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Abstract
Pathogenic variants in TP53 have been classically thought to cause Li-Fraumeni syndrome (LFS), a cancer predisposition
with high risks for various childhood- and adult-onset malignancies. However, increased genetic testing has lately revealed,
that pathogenic variant carriers exhibit a broader range of phenotypes and that penetrance may be dependent both on variant
type and modifiers. Using next generation sequencing and short tandem repeat analysis, we identified germline pathogenic
variants in TP53 and RAD51C located in cis on chromosome 17 in a 43-year-old male, who has developed a rare sebaceous
gland carcinoma (SGC) but so far no tumors of the LFS spectrum. This course mirrors a Trp53-Rad51c-double-mutant cis
mouse-model, which similarly develops SGC, while the characteristic Trp53-associated tumor spectrum occurs with
significantly lower frequency. Therefore, we propose that co-occurent pathogenic variants in RAD51C and TP53 may
predispose to SGC, reminiscent of Muir-Torre syndrome. Further, this report supports the diversity of clinical presentations
associated with germline TP53 alterations, and thus, the proposed expansion of LFS to heritable TP53-related cancer
syndrome.

Introduction

Li-Fraumeni syndrome (LFS) is an autosomal dominantly
inherited multicancer predisposition covering a spectrum of
five core malignancies: breast cancer, soft tissue or bone
sarcoma, brain tumors, and adrenocortical carcinoma [1, 2].
The genetic basis of LFS are germline pathogenic variants
in TP53 [1, 3]. Carriers have a 58% risk of developing
cancer before age 40 and about 80% before age 70 [4].
Penetrance varies according to age, sex, and variant type
[4]. Thus, penetrance is higher in males than in females
during childhood and adolescence, but by age 35 the initial
male bias is offset by the burden of breast cancer in women
[4]. Lifetime risk of developing cancer has been estimated
to 70% or higher for men, while women’s risk is close to
100% [4–7]. The predominance of familial cases included
in these studies likely leads to an overestimation of the
disease penetrance [1]. Thus, estimating the cancer risk for
TP53 variant carriers remains a great challenge [1]. How-
ever, the fact that about 20% of carriers detected in a
familial context do not develop cancer until the age of 70
years, suggests that additional genetic or nongenetic factors
may create an environment that is either promoting, or
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restricting LFS development. The presence of modulators
may also explain the higher than expected frequency of
pathogenic TP53 variants in the general population [8].

In support of genetic modulators of TP53, a mouse
model harboring a Trp53-null-allele and a Rad51c-null-
allele displayed different phenotypes depending on the
location of the mutant alleles (on the same (cis) or on the
alternate mouse chromosome 11 (trans)). Trans mice
developed tumors with latency and spectrum similar to LFS,
while cis mice had sebaceous glands carcinoma (SGC) and
developed fewer tumors characteristic of Trp53-null-allele
[9] (for a detailed description of the mouse model and its
limitations see Supplementary Material).

Germline pathogenic variants in RAD51C predispose to
hereditary breast and ovarian cancer [10, 11], and, to our
knowledge, SGC does not belong to the tumor spectrum.
SGC is frequently observed in the context of Muir-Torre
syndrome (MTS) due to mismatch repair (MMR) deficiency
related to hereditary non-polyposis colorectal carcinoma
syndrome [12], but do not belong to the typical LFS-related
tumor spectrum. To our knowledge SGC has been previously
described in only one patient with a pathogenic TP53 variant
(c.818G>A, p.(Arg273His)) [13]; in this case, it remains
unclear whether pathogenic variants affecting other genes co-
occurred.

We present a patient that harbors a pathogenic missense
variant in TP53 located in cis with a deletion within
RAD51C on human chromosome 17. Based on the IARC
TP53 [14] database about 71% of the pathogenic variations
are missense. Our patient is a 43-year-old male, who was
diagnosed with a mid-occipital basal cell carcinoma (BCC)
at age 38. At the age of 41, a right upper lid SGC was
diagnosed. Both tumors had been fully excised shortly after
diagnosis and the further clinical course was uneventful
without any additional treatment necessary. Apart from
colon cancer of the maternal grandmother at >80 years,
family history is negative for any tumor diseases. This is not
unexpected since 7–20% of the TP53 variants occur de
novo [15, 16], and hence tumor family history is absent.

The proband has two healthy 4 year-old twin children of
different gender (Fig. 1C).

Although our observations are limited given the LFS
known penetrance of around 58% at the age of 40 [4], the
proband appears to recapitulate the mouse phenotype with
no LFS typical tumors, but SGC reminiscent of MTS.

Methods

Histologic examination

An initial biopsy of the tumor followed by hematoxylin and
eosin staining showed a malignant epithelial tumor con-
taining basophilic sebaceous tumor cells with a nodular and
in part trabecular order and no peripheral palisading.

Molecular and bioinformatic analyses

Genomic DNA was extracted from peripheral blood of the
proband and his relatives, and, to determine whether the
variant is of germline-origin or mosaicism, in the proband
also from finger nails. We performed panel sequencing
(Illumina TruSight Cancer Panel) targeting 94 cancer-
related genes (Table S1 in the Supplementary Material) on
a NextSeq500/550 High Output platform. Coverage of at
least 20-fold was obtained for 99.4% of the target
sequences. We evaluated data using Varvis software
(Limbus, Rostock). Copy number variations (CNV) were
analyzed using the coverage information of the panel with
the current version of the Varfeed CNV software. The
deletion of exons 5–9 in RAD51C was validated by Mul-
tiplex Ligation-dependent Probe Amplification (MLPA)
(Kit P260, MRC-Holland) and the TP53 variant was vali-
dated by Sanger sequencing.

To investigate possible recombination events we per-
formed a short tandem repeat (STR) analysis in the proband,
his parents, and his children using loci located on chro-
mosome 17 (Table S2 in the Supplementary Material).

Fig. 1 Presentation of the sebaceous gland carcinoma. A Clin-
ical appearance of the sebaceous gland carcinoma as a right upper lid
mass. B Hematoxylin eosin staining of the resected mass (10×). The
arrow indicates irregular lobules and sheets of atypical sebaceous cells.

C Hematoxylin eosin staining of the resected mass (20×). The arrows
indicate undifferentiated, atypical cells with considerable nuclear
pleomorphism and eosinophilic cytoplasm.
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To assess a potential loss of heterozygosity (LOH) in
the tumor, we performed the same panel sequencing. The
proportion of normal tissue within the tumor section was
approx. 30%. Of the target sequences 99.9% were cov-
ered at least 20 times. Variant calling was performed
with Strelka2 [17], to increase sensitivity. We used
samtools [18] to determine the read depth. For a detailed
description of the methods, see the Supplementary
Material.

Results

Diagnostic evaluation

Histological examination of the resected tumor established
the diagnosis of an SGC (Fig. 1A–C).

In line with the normal MMR protein expression patterns
(Fig. S1 in the Supplementary Material), we did not detect
any sequence alteration in MMR genes by panel sequencing

Fig. 2 Identified pathogenic
variants. A Electropherogram
of the Sanger sequencing and
the heterozygous
NM_000546.5, c.394A>G TP53
variant (marked in the red
quadrant). B MLPA validation
of the exons 5–9 deletion,
NM_058216.2 in RAD51C
(marked in the red quadrant).
C Pedigree chart of the family:
the proband is indicated with an
arrow. The origin of the paternal
(blue) and maternal (red)
chromosome has been
established based on STR
markers length (Fig. S4 in
Supplementary Material). The
son inherited the chromosome
originating from his paternal
grandmother, without
recombination, and with wild
type alleles of TP53 and
RAD51C. The daughter
inherited a recombined
chromosome 17 with the
beginning of p arm originating
from the paternal grandmother,
with a wild type TP53 allele, and
the rest originating from the
paternal grandfather, harboring
the deletion within RAD51C.
Location of the de novo mutated
TP53 allele (in green) on the
paternal originating
chromosome of the proband,
thus situated in cis with the
deletion within RAD51C. CC
colon carcinoma, BCC basal cell
carcinoma, SGC sebaceous
gland carcinoma, age at
diagnosis in years is given
between brackets.
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of DNA from blood and tumor. However, we detected the
heterozygous missense germline variant chr17:7,578,536;
NM_000546.5, c.394A>G, p.(Lys132Glu) in TP53, which
was classified as pathogenic [19] (Supplementary Material).
The variant is located in the DNA-binding domain of p53
and functional examination in yeast revealed a dominant
negative (DN) effect of the altered allele with a mean resi-
dual activity of 1% or less compared to wild-type [20, 21].
The variant has been described in the context of Li-Fraumeni
[21, 22] in one pedigree and has been recently classified as a
true recurrent pathogenic LFS variant [8] (for phenotype
description and variant classification see Supplementary
Material). CNV analysis of the proband further revealed a
deletion of exons 5–9 of RAD51C (NM_058216.2, c.(235+
1_236-1)_(*120_?)del), located also on chromosome 17.
This deletion has already been described as pathogenic in the
context of familial breast and ovarian cancer [23–25] (for
phenotype description and variant classification see Sup-
plementary Material). Both variants were validated using a
second detection method (Fig. 2A, B) and in an additional
tissue (Figs. S2A and S3A in the Supplementary Material).
No further clinically relevant variants could be identified in
cancer-relevant genes using the above panel.

Chromosomal localization of the variants

Segregation analysis in the proband’s family revealed that the
deletion within RAD51C is paternally inherited, while the
TP53 variant occurred de novo (Pedigree in Figs. 2C and S2 in
the Supplementary Material). Phasing of the two variants was
done using STR analysis (Fig. S4 in the Supplementary
Material). We initially excluded the TP53 variant in both
children of the proband (Figs. 2C and S2D–E in the Supple-
mentary Material). Using STR analysis we show that the
daughter inherited a recombined chromosome 17, while there
was no evidence for a crossing-over event in the son (Figs. 2C
and S4, Table S3 in the Supplementary Appendix). In accor-
dance with the STR analysis, we confirmed the deletion within
RAD51C in the daughter (Figs. 2C and S3 in the Supple-
mentary Material). We evaluated the probability of recombi-
nation for the TP53 and RAD51C variants to be 31.6%, using
d ¼ 50lnð 1

1�2Pr½recombination�Þ, where d represents the distance
in centimorgans (the two genes are at ca. 51 × 106 bp apart
corresponding roughly to 51 centimorgans [26]). Thus, the
TP53 variant occurred de novo on the paternal chromosome of
the proband, and thereafter in cis with the deletion within
RAD51C (Fig. S4 in the Supplementary Material).

Discussion

Here, we describe a proband with a de novo pathogenic
TP53 variant associated with an in cis inherited pathogenic

deletion within RAD51C (Fig. 2C). Since the TP53 variant
occurred de novo the family history for LFS was absent. It
is remarkable that, although the proband harbors a variant of
severe deficiency with a dominant negative effect, known to
significantly increase cancer risk [21], no LFS-typical
tumors occurred until his current age of 43 years. This is
in high accordance with a Trp53-Rad51c-double-mutant
mouse model, which carries the mutant alleles in cis [9].
The Rad51c loss promoted SGCs and skin malignancies,
but reduced tumors characteristic of Trp53-mutant mice [9].
The human proband also developed SGC and a BCC,
recapitulating the mouse phenotype.

To date, MTS due to dysfunctional MMR is the only
known autosomal dominant mendelian condition predis-
posing to SGC. In both our proband and the mouse model,
[9] MMR was intact (Fig. 1D–F), suggesting an alternative
mechanism for these tumors. Indeed, p53 dysfunction was
previously suggested to be a divergent pathway in the
molecular pathogenesis of SGC that show strong nuclear
p53 staining and intact MMR [27].

To our knowledge, SGC has been described in only one
patient with a pathogenic TP53 variant [13]. It remains
unclear whether this individual had either typical LFS as
well as an additional predisposition to SGC, or potentially
an underlying genetic disorder similar to the mechanism
described in this manuscript (no information is available on
sequence alterations of RAD51C in this published indivi-
dual). Although further studies are required to validate and
fully elucidate the molecular mechanism, our observations
point towards two major clinical implications: (1) SGC
could be related to co-occurrence of pathogenic TP53 and
RAD51C variants, and cause a phenotype reminiscent of
MTS independent of MMR deficiency. Moreover, TP53
was found to harbor the highest number of pathogenic
variants in a set of SGCs [28], suggesting that germline
pathogenic variants in TP53 potentially associated with
other modifiers may be more frequent than expected. (2) In
line with the observations in Trp53-Rad51c-double mutant
cis mice [9], also human in cis co-occurrence of pathogenic
TP53 and RAD51C variants may substantially transform the
Li-Fraumeni phenotype to a predisposition to SGC; how-
ever, this may not preclude the development of LFS typical
tumors.

In order to establish a clear genotype–phenotype corre-
lation future patients with co-occurrence of TP53 and
RAD51C pathogenic variants, additional to the mouse
model are needed. Thus, our recommendation for the pre-
sent patient was to undergo regular LFS screening [1] (for
ethical considerations and patient management see Sup-
plementary Material). Lately, multiple studies have
demonstrated the phenotypic variability of TP53 pathogenic
variants carriers [29, 30]. This has been related to both
variant type and potential modifiers [1, 29, 30]. Bougeard
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and colleagues suggested that a clinical gradient can be
identified in TP53 pathogenic variants carriers, depending
on the variant type. Hence, they suggested that future stu-
dies should characterize genotype–phenotype correlations
and modifiers of the phenotype, such that patients could
benefit from a stratified clinical management [29]. Our brief
report adds to the heterogeneity of the heritable TP53-
related cancers and aims to raise awareness on potential
modifiers. If this is confirmed by other studies a clinical
management stratification could be implemented to the
benefit of such patients.

Database submissions

Variants have been submitted to ClinVar (SUB8180034):
https://www.ncbi.nlm.nih.gov/clinvar/

● TP53: NM_000546.5:c.394A>G, SCV001429318;
● RAD51C: NM_058216.2:c.(235+ 1_236-1)_(*120_?)

del, SCV001438810.
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