu-
cosinolates. While C. carnea possesses a metabolic mecha-
nism to detoxify ITCs via conjugation (Sun et al. 2019), 
this detoxification capacity appears to be limited. Although 
the performance and fitness of C. carnea larvae were not 
negatively affected by the low levels of 4MSOB-ITC pre-
sent in sulfatase-deficient Plutella xylostella (Sun et al. 
2019), they were significantly decreased by the much larger 
quantities of 4MSOB-ITC produced by the cabbage aphid 
(Figs. 4 and 5). These findings suggest that generalist preda-
tors like the lacewing might possess only a limited capacity 
to overcome the toxicity of prey defenses, although certain 
specialist predators might display stronger tolerance (Pratt 
et al. 2008). Research on a larger variety of cabbage aphid 
predators should give us a better picture of the effectiveness 
and roles of glucosinolate detoxification in herbivore natu-
ral enemy interactions. Here, we determined that C. carnea 
was strongly negatively affected by the aliphatic glucosi-
nolates accumulated by B. brassicae aphids, highlighting the 
importance of these compounds in food chains. As such, this 
lacewing might be more suitable for cabbage aphid control 
on crops with low amounts of aliphatic glucosinolates, even 
if benzenic and indolic glucosinolates are abundant, than 
on varieties containing high concentrations of short-chain 
aliphatic glucosinolates.
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