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Root number of twists of an elliptic curve

Julie DESJARDINS

Abstract

We give an explicit description of the behaviour of the root number in the family given by
the twists of an elliptic curve E/Q by the rational values of a polynomial f(T ). In particular, we
present a criterion for the family to have a constant root number over Q. This completes work by
Rohrlich: we detail the behaviour of the root number when E has bad reduction over Qab and we
treat the cases j(E) = 0, 1728 which were not considered previously.

1 Introduction

This paper is concerned with the behaviour of the root number in a one-parameter family of
twists of an elliptic curve by the values of a polynomial f ∈ Z[T ], or equivalently, in the fibres of an
isotrivial elliptic surface. We will see that the root number respects a certain type of periodicity,
and we will give a criterion to predict when it is constant.

Let E be an elliptic curve over Q. The root number W (E) is defined as the product of the
local root numbers Wp(E) ∈ {±1}:

W (E) =
∏

p≤∞

Wp(E),

where p runs through the finite and infinite places of Q. These local factors, defined in terms of
the epsilon factors of the Weil-Deligne representation of Qp and explained in details by Rohrlich
in [Roh96], have the property that Wp(E) = 1 for all but finitely many p. Rohrlich [Roh93] gives
an explicit formula for the local root numbers in terms of the reduction of the elliptic curve E at a
prime p 6= 2, 3. Moreover, we always have W∞(E) = −1. The remaining cases p = 2, 3 are covered
by Halberstadt [Hal98] (see also Rizzo [Riz03]).

Let L(E, s) denote the L-function of E. Then W (E) is equal to the sign of the functional
equation of L by the Modularity Theorem over Q. Note that over general number fields K 6= Q,
such an equality is only conjectural.

The Birch and Swinnerton-Dyer conjecture implies the following statement, known as the parity
conjecture

W (E) = (−1)rankE(Q).

A consequence of this conjectural equality is that it suffices to have W (E) = −1 for the rank of
E(Q) to be non-zero, and in particular for E(Q) to be infinite.

By a one-parameter family of elliptic curves we mean the collection of the fibres of an
elliptic surface over Q (with a section) given by a Weierstrass equation

E : y2 = x3 + A(T )x+B(T ),

where A(T ), B(T ) are polynomials with coefficients in Z, and the discriminant is denoted by ∆(T ).
For t ∈ P1 such that ∆(t) 6= 0, the fibre at t, Et : y

2 = x3 + A(t)x + B(t), is an elliptic curve.
In this paper we consider the case where the family is isotrivial, i.e. when its j-invariant function

t 7→ j(Et) =
4A(t)3

∆(t) is constant. In that case, the curves Et are twists of one another, and E can be

seen as a subfamily of the families of all twists of E1:

1. (quadratic twists, j(E ) 6= 0, 1728) y2 = x3 + aH(T )2x+ bH(T )3,

2. (quartic twists, j(E ) = 1728) y2 = x3 +A(T )x,

3. (sextic twists, j(E ) = 0) y2 = x3 +B(T ),

where a, b 6= 0 and H(T ), A(T ), B(T ) are non-zero polynomials with integer coefficients.
In a previous article [Des18], the author proves that the function t 7→ W (Et) defined by the

root number on a non-isotrivial family E is never periodic (i.e. constant on a congruence class of
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t). More precisely, she proves that the sets W± = {t ∈ P1 | W (Et) = ±1} are both infinite, which
implies (under the parity conjecture) the Zariski-density of the rational points E (Q).

For families of twists thought, it can happen that W (Et) takes the same value for every t ∈ P1

associated to a smooth Et, and (more alarmingly if one is interested in proving the Zariski-density)
equal to +1, as observed previously in each of the two special cases:

1. (Cassels and Schinzel [CS82]) y2 = x3 − (1 + T 4)2x,

2. (Várilly-Alvarado [VA11]) y2 = x3 + 27T 6 + 16.

Observe that the first example is a K3 surface and that the second is a rational elliptic surface.
These specific surfaces have however a Zariski-dense set of rational points - the proof can be found
respectively in [Hua18] and in [VA11, Example 7.1]. By the time the present article was published,
the author and B. Naskrȩcki [De19] released a preprint presenting a simple algorithm to find the
generic rank of any elliptic surface of the form y2 = x3 + AT 6 + B, which generalizes Várilly-
Alvarado’s result.

It is not possible that all quadratic twists have the same root number, as observed by Dokchitser
and Dokchitser [DD09]. However, they proved that the elliptic curve

y2 = x3 + x2 − 12x− 67

4
(1)

has root number +1 over every extension of K = Q( 4
√
−37). This curve has the additional property

that any twist by an integer t ∈ N has root number +1 over Q and any twist by −t has root number
−1. Thus, polynomials f with only positive values (resp. only negative values) define a family of
twists with constant root number +1 (resp. −1). For instance, (T 2+1)y2 = x3+x2− 12x− 67

4 has
constant root number +1. However, the density of the rational points is proven on every family of
quadratic twists of an elliptic curve by a f with degree ≤ 2 [Des19, Theorem 4.2.].

In this article, we describe for which elliptic curves E the root number of a twist by t ∈ Z only
depends on the sign of t (Lemma 4.2). Moreover, for general elliptic curves E we describe the
behaviour of the root number (Theorem 1.1).

1.1 Notation

Throughout the paper we use two non-standard notations. Given an integer α ∈ Z and a prime
number, we denote by α(p) the integer such that

α = pvp(α)α(p).

Similarly, we define α(d) with d =
∏

peii ∈ N as the integer

α =

(

∏

i

p
vpi (α)

i

)

α(d).

We will denote by sq(α) and call the square part of α the integer

sq(α) =
∏

i such that ei is even.

pi

Incidentally, sq(α)(p) refers to the integer

sq(α)(p) =
∏

i

pi,

where i ranges on ei even and pi 6= p. We also call sgn(α) the sign of α.

1.2 Main results

We are interested in the behaviour of the root number in a one-parameter family of twists of
elliptic curves, that is, to say in the fibres of an isotrivial elliptic surface.

Definition 1. 1. A function f : F ⊆ Z → {±1} is periodic (or N -periodic) if there exists a
positive integer N such that for each t, t′ ∈ F

t ≡ t′ mod N ⇒ f(t) = f(t′).

We denote a congruence class modulo N by [t] (where t ∈ Z is a representative of the congru-
ence class).
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2. A function f : F ⊆ Z → {±1} is square-periodic (or (N,M)-square-periodic) if there exist
positive integers N,M such that for t, t′ ∈ F that we write in its factorisation into prime

factors t = pe11 · perr and t′ = q
e′1
1 · q

e′s
s , we have

t ≡ t′ mod N and sq(t) ≡ sq(t′) mod M ⇒ f(t) = f(t′),

where sq(t) =
∏

ei even pi and sq(t′) =
∏

e′
i

even qi.

We call a square-congruence class [t]sq mod N,M the set of the integers t′ such that t′ ≡ t
mod N and sq(t′) ≡ sq(t) mod M .

Let E be the elliptic curve defined by the Weiestrass equation y2 = x3+ax+b and let t ∈ Q\{0}.
Then the twist by t of E is the elliptic curve Et given by the following Weiestrass equation:

1. Et : y
2 = x3 + at2x+ bt3 if j(E) 6= 0, 1728 (i.e. ab 6= 0),

2. Et : y
2 = x3 + atx if j(E) = 1728 (i.e. b = 0),

3. Et : y
2 = x3 + bt if j(E) = 0 (i.e. a = 0).

Note also the following isomorphisms for all t ∈ Q \ {0}: Et2
∼= E if j(E) 6= 0, 1728, Et4

∼= E
if j(E) = 1728, Et6

∼= E if j(E) = 0. As a consequence, for any t = p
q
∈ Q \ {0}, the twist Et is

isomorphic to Et′ for t′ = qp if ab 6= 0; t′ = pq3 if b = 0; t′ = pq5 if a = 0. It is thus sufficient to
study the twists by integers.

The results of this article are summarized in the following theorem.

Theorem 1.1. Let E be an elliptic curve and for t ∈ Z denote by Et its twist by t.

1. Suppose that j(E) 6= 0, 1728. Define F2 to be the set of squarefree integers, and F
+
2 (respec-

tively F
−
2 ) the subset of t ∈ F2 with sgn(t) = +1 (resp. sgn(t) = −1). Then

(a) The root number can be written as the following product

W (Et) = −W2(Et)W3(Et)

( −1
|t(6∆)|

)





∏

p|∆(6)

Wp(Et)





where
(

·
·

)

is the Jacobi symbol.

(b) the function t 7→W (Et) is periodic on F
±
2 .

(c) The root number W (Et) is not constant when t runs through Z \ {0}. However, if E
satisfies the properties of Lemma 4.2, it is constant on Z<0 and Z>0.

2. Suppose that j(E) = 1728. Define F4 to be the set of fourth-powerfree integers, and F
+
4

(respectively F
−
4 ) the subset of t ∈ F4 with sgn(t) = +1 (resp. sgn(t) = −1). Then

(a) The root number can be written as the following product

W (Et) = −W2(Et)W3(Et)

( −2
|t(6)|

)( −1
sq(t)(6)

)

.

(b) The function t 7→W (Et) is square-periodic on F
±
4 .

(c) The root number W (Et) is not constant when t runs through Z \ {0}.
3. Suppose that j(E) = 0. Define F6 to be the set of sixth-powerfree integers, and F

+
6 (respec-

tively F
−
6 ) the subset of t ∈ F6 with sgn(t) = +1 (resp. sgn(t) = −1). Then

(a) The root number can be written as the following product

W (Et) = −W2(Et)W3(Et)

( −1
|t(6)|

)(

sq(t)(6)

3

)

.

(b) The function t 7→W (Et) is square-periodic on F
±
6 ,

(c) The root number W (Et) is not constant when t runs through Z \ {0}.

The article is organised as follows. In the rest of the introduction, we relate our results to
previous work, in particular to Rohrlich’s. In Section 2 we study the monodromy of the reduction
on a family of twists in each of the three cases j ∈ Q\{0, 1728}, j = 1728 and j = 0, and in Section
3 we use it to describe the variation of the root number between an elliptic curve and one of its
twists. We conclude the paper in Section 4 by proving Theorem 1.1 in each of the three cases.
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1.3 Recollection on Rohrlich’s results

Theorem 1.1 completes the following result on the variation of the root number of quadratic
twists due to Rohrlich, and extends it to the case ab = 0: the quartic and sextic twists families.

Theorem 1.2. [Roh93, Theorem 2] Let a, b ∈ Z \ {0} such that 4a3 + 27b2 6= 0. Consider the
elliptic curve given by the equation E : y2 = x3+ax+ b. Let f(t) ∈ Z[t] and the family of quadratic
twists given by the equation

Ef(t) : y
2 = x3 + af(t)2x+ bf(t)3.

Then, one of the two properties holds :

1. The sets W+ and W− are dense in R.

2. The sets W+ and W− are {t ∈ Q | f(t) < 0} and {t ∈ Q | f(t) > 0} (in either order).

Moreover, given E:

a. there exists f such that the second assertion holds and such that the number of change of the
sign of f over R is greater that any given value.

b. if E has good reduction on an abelian extension of Q, then the second assertion holds.

As a conclusion of this theorem, one obtains :
1) if E has good reduction over Qab then Ef(t) has constant root number if and only if f(t) takes
the same sign for all t ∈ Q,
2) if E has bad reduction over Qab, then
a. if f(t) does not always take the same sign, then W+ and W− have infinite cardinality.
b. if f(t) > 0 (or < 0), then Rohrlich’s theorem does not allow us to conclude directly. In order to
know if the root number of the fibres is constant or not, the use of Theorem 1.1 is necessary. Here
is how to proceed:

(1) Find N the smallest integer such that for each t, t′ ∈ F2 the congruence t ≡ t′ mod N
implies W (Et) = W (Et′), or in other terms the smallest N for which the root number function
t −→ W (Et) is N -periodic. The existence of this N is given by Theorem 1.1. The value of N
depends on the coefficients of a Weierstrass equation of E and can be found with the help of
Corollary 4.3).

(2) Then determine in which of the equivalence classes modulo N are the values of the squarefree
factors of f(t). Take representatives t1, ..., tn such that each of the f(ti) represents a class
modulo N (that can be obtained). If the root number of the fibres of Ef(ti) all have the same
value, then the root number function is constant and we are in Rohrlich’s case 2. Otherwise,
it varies and we are in case 1.

Let us explain this with an example:

Example 1. Let a = 2 · 7 · 17 = 238 and b = 23 · 7 · 17 = 952, and f(t) = t86 + 14. We study the
variation of the root number in the fibres of the family

Ef(t) : y
2 = x3 + 238(t86 + 14)2x+ 952(t86 + 14)3.

Note that E : y2 = x3 + 238x+ 952 has multiplicative reduction over Qab (since 173 is a place of
multiplicative reduction over Q). Indeed, we have ∆(E) = −29 · 72 · 172 · 173.

First find the integer N for which E is N -periodic. For this, observe that the bad places are 2,
7 (type II), 17 (type II) and 173 (type I1). Then by Corollary 4.3 the root number of Et the twist
by t is

W (Et) = −
∏

p=2,3,7,17,173

wp(t),

where wp(t) are local contributions at each p determined as follows:

wp(t) =































sgn(t)D2

(

−1
|t(2)|

)

W2(E) for p = 2

(−1)v3(t)D3W3(E) for p = 3

Dp

(

−1
p

)vp(t)

Wp(E) for p = 7, 17
(

t(173)
173

)

DpWp(E) for p = 173,

and the Dp ∈ {±1} are the values depending on t such that Wp(Et) = DpWp(E). They are given
by the Lemmas 3.4, 3.6 and 3.3. Although an appropriate Dp is not always given by Lemma 3.4
or 3.6 for p = 2, 3 in the case of a general elliptic curve, as is the case in this example. Example 3
explains what to do otherwise.
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— For 2: we have (v2(a) + 4, v2(b) + 5, v2(∆)) = (5, 8, 9), b(2) ≡ 3 mod 4 and a(2) ≡ 7 mod 8.
According to Lemma 3.4, w2(t) the local contribution at 2 of the root number of the twists by
t takes the same value for any value of t(2) and of v2(t): w2(t) = +1.

— For 3: we have (v3(a) + 1, v3(b) + 3, v3(∆)) = (1, 3, 0). According to Lemma 3.4, w3 the local
contribution at 3 of the root number of the twists by t will take the same value for any value
of t(3) and of v3(t): w3(t) = +1.

For primes p 6= 2, 3, Proposition 3.3 gives the value of Dp.
— For 7 and 17, the type of reduction is II and we have:

wp(t) =

{
(

3
p

)(

−1
p

)

Wp(E) if p | t
Wp(E) if p ∤ t.

Since 7 ≡ 1 mod 6 we have w7(t) = W7(E) = −1 for all t squarefree integer, and since 17 6≡ 1
mod 6 we have

w17(t) =

{

W17(E) = +1 if v17(t) even

−W17(E) = −1 if v17(t) odd.

— For 173: the reduction is multiplicative, we have

w173(Et) =

{(

t
173

)

W173(E) =
(

t
173

)

if 173 ∤ t

−
(

−6b(173)
173

)(

t(173)
173

)

W173(E) =
(

t(173)
173

)

if 173 | t

so we have simply w173(Et) =
(

t(173)
173

)

.

As a consequence, we see that W (Et) takes the same value on the congruence classes modulo
172 · 173, so that the root number of the twists is N -periodic for N = 172 · 173. It is however
somehow more convenient in this case to observe the more precise fact that it takes the same value
for t and t′ such that t(173) ≡ t′(173) mod 173 and with v17(t) ≡ v17(t

′) mod 2.

An easy consequence of Fermat’s little theorem is that f(t) = t86 + 14 takes the values among

{13, 14, 15} mod 173. Thus we have w173(f(t)) =
(

f(t)(173)
173

)

. This Jacobi symbol is equal to +1

for all squarefree t (since
(

11
173

)

=
(

12
173

)

=
(

13
173

)

= +1).
It is not so hard to check that f(t) takes values among {1, 5, 6, 10, 12, 13, 15, 16} mod 17, and

in particular that 17 ∤ f(t) for any value of t. Thus w17(f(t)) = +1.
This proves that the root number is constant on the family Ef(t) and always takes the value

+1.

Sometimes, the computation of N is not even necessary since a basic check proves that the root
number varies:

Example 2. If we twist E : y2 = x3 + 238x + 952 by the polynomial g(t) = t86 + 1 instead: we
have W (Eg(0)) = W (E) = 1 and W (Eg(1)) = W (E2) = −1 so the root number is not constant on
the family Eg(t). (When we look in detail, we see that the variation comes from w173: we have
w173(1) = +1 and w173(2) = −1. The other contributions are such that wp(1) = wp(2).)

In some other cases, it is more convenient to take a shortcut when we search for N , in particular
when the local root number at 2 or 3 is not listed in Lemma 3.4 or 3.6. Here is an example:

Example 3. In our first examples, finding the appropriate N was easy because the functions
w2(t) and w3(t) were constant by Lemma 3.4 and 3.6. Let us choose another base curve, say
E′ : y2 = x3 + 2 · 17x + 22 · 17, and study the family of twists of E′ by the values of the function
h(t) = 8t30 + 5:

E′
h(t) : y

2 = x3 + 34(8t30 + 5)2x+ 68(8t30 + 5)3.

The discriminant of E′ is ∆(E′) = −2817261, so the reduction of E′ at 17 has type II and the
reduction at 61 is I1. The root number can be written as

W (E′
t) = −

∏

p=2,3,17,61

wp(t),

with wp(t) as in Corollary 4.3. Let us find them explicitly in this case.
— For 2: we have (v2(a) + 4, v2(b) + 5, v2(∆)) = (5, 7, 8), and this triple is not listed in Lemma

3.4 as one with w2(t) constant on the family E′
t. Some additional work must be done here with

Rizzo’s table III [Riz03]. From there we extract the formula (for odd t):

W2(E
′
t) =

{

+1 if 6 · 17t2 + 27 · 17t3 ≡ 1 mod 8 or 27 · 17t3 ≡ 5 mod 8

−1 otherwise.
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In our choice of h(t) = 8t30+5, not only is h(t) always positive and odd, but it is also always such
that h(t) ≡ 5 mod 8. Consequently, 102h(t)2+459h(t)3 ≡ 59925 ≡ 5 mod 8 and 459h(t)3 ≡ 7
mod 8 for any t. This means that W2(E

′
h(t)) = W2(E

′) = −1 (in particular D2 = +1 for all t),

and thus that w2(h(t)) = sgn(h(t))
(

−1
h(t)

)

D2W2(E
′) = −1 for all t ∈ Z.

— By Lemma 3.6, w3(t) = +1 for all t.
— Similarly as in Example 1, we have

w17(t) =

{

+1 if v17(t) even,

−1 if v17(t) odd

and

w61(t) =

{

−
(

t
61

)

if 61 ∤ t
(

t
61

)

if 61 | t.

As a consequence, the root number W (E′
h(t)) is 172 · 61-periodic. We can be even more precise. A

consequence of Fermat’s little theorem is that h(t) = 8t30 + 5 takes the values among {5, 13, 58}
mod 61. We have thus w61(h(t)) = −

(

h(t)
61

)

= −1 for all t. The polynomial h(t) takes values

among {1, 3, 4, 5, 6, 7, 9, 13, 14}modulo 17 and hence we always have w17(h(t)) = +1 for all t. Thus
we have for every t ∈ Z:

W (E′
h(t)) = −(−1)(+1)(+1)(−1) = −1.

1.4 More formulae

Birch and Stephens [BS66] prove formulae for the root number of y2 = x3−Dx, and for the root
number of z3 = x3 + A (this curve can be rewritten as the equation y2 = x3 − 432A2). Liverance
[Liv95] completes these results by giving a formula for the root number of y2 = x3 + D in the
general case.

The formulae given in the points 3a and 2a of Theorem 1.1 have a flavor different from that
found in those two papers, in particular, it distinguishes between primes p ≥ 5 according to whether
or not p2 | t, in a similar way to the formulae of Várilly-Alvarado [VA11, Prop. 4.4 and 4.8].

Connell [Con94] computer-implemented the root number formulae from Rohrlich [Roh93], Liv-
erance [Liv95], Birch and Stephens [BS66].

2 Monodromy of the reduction

2.1 For quadratic twists

Let E be the elliptic curve given by the Weierstrass equation E : y2 = x3 + ax + b, where
a, b ∈ Z \ {0} and let ∆ be its discriminant, that we suppose minimal. For every t ∈ Z \ {0},
consider the twist of E by t, Et : y2 = x3 + at2x + bt3. Tate’s algorithm allows us to show the
following lemma:

Lemma 2.1. We have:

1. If vp(t) is even, then E and Et have the same type of reduction at p.

2. If vp(t) is odd, then the type of Et and E are among the following possibilities (the order is
not important)

(a) I0 and I∗0
(b) Im and I∗m
(c) II and IV ∗

(d) II∗ and IV

(e) III and III∗

2.2 For quartic twists

Let E be the elliptic curve given by the Weierstrass equation E : y2 = x3 + ax, where a ∈ Z is
a non-zero fourth-powerfree integer. For every t ∈ Z \ {0}, consider the twist of E by t:

Et : y
2 = x3 + atx.

The discriminant is ∆(Et) = −26a3t3. Tate’s algorithm allows us to show the following lemma:
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Lemma 2.2. The reduction at p 6= 2, 3 of Et has type I0, III, I
∗
0 , III∗ if vp(at) ≡ 0, 1, 2, 3 mod 4

respectively.

2.3 For sextic twists

Let E be the elliptic curve given by the Weierstrass equation E : y2 = x3 + b, where b ∈ Z is a
non-zero sixth-powerfree integer. For every t ∈ Z \ {0}, consider the twist of E by t:

Et : y
2 = x3 + bt.

The discriminant is ∆(Et) = −2433b2t2. Tate’s algorithm allows to show the following lemma:

Lemma 2.3. The reduction at p 6= 2, 3 of Et has type I0, II, IV , I∗0 , IV ∗, II∗ if vp(bt) ≡
0, 1, 2, 3, 4, 5 mod 6 respectively.

3 Behaviour of the local root number

3.1 Local root number of a quadratic twist

For p 6= 2, 3 a simple formula gives the local root number of an elliptic curve E according to the
type of its reduction:

Proposition 3.1. ([Roh93, Proposition 2]) Let p ≥ 5 be a rational prime, and let E/Qp be an
elliptic curve given by the Weierstrass equation E : y2 = x3 + ax + b, where (a, b) ∈ Z2 \ (0, 0).
Then

Wp(E) =







































1 if the reduction of E at p has type I0;
(

−1
p

)

if the reduction has type II, II∗, I∗m or I∗0 ;
(

−2
p

)

if the reduction has type III or III∗;
(

−3
p

)

if the reduction has type IV or IV ∗;

−
(

6b
p

)

if the reduction has type Im;

However, it is not as simple when p is 2 or 3. According to [Riz03, 1.1], to determine the
local root number at p = 2, 3 of an elliptic curve, we must find the smallest vector (α, β, γ) with
nonnegative entries such that

(α, β, δ) = (vp(c4), vp(c6), vp(∆)) + k(4, 6, 12)

for k ∈ Z, where c4, c6 and ∆ are the usual quantities associated to a Weierstrass equation (as in
[Sil94, Chap. III]).

Let E : y2 = x3+ax+b be an elliptic curve. For every t ∈ Z\{0}, define Et to be the quadratic
twist

Et : y
2 = x3 + at2x+ bt3,

with a, b ∈ Z. The Weierstrass coefficients of the twisted curve are:

c4 = −24 · 3 · a · t2 c6 = −25 · 33 · b · t3 ∆ = −24 · (4a3 + 27b2)t6,

whence

(α, β, δ) = (vp(a), vp(b), vp(∆)) + (2vp(t), 3vp(t), 6vp(t)) +

{

(4, 5, 0) if p = 2

(1, 3, 0) if p = 3

The root number is given by the entry of Rizzo’s Table II (if p = 3) or Table III (if p = 2)
corresponding to (α, β, δ).

3.1.1 Periodicity

Lemma 3.2. For every prime p, the function t 7→Wp(Et) is periodic.

Proof. Let t be an integer, and let t = t0t(∆) be a decomposition such that t0 is a product of
prime factors of ∆ (the discriminant of E) and t(∆) is an integer coprime with ∆. Let ∆Et

= ∆t6

be the discriminant of Et. By Tate’s algorithm, the reduction at p depends only on the triple
(vp(c4), vp(c6), vp(∆t6)).
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If p ≥ 5 and vp(t) = 2, we have vp(∆Et
) = vp(∆) + 12vp(t(∆)). Since p ∤ t(∆), then vp(∆Et

) =
vp(∆). Yet, we know that the root number of a curve stays the same under a twist by a twelfth-
power. Knowing t modulo p2 suffices thus to know Wp(Et).

For p = 2, 3 and l = 4, 6, let cl,p be the integers such that cl = pvp(t)cl,p. The formulae found
in the tables in [Hal98] depend only of the 2-adic and 3-adic valuation of c4 and c6 as well as the
remainder of c4,2, c4,3, c6,2, c6,3 modulo a certain power of 2 or 3.

3.1.2 Variation of the local root number at p ≥ 5 when twisting

Let p 6= 2, 3 be a prime number, and t ∈ Z \ {0} a squarefree integer. In the following, we
compare Wp(E) and Wp(Et).

Proposition 3.3. Put Dp ∈ {−1,+1} the integer such that Wp(E) = DpWp(Et). We have

1. if p ∤ t

Dp =

{

+1 if E has good or additive reduction
(

t
p

)

if E has multiplicative reduction

2. if p | t

Dp =



























+1 if E has type III or III∗
(

−1
p

)

if E has type I0 or I∗0
(

3
p

)

if E has type II, II∗, IV, IV ∗

−
(

−6b(p)t(p)
p

)

if E has type Im or I∗m (m ≥ 1)

Proof. The value of Dp depends of the type of reduction at p of E.

1. If p ∤ t and the reduction of E is not multiplicative, one has Dp = +1. If the reduction has
type Im, then

Dp =
( t

p

)

,

because

Wp(Et) = −
(−6b(p)t3

p

)

= −
(−6b(p)

p

)( t

p

)

= Wp(Et)
( t

p

)

.

2. If p | t, one of the following cases occurs, according to the type of variation of E at p.

(a) If E has type I0, then Et has type I∗0 . Conversely, if Et has type I∗0 , then Ept has type
I0. The local root number at p changes from (−1

p
) to +1. We have Dp = (−1

p
).

(b) If E has type II, then Et has type IV ∗. Conversely, if Et has type IV ∗, then Ept has
type II. The local root number at p changes from (−1

p
) to (−3

p
). We have Dp = ( 3

p
).

(c) If E has type III, then Et has type III∗ and conversely. The local root number at p
changes from (−2

p
) to (−2

p
). We have Dp = +1.

(d) If E has type I∗m, then Et has type Im and conversely. The local root number at p

changes from (−1
p
) to −

(

−6b(p)t(p)
p

)

. We have Dp = −
(

6b(p)t(p)
p

)

.

I∗0 ↔ I0 II ↔ IV ∗

(−1
p
)

Dp=(−1
p

)
−−−−−−→ +1 (−1

p
)

Dp=

(

3
p

)

−−−−−−→ (−3
p
)

III ↔ III∗ I∗m ↔ Im

(−2
p
)

Dp=+1−−−−−→ (−1
p
) (−1

p
)

Dp=−

(

6b(p)t(p)
p

)

−−−−−−−−−−−−→ −
(

−6b(p)t(p)
p

)

.
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3.1.3 Local root number at p = 2

Lemma 3.4. We have W2(Et) = ǫ2 · sgn(t)
(

−1
|t(2)|

)

(for a fixed ǫ2 ∈ {−1,+1}) for all t ∈ Z if and

only if the triple (v2(a) + 4, v2(b) + 5, v2(∆)) is among the following:

1. (0, 0, 0) or (2, 3, 6) (then ǫ2 ≡ −b(2) mod 4); or

2. (3, 5, 3) or (5, 8, 9) and

(a) a(2) ≡ 3 mod 8 and b(2) ≡ 3 mod 4; or a(2) ≡ 7 mod 8 and b(2) ≡ 1 mod 4 (then
ǫ2 = −1)

(b) a(2) ≡ 3 mod 8 and b(2) ≡ 1 mod 4; or a(2) ≡ 7 mod 8 and b(2) ≡ 3 mod 4 (then
ǫ2 = +1)

3. (≥ 4, 3, 0) or (≥ 6, 6, 6) (then ǫ2 ≡ b(2) mod 4).

We deduce the following:

Corollary 3.5. The cases listed in Theorem 3.4 are the only one such that for every t ∈ Z \ {0},
one has

W (Et) = sgn(t)

( −1
|t(2)|

)

W (E),

where D2 is the integer depending on t such that W2(Et) = D2W2(E). In particular, we have

D2 = ǫ2 · sgn(t)
(

−1
|t(2)|

)

and so the function w2 defined in Corollary 4.3 is constant and w2(t) = ǫ2.

Proof. Let E : y2 = x3 + ax + b be an elliptic curve and let ∆ be its discriminant. For every
squarefree t ∈ Z \ {0}, consider the twist of E by t, Et : ty

2 = x3 + ax+ b.
We list here the conditions of the coefficients a, b and ∆ for the root number at 2 of the fibres

Et to be W2(t) = sgn(t)
(

−1
t(2)

)

for all positive t and −
(

−1
−t(2)

)

for all negative t. We can classify

the curves E by their triple (v2(a) + 4, v3(b) + 5, v2(∆)): a formula for their local root number at
2 is given by the table of Rizzo [Riz03, Table III]. (In Rizzo, the notation with the c-invariants
is preferred. Note that (c6)(2) = 3b(2) and that (c4)(2) = 33a(2).). The first step is to select the

surfaces such that W2(Et) = ǫ · sgn(t)
(

−1
|t|

)

when 2 ∤ t, for a fixed ǫ ∈ {±1}. To find the triples and

determine the additional conditions, we proceed in the following way. (We only give three examples
here, the other cases being treated in a similar manner.)

If (v2(a) + 4, v2(b) + 5, v2(∆)) = (0, 0, 0), then Rizzo’s table gives the following formula for the
root number of the fibres in odd t:

W2(Et) =

{

+1 if b(2)t
3 ≡ 1 mod 4

−1 otherwise.

We want W2(Et) = +1⇔ t ≡ 1 mod 4, which is possible if and only if b(2) ≡ 1 mod 4.
For some triples though, the local root number at 2 of Et does not behave the way we want.

For instance in the case of the triple (v2(a) + 4, v2(b) + 5, v2(∆)) = (3, 3, 0). In this case, the local
root number is

W2(Et) =











+1 if a(2)t
2 ≡ 3 mod 4 and if b(2)t ≡ ±3 mod 8,

if a(2)t
2 ≡ 1 mod 4 and if b(2)t ≡ 1, 3 mod 8,

−1 otherwise.

In any case of a(2) mod 4 and b(2) mod 8, there will be values of t mod 8 such that W2(Et) 6=
sgn(t)

(

−1
|t|

)

. For instance, if b(2) ≡ 3 mod 4 and a(2) ≡ 1 mod 16, then W2(Et) = +1 if and only

if t ≡ 5 mod 8.
Proceding in a similar manner for all the other triples, we determine the triple, and the special

conditions for which t 7→ W2(Et) behaves like sgn(t)
(

−1
|t(2)|

)

. We obtain the list given in Table 1.

We have double checked every computation with the computation software MAGMA.

The final step is to retain only the triples such that W2(E2t) = W2(Et). For every case of the
list, we check if the triple (v2(a) + 2, v2(b) + 3, v2(∆) + 6) (the triple associated to a fibre at 2t for

t ∈ Z odd) also gives a local root number at 2 equal to W2(E2t) = ǫ · sgn(t)
(

1
|t|

)

(for the same ǫ).

A list of the monodromy of the triples, as well as whether or not those pairs figure in Table 1. This
way we find the cases listed in the statement of the theorem (note that for (3, 5, 3) and (5, 8, 9) this
only works for specific classes of a(2) and b(2)).
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(v2(a) + 4, v2(b) + 5, v2(∆)) Special conditions ǫ, such that

(of a minimal model) W2 = ǫ · sgn(t)
(

−1
|t|

)

(0, 0, 0) b(2) ≡ 1 mod 4 +1

b(2) ≡ 3 mod 4 −1
(≥ 4, 3, 0) b(2) ≡ 1 mod 4, +1

b(2) ≡ 3 mod 4 −1
(2, 3,≥ 4) b(2) ≡ 1 mod 4, −1

b(2) ≡ 3 mod 4, +1

(≥ 4, 4, 2) b(2) ≡ 1 mod 4, +1

b(2) ≡ 3 mod 4, −1
(3, 5, 3) a(2) ≡ 3, 5 mod 8 and b(2) ≡ 3 mod 4; −1

a(2) ≡ 1, 7 mod 16 and b(2) ≡ 1 mod 4,

a(2) ≡ 3, 5 mod 8 and b(2) ≡ 1 mod 4; +1

a(2) ≡ 1, 7 mod 16 and b(2) ≡ 3 mod 4,

(5, 8, 9) a(2) ≡ 5, 7 mod 8 and b(2) ≡ 3 mod 4; +1

a(2) ≡ 1, 3 mod 16 and b(2) ≡ 1 mod 4,

a(2) ≡ 5, 7 mod 8 and b(2) ≡ 1 mod 4; −1
a(2) ≡ 1, 3 mod 16 and b(2) ≡ 3 mod 4,

(≥ 6, 6, 6) b(2) ≡ 1 mod 4, +1

b(2) ≡ 3 mod 4, −1
(4, 6, 7) b(2) ≡ 3 mod 4 and a(2) ≡ 7 mod 8, +1

b(2) ≡ 1 mod 4 and a(2) ≡ 7 mod 8, −1
(≥ 7, 7, 8) b(2) ≡ 1 mod 4, +1

b(2) ≡ 3 mod 4, −1
(6, 8, 10) a(2)b(2) ≡ 3 mod 4 +1

a(2)b(2) ≡ 1 mod 4, −1
(≥ 7, 8, 10) b(2) ≡ 1 mod 4, +1

b(2) ≡ 3 mod 4. −1

Table 1 – Cases where W2(Et) = ǫ · sgn(t) ·
(

−1
|t|

)

for every odd squarefree t ∈ Z− 0.

Monodromy of (v2(a) + 4, v2(b) + 5, v2(∆)) Are triples in Table 1

(0, 0, 0) ←→ (2, 3, 6) yes, yes
(0, 0, > 0)←→ (2, 3, > 6) no, no

(3, 3, 0) ←→ (5, 5, 6) no, no
(≥ 4, 3, 0) ←→ (≥ 6, 6, 6) yes, yes

(2, 4, 0) ←→ (4, 7, 6) no, no
(2,≥ 5, 0)←→ (4,≥ 8, 6) no, no

(2, 3, 1) ←→ (4, 6, 7) no, no
(2, 3, 2) ←→ (4, 6, 8) no, no
(2, 3, 3) ←→ (4, 6, 7) no, no

(2, 3,≥ 4)←→ (4, 6,≥ 8) yes, no
(3, 4, 2) ←→ (5, 7, 8) no, no
(3, 5, 3) ←→ (5, 8, 9) yes, yes
(4, 4, 2) ←→ (6, 7, 8) yes, no

(≥ 5, 4, 2) ←→ (≥ 7, 7, 8) yes, no
(4, 5, 4) ←→ (6, 8, 10) no, yes

(≥ 5, 5, 4) ←→ (≥ 7, 8, 10) no, yes

Table 2
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(v3(a) + 1, v3(b) + 3, v3(∆) Special conditions ǫ3, such that W3 = ǫ3
(0, 0, 0), +1

(1,≥ 3, 0), +1

(1, 2, 0), +1

(2,≥ 5, 3) +1,

(2, 3, 3) if a(3) ≡ 1 mod 3 and b(3) ≡ 4, 5 mod 9 +1,

(2, 3, 4) +1,

(2, 3, 6) −1
(2, 3,≥ 7) −1
(2, 3, 4) +1

(2,≥ 5, 3) +1

(≥ 3, 3, 3) b(2) ≡ 1, 8 mod 9 +1

(3, 5, 6) if a(3) ≡ 1 mod 3 +1

a(3) ≡ 2 mod 3 −1
(3,≥ 6, 6) −1
(4, 6, 9) if a(3) ≡ 1 mod 3 and b(3) ≡ 4, 5 mod 9 +1,

(4,≥ 8, 9) +1

(≥ 5, 6, 9) b(2) ≡ 1, 8 mod 9 +1

Table 3 – Cases where W3(Et) = ǫ3 for every squarefree t ∈ Z \ 0 not divisible by 3.

3.1.4 Local root number at p = 3

Lemma 3.6. We have W3(Et) = ǫ3 · (−1)v3(t) for all t ∈ Z (for a fixed ǫ3 = ±1) if and only if the
triple of values (v3(a) + 1, v3(b) + 3, v3(∆)) is one of the following:

1. (0, 0, 0), (1,≥ 3, 0), and (1, 2, 0) with a(3) ≡ 2 mod 3 (then ǫ3 = +1)

2. (2, 3, 6), (3,≥ 6, 6), and (3, 5, 6) with a(3) ≡ 2 mod 3 (then ǫ3 = −1)
Corollary 3.7. The cases listed in Theorem 3.6 are the only ones such that for every t ∈ Z \ {0},
one has

W (Et) = (−1)v3(t)W (E).

In particular, we have D3 = ǫ3 · (−1)v3(t)W (E) (D3 is the integer depending on t such that
W3(Et) = D3W3(E)) and so the function w3 defined in Example 1 or Corollary 4.3 is constant and
w3(t) = ǫ3.

Proof. Let t ∈ Z \ {0} be an integer.
Suppose that t satisfies 3 ∤ t. Then the local root number at 3 is given by the entry of [Riz03,

Table II] corresponding to (v3(a) + 1, v3(b) + 3, v3(∆)). If v3(t) is odd, then the triple is (v3(a) +
3, v3(b)+6, v3(∆)+6) and the corresponding entry gives the local root number. We double-checked
every computation using the software MAGMA.

We start by selecting the triples such that W3(Et) = W3(E) = ǫ3 for all t ∈ Z prime to 3 (for
some fixed ǫ3 ∈ {±1}). The list is given in Table 3.

Now, we check among those triples whether they have the property that W (E3t) = −W (Et),
by verifying that both the triple of E and the triple of a twist by 3 are in Table 3 (these facts
are listed in Table 4) and comparing the values of ǫ3. We retain only (0, 0, 0), (2, 3, 6), (1,≥ 3, 0)
(3,≥ 6, 6), and finally (1, 2, 0) and (3, 5, 6) with the additional condition that a(3) ≡ 2 mod 3. It is
important to notice that in the following cases, although the triple (v3(a)+ 1, v3(b)+ 3, v2(∆)) and
the triple of a quadratic twist by 3 are both in Table 3, we have W3(Et) = W3(E3t) rather than
W (Et) = −W (E3t) as required: (2, 3, 3) and (4, 6, 9) with the additional condition that a(3) ≡ 1
mod 3 and b(3) ≡ 4, 5 mod 9, and (≥ 3, 3, 3) and (≥ 5, 6, 9) with the additional condition that
b(3) ≡ ±1 mod 9.

A yes in the second column of Table 4 means that the triple is in Table 3, but under special
conditions. If there is no special condition to take account of, they the table tells the value of the
function W3(Et).
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Monodromy of (v3(a) + 1, v3(b) + 3, v3(∆)) Are triples in Table 3

(0, 0, 0) ←→ (2, 3, 6) +1, −1
(0, 0, > 0)←→ (2, 3, > 6) no, −1

(1, 2, 0) ←→ (3, 5, 6) +1, yes
(1,≥ 3, 0)←→ (3,≥ 6, 6) +1, −1
(≥ 2, 2, 1) ←→ (≥ 4, 5, 7) no, no

(2, 3, 3) ←→ (4, 6, 9) yes, yes
(≥ 3, 3, 3) ←→ (≥ 5, 6, 9) yes, yes

(2, 4, 3) ←→ (4, 7, 9) no, no
. (2,≥ 5, 3)←→ (4,≥ 8, 9) +1, +1

(2, 3, 4) ←→ (4, 6, 10) +1, no
(2, 3, 5) ←→ (4, 6, 11) no, no

(≥ 3, 4, 5) ←→ (≥ 5, 7, 11) no, no

Table 4

3.2 Root number of a quartic twist

Lemma 3.8. [VA11, Lemme 4.7]
Let t be a non-zero integer and define the elliptic curve Et : y

2 = x3 + tx. We denote by W2(t)
and W3(t) its local root numbers at 2 and 3. Let t(2) be the integer such that t = 2v2(t)t(2). Then

W2(t) =



















−1 if v2(t) ≡ 1 or 3 mod 4 and t(2) ≡ 1 or 3 mod 8;

or if v2(t) ≡ 0 mod 4 and t(2) ≡ 1, 5, 9, 11, 13 or 15 mod 16;

or if v2(t) ≡ 2 mod 4 and t(2) ≡ 1, 3, 5, 7, 11, or 15 mod 16;

+1 otherwise.

W3(t) =

{

−1 if v3(t) ≡ 2 mod 4;

+1 otherwise.

We may reformulate this theorem as follows:

Lemma 3.9. The function of the local root number at 2 on the fourth-powerfree integers, defined as
t 7→ W2(Et), is 24-periodic on F4 and it takes the value −1 if and only if t ∈ [2ka] the congruence
class mod 24, where k = 1, 3 mod 4 and a ≡ 1, 3 mod 8; or k = 0 and a ≡ 1, 5, 9, 11, 13, 15
mod 16; or k = 2 and a ≡ 1, 3, 5, 7, 11, 15 mod 16.

Lemma 3.10. The function of the local root number at 3 on the fourth-powerfree integers, defined
as t 7→W3(Et), is 34-periodic on F4 and it takes the value −1 if and only if t ∈ [32a] the congruence
class mod 34, where a ∈ Z.

3.3 Root number of a sextic twist

Lemma 3.11. [VA11, Lemme 4.1]
Let t be a non-zero integer and the elliptic curve Et : y

2 = x3+t. We denote by W2(t) and W3(t)
its local root numbers at 2 and 3. Put t(2) and t(3) the integers such that t = 2v2(t)t(2) = 3v3(t)t(3).
Then

W2(t) =











−1 if v2(t) ≡ 0 or 2 mod 6;

or if v2(t) ≡ 1, 3, 4 or 5 mod 6 and t(2) ≡ 3 mod 4;

+1, otherwise.

W3(t) =































−1 if v3(t) ≡ 1 or 2 mod 6 and t(3) ≡ 1 mod 3;

or if v3(t) ≡ 4 or 5 mod 6 and t(3) ≡ 2 mod 3;

or if v3(t) ≡ 0 mod 6 and t(3) ≡ 5 or 7 mod 9;

or if v3(t) ≡ 3 mod 6 and t(3) ≡ 2 or 4 mod 9;

+1, otherwise.

We may reformulate this theorem as follows:
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Lemma 3.12. The function of the local root number at 2 defined as t 7→ W2(Et) is 26-periodic
on F6 and it takes the value +1 if and only if t ∈ [2ka] the congruence class mod 26, where
k ∈ {1, 3, 4, 5} and a ≡ 3 mod 4.

Lemma 3.13. The function of the local root number at 3 defined as t 7→W3(Et) is 36-periodic on
F6 and it takes the values −1 if and only if t ∈ [3ka] the congruence class mod 36, where k ∈ {1, 2}
and a ≡ 1 mod 3 mod 4; k ∈ {4, 5} and a ≡ 2 mod 3 mod 4; k = 0 and a ≡ 5, 7 mod 3 mod 4;
or k ∈ {1, 2} and a ≡ 2, 4 mod 3 mod 4.

4 Proof of the main theorem

4.1 Families of quadratic twists

Theorem 4.1. Let E be an elliptic curve such that j(E) 6= 0, 1728. Define F2 to be the set of
squarefree integers. Then

1. the function t 7→W (Et) is periodic on F2,

2. the root number W (Et) is not constant when t runs through Z \ {0}.
The proof of this theorem is based on the following lemma of independent interest.

Lemma 4.2. Let E be an elliptic curve.
Suppose that for all positive squarefree integer t ∈ N one has W (Et) = W (E). This happens if

and only if the elliptic curve E has the following properties:

(a) there is no finite place of multiplicative reduction except possibly at 2 or 3;

(b) for all t non-zero squarefree integers one has W2(Et) = W2(E) · sgn(t) ·
(

−1
|t(2)|

)

;

(c) for all t non-zero squarefree integers one has W3(Et) = W3(E) · (−1)v3(t);
(d) if there exists p | ∆(6) then:

i. if the reduction of E at p has type III or III∗, then p ≡ 1 mod 4;

ii. if the reduction of E at p has type II, II∗, IV or IV ∗, then p ≡ 1 mod 6;

iii. the reduction at p is not additive potentially multiplicative.

Remark 1. The elliptic curves E with property (b) or (c) are respectively given by Lemma 3.4 or
3.6.

Example 4. Let E+1 : y2 = x3 − 91x + 182 and E−1 : y2 = x3 − 91 − 182. For any t ∈ N, the
quadratic twist of E+1 by t has root number +1 and the quadratic twist of E−1 has root number
−1. Indeed, the discriminant of these elliptic curves is ∆ = 21272132. So we have:

(a) The only finite place of multiplicative reduction is in 2.

(b) By Lemma 3.4, W2(Et) = W2(E) · sgn(t)
(

−1
|t(2)|

)

because the associated triple of a minimal

model of Et is (v2(c4), v2(c6), v2(∆)) = (0, 0, 0).

(c) By Lemma 3.6, W3(Et) = W3(E) · (−1)v3(t) because the associated triple of a minimal model
of Et is (v2(c4), v2(c6), v2(∆)) = (1, 3, 0) and a(3) ≡ 2 mod 3.

(d) The only prime dividing ∆(6) are 7 and 13, for both of them the reduction has type II and
that p ≡ 1 mod 6

Proof of Theorem 4.1. Let Et be the elliptic curve obtained by the twist by t ∈ Z of the elliptic
curve E : y2 = x3 + ax+ b with integer coefficients a, b ∈ Z. Put ∆ = ∆(E) = 2v2(∆)3v3(∆)∆(6) the
discriminant of E that we suppose minimal.

The root number can be written as

W (Et) = −W2(Et)W3(Et)
∏

p|t;p∤6∆

Wp(Et)
∏

p|∆(6)

Wp(Et).

The places at p | t such that p ∤ ∆ have reduction type I∗0 on Et, and thus by Proposition 3.1 one

has Wp(Et) =
(

−1
p

)

.

W (Et) = −W2(Et)W3(Et)

( −1
|t(6∆)|

)





∏

p|∆(6)

Wp(Et)



 .
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We have ∆(Et) = ∆t6. Since t is assumed squarefree, the equation of Et is minimal unless
gcd(∆, t) 6= 1.

Proof of the first property.
For each prime p, Lemma 3.2 proves that there exists an integer αp such that Wp(Et) = Wp(Et′ )

for all t ≡ t′ mod pαp . Put N = 2α23α3
∏

p|∆(6)
pαp . The global root number is the same for t and

t′, squarefree integers in the same congruence class modulo N .

Proof of the second property.
It is now left to show that this partition is not trivial, in other words that there exists at least

one congruence class [t+] with root number +1 and one class [t−] with root number −1.
By Lemma 4.2, we know that if E does not satisfy one or more of the properties (a) to (d),

then there exists such t+, t− ∈ N. Suppose then that E satisfies the properties (a) to (d). Then by
Lemma 4.2, W (Et) = W (E) for any squarefree positive t ∈ N. We compare the twists E1(= E)
and E−1, then by Proposition 3.3 combined with the fact that E has no multiplicative reduction,
for p 6= 2, 3 we have Wp(E−1) = Wp(E). The global root numbers are thus related as follows:

W (E−1) = −W2(E−1)W (E−1)
∏

p

Wp(E1)

Observe that by assumption of property b), W2(E−1) = W2(E) · sgn(−1)
(

−1
|−1|

)

= −W2(E) (by

convention,
(

−1
1

)

= 1). Moreover by assumption of property c), W3(E−1) = (−1)v3(−1)W3(E) =
W3(E). Thus

W (E−1) = −W2(E)W3(E)
∏

p6=2,3

Wp(E) = W (E).

Proof of Lemma 4.2. By Theorem 4.1’s first property, the root number is periodic on the squarefree
integers. In other words there exists a positive integer N such that for t ≡ t′ mod N we have
W (Et) = W (Et′). Hence in particular any t ≡ 1 mod N will have the same global root number
as W (E). We look for a congruence class [t−] mod N such that W (Et−) = −W (E).

Let t be a non-zero squarefree integer. For each prime p, let Dp ∈ {+1,−1} be the integer
depending on t such that Wp(Et) = DpWp(E). In Proposition 3.3, we already computed the values
of Dp (for p 6= 2, 3) according to the reduction of E at p and to whether p divides t.

One has

W (Et) = −
∏

p|∆t

(DpWp(E)) =





∏

p|∆t

Dp



W (E),

which we can split the following way:

W (Et) = D2D3





∏

p|∆(6);p∤t

Dp









∏

p|t

Dp



W (E)

= D2D3







∏

p∤6t
E has mult. red. at p

Dp













∏

p∤6t
E has add. red. at p

Dp













∏

p|t
E has type I0

Dp













∏

p|t
E not I0

Dp






W (E)

and Proposition 3.3 gives

= D2D3







∏

p∤6t
E has mult. red. at p

(

t

p

)













∏

p|t
E has type I0

(−1
p

)













∏

p|t
Enot I0

Dp






W (E)

so that

W (Et) = D2D3

( t

∆M

)

( −1
|t(6∆)|

)







∏

p|t
E has bad red.

Dp0






W (Et),

14



where ∆M is the product of the prime numbers p 6= 2, 3 at which the reduction of E has multi-
plicative reduction. Let t(6∆)′ be the integer such that

t = sgn(t) · 2v2(t)3v3(t)t(6∆)′t(6∆),

that is to say t(6∆)′ =
∏

p|∆(6)
pvp(t). We can write

( −1
|t(6∆)|

)

= sgn(t)

( −1
|t(2)|

)

(−1)v3(t)
( −1
|t(6∆)′ |

)

.

Let

C2 = sgn(t)·D2

( −1
|t(2)|

)

, C3 = D3(−1)v3(t), CM =
( t

∆M

)

, C0 =
∏

p|t
E has add. red.

Dp, C∆ =

( −1
t(6∆)′

)

so that
C = C2C3CMC0C∆,

is the integer depending on t such that W (Et) = C ·W (E). In the remainder of the proof, we study
in more detail the variation of each component in dependance of t.

Observe that it is always possible to find t such that C2 = +1 (or C3 = +1), a trivial example
being t = 1. We now look at multiple ways to obtain C = −1 for a certain positive integer t,
depending on the properties of E.

(a) Suppose E admits places of multiplicative reduction, i.e. ∆M 6= 1. Let t0 be a prime number
with the following properties:
— it does not divide ∆(6), (so that C∆ = C0 = +1)
— it is not a square modulo ∆M (so that CM = −1)
— and it is such that C2 = +1 and C3 = +1.
Such a prime exists by the Chinese Remainder Theorem. For this p0, we have

W (Ep0) = −W (E).

However, in case ∆M = 1, this construction is not possible, since one has CM = +1 for any
squarefree integer t. Suppose thus that E has no multiplicative reduction at any p 6= 2, 3 and let
us look at what we can do instead.

Suppose that there exists a positive t0 ∤ ∆(6) such that for the twist Et0 one has C2 = −1, then
by the Chinese Remainder Theorem we can choose a positive t ∤ ∆6 (in addition we may assume
that it is squarefree) respecting t ≡ t0 mod 2α2 and such that C3 = CM = C0 = +1. For this t,
one has W (Et) = −W (E). In a similar way, if there exists a positive t′0 ∤ ∆ such that C3 = −1,
then one can find a t′ ∈ N such that W (E′

t) = −W (E).
Thus it is necessary for the triple (vp(c4), vp(c6), vp(∆)) to be among those listed in Lemma 3.4

when p = 2 and among those listed in the Lemma 3.6 when p = 3, so that they have the property
that C2 = +1 and C3 = +1 for any squarefree t ∈ N.

(d) In the following, we will assume that C2 = C3 = CM = +1 for any quadratic twist of E.
Let us look at Ep0 the twist at a prime p0 6= 2, 3 that divides ∆. According to the reduction at p0,

we have different a value of C0 = Dp0 given by Proposition 3.3. As for C∆, it is equal to
(

−1
p0

)

.

i. If the reduction is of type III or III∗, then Dp0 = +1 (i.e. Wp0 (Et) = Wp0(E) if p0 | t), so

for Ep0 we have C0 = +1 and C∆ =
(

−1
p0

)

. Thus W (Ep0) =
(

−1
p0

)

W (E) for all t ∈ Z \ {0}.
If p0 ≡ 3 mod 4, then W (Ep0 ) = −W (E), otherwise W (Ep0) = W (E).

ii. If the reduction has type II, II∗, IV or IV ∗ then Dp0 =
(

3
p0

)

, and thus W (Ep0 ) =
(

3
p0

)(

−1
p0

)

W (Et) =
(

−3
p0

)

W (Et) for all t ∈ Z \ {0}. If p0 ≡ 5 mod 6, then W (Ep0) =

−W (E), otherwise if p0 ≡ 1 mod 6, W (Ep0) = W (E).

iii. If the reduction has type I∗m, then in the summerizing table of Section 2 we find that Dp0 =

−
(

−6b(p0)

p0

)

. Put r ∈ {±1} to be the remainder modulo 4 of p0. Then take t such that
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t ≡ −6b(p0)r mod p0 and prime to 6∆. We have

W (Ep0) =

(−1
p0

)

D0W (E), since C2 = C3 = CM = +1

=

(−1
p0

)(−6b(p0)t

p0

)

W (E) =

(−r
p0

)(

(−6b(p0))
2

p0

)

W (E)

= −W (E).

iv. If the reduction has type I∗0 , then Dp0 =
(

−1
p0

)

, and thus W (Ep0) = W (E) in any case.

Observe that if we take, rather than a prime, a (positive) squarefree product t0 =
∏

p0 of primes

p0 dividing ∆(6), then C0 =
∏

p0
Dp0 and C∆ =

(

−1
∏

p0

)

. So if each of the condition described in i.

ii. iii. and iv. hold on the corresponding factor of t0, the root number is W (Et0) = W (E).
Suppose that the hypotheses a), b), c) and d) in the statement are verified. Let t be a positive

integer. Then by hypotheses a), CM = +1, by b) and c), w2 = w3 = +1, and by d), the contribu-

tions of a p0 to C0 and C∆ (those are respectively equal to Dp0 and
(

−1
p0

)

) are compensating each

other: C0 · C∆ = +1. Thus W (Et) = W (E). This prove Lemma 4.2.

As a corollary of the proofs of Theorem 4.1 and of Lemma 4.2, we have the following decompo-
sition that become handy in the computation of examples (see Examples 1 to 3):

Corollary 4.3. Let E be an elliptic curve, and Et the quadratic twist by t ∈ F. Then the root
number can be written as the following product:

W (Et) = −
∏

p=2,3, p bad reduction

wp(t),

where wp(t) are "local contributions" at each p determined as follows:

wp(t) =































sgn(t)D2

(

−1
|t(2)|

)

W2(E) for p = 2

(−1)v3(t)D3W3(E) for p = 3

Dp

(

−1
p

)vp(t)

Wp(E) for p( 6= 2, 3) of additive reduction
(

t(173)
173

)

DpWp(E) for p( 6= 2, 3) of multiplicative reduction,

where Dp are the integers such that Wp(Et) = DpWp(E) (they are given by Proposition 3.3 for
p 6= 2, 3).

4.2 Families of sextic twists

For any t ∈ Z \ {0}, put the curve Et : y
2 = x3 + t.

Theorem 4.4. Let t ∈ F6 be a sixth-powerfree integer. Then the root number can be written as

W (Et) = −W2(Et)W3(Et)

( −1
|t(6)|

)(

sq(t)(6)
3

)

.

Moreover, it is (2636, 3)-square periodic and there exists square-congruence classes of t such that
W (Et) = +1, and another such that W (Et) = −1.

Proof. Let Et : y
2 = x3 + t be a family of elliptic curve parametrized by the variable t.

Suppose t sixth-powerfree. The root number can be written as

W (Et) = −W2(Et)W3(Et)
∏

p|t, p6=2,3

Wp(Et).

As previously, we simplify the notations by writting Wp(t) rather that Wp(Et). The formulae for
the local root number at 2 and 3 are given by [VA11, Lemme 4.1]. The local root number at 2 stays
the same on a congruence class modulo 26 as proven in Lemma 3.12 and the local root number at
3 stays the same on a congruence class modulo 36 as proven in 3.13.
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Now look at the product in the root number formula, i.e. the quantity

P(t) :=
∏

p|t, p6=2,3

Wp(Et).

By [Roh93, Prop. 2] (reported in Proposition 3.1), we have

P(t) =
∏

p|t,p6=2,3











+1 si vp(t) ≡ 0 mod 6;
(

−1
p

)

si vp(t) ≡ 1, 3, 5 mod 6;
(

−3
p

)

si vp(t) ≡ 2, 4 mod 6.

Since t is assumed sixth-powerfree, we can write it as t = 2α3βt1t
2
2t

3
3t

4
4t

5
5 where ti are pairwise

prime and neither divisible by 2 nor 3. Note that |t(6)| = t1t
2
2t

3
3t

4
4t

5
5 and sq(t)(6) = t2t4.

Then we split P(t) in two parts, according to whether p|τ1 or p|τ2.

P(t) =
∏

p|τ1

Wp(Et)
∏

p|τ2

Wp(Et)

=
∏

p|τ1

(−1
p

)

∏

p|τ2

(−3
p

)

=

(−1
τ1

)(−3
τ2

)

=

(−1
τ1

)

(τ2
3

)

We obtain that the root number is

W (Et) = −W2(Et)W3(Et)

(−1
τ1

)

(τ2
3

)

.

The root number depends of the remainders of t modulo 2737 and of τ2 modulo 3. Note that it
is possible to find a pair of congruence classes [t+] and [t−] such that W (Et+ = −W (Et−). Indeed,
if we take t+ ≡ C mod 2737, we can (by replacing τ2 by an integer τ ′2 prime to 6τ1 and such
that τ ′2 ≡ −τ2 mod 3) define t− = 2α3βt1τ

′
2 whose root number is opposite to the root number of

t+.

Remark 2. In [VA11], Várilly-Alvarado proved that the root number varies on a surface of the form
y2 = x3 + AT 6 + B except possibly if 3A/B is a rational square. In [Des19] the author explicit
the conditions on A and B for the elliptic surfaces on which the root number is constant along the
fibration. In particular, we give here an example that was previously found by Várilly-Alvarado
[VA11]:

y2 = x3 + 27t6 + 16. (2)

Consider the elliptic surface given by (2). Every fibre Et at t = m
n
∈ Q is Q-isomorphic to the

curve:
Em,n : y2 = x3 + 27m6 + 16n6.

Remark that −3 ≡ (4m3/3n3)2 mod p and thus
(

−3
p

)

= 1 for all p|f(t). The formula becomes

W (Et) = −W2(Et)W3(Et)

( −1
(27m6 + 16n6)(2)

)

.

Moreover, for every value of t, the remainder modulo 3 of 27m6+16n6 is 1. The minimal value
of M2 stays 3. It is possible to find a value of M1 lower that the one given by the theorem (which is
M1 = 2737). This new value is M ′

1 = 2430 = 16. Observe that 27m6 +16n6 falls in the congruence
classes 1, 11 mod 16. These values correspond to a root number +1. However, the generic rank
can be proven to be equal to 2 on this elliptic surface, so the set of rational points is Zariski-dense.
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4.3 Families of quartic twists

For every t ∈ Z \ {0}, let E be the curve Et : y
2 = x3 + tx.

Theorem 4.5. Let t ∈ F4 be a fourth-powerfree integer. Then the root number Et : y
2 = x3 can

be written as

W (Et) = −W2(Et)W3(Et)

( −2
|t(6)|

)( −1
sq(t)(6)

)

.

Moreover, the function t 7→ W (Et) is (24, 4)-square periodic and there exists classes for which
W (Et) = +1, and other such that W (Et) = −1.

Proof. Let t ∈ F4 and define the elliptic curve Et : y
2 = x3 + tx. The root number of Et can be

written as
W (Et) = −W2(Et)W3(Et)

∏

p|t, p6=2,3

Wp(Et).

By Lemmas 3.9 and 3.10, the local root number at 2 and 3 are periodic. Look now at the remaining
part of the root number, namely

∏

p|t,p6=2,3

Wp(Et). (3)

By [Roh93, Prop. 2], we have

∏

p|t,p6=2,3

Wp(Et) =
∏

p|t,p6=2,3











+1 if vp(t) ≡ 0 mod 4;
(

−1
p

)

si vp(t) ≡ 2 mod 4
(

−2
p

)

si vp(t) ≡ 1, 3 mod 4.

Since t is assumed fourth-powerfree, we can write it as t = 2α3βt1t
2
2t

3
3, where ti are pairwise

coprime and not divisible by 2 nor 3. Note that |t(6)| = t1t
2
2t

3
3 and that sq(t) = t2. We split (3) in

two parts according to whether p | t1t3 or p|t2.

∏

p|t

Wp(Et) =
∏

p|t1t3

Wp(Et)
∏

p|t2

Wp(Et)

=
∏

p|τ1

(−2
p

)

∏

p|t2

(−1
p

)

=
( −2
t1t3

)(−1
t2

)

.

=
( −2
|t(6)|

)( −1
sq(t)(6)

)

.

This implies that the root number can be written as

W (Et) = −W2(Et)W3(Et)

( −2
|t(6)|

)( −1
sq(t)(6)

)

.

Its value depends on the remainder of τ1 modulo 2634 and t2 modulo 4.

Remark 3. In [CS82], Cassels and Schinzel show that the elliptic surfaces given by the equations

y2 = x(x2 − (1 + t4)2) (4)

and
y2 = x(x2 − 49(1 + t4)2) (5)

are such that every fibre at t ∈ Q have the same root number. On (4), the root number is always
+1 and on (5), always −1.

Remark that it is possible to find a N1 lower than the one given by Theorem 4.5 such that the
function t→W (Ef(t)) is N1-periodic. This value is N1 = 2432 = 144.

The only remainder values of −(1+ t4)2 mod 16 are −1 and −4, and the only remainder value
modulo 9 is −1. By the Chinese Remainder Theorem, we find a small set of possible remainders
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modulo 144 for −(1 + t4)2, and the associated root number on the congruence class they define is
+1. It it is not possible to conclude anything on the density of the rational points from the root
number of the fibre of surface (4). On the surface (5), the root number is −1 for every possible
remainder of −72(1 + t4)2. Assuming the parity conjecture, the rational points of the surface (5)
are dense.

In [Hua18] Huang presents a geometric method that proves the density of rational points for
elliptic surfaces defined by the equation y2 = x3−d2(1+ t4)2x, for infinitely many squarefree values
of d including d = 1 and 7.
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