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Abstract. The notion of 2–monoidal category used here was intro-
duced by B. Vallette in 2007 for applications in the operadic context.
The starting point for this article was a remark by Yu. Manin that in
the category of quadratic algebras (that is, “quantum linear spaces”)
one can also define 2–monoidal structure(s) with rather unusual prop-
erties. Here we give a detailed exposition of these constructions, to-
gether with their generalisations to the case of quadratic operads.

Their parallel exposition was motivated by the following remark. Sev-
eral important operads/cooperads such as genus zero quantum co-
homology operad, the operad classifying Gerstenhaber algebras, and
more generally, (co)operads of homology/cohomology of some topo-
logical operads, start with collections of quadratic algebras/coalgebras
rather than simply linear spaces.

Suggested here enrichments of the categories to which components of
these operads belong, as well of the operadic structures themselves,
might lead to a better understanding of these fundamental objects.
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1 Brief summary and plan of exposition

A monoidal category, as it was defined and studied in [MacL98, Chapter VII], is
a category C endowed with a bifunctor ⊠ : C×C → C satisfying the associativity
axiom (“pentagon diagram”) and equipped with a (left and right) unit object.
A lax 2–monoidal category, as it was introduced in [Val08], is a category C
endowed with two structures of monoidal category, whose respective bifunctors
⊠ and ⊗ are related by the natural transformation called an interchange law:

ϕAA′BB′ : (A⊗A′)⊠ (B ⊗B′)→ (A⊠B)⊗ (A′
⊠B′) (1.1)

compatible with associativity of ⊠ and ⊠–unit object in the sense made explicit
in the Proposition 2 of [Va08]. Inverting all arrows (i.e. working in the opposite
category), one gets the notion of colax 2–monoidal category. Finally, a 2-
monoidal category equipped with a lax and a colax structure is simply called
a 2–monoidal category. A close but more restricted notion, which now often
called duoidal category was coined by M. Aguiar and S. Mahajan in [AM10].

Notice that A. Joyal and R. Street, in the work [JS93] on braided tensor cate-
gories, came up with a notion of a category endowed with two monoidal prod-
ucts but related by a natural isomorphism, which forces the two monoidal
structures to be isomorphic. C. Balteanu, Z. Fiedorowicz, R. Schwänzl and
R. Vogt in [BFSV03] introduced a notion of iterated monoidal category in or-
der to study iterated loop spaces. But in their framework, the units for the
monoidal products should be equal. Neither of these two restrictions is imposed
in our present examples.

Section 2 of our paper starts with a systematic formalization of the general
notions: “algebra/operad defined by quadratic relations between (graded) gen-
erators” and their reduction to the notions of “quadratic data”. We then in-
troduce various relevant categorical frameworks involving monoidal structures
on the categories of such data, various canonical functors between them, and
basic commutative diagrams relating these functors.

This is a development and generalization of constructions introduced in [Man88]
as an approach to quantum algebra: quantum linear spaces, black and white
products, bialgebras of their quantum endomorphisms, and quantum groups.

The central result of Section 3 is a new construction of 2-monoidal structures
on the categories of quadratic data QD (defined in Section 2.2): we start with
a simple construction of 2-monoidal structure on the category of graded vector
spaces, and then show that it lifts to the category of quadratic data.
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The central result of Section 4 is a generalization of this construction to the
categories of binary operadic quadratic data BOQD defined in Section 4.2.
Finally, in Section 5, we return to the quantum picture of [Man88] and gener-
alize it to our framework, as was done in [Man18] for the simplest case of the
genus zero component of the quantum cohomology operad.
The most important new feature of our picture is the fact that there is an
abundance of operads/cooperads with postulated properties arising naturally
in various geometric contexts.
More precisely, any topological operad like the little discs operad (loop spaces)
or the Deligne–Mumford operad of moduli spaces of stable genus 0 curves with
marked points (quantum cohomology), induces a homology operad in the cat-
egory of cocommutative coalgebras, a cohomology cooperad in the category of
commutative algebras, and a “homotopy” operad in the category of Lie algebras.
It is difficult to pass from one to another directly at the level of Lie algebras
and (co)commutative (co)algebras.
It is however well-known that the Koszul duality of [GK94] between the two
operads Lie− Com coincides with the duality Homotopy-(co)Homology in ra-
tional homotopy theory, see also [Ber14]. Our idea here is to lift these operadic
structures on the level of simple categories of quadratic data without any loss
of information (under Condition 1 of Proposition 5.3.4). In order to do so,
we introduce the relevant notions of (symmetric, skew-symmetric) quadratic
data together with suitable symmetric monoidal structures. On that level, we
do have the Koszul duality and the linear duality functors. There are also
“realisation” functors from these categories of quadratic data to categories of
(co)algebras. Since all these functors are symmetric monoidal, they preserve
(co)operad structures.

(QD−,⊕)
¡

//

L

��

!

++
(QD+,⊗)

Sc

��

∗ // (QD+,∨)

S

��
(Lie-alg,⊕) (Com-coalg,⊗) (Com-alg,⊗)

Homotopy
Lie Operads

Homology
Hopf Operads

Cohomology
Hopf Cooperads

The simplest case is when one has to deal with operads in the category of skew-
symmetric quadratic data QD−, where the underlying monoidal structure is
particularly easy: the direct sum. So this category is our favorite site to describe
operadic structures. Then, we get for free (co)operad structures in all the other
symmetric monoidal categories. It turns out that, this way, one can recover
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many of the most important (co)operad structures present in the literature, like
the graph (co)operads, the ones related to the little discs/configuration spaces
of points D2(n) ∼ Confn(R

2), the real locus of the moduli spaces of stable
curves of genus 0 with marked points M0,n(R), and their non-commutative
versions. This point has two main interests: it makes particularly easy the
passage between Lie operads and Hopf (co)operads and it allows us to or-
ganise the various operad structures in a commun pattern. For instance, we
construct a family of operads in skew–symmetric quadratic data whose first
two cases are provided by the Drinfeld–Kohno quadratic data Confn(R

2) and
the Etingof–Henriques–Kamnitzer–Rains quadratic dataM0,n(R); we also give
them a canonical operadic interpretation. This gives a new family of operads
quite similar to the ek-operads, except that instead of having a degree k − 1
(binary) Lie bracket, we have a degree 1 “Lie bracket” of arity k.

With the same method, one can also study complex cases like the operad
made up of the complex locus of the moduli spaces of stable curves of genus 0
with marked points M0,n(C) [KM94, Get95, KM96, Man99], whose cohomol-
ogy rings admit a quadratic presentation by [Kee92]. There is also its non-
commutative version B(n) introduced in [DSV15] by means of toric varieties
called brick manifolds and the dihedral topological operadMδ

0,n(C) introduced
by F. Brown in [Bro09] as a partial compactification with a view to understand
multiple zeta values, see also [DV17, AP17]. The details are left to an interested
reader.
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esting and useful discussions. The second author has been supported by the
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2 Quadratic data, monoidal structures, and their
algebraic realisations

2.1 Notations and conventions

We work over a ground field K of characteristic 6= 2 and over the underly-
ing category of finite dimensional Z-graded K-vector spaces equipped with
their morphisms of degree zero. The linear dual V ∗ is considered degree-
wise: (V ∗)−n := Hom(Vn,K). We equip this category with the usual tensor
product (M ⊗ N)n :=

⊕
k+l=nMk ⊗ Nl and with the natural isomorphisms

σ(x⊗ y) := (−1)|x||y|y⊗x in order to make it into a symmetric monoidal cate-
gory denoted simply by (grVect,⊗). We denote by s (respectively its linear
dual s−1) the one-dimensional graded vector space concentrated in degree 1
(respectively −1) and the degree shift operator by sV := s ⊗ V (respectively
s−1V := s−1 ⊗ V ).
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2.2 Categories of quadratic data

For any graded vector space V , we consider the canonical decomposition V ⊗2 ∼=
V ⊙2 ⊕ V ∧2, where

V ⊙2 :−
〈
x⊙ y := x⊗ y + (−1)|x||y|y ⊗ x

〉
and

V ∧2 :−
〈
x ∧ y := x⊗ y − (−1)|x||y|y ⊗ x

〉
.

Definition 2.2.1 (Quadratic data). An object of the category QD of quadratic
data is a pair (V,R) made up of a graded vector space V and a subspace
R ⊂ V ⊗2. A morphism f : (V,R) → (W,S) of quadratic data amounts to a
morphism f : V →W of graded vector spaces satisfying f⊗2(R) ⊂ S.
The category of symmetric quadratic data QD+ (respectively skew-symmetric
quadratic data QD−) is defined similarly with pairs (V,R) such that R ⊂ V ⊙2

(respectively R ⊂ V ∧2) this time.

2.3 Functors

There are first obvious “realisation” functors from the categories of quadratic
data to the categories of unital associative algebras, unital commutative alge-
bras, and Lie algebras respectively:

A : QD → Ass-alg

(V,R) 7→ T (V )
(R)

,
S : QD+ → Com-alg

(V,R) 7→ S(V )
(R)

,

L : QD− → Lie-alg

(V,R) 7→ Lie(V )
(R)

.

In order to lift the universal enveloping algebra functor

U : Lie-alg → Ass-alg

(g, [ , ]) 7→ U(g) :− T (g)

(x⊗y−(−1)|x||y|y⊗x−[x,y])

to the quadratic data level, we consider the functor

Λ : QD− → QD
(V,R) 7→ (V,Λ(R)) ,

where Λ(R) ∈ V ∧2 ⊂ V ⊗2 is the natural inclusion.
Similarly, we lift the inclusion functor Com-alg →֒ Ass-alg to the quadratic
data level by

S : QD+ → QD
(V,R) 7→ (V,Σ(R)⊕ V ∧2) ,

where Σ(R) ∈ V ⊙2 ⊂ V ⊗2 is the natural inclusion.
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One can notice that the images of these algebraic realisation functors always
produce a weight graded algebra, that is A ∼=

⊕
n∈N

A(n), where each compo-
nent A(n) is finite dimensional. We denote the associated categories respectively
by wg-Ass-alg, wg-Com-alg, and wg-Lie-alg.
Dually, we consider the two categories of weight graded counital coassociative
coalgebras wg-Ass-coalg and weight graded counital cocommutative coal-
gebras wg-Com-coalg, with finite dimensional components. There are also
realisation functors from the categories of quadratic data to these two cate-
gories:

Ac : QD → wg-Ass-coalg
(V,R) 7→ T c(V,R)

and

Sc : QD+ → wg-Com-coalg
(V,R) 7→ Sc(V,R)

,

where the quadratic coalgebra T c(V,R) (and similarly the quadratic cocom-
mutative coalgebra Sc(V,R)) is initial object in the category of (conilpotent)
counital coassociative coalgebras under T c(V ) such that the composite with
the projection onto T c(V )

R vanishes:

C //

∃

��

0

**
T c(V ) // // T

c(V )
R

T c(V,R)

::tttttttttt
0

::
.

It is explicitly given by

T c(V,R) ∼= K ⊕ V ⊕R⊕ · · · ⊕


 ⋂

i+2+j=n

V ⊗i ⊗R ⊗ V ⊗j


⊕ · · · ,

see [Val08, Section 2] or [LV12, Section 3.1.3] for more details. The category of
cocommutative coalgebras naturally imbeds into the category of coassociative
coalgebras: Com-coalg →֒ Ass-coalg and similarly wg-Com-coalg →֒
wg-Ass-coalg. These functors lift on the level of quadratic data by

Σ : QD+ → QD
(V,R) 7→ (V,Σ(R)) .

There are first Koszul dual functors
¡ : QD → QD

(V,R) 7→ (sV, s2R)
and

¡ : QD± → QD∓

(V,R) 7→ (sV, s2R) ,

where the double degree shift operator is defined by s(x⊗ y) := (−1)|x|sx⊗ sy
and which sends symmetric quadratic data to skew-symmetric quadratic data
and vice versa. Notice that, all the above-mentioned functors are covariant.
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Now, we consider the linear dual contravariant functors

∗ : QD → QD
(V,R) 7→ (V ∗, R⊥)

and
∗ : QD± → QD±

(V,R) 7→ (V ∗, R⊥) ,

In the former case, since R ⊂ V ⊗2, its orthogonal is understoof in R⊥ ⊂
(V ∗)⊗2 ∼=

(
V ⊗2

)∗
. In the latter case, since R ⊂ V ⊙2 (respectively R ⊂ V ∧2),

its orthogonal is understood in R⊥ ⊂ (V ∗)⊙2 (respectively in R⊥ ⊂ (V ∗)∧2).
One can iterate the above two types of functors to produce the second Koszul
dual (contravariant) functors:

! :− ∗¡ : QD → QD
(V,R) 7→ (s−1V ∗, s−2R⊥)

and

! :− ∗¡ : QD− → QD+

(V,R) 7→ (s−1V ∗, s−2R⊥) .

The weight-wise linear duality functor sends coalgebras to algebras (and vice-
versa):

∗ : wg-Ass-coalg → wg-Ass-alg⊕
n∈N

C(n) 7→
⊕

n∈N

(
C(n)

)∗ and

∗ : wg-Com-coalg → wg-Com-alg⊕
n∈N

C(n) 7→
⊕

n∈N

(
C(n)

)∗
.

Proposition 2.3.1. All these functors assemble into the commutative diagram
of Figure 1.

Proof. The commutativity of the extreme top face amounts to Λ(R)⊥ ∼=
Σ(s−2R⊥) ⊕ (s−1V ∗)∧2, the commutativity of the left top face amounts to
s2Λ(R) ∼= Σ(s2R), and the commutativity of the right top face amounts to
Σ(R⊥) ∼= Σ(R)⊥.
The commutativity of the front face is given by Sc(V,R)∗ ∼= S(V ∗, R⊥) and
the commutativity of the back face is given by T c(V,R)∗ ∼= T (V ∗, R⊥). This
comes from the fact that the universal property satisfied by quadratic algebras
is categorically dual to the universal property defining quadratic coalgebras,
see [LV12, Section 3.2.2].

The commutativity of the left-hand side vertical face comes from U
(
Lie(V )
(R)

)
∼=

T (V )
(Λ(R)) , and the commutativity of the right-hand side vertical face comes from
S(V )
(R)
∼=

T (V )
(Σ(R)⊕V ∧2) . The commutativity of the central horizontal face is obvi-

ous. It induces the commutativity of the central vertical face: the isomorphism
Sc(V,R) ∼= T c(V,Σ(R)) can be seen under the weight-wise linear dual from the
above isomorphism and the dual characterisations of quadratic (co)algebras.
(One can also prove that Sc(V,R) satisfies the universal property of coassocia-
tive quadratic coalgebra generated by (V,Σ(R)).)
The commutativity of the other faces involving only forgetful functors is
straightforward.
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Remark 2.3.2. We could also consider Koszul dual and linear dual inverse
functors, going in the opposite direction, defined by formulas like (s−1V, s−2R)
for ¡ and (sV ∗, s2R⊥) for ∗ . We keep the exposition to the present degree
of details for reasons that will be apparent in Section 5, when dealing with
(co)operad structures. So far, we would like the vertex labeled by the category
QD− to be the unique top vertex of this diagram.

2.4 Symmetric monoidal structures

We now enrich the above categories with symmetric monoidal structures. On
the category QD of quadratic data, we consider the two symmetric monoidal
products ⊗ and ⊗:

(V, S)⊗ (W,R) :− (V ⊕W,R⊕ [V,W ]− ⊕ S) and

(V, S)⊗ (W,R) :− (V ⊕W,R ⊕ [V,W ]+ ⊕ S) ,

where [V,W ]± :−
〈
v ⊗ w ± (−1)|v||w|w ⊗ v

∣∣ v ⊗ w ∈ V ⊗W
〉

.

The category QD+ of symmetric quadratic data is endowed with

(V,R) ∨ (W,S) :− (V ⊕W,R⊕ S) and

(V,R)⊗ (W,S) :− (V ⊕W,R⊕ [V,W ]+ ⊕ S)

and the category QD− of skew-symmetric quadratic data is endowed with

(V,R)⊕ (W,S) :− (V ⊕W,R⊕ [V,W ]− ⊕ S) .

The bottom categories of algebras are equipped with the following monoidal
products. We consider the direct sum g⊕ h of Lie algebras, where [x+ y, x′ +
y′] :− [x, x′] + [y, y′], for any x, x′ ∈ g and y, y′ ∈ h. This is the categorical
product in the category Lie-alg. The underlying tensor product ⊗ of two
associative algebras A,B ∈ Ass-alg carries a natural associative product:
µ(a ⊗ b, a′ ⊗ b′) :− (−1)|a

′||b|µA(a, a
′) ⊗ µB(b, b′). If the two algebras happen

to be commutative, so is their tensor product. The same holds true for the
tensor product of coassociative or cocommutative coalgebras and in the weight
graded case.

Proposition 2.4.1. The above-mentioned monoidal products endow their re-
spective categories with a symmetric monoidal structure.

Proof. Recall from [MacL98, Section XI.1] that to get a (strong) symmetric
monoidal category besides monoidal products described above we have to define
coherent objects (units) and coherent natural isomorphisms (associator, left
and right unitors, and braiding). For the five categories (QD,⊗), (QD,⊗),
(QD+,∨), (QD+,⊗), and (QD−,⊕) of quadratic data, the unit is (0, 0), the
associator is (V ⊕W )⊕Z ∼= V ⊕ (W ⊕Z), the unitors are 0⊕V ∼= V ∼= V ⊕ 0,
and the braiding is V ⊕W ∼= W ⊕ V . The symmetric monoidal structure on
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(Lie-alg,⊕) is given by a similar unit and by similar maps. For all monoidal
categories of (possibly weight graded) algebras and coalgebras, the unit is K,
the associator is (V⊗W )⊗Z ∼= V ⊗(W⊗Z), the unitors areK⊗V ∼= V ∼= V⊗K,
and the braiding is V ⊗W ∼=W ⊗V . The various coherence diagrams are then
straightforward to check.

Remark 2.4.2. Notice that the categories (QD−,⊕), (QD+,⊗), (Lie-alg,⊕)
and the category of coaugmented (weight-graded) cocommutative coalgebras
with ⊗ are cartesian, that is their symmetric monoidal structure is given by
their product and their terminal object. Dually the category (QD+,∨) and
the category of augmented (weight-graded) commutative algebras with ⊗ are
cocartesian, that is their symmetric monoidal structure is given by their co-
product and their initial object.

2.5 Symmetric monoidal functors

We can now check the possible coherence between the various functors and
symmetric monoidal structures introduced above.

Theorem 2.5.1. The commutative diagram described on Proposition 2.3.1 is
made up of strong symmetric monoidal functors, see Figure 2.

Proof. Recall from [MacL98, Section XI.2] that a strong symmetric monoidal
functor F : (C,⊗C, 1C) → (D,⊗D, 1D), is a covariant functor between
monoidal categories equipped with natural isomorphisms

ψ : 1D
∼=
−→ F(1C) and ϕA,B : F(A) ⊗D F(B)

∼=
−→ F(A ⊗C B) ,

subject to coherence diagrams with respect to the various associators, unitors,
and braidings. Recall that the opposite of a symmetric monoidal category is
again a symmetric monoidal category. A contravariant functor F : C → D is
called strong symmetric monoidal, when the induced covariant functor Fop :
Cop → D is strong symmetric monoidal.
Let us begin with the top faces functors. There, all the units are equal to (0, 0)
and preserved by the various functors. The structural isomorphisms for the
monoidal functor Λ are given by

Λ(V,R)⊗ Λ(W,S) ∼= (V ⊕W,Λ(R)⊕ [V,W ]− ⊕ Λ(S))
∼= (V ⊕W,Λ(R⊕ [V,W ]− ⊕ S))
∼= Λ((V,R)⊕ (W,S)) ,

the ones for the monoidal functor Σ are given by

Σ(V,R)⊗Σ(W,S) ∼= (V ⊕W,Σ(R)⊕ [V,W ]+ ⊕ Σ(S))
∼= (V ⊕W,Σ(R⊕ [V,W ]+ ⊕ S))
∼= Σ((V,R)⊗(W,S)) ,
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and the ones for the monoidal functor S are given by

S(V,R)⊗ S(W,S) ∼=
(
V ⊕W,Σ(R)⊕ V ∧2 ⊕ [V,W ]− ⊕ Σ(S)⊕W∧2

)

Ê ∼=
(
V ⊕W,Σ(R⊕ S)⊕ (V ⊕W )∧2

)

∼= S((V,R) ∨ (W,S)) ,

since

(V ⊕W )⊗2 ∼= (V ⊕W )⊙2 ⊕ (V ⊕W )∧2

∼=
(
V ⊙2 ⊕ [V,W ]+ ⊕W

⊙2
)
⊕
(
V ∧2 ⊕ [V,W ]− ⊕W

∧2
)
.

The natural isomorphisms for the first Koszul duality functors ¡ : (QD−,⊕)→
(QD+,⊗) are given by

(V,R)
¡
⊗ (W,S)

¡ ∼= (sV ⊕ sW, s2R⊕ [sV, sW ]+ ⊕ s
2S)

∼= (s(V ⊕W ), s2(R ⊕ [V,W ]− ⊕ S))

∼= ((V,R)⊕ (W,S))
¡
;

the ones for ¡ : (QD,⊗)→ (QD,⊗) are similar.
For the the linear dual functors, we consider the following isomorphisms

(V,R)∗ ∨ (W,S)∗ ∼= (V ∗ ⊕W ∗, R⊥ ⊕ S⊥) ∼= (V ⊕W,R⊕ [V,W ]+ ⊕ S)
∗

∼= ((V,R)⊗ (W,S))
∗

and

(V,R)∗ ⊗ (W,S)∗ ∼= (V ∗ ⊕W ∗, R⊥ ⊕ [V ∗,W ∗]− ⊕ S
⊥)

∼= (V ⊕W,R⊕ [V,W ]+ ⊕ S)
∗ ∼= ((V,R)⊗ (W,S))

∗
.

Since the second Koszul duality functors ! are the composites of two strong
symmetric functors (see below), they are also strong symmetric monoidal.
Each of the functors of the the left-hand side face sends directly the unit to
the unit, since L(0, 0) = 0, A(0, 0) = K, and U(0) = K. The new structural
isomorphisms are

L(V,R)⊕ L(W,S) ∼= L(V ⊕W,R⊕ [V,W ]− ⊕ S) ∼= L ((V,R)⊕ (W,S)) ,

A(V,R)⊗A(W,S) ∼= A(V ⊕W,R⊕ [V,W ]− ⊕ S) ∼= A((V,R)⊗ (W,S)) ,

and
U(g⊕ h) ∼= U(g)⊗U(h) .

Regarding the right-hand side face, the respective units (0, 0) and K, are again
directly sent to one another. In this case, the structural isomorphisms are

S(V,R)⊗ S(W,S) ∼= S(V ⊕W,R⊕ S) ∼= S ((V,R) ∨ (W,S))
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and the identities for the forgetful functors.
In the middle horizontal face, we also consider the identities for the for-
getful functors. For the two weight-wise linear dualisation functors ∗ :
wg-Com-coalg →֒ wg-Com-alg and ∗ : wg-Ass-coalg →֒ wg-Ass-alg
the natural maps C∗ ⊗D∗ ∼= (C ⊗D)∗ are isomorphisms since we are working
with spaces with finite dimensional weight components.
Finally, the two vertical coalgebra realisations functors send the unit (0, 0) to
the unit K. The structural isomorphisms are respectively

Sc(V,R)⊗ Sc(W,S) ∼= Sc(V ⊕W,R⊕ [V,W ]+ ⊕ S) ∼= Sc((V,R)⊗ (W,S)) ,

Ac(V,R)⊗Ac(W,S) ∼= Ac(V ⊕W,R⊕ [V,W ]+ ⊕ S) ∼= Ac((V,R)⊗ (W,S)) .

They can be proved on two ways. One can first consider their respective weight-
wise linear duals and apply the respective isomorphisms

S(V ∗)

(R⊥)
⊗
S(W ∗)

(S⊥)
∼=
S(V ∗ ⊕W ∗)

(R⊥ ⊕ S⊥)
and

T (V ∗)

(R⊥)
⊗
T (W ∗)

(S⊥)
∼=

T (V ∗ ⊕W ∗)

(R⊥ ⊕ [V ∗,W ∗]− ⊕ S⊥)
.

One can also show that the left-hand side coalgebra satisfies each time the
universal property of quadratic coalgebras.
The commutativity of the various coherence diagrams for the symmetric
monoidal functors on the top face come from the fact that their underlying
functors on the category (grVect,⊕) is either the identity, the degree shift,
or the linear duality functor, which are symmetric monoidal. The bottom
functors, namely the universal enveloping algebra functor, the inclusions, and
the linear duality functor, are known to be symmetric monoidal. Finally, it is
straightforward to check the various coherence diagrams satisfied by the sym-
metric monoidal functors A, S, L, Sc, and Ac.

3 2–monoidal structures upon quadratic data

3.1 Notation and setting

As in [Man88, Man18], we will identify the category of quadratic algebras
overK with the category QD of quadratic data, whose elements will be denoted
by A = (A1, R(A)).
In [Val08, Section 1], we introduced the notion of a lax 2-monoidal category
as a category C endowed with two monoidal products ⊠ and ⊗ such that
the functor ⊗ : (C,⊠)2 → (C,⊠) is lax monoidal functor. Therefore, such a
structure amounts to a natural transformation, called the interchange law,

ϕAA′BB′ : (A⊗A′)⊠ (B ⊗B′)→ (A⊠B)⊗ (A′
⊠B′)

satisfying the usual coherence diagrams. (Notice that the natural transforma-
tion might not be made up of isomorphisms, on the contrary to the strong
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monoidal functors considered in Section 2.5.) Dually, the notion of a co-
lax 2-monoidal category is obtained by a colax (or oplax) monoidal functor
⊗ : (C,⊠)2 → (C,⊠), that is by a natural transformation

ψAA′BB′ : (A⊠B)⊗ (A′ ⊠B′)→ (A⊗A′)⊠ (B ⊗B′) .

satisfying the opposite coherent diagrams. A category equipped with two
monoidal structures carrying two compatible lax and colax 2-monoidal struc-
tures is called a 2 monoidal-category.

Remark 3.1.1. In the [Val08, Proposition 2] (and its arXiv version as well),
there are two misprints in the commutative triangle expressing compatibility
with unit morphisms. First, the product (I ⊗A)⊠ (I ⊗A′) should be replaced
by (I ⊠A)⊗ (I ⊠A′). Second, F (A) should be replaced by F (A′) .

3.2 The interchange laws in (grVect,⊗,⊕)

The category grVect is endowed with two simple monoidal structures: tensor
product ⊗ over K and direct sum ⊕. They have unit objects and standard
associativity morphisms. We may even assume these structures to be strict
ones, and sometimes will do it for simplicity.
The interchange law in this context must be a natural monoidal transformation

ϕAA′BB′ : (A⊕A′)⊗ (B ⊕B′)→ (A⊗B)⊕ (A′ ⊗B′) (1)

with the following notation change: (⊠,⊗) are replaced here respectively by
(⊗,⊕).

Explicitly, we have natural identifications

(A⊕A′)⊗ (B ⊕B′) ∼= (A⊗B)⊕ (A′ ⊗B)⊕ (A⊗B′)⊕ (A′ ⊗B′) , (2)

and we define the interchange law (1) as the projection pr14 of r.h.s. of (2)
onto the sum of its first and fourth direct summand

pr14 : (A⊕A′)⊗ (B ⊕B′)→ (A⊗B)⊕ (A′ ⊗B′) . (3)

In the other way round, the inclusion of the first and fourth direct summand
defines the natural transformation

ψAA′BB′ : (A⊗B)⊕ (A′ ⊗B′)→ (A⊕A′)⊗ (B ⊕B′) .

The compatibility of this projection and this inclusion with associativity and
unit morphisms for ⊗ defined in [Val08, Proposition 2] quoted above can be
checked in a straightforward way. So the data (grVect,⊗,⊕, ϕ, ψ) form a
2-monoidal category.

Now we will state and prove the main result of this section.
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3.3 Final notation change: lifting (1) to quadratic data

Let us now reinterpret the players of the interchange law (1) as the first com-
ponents of objects of QD, that is A = (A1, R(A)) etc. We lift the monoidal
structures (⊗,⊕) on 1–components of quadratic data to monoidal structures in
QD denoted in [Man88] as (•,⊗), where

(A1, R(A)) • (B1, R(B)) := (A1 ⊗B1, S(23)(R(A) ⊗R(B))) .

Here R(A)⊗R(B) ⊂ A⊗2
1 ⊗B

⊗2
1 , and S(23) interchanges the middle two com-

ponents of the tensor product, so that the result lands in (A1 ⊗ B1)
⊗2 as it

should be. For a description of ⊗ refer to the beginning of Section 2.4.

Proposition 3.3.1. The interchange morphism pr14 applied to 1–components
of

(A⊗A′) • (B⊗B′)→ (A •B)⊗ (A′ •B′) (4)

and then lifted to the tensor squares of these 1–components as pr⊗2
14 , sends the

subspace of relations of the l.h.s. to the subspace of relations of the r.h.s.:

R((A⊗A′) • (B⊗B′))→ R((A •B)⊗ (A′ •B′)) (5)

and thus lifts to an interchange morphism in QD. The quadruple (QD, •,⊗, ϕ)
forms a lax 2–monoidal category.

Proof. (i) Preparation. Since from now on the four graded vector spaces in
(1)–(4) will be 1–components of quadratic data, we will add the subscript 1 in
their notation. According to the definitions (5) and (7) on p. 19 of [Man88],
the source of the arrow (5) can be explicitly written as

R((A⊗A′) • (B⊗B′)) = S(23)({R(A)⊕ [A1, A
′
1]+ ⊕R(A

′)} ⊗ Ê

{R(B)⊕ [B1, B
′
1]+ ⊕R(B

′)}) . (6)

On the other hand, the target becomes

R((A •B)⊗ (A′ •B′)) =S(23)(R(A)⊗R(B))⊕ [A1 ⊗B1, A
′
1 ⊗B

′
1]+⊕

S(23)(R(A
′)⊗R(B′)) . (7)

On the respective 1–components of (4), the kernel of

pr14 : (A1 ⊕A
′
1)⊗ (B1 ⊕B

′
1)→ A1 ⊗B1 ⊕A

′
1 ⊗ B

′
1

is
A1 ⊗B

′
1 ⊕A

′
1 ⊗B1 . (8)

Therefore, whenever we apply pr⊗2
14 to a tensor monomial of degree four, whose

first two or last two divisors (or both) look like a ⊗ b′ or a′ ⊗ b, then it is
annihilated.
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For brevity, we will call such monomials in [(A1⊕A′
1)⊗ (B1⊕B′

1)]
⊗2 vanishing

ones.

In the following sections of the proof we will apply this remark successively to
various summands of (6):

S(23)({R(A)⊕ [A1, A
′
1]+ ⊕R(A

′)} ⊗ {R(B)⊕ [B1, B
′
1]+ ⊕R(B

′)}) .

(ii) Summands annihilated by pr⊗2
14 .

(a) First, check that the whole subspace S(23)(R(A)⊗R(B
′)) is annihilated. In

fact any element of it is a linear combination of vanishing monomials because
after interchanging two middle elements in a1 ⊗ a2 ⊗ b′1 ⊗ b

′
2 where a1, a2 ∈

A1, b
′
1, b

′
2 ∈ B

′
1, and both left half and right half binary products land in (8).

Essentially the same argument shows that S(23)(R(A
′)⊗R(B)) is annihilated,

and R(A′)⊗ [B1, B
′
1]+ and [A1, A

′
1]+ ⊗R(B

′) as well.

One can treat in the same way R(A) ⊗ [B1, B
′
1]+ and [A1, A

′
1]+ ⊗ R(B). The

only difference is that after applying S(23) to the respective monomials only
one half of the result, either to the left, or to the right of the middle ⊗ lands
in the tensor square of (8).

(iii) Summands upon which pr⊗2
14 is injective. A direct observation shows that

pr⊗2
14 restricted to S(23)(R(A)⊗R(B)) is injective and in fact identifies it with

the respective summand of (7).

Similarly, pr⊗2
14 identifies S(23)(R(A

′)⊗R(B′)) identifies it with the respective
summand of (7).

(iv) Remaining terms.

It remains to compare the terms

S(23)([A1, A
′
1]+ ⊗ [B1, B

′
1]+) (9)

in the source of (5) with terms

[A1 ⊗B1, A
′
1 ⊗B

′
1]+ (10)

in its target.

The space (9) is spanned by linear combinations

S(23)

((
ai ⊗ a

′
j + (−1)|ai||a

′
j |a′j ⊗ ai

)
⊗
(
bk ⊗ b

′
l + (−1)|bk||b

′
l|b′l ⊗ bk

))

= (−1)|a
′
j||bk|ai ⊗ bk ⊗ a

′
j ⊗ b

′
l + (−1)|b

′
l|(|a

′
j |+|bk|)ai ⊗ b

′
l ⊗ a

′
j ⊗ bk

+ (−1)|ai|(|a
′
j |+|bk|)a′j ⊗ bk ⊗ ai ⊗ b

′
l + (−1)|bk||b

′
l|+|ai|(|a

′
j |+b

′
l|)a′j ⊗ b

′
l ⊗ ai ⊗ bk,

(11)

where
ai ∈ A1, a

′
j ∈ A

′
1, bk ∈ B1, b

′
l ∈ B

′
1 .
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Two middle terms in (11) are vanishing ones.

With the same notation, (10) is spanned by linear combinations

(−1)|a
′
j ||bk|ai ⊗ bk ⊗ a

′
j ⊗ b

′
l + (−1)|bk||b

′
l|+|ai|(|a

′
j|+b

′
l|)a′j ⊗ b

′
l ⊗ ai ⊗ bk ,

which are exactly images of sums of the two remaining terms of (11) after
application of pr⊗2

14 .

This completes the proof of the Proposition 3.3.1.

3.4 The dual picture

Corollary 3.4.1. The quadruple (QD,⊗, ◦, ψ) is a lax 2–monoidal category
as well.

Proof. In the case when all involved quadratic data are finite–dimensional, the
interchange law in (QD,⊗, ◦, ψ) can be formally obtained by applying the linear
duality functor ∗ to the diagrams (4) and (5). Similarly, the commutativity of
all relevant diagrams (compatibility with associativity of ⊗ and with unity for
◦) follows by duality from the respective facts for (QD, •,⊗, ϕ).

However, the statement itself of Corollary 3.4.1 remains true even without
assumption of finite–dimensionality: to prove it one should develop detailed
arguments parallel to those in given in the proof of Proposition 3.3.1.

Below we will only sketch the check that interchange laws in (QD,⊗, ◦, ψ) and
(QD, •,⊗, ϕ) are ∗–dual.

Applying formally ∗ to (4) and rewriting the left and right hand sides with
the help of identifications, collected in [Man88, Section 3], especially in its
subsection 5, we obtain a morphism

{(A •B)⊗ (A′ •B′)}∗ → {(A⊗A′) • (B⊗B′)}∗ . (12)

The l. h. s. of (12) can be rewritten as

(A •B)∗ ⊗ (A′ •B′)∗ ∼= (A∗ ◦B∗)⊗ (A′∗ ◦B′∗) .

Similarly, the r. h. s. of (12) is

(A⊗A′)∗ ◦ (B⊗B′)∗ ∼= (A∗ ⊗A′∗) ◦ (B∗ ⊗B′∗) .

So finally (12) becomes

(A∗ ◦B∗)⊗ (A′∗ ◦B′∗)→ (A∗ ⊗A′∗) ◦ (B∗ ⊗B′∗) . (13)

Since ∗ is a contravariant quasi–involution of QD that is, ∗∗ is equivalent to id,
(13) is the required interchange morphism, written for generic arguments.
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Remark 3.4.2. Our two examples (QD, •,⊗, ϕ) and (QD,⊗, ◦, ψ) are lax 2-
monoidal categories, but fail to be colax since the interchange laws ψ and ϕ
from the 2–monoidal category grVect do not lift to the appropriate level.

Several other pairs, consisting of • and one of the monoidal structures from
[Man88], are either simultaneously lax and colax, or neither lax/nor colax.
These are less interesting cases. We will present in Section 4 their more inter-
esting operadic versions.

3.5 Applications

Corollary 3.5.1.

1. Let M,N be two monoids in QD wrt the black product •. Then M⊗N
also has a natural structure of such a monoid.

2. Similarly, let M,N be two monoids in QD wrt the tensor product ⊗.
Then M ◦N also has a natural structure of such a monoid.

Proof. These statements are direct applications of the fact that lax monoidal
functors preserve monoids. They are actually special cases of [Val08, Proposi-
tion 3], which was a motivation for the definition of the notion of lax 2-monoidal
category.

Example 3.5.2. Let A :− (A1, R(A1)) be a quadratic data. The canonical map
+ : A1⊕A1 → A1 induces a morphism of quadratic data A⊗A→ A if and only
if [A1, A1]− ⊂ R(A1). Quadratic data satisfying this property actually form
the image of the functor S from symmetric quadratic data. Corollary 3.5.1
shows that their white product carries again a canonical ⊗-monoid structure.

This canonical ⊗-monoid structure on the quadratic data living in the image
of the functor S actually comes from the monoid structure on any symmetric
quadratic data (V,R) ∈ (QD+,∨) given by + : V ⊕V → V . These two monoid
structures induce respectively the concatenation product under the symmetric
monoidal functor of algebraic realisations S(V,R) and A(V,R).

4 2–monoidal structures upon operadic quadratic data

4.1 Operads

Let us recall the coordinate-free partial definition of an operad. We denote by
Bij the category of finite sets with bijections. Given any subset X ⊂ Y , we use
the notation Y/X := (Y \X) ⊔ {∗}. Let (C,⊗, 1C, α, λ, ρ, τ) be a symmetric
monoidal category.

Definition 4.1.1 (Operad). An operad in C is a presheaf P : Bijop → C
endowed with partial operadic compositions ◦X⊂Y : P(Y/X)⊗P(X)→ P(Y ),
for any X ⊂ Y , and a unit η : 1C → P({∗}) such that the following diagrams
commute.
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Sequential axiom. For any X ⊂ Y ⊂ Z,

(P(Z/Y )⊗ P(Y/X))⊗ P(X)
∼= //

α

��

(P((Z/X)/(Y/X))⊗ P(Y/X))⊗ P(X)

◦Y/X⊂Z/X⊗id

��
P(Z/Y )⊗ (P(Y/X)⊗ P(X))

id⊗◦X⊂Y

��

P(Z/X)⊗ P(X)

◦X⊂Z

��
P(Z/Y )⊗ P(Y )

◦Y ⊂Z
// P(Z) .

Parallel axiom. For any X ⊔ Y ⊂ Z,

P(((Z/X)/Y ))⊗ (P(X)⊗ P(Y ))

α−1

��

id⊗τ
// P(((Z/X)/Y ))⊗ (P(Y )⊗ P(X))

α−1

��
(P(((Z/X)/Y ))⊗ P(X))⊗ P(Y )

∼=

��

(P(((Z/X)/Y ))⊗ P(Y ))⊗ P(X)

◦Y ⊂Z/X⊗id

��
(P(((Z/Y )/X))⊗ P(X))⊗ P(Y )

◦X⊂Z/Y ⊗id

��

P(Z/X)⊗ P(X)

◦X⊂Z

��
P(Z/Y )⊗ P(Y )

◦Y ⊂Z
// P(Z) .

Left/Right unital axioms. For any X ∈ Bij and any x ∈ X ,

1C ⊗ P(X)
η⊗id

//

λ

��

P({∗})⊗ P(X)

∼=

��
P(X) P(X/X)⊗ P(X)

◦X⊂X

oo

P(X)⊗ 1C
id⊗η

//

ρ

��

P(X)⊗ P({∗})

∼=

��
P(X) P(X/{x})⊗ P({x}) .

◦{x}⊂X

oo

Top equivariance. For any subset X ⊂ Y and any bijection f : X → X , we
consider the induced bijection f̄ : Y → Y , which leaves the elements of
Y \X invariant,

P(Y/X)⊗ P(X)
◦X⊂Y

//

id⊗P(f)

��

P(Y )

P(f̄)

��
P(Y/X)⊗ P(X)

◦X⊂Y
// P(Y ) .
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Bottom equivariance. For any subset X ⊂ Y and any bijection f : Y/X →

Y/X , we consider Ỹ := Y if f(∗) = ∗ and Ỹ := Y \{f(∗)}⊔{∗} otherwise.
We also consider the bijection Ỹ → Y which which sends ∗ to f(∗) and
is equal to the identity otherwise. We denote by f̊ : Ỹ /X → Y/X the
induced bijection. Finally, we denote by f̃ : Y → Ỹ the bijection which
coincides with f except for the assignment f(∗) 7→ ∗.

P(Y/X)⊗ P(X)
P(f̊)⊗id

//

P(f)⊗id

��

P(Ỹ /X)⊗ P(X)
◦X⊂Ỹ

// P(Ỹ )

P(f̃)

��
P(Y/X)⊗ P(X)

◦X⊂Y
// P(Y ) .

The skeletal category of Bij is the groupoid S whose objects are the sets
{1, . . . , n}, for n ∈ N, and whose morphisms are the elements of the sym-
metric groups Sn. A presheaf on Bij is thus equivalent to a collection
{P(n)}n∈N of right Sn-modules, see [KM01, Section 1.1]. In these terms, the
above structure of an operad is equivalent to partial composition products
◦i : P(n)⊗P(m)→ P(n+m−1), for 1 6 i 6 n, and a unit map η : 1C → P(1)
satisfying the analoguous axioms, given in [LV12, Section 5.3.4] for example.

4.2 Operadic quadratic data

The notions of black and white products were generalised to binary quadratic
operads in [GK94, GK95] and then to quadratic operads (and cooperads) in
[Val08].
In this section, we will work with the following analogous operadic notion of
quadratic data.

Definition 4.2.1 (Binary operadic quadratic data). A binary operadic
quadratic data is a pair A = (A1, R(A)) where A1 is a graded K–linear rep-
resentation of the symmetric group S2 (that is, an S2–module) and R(A) is a
S3–submodule of the part of arity 3 of the free operad T (A1) generated by A1.
A morphism f : (A1, R(A)) → (B1, R(B)) is a map of S2–modules A1 → B1
whose extension T (f) restricted to the arity 3 part of T (A1) sends R(A) to
R(B). This category is denoted by BOQD.

If we assume additionally that our graded S2–modules are finite–dimensional,
we can imitate the definition of the linear dualisation functor in our new context
as the functor

A = (A1, R(A)) 7→ A
∗ :− (A∗

1, R(A)
⊥) .

(Notice that this functor was denoted by ! in [Val08, Section 2].) Otherwise,
we can drop the finite–dimensionality restriction, and consider the Koszul dual
functor ¡ which produces quadratic cooperads, see [LV12, Section 7.1].

Documenta Mathematica 25 (2020) 1727–1786



Monoidal Structures on Quadratic Data 1747

4.3 The interchange laws on the category of graded S2–modules

The category of graded S2–modules is endowed with two monoidal structures:
the (Hadamard) tensor product ⊗ and the direct sum ⊕, see for instance
[KM01]. The unit of the former one is given by the trivial representation
of S2 and the unit of the latter one is given by the S2–module {0}. We refer
the reader to Section 1.4 and Appendix A of [Val08] for more details.
We will consider the following two interchange maps:

ϕA1A′
1B1B′

1
: (A1 ⊕A

′
1)⊗ (B1 ⊕ B

′
1)→ (A1 ⊗ B1)⊕ (A′

1 ⊗ B
′
1) (14)

and

ψA1A′
1B1B′

1
: (A1 ⊗ B1)⊕ (A′

1 ⊗ B
′
1)→ (A1 ⊕A

′
1)⊗ (B1 ⊕ B

′
1) . (15)

As in Section 3.2 above, they can be naturally seen in the context of canonical
identifications

(A1 ⊕A
′
1)⊗ (B1 ⊕ B

′
1)
∼= (A1 ⊗ B1)⊕ (A′

1 ⊗ B1)⊕ (A1 ⊗ B
′
1)⊕ (A′

1 ⊗ B
′
1) .

Namely, the law ϕ is the projection pr14 onto the first and the fourth summand
of the right hand side, whereas the law ψ is the injection inj14 of the sum of
the first and the fourth summands in the right hand side.
Together with the two interchange laws ϕ and ψ, we obtain a 2–monoidal
structure on the category of graded S2–modules.

4.4 The first product on the category of binary operadic
quadratic data

We will now start preparing the construction of the black product on the cat-
egory BOQD. The central piece of the construction is the analog of the map
f⊗2 from Section 2.2, which was denoted T (f) in the above definition of binary
operadic quadratic data.
Let (A1, R(A)) be an object of BOQD and let a ∈ A1. Since the arity of a
is 2, we will temporarily use the notation a(x, y) where x, y run over elements
of an arbitrary algebra over the operad generated by (A1, R(A)). Similarly,
elements c of arity 3 of such an operad can be written as c(x, y, z) etc.
With this notation, there exists a basis of T (A1)(3) consisting of bilinear ex-
pressions in a, a′ ∈ A1

τ1(a, a
′) , τ2(a, a

′) , τ3(a, a
′) ,

such that

τ1(a, a
′)(x, y, z) := a(a′(x, y), z) ,

τ2(a, a
′)(x, y, z) := a(a′(y, z), x) ,

τ3(a, a
′)(x, y, z) := a(a′(z, x, ), y) .
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This is a rewriting of the definition in [Val08, Section 4], where the language
of planar rooted trees is used.
Now, for two binary operadic quadratic data (A1, R(A)) and (B1, R(B)), we
can calculate in terms of these bases the map of S3–modules

ΨA1B1 : T (A1(3))⊗ T (B1(3))⊗ sgnS3 −→ T (A1 ⊗ B1 ⊗ sgnS2)(3)

introduced in [GK94, GK95]; our presentation is due to [Val08].
Namely,

ΨA1B1(τi(a, a
′)⊗ τj(b, b

′)) :− δijτi(a⊗ b, a
′ ⊗ b′) .

The main statement of this subsection is the following one.

Lemma 4.4.1. There exists a well defined monoidal structure on BOQD, called
the black product •, given on objects by the formula

A • B := (A1 ⊗ B1,ΨA1B1(R(A) ⊗R(B))) . (16)

4.5 The second product on the category of binary quadratic op-
erads

We will now define the product of binary operadic quadratic data ⊚ which will
serve as an analog of the product ⊗ on the category of quadratic data.
First of all, for a graded S2–moduleA1, denote byA+

1 , resp. A−
1 , the submodule

of S2–invariant elements, resp. (2,1)–antiinvariant elements of A1.
Furthermore, denote by {A1,B1} the sub-S3-module of T (A1⊕B1)(3) spanned
by the elements τ1(a, b) + τ1(b, a), where either (a, b) ∈ A+

1 × B
+
1 , or (a, b) ∈

A−
1 × B

−
1 . Finally, put

A⊚B := (A1 ⊕ B1, R(A)⊕ {A1,B1} ⊕R(B)) .

We can now state and prove the analog of Proposition 3.3.1 in the operadic
setting.

Proposition 4.5.1. The interchange law ϕ on the category of graded S2–
modules induces morphisms in the category of binary operadic quadratic data

ϕAA′BB′ : (A⊚A′) • (B⊚B′)→ (A • B)⊚ (A′ • B′)

which define on (BOQD, •,⊚, ϕ) the structure of a lax 2–monoidal category
and on (BOQD,⊚, •, ϕ) the structure of a colax 2–monoidal category.

Proof. As in the case of algebras (Proposition 3.3.1), we have to check that
the morphism of graded S2–modules (14) induces a well defined morphism of
graded S3–modules of relations

R((A⊚A′) • (B⊚B′))→ R((A • B)⊚ (A′ • B′))
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The left hand side can be rewritten as

Ψ((R(A)⊕ {A1,A
′
1} ⊕R(A

′))⊗ (R(B)⊕ {B1,B
′
1} ⊕R(B

′))) ,

and the right hand side as

Ψ(R(A)⊗R(B))⊕ {A1 ⊗ B1,A
′
1 ⊗ B

′
1} ⊕Ψ(R(A′)⊗R(B′)) .

From (16), using the same arguments as in the case of quadratic data we
conclude that the following summands of the left hand side get annihilated:

Ψ(R(A)⊗ {B1,B
′
1}) , Ψ(R(A)⊗R(B′)) , Ψ({A1,A

′
1} ⊗R(B)) ,

Ψ({A1,A
′
1} ⊗R(B

′)) , Ψ(R(A′)⊗R(B)) , Ψ(R(A′)⊗ {B1,B
′
1}) .

The two summands in the left hand side

Ψ(R(A)⊗R(B)) and Ψ(R(A′)⊗R(B′))

map identically to the first and the last summands of the right hand side
respectively.

It remains to show that the summand Ψ({A1,A′
1} ⊗Ψ({B1,B′

1}) lands in

{A1,B1} ⊗ {A
′
1,B

′
1}.

From the definition of the brackets {A1,B1} given in Section 4.5, it follows that
the graded S3–module {A1,A′

1} is linearly spanned by the expressions τi(a, a′)
where i = 1, 2, 3, and a ∈ A1, a′ ∈ A′

1 are either simultaneously S2–even, or
simultaneously S2–odd. This comes from the following facts

τ1(a, a
′)(12) = ±τ1(a, a

′) , τ2(a, a
′)(12) = ±τ3(a, a

′) ,

τ1(a, a
′)(123) = τ2(a, a

′) , τ2(a, a
′)(123) = τ3(a, a

′) .

Moreover,

Ψ
(
(τi(a, a

′) + τi(a
′, a))⊗ (τi(b, b

′) + τi(b
′, b))

)

= (−1)|a
′||b|τi(a⊗ b, a

′ ⊗ b′)

+ (−1)|a||b
′|τi(a

′ ⊗ b′, a⊗ b) ∈ {A1 ⊗ B1,A
′
1 ⊗ B

′
1} ,

whereas for i 6= j,

Ψ
(
(τi(a, a

′) + τi(a
′, a))⊗ (τj(a, a

′) + τj(a
′, a))

)
= 0.

This concludes the proof.
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4.6 White product in BOQD, yet another product, and the in-
terchange law ψ

Similarly to what happens in the category of quadratic data, we can introduce
the following white product in BOQD:

A ◦ B := (A1 ⊗ B1,Φ
−1(R(A) ⊗ T (B1)(3) + T (A1)(3)⊗R(B))) ,

where Φ is the natural map

Φ = ΦA1B1
:= T (A1 ⊗ B1)(3)→ T (A1)(3)⊗ T (B1)(3) ,

which duplicates the underlying tree. Black and white products are also related
to each other by the operadic duality functor ∗ .
Similarly, the product ⊚ defined in Section 4.5 is sent to the following product ⊚
under the operadic Koszul duality functor ∗. We first consider the sub-S3–
module

[A1,B1] ⊂ T (A1 ⊕ B1)(3),

spanned by the elements τ1(a, b) − τ1(b, a) whenever a, b are simultaneously
S2–even or odd, and in addition by the expressions τ1(a, b) when one of the
arguments a, b is even and another is odd. Then, we define

A⊚B := (A1 ⊕ B1, R(A)⊕ [A1,B1]⊕R(B)) .

These two monoidal products are related by the interchange law ψ induced
by (15).

Proposition 4.6.1. The interchange law ψ in the category of graded S2–
modules lifts to morphisms in BOQD

ψAA′BB′ : (A ◦ A′)⊚ (B ◦ B′)→ (A⊚ B) ◦ (A′
⊚ B′)

which make (BOQD,⊚, ◦, ψ) a lax 2-monoidal category and (BOQD,⊚, ◦, ψ)
a colax 2–monoidal category.

Proof. As in the quadratic data case, this proposition is Koszul dual to Propo-
sition 4.5.1 under finite dimensional assumptions. However, it holds in the
general case by direct inspection.

4.7 Applications

Corollary 4.7.1.

1. Let M,N be two monoids in BOQD with respect to the black product
• (resp. the ⊚ product). Then M⊚N (resp. M◦N) also has a natural
structure of a •-monoid (resp. a ⊚-monoid).

2. Similarly, let M,N be two comonoids in BOQD with respect to the ⊚

product (resp. the ◦ product). Then M • N (resp. M⊚N) also has a
natural structure of ⊚–comonoid (respectively ◦-comonoid).

Documenta Mathematica 25 (2020) 1727–1786



Monoidal Structures on Quadratic Data 1751

Proof. Again the proof relies on the fact that lax monoidal functors preserve
monoids and that colax monoidal functors preserve comonoids.

Corollary 4.7.2.

1. Let P ,Q be two operads in the symmetric monoidal category (QD, •).
Then their arity-wise ⊗-product (P ⊗Q)(n) :− P(n)⊗Q(n) is again an
operad in (QD, •).

2. Let P ,Q be two operads in the symmetric monoidal category (QD,⊗).
Then their arity-wise white product (P ◦ Q)(n) :− P(n) ◦ Q(n) is again
an operad in (QD,⊗).

Proof. The statement of Proposition 3.3.1 actually says the functor ⊗ is a
lax monoidal functor from from (QD, •)2 to (QD, •). It is straightforward to
see that it is also symmetric. The first statement thus follows from Proposi-
tion 5.1.2. The second statement is proved in the way with the lax symmetric
monoidal functor ◦ from (QD,⊗)2 to (QD,⊗) of Corollary 3.4.1.

This latter construction can be applied to the various examples of operads that
we will give in Section 5.

Remark 4.7.3. This result shows that one can refine the theory of 2-monoidal
categories developed in [Val08]: one can define a notion of a symmetric 2-
monoidal category by requiring that the structural interchange law be a sym-
metric monoidal functor. The present examples given in this paper will actually
fall into this case; they provide us with symmetric 2-monoidal categories. We
leave the details to the interested reader.

4.8 Some more monoidal structures and Koszul dualities

As in the case of quadratic data, mentioned in the last lines of Section 3, one
can introduce several more pairs of monoidal structures in the context of binary
operadic quadratic data. Here is a list of possibilities in BOQD, including the
ones we have already considered.

We denote by A1◦1B1 the sub-S3-module of T (A1⊕B1)(3) spanned by τ1(b, a).
We put

A ∨ B := (A1 ⊕ B1, R(A)⊕R(B)) ,

A⊕ B := (A1 ⊗ B1, R(A)⊕A1 ◦1 B1 ⊕ B1 ◦1 A1 ⊕R(B)) ,

A ⊳ B := (A1 ⊕ B1, R(A)⊕ B1 ◦1 A1 ⊕R(B)) ,

A ⊲ B := (A1 ⊗ B1, R(A)⊕A1 ◦1 B1 ⊕R(B)) ,

A⊚B := (A1 ⊕ B1, R(A)⊕ {A1,B1} ⊕R(B)) ,

A⊚ B := (A1 ⊕ B1, R(A)⊕ [A1,B1]⊕R(B)) .
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Proposition 4.8.1.

1. Let PA denote the operad corresponding to the binary operadic quadratic
data A. Then PA∨B is the coproduct of PA and PB in the category of
operads, and furthermore

PA⊕B
∼= PA ⊕ PB , PA⊳B

∼= PA ⊗ PB , PA⊲B
∼= PB ⊗ PA .

2. These six monoidal structures are connected by the following Koszul du-
ality involutions:

(A ∨ B)∗ ∼= A∗ ⊕ B∗, (A ⊳ B)∗ ∼= A∗ ⊲ B∗, (A⊚B)∗ ∼= A∗ ⊚ B∗.

For more details, see [LV12, Section 8.6].

Proposition 4.8.2. The interchange laws ϕ and ψ in the category of graded
S2–modules induce morphisms in the category BOQD which make the quintu-
ples

(BOQD, •,∨, ϕ, ψ) , (BOQD, •,⊕, ϕ, ψ) ,

(BOQD, •, ⊳, ϕ, ψ) , (BOQD, •, ⊲, ϕ, ψ)

and

(BOQD, ◦,∨, ϕ, ψ) , (BOQD, ◦,⊕, ϕ, ψ) ,

(BOQD, ◦, ⊳, ϕ, ψ) , (BOQD, ◦, ⊲, ϕ, ψ)

into 2–monoidal categories, i.e. simultaneously lax and colax.

Proof. The proof can be obtained by direct computations.

5 Lie operads and Hopf (co)operads

The purpose of this section is to provide a simple categorical setting for the au-
tomatic construction of several (co)operads in categories of (co)algebras start-
ing from just a single and simple operad structure. This framework applies to
many operads which play a key role in the literature. In quantum groups, defor-
mation quantization, algebraic topology and Grothendieck–Teichmüller groups,
like in [Dri90, KM94, Tam03, SW11, LV14, Fre17], it is crucial to work with
Lie operads or Hopf (co)operads, that is operads in the category of Lie alge-
bras and (co)operads in the category of (co)algebras. These kind of (co)operad
structures are produced here from topological operads; this way, we recover the
ones present in the above-mentioned theories, as well as interesting new ones.

When dealing with symmetric monoidal categories which are obviously strong,
we will drop this adjective for simplicity.
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5.1 Operads, cooperads, and symmetric monoidal functors

Since the opposite category of a symmetric monoidal category is again symmet-
ric monoidal, we can consider the following notion dual to that of an operad.

Definition 5.1.1 (Cooperad). A cooperad C in C is an operad in the opposite
symmetric monoidal category Cop.

This means that we are given a functor C : Bijop → Cop (or equivalently
C : Bij→ C) with partial decompositions maps in C:

δX⊂Y : C(Y )→ C(Y/X)⊗ C(X) , for any X ⊂ Y ,

and a counit ε : P({∗})→ 1C satisfying the dual commutative diagrams.

Proposition 5.1.2.

1. Any covariant symmetric monoidal functor sends operads to operads and
cooperads to cooperads.

2. Any contravariant symmetric monoidal functor sends operads to cooper-
ads and cooperads to operads.

Proof. It is well-known that any covariant lax symmetric monoidal functor
sends operads to operads. Thus any contravariant oplax symmetric monoidal
functor, i.e. such that the associated covariant functor between the opposite
categories, sends cooperads to cooperads. Let us just sketch the proof a little
bit since we will use the transferred (co)operad structure later on.
Let (C,⊗C, 1C, αC, λC, ρC, τC), (D,⊗D, 1D, αD, λD, ρD, τD) be two sym-
metric monoidal categories and let F : C → D be a covariant symmetric
monoidal functor with structure maps

ψ : 1D → F(1C) and ϕA,B : F(A) ⊗D F(B)→ F(A⊗C B) .

For any operad P , we consider the following structure maps of FP :

FP(Y/X)⊗D FP(X)
ϕP(Y/X),P(X)
−−−−−−−−−→ F(P(Y/X)⊗C P(X))

F(◦X⊂Y )
−−−−−−→ FP(Y )

and 1D
ψ
−→ F(1C)

F(η)
−−−→ FP({∗}) .

Dually, for any cooperad C, we consider the following structure maps of FC:

FC(Y )
F(δX⊂Y )
−−−−−−→ F(C(Y/X)⊗C C(X))

ϕop

C(Y/X),C(X)
−−−−−−−−→ FC(Y/X)⊗D FC(X)

and FC({∗})
F(ε)
−−−→ F(1C)

ψop

−−→ 1D .

It remains to check the various axioms of this new structure but this follows
in a straightforward way from the defining axioms of the operad P (or the
cooperad C), of the two monoidal categories C and D, and the symmetric
monoidal functor F.
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The second assertion is less present in the literature. It is however a formal
consequence of the first assertion. Let P : Bijop → C be an operad in C. By
definition, this means that P is a cooperad in the opposite category Cop. It is
thus sent to a cooperad in D under the (covariant) symmetric monoidal functor
Fop : Cop → D.

We have already been applying this result in Corollary 4.7.2. Now Theo-
rem 2.5.1 and Proposition 5.1.2 allow us to deduce seven operad structures
and four cooperad structures out of the sole data of an operad structure in the
category of skew-symmetric quadratic data. Since the monoidal product ⊕ of
this latter category is particularly simple, the data of an operad there is also
not difficult to establish, as the following examples show.

Remark 5.1.3. Notice that the left-to-right symmetric monoidal functors can
all be inverted. So we could also induce transport (co)operad structures in
the other way round. Moreover, one can often easily guess from a (co)operad
structure in a category of (co)algebras the associated (co)operad structure in
the above category of quadratic data. In the end, the global orientation of
the diagram chosen here is not restrictive, but amounts rather to a choice of
presentation.

Definition 5.1.4 (Lie operad and (co)commutative Hopf (co)operad). An op-
erad in the symmetric monoidal category (Lie-alg,⊕) of Lie algebras is called a
Lie operad. An operad in the symmetric monoidal category (Com-coalg,⊗) of
cocommutative coalgebras is called a cocommutative Hopf operad. A cooperad
in the symmetric monoidal category (Com-alg,⊗) of commutative algebras is
called a commutative Hopf cooperad.

Remark 5.1.5. The notion of a Lie operad should not be confused with the
operad Lie encoding Lie algebras.

From now on, we work over the field Q of rational numbers.

Example 5.1.6. The homology group functor H•(−) := H•(−,Q) is a covari-
ant symmetric monoidal functor and the cohomology group functor H•(−) :=
H•(−,Q) is a contravariant symmetric monoidal functor. The former sends a
topological operad to a cocommutative Hopf operad and the latter sends it to
a commutative Hopf cooperad.

5.2 Lie operads from pointed topological operads

Following the same pattern, we aim at producing functorially Lie operads from
topological operads using rational fundamental groups. Suppose now that every
component O(n) of the topological operad O admits a base point ∗n which is
compatible with the operadic structure, i.e. ∗n◦k∗m = ∗n+m−1. In other words,
this means that we consider an operad in the symmetric monoidal category
of pointed topological spaces (Top∗,×). In this case, one can consider the
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fundamental groups π1(O(n)) of each component and then their images under
the Magnus construction [Mag37, Laz50]

gr(G) :=
⊕

k>1

ΓkG/Γk+1G ,

which associates a Lie algebra over Z to any group G by means of its lower
central series, defined inductively by Γ1G := G and Γk+1G := [ΓkG,G]. Recall
that the Lie bracket [x, y] is induced by the group commutator xyx−1y−1.

Lemma 5.2.1.

1. The fundamental group functor π1 : (Top∗,×) → (Gr,×) from the cat-
egory of topological spaces to the category of groups is cartesian, i.e.
strongly symmetric monoidal with respect to the products.

2. The Magnus functor gr : (Gr,×) → (Lie-algZ,⊕) from the category of
groups to the category of Lie algebra over Z is cartesian.

Proof. The proof is straightforward.

Remark 5.2.2. As usual, in order to get a nice behaviour of topological spaces
with respect to products, one needs to restrict to the category of compactly
generated Hausdorff spaces with Kelly product, which we implicitly do here.

Proposition 5.2.3. Any pointed topological operad O induces an operad in the
category of Lie algebras over Z:

gr (π1(O)) ,

which is called the Magnus operad.

Proof. This is a direct corollary of Proposition 5.1.2 and Lemma 5.2.1.

5.3 Operadic quadratic data from topological operads

Now we study how the three aforementioned functors producing respectively
“(co)homology” Hopf (co)operads and “homotopy” Lie operads from topological
operads lift to the quadratic data level.

Remark 5.3.1. In this paper, we need to put homology and cohomology on the
same footing in order to treat them with the framework described in Section 2.
Since we use the homological degree convention and since cohomology will
always appear as linear dual of homology, the cohomology groups will be non-
positively graded. In other words, we use the opposite of the usual convention.

Let O be a topological operad. The restriction ∪ : H1(O(n))⊙2 ⊂
H1(O(n))⊗2 → H2(O(n)) of the cup-product gives rise to the symmetric
quadratic data (

H1(O(n)), ker∪
)
∈ QD+ ,
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where H1(O(n)) is concentrated in "homological degree" −1. When H1(O(n))
is finite dimensional, for any n > 0, we consider the (degree-wise) linear dual
symmetric quadratic data

(
H1(O(n)), ker∪

)∗ ∼= (H1(O(n)), im∆) ∈ QD+ ,

where ∆ := t∪ : H2(O(n)) → H1(O(n))⊙2 is the restriction of the coproduct
of the homology coalgebra. Finally, the Koszul duality functor gives rise to the
following skew-symmetric quadratic data

(
H1(O(n)), im∆

)¡ ∼=
(
s−1H1(O(n)), s

−2im∆
)
∈ QD− .

Definition 5.3.2 (Holonomy Lie algebra, after Chen–Kohno [Che73, Koh85]).
The holonomy Lie algebras of the topological spaces O(n) are the quadratic
Lie algebras induced by the above presentations:

gO(n) := L(s−1H1(O(n)), s
−2im∆) .

When each component O(n) is path connected, for n > 0, the (co)algebras
H•(O(n)) (respectively H•(O(n))) are (co)augmented. In this case, the two
(co)operad structures H•(O) and H•(O) induce respectively a cooperad struc-
ture on the collection of symmetric quadratic data

{(
H1(O(n)), ker∪

)}
in

the symmetric monoidal category (QD+,∨) and an operad structure on the
collection of quadratic data

{
(H1(O(n)), im∆

)}
in the symmetric monoidal

category (QD+,⊗). Since the Koszul duality functor ¡ (in the opposite direc-
tion) is symmetric monoidal, it induces an operad structure on the collection
of skew-symmetric quadratic data

{
(s−1H1(O(n)), s−2im∆

)}
in the symmet-

ric monoidal category (QD−,⊕). In the end, we get a canonical Lie operad
structure gO on the level of the holonomy Lie algebras.

Definition 5.3.3 (Holonomy operad). The holonomy operad is the operad gO
made up of the holonomy Lie algebras associated to a path connected topolog-
ical operad O.

Proposition 5.3.4. Let O be a topological operad satisfying the following con-
dition.

Condition 1. For any n > 0, the cohomology algebras H•(O(n)) admits
a finitely generated homogenous quadratic presentation with generators in
H1(O(n)) .

In this case, the canonical map H1(O(n)) → H•(O(n)) induce the following
isomorphism of commutative Hopf cooperads

H•(O) ∼= S
(
H1(O), ker∪

)

and the following isomorphism of cocommutative Hopf operads

H•(O) ∼= Sc
(
H1(O), im∆

)
.
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Proof. The proof is straightforward. Condition 1 ensures first ensures that the
underlying components of the topological operad are path connected and then
provides us with the underlying isomorphisms. By definition, the (co)operad
structure coincides on the level of the symmetric quadratic data. The universal
property of the (co)free (co)commutative (co)algebra concludes the proof.

Remark 5.3.5. The above treatment holds true in the same way when the
first (co)homology groups H1 and H1 are replaced by the first non-trivial
(co)homology groups Hi and Hi, for i > 1.

So under Condition 1, the six above mentioned (co)operads contain the exact
same amount of data; in other words, there is no loss of generality by consid-
ering the operadic structures on the level of quadratic data.

Remark 5.3.6. Notice that any cocommutative Hopf operad induced by an
operad in the category (QD+,⊗) under the quadratic cocommutative coalgebra
functor Sc contains canonically the operad uCom encoding unital commutative
algebras: this latter one is simply made up of the counits of each coalgebras.

Let us recall the following seminal result due to D. Sullivan.

Theorem 5.3.7 ([Sul77], see also [Koh85]). Let X be a pointed, path connected,
and 1-finite topological space. When X is (rationally) 1-formal, its holonomy
Lie algebra is isomorphic to its rational Magnus Lie algebra

gX ∼= gr (π1(X))⊗Q .

The proof of this statement falls into two parts. First, one shows that the (co-
homological) degree 1 generators of the minimal model of the piece-wise linear
forms A•

PL(X) give the rational Magnus Lie algebra. Then, under the formal-
ity assumption, one just needs to coin the minimal model of the cohomology
algebra H•(X). The linear dual of the space of degree 1 generators is easily
seen be the holonomy algebra, for instance by using the cobar-bar resolution
and the homotopy transfer theorem.

In order to promote the above mentioned result to the operadic level (iso-
morphism between the holonomy operad gO and the rational Magnus operad
gr (π1(O))⊗Q), one would need a rational Hopf (1-)formality property satisfied
by the topological operad O itself in order to control the operadic compatibility
between the formality quasi-isomorphisms of dg commutative algebras

A•
PL(O(n))

∼
←− • · · · •

∼
−→ H•(O(n)) .

This general question will be treated in the sequel of this paper, which will deal
with the Hopf formality of topological operads.

We are now ready to give examples.
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5.4 Berger–Kontsevich–Willwacher, i.e. graph operads

For n > 2, we consider the complete graph Γn on n vertices labeled by
{1, . . . , n}, that is with one and only one edge between every pair of distinct
vertices. The edge between the vertices i and j is simply denoted by ij = ji.

Γ4 =

/.-,()*+1

❂❂
❂❂

❂❂
/.-,()*+2
✁✁

✁✁/.-,()*+3 /.-,()*+4

Let us now introduce a topological version GraS1 of the complete graph operad
due to C. Berger [Ber96], defined by the following (pointed) topological spaces

GraS1(n) := {∗} , for n = 0 and n = 1, and GraS1(n) :=
(
S1
)(n2) , for n > 2 .

The elements {µij} of GraS1(n) can be thought of as elements of the circle S1

labelling the edges ij of the complete graph Γn. The partial composition prod-
ucts ◦p : GraS1(n)×GraS1(m)→ GraS1(n+m−1) of two collections {µij} and
{µ′

i′j′} are defined as follows. The idea is to insert the complete graph Γm at
the pth vertex of the complete graph Γn and to relabel the vertices accordingly:
the labels of the vertices 1, . . . , p− 1 of Γn are stable, the labels of the vertices
of Γm are shifted by p− 1, and the labels of the remaining vertices p+1, . . . , n
of Γn are shifted by m − 1. If we denote the upshot of the partial composi-
tion product by {νkl}, then νkl is equal to the corresponding element µij when
k, l ∈ {1, . . . , p − 1, p + m, . . . , n + m − 1}. It is equal to the corresponding
element µ′

i′j′ when k, l ∈ {p, . . . , p + m − 1}. When k ∈ {1, . . . , p − 1} and
l ∈ {p, . . . , p+m− 1}, we set νkl := µk,p and when k ∈ {p, . . . , p+m− 1} and
l ∈ {p + m, . . . , n +m − 1}, we set νkl := µp,l−m+1. With such a definition,
the composite with GraS1(1) is indeed the identity. The natural action of the
symmetric group Sn on the vertices of the graph Γn induces a right S-module
on GraS1(n). The composite on the right-hand side with GraS1(0) amounts
to forgetting some data which, with the symmetric group action, produces a
FI-module structure [CEF15].

Proposition 5.4.1. The topological operad GraS1 is formal over Z: there exists
a quasi-isomorphism of dg operads over Z

Csing
• (GraS1 ,Z)

∼
←− Hsing

• (GraS1 ,Z) .

Proof. The proof is straightforward and can be performed by the same argu-
ments as in [DSV15, Section 8].

Remark 5.4.2. Any topological spaceX can replace S1 in order to form a simi-
lar topological operad. For instance, any topological space homotopy equivalent
to the circle, like C\{0} for instance, would produce a homotopy equivalent op-
erad. In this case, the formality property can again be proved easily by hand;
it can also be shown directly using [GSNPR05, CH17], which rely on mixed
Hodge structures.
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Definition 5.4.3 (Berger–Kontsevich–Willwacher skew–symmetric quadratic
data). The Berger–Kontsevich–Willwacher skew–symmetric quadratic data are
spanned by

BKW(n) :−
(
tnij , t

n
ij ∧ tnkl

)
,

where the set of generators tnij of degree 0 runs over the set of edges ij of Γn
and where the set of relations runs over all pairs (ij, kl) of edges in Γn. For
n = 0 and for n = 1, we set BKW(0) :− (0, 0) and BKW(1) :− (0, 0).

We consider the following maps ◦k : BKW(n)⊕BKW(m)→ BKW(n+m−1):

tnij 7→





tn+m−1
i+m−1 j+m−1 for k < i, j ,
∑i+m−1

l=i tn+m−1
l j+m−1 for k = i ,

tn+m−1
i j+m−1 for i < k < j ,
∑j+m−1

l=j tn+m−1
i l for k = j ,

tn+m−1
ij for i, j < k ,

tmij 7→ tn+m−1
i+k−1 j+k−1 . (17)

Lemma 5.4.4. The above-mentioned data BKW :=
(
{BKW(n)}, {◦k}

)
forms

an operad in the symmetric monoidal category (QD−,⊕).

Proof. Since the spaces of relations are the full spaces R(n) = V (n)∧2, for any
n > 0, the maps ◦k are morphisms of quadratic data. It is straightforward to
check the sequential and parallel axioms, the equivariance with respect to the
symmetric groups action, as well as the axioms for the unit.

The Lie operad L(BKW) is thus made up of the graphs with one edge (of
degree 0) and with similar partial composition maps.

Proposition 5.4.5. The holonomy operad and the rational Magnus operad
associated to GraS1 are isomorphic to the Lie operad associated to skew-
symmetric quadratic data BKW:

gGraS1
∼= L(BKW) ∼= gr

(
π1
(
GraS1

))
⊗Q .

Proof. The first isomorphism is obtained directly from the definition of the
holonomy operad. The cohomology algebra of the circle is the algebra of dual
number H•(S1) ∼= Q1 ⊕Qε, that is the free commutative algebra on one degree
one element ε. This shows that the cohomology symmetric quadratic data is
trivial (

H1(GraS1(n)), ker∪
)
=
(
εnij , ∅

)
,

and thus that the holonomy skew-symmetric data is the Berger–Kontsevich–
Willwacher one

(
s−1H1(GraS1(n)), s−2im∆

)
=
(
tnij , t

n
ij ∧ tnkl

)
,
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under the identification tnij
∼= s−1

(
εnij
)∗

. In order to show that these isomor-
phisms commute with the respective operadic structures, one needs to describe
the homology operad H•

(
GraS1

)
; this computation is performed in the core of

the proof of Proposition 5.4.6 below.
The second isomorphism is also straightforward from the definition of the ra-
tional Magnus operad. One has

gr
(
π1
(
GraS1(n)

))
⊗Q ∼= Q(n2)

and the partial composition maps agree.

Let us recall from [Kon93, Kon97, Wil15] the definition of the graph operad Gra
of natural operations of polyvector fields of Rk. Its underlying S-modules are
spanned by subgraphs of Γn, that is graphs with n vertices labeled bijectively
by {1, . . . , n} and possibly at most one edge of degree 1 between any pair of
vertices. The partial composition product γ1 ◦k γ2 amounts to first inserting
the graph γ2 at the kth vertex of γ1, then relabelling accordingly the vertices,
and finally consider the sum of all the possible ways to connect the edges in γ1
originally plugged to the vertex k, to any possible vertex of γ2.

/.-,()*+2

/.-,()*+1

◦1

/.-,()*+1

☛☛
☛☛
☛

✸✸
✸✸
✸

/.-,()*+2 /.-,()*+3

=

/.-,()*+4

/.-,()*+1

☛☛
☛☛
☛

✸✸
✸✸
✸

/.-,()*+2 /.-,()*+3

+

/.-,()*+4 /.-,()*+1

⑥⑥
⑥⑥
⑥⑥
⑥

/.-,()*+2 /.-,()*+3

+

/.-,()*+1

❆❆
❆❆

❆❆
❆

/.-,()*+4

/.-,()*+2 /.-,()*+3

Every graded vector space Gra(n) forms a cocommutative coalgebra with the
coproduct ∆(γ) made up of the pairs of graphs γ′⊗γ′′ with the same n vertices
as γ but with edges from γ distributed on γ′ and γ′′. The partial composition
products preserve these coproducts, thus Gra forms a cocommutative Hopf
operad.

Proposition 5.4.6. The following three cocommutative Hopf operads are iso-
morphic

H•

(
GraS1

)
∼= Sc

(
BKW

¡) ∼= Gra .

Proof. The topological operad GraS1 satisfies Condition 1 and thus the first
isomorphism is produced by Proposition 5.3.4 using Proposition 5.4.5. Using
the fact that the homology coalgebra of the circle is the coalgebra of dual
number on one degree one generator, one can directly prove the isomorphism
of cocommutative Hopf operad H•(GraS1) ∼= Gra. The direct isomorphism
Sc
(
BKW

¡) ∼= Gra can however be made explicit as follows using the previ-
ous sections. Let us denote by V (n) := Q

{
tnij
}

the space of generators of
the quadratic data BKW(n). The underlying S-module of the cocommutative
Hopf operad Sc

(
BKW

¡)
=
(
{Sc
(
BKW

¡
(n)
)
}, {◦̃k}

)
, obtained by applying the
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symmetric monoidal functors ¡ and then Sc, is made up of cofree cocommuta-
tive coalgebras Sc(sV (n)) = Sc

(
stnij
)
, with |stnij | = 1, which admits for basis

the monomials stni1j1 ⊙ · · · ⊙ st
n
ikjk

, where all the pairs ij are different. Such
monomials are in one-to-one correspondence with the graphs of Gra(n).
The partial composition products ◦̃k : Sc(sV (n)) ⊗ Sc(sV (m)) → Sc(sV (n +
m− 1)) of the operad Sc

(
BKW

¡) are morphisms of cocommutative coalgebras;
so they are characterised by their projections onto sV (n+m− 1).
We denote by ∅n the graph with n vertices and with no edge, that we identify
with the counit 1n of the cofree coalgebra Sc(sV (n)), i.e. 1

n ↔ ∅n. We denote
by γnij the graph with n vertices and with the only edge ij, that we identify with
the generator stnij of Sc(sV (n)), i.e. stnij ↔ γnij . Under this correspondence, the
isomorphism Sc(sV (n))⊗ Sc(sV (m)) ∼= Sc(s(V (n)⊕ V (m))) sends ∅n⊗∅m to
1
n+m−1, γnij ⊗∅

m to stnij , and ∅n⊗γmij to stmij . The images of these three latter
elements under the partial composition products ◦k of the operad BKW given
in Equation (17) coincide, under the above identifications, to the images of the
three former elements under the partial composition products of the operad
Gra, which concludes the proof.

The operad UL(BKW) = AΛ(BKW) in associative algebras is similar to the
operad Gra except that we consider graphs with possibly multiple edges (of
degree 0) between vertices. The (algebra) product of two such graphs amounts
to consider the union of their sets of edges.

Remark 5.4.7. Using the recognition method of C. Berger [Ber96], one can
see that GraS1 admits a (cellular) sub-operad which is an E2-operad, that is a
topological operad having the same homotopy type then the little disks operad
D2(n) ∼ Confn(R

2), see Section 5.6. The operad Gra admits a map from the
operad encoding shifted Lie algebras, so it can be twisted à la Willwacher to
produce a differential graded operad TwGra, see [Wil15] and [DSV18, Section 5]
for more details. This latter operad plays a key role in the proof of the formality
of the little disks operad in [Kon99, LV14, FW15]. Since TwGra forms a dg
cocommutative Hopf operad, it is a good model for the rational homotopy type
of the little disks operad; this point explains conceptually why the rational
homotopy automorphim group of the little disks operad is isomorphic to the
Grothendieck–Teichmüller group in [Wil15, Fre17].

One can perform the same arguments for the topological operad GraS1 ⋊ S1,
which is obtained by adding a copy of S1 at every input, see [SW03] for the
semi-direct product of operads. This amounts to adding n generators tni , for
1 6 i 6 n, to the skew–symmetric quadratic and again considering the full
space of relations. The same results hold true mutatis mutandis by considering
now graphs with possible tadpoles, that with possibly one loop attached to
each vertex.

/.-,()*+1

❂❂
❂❂

❂❂
/.-,()*+2
✁✁

✁✁/.-,()*+3 /.-,()*+4
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5.5 Nonsymmetric analogue of the little disks operad, i.e. AsS1

and AsS1 ⋊ S1

A noncommutative version of the notion of Gerstenhaber algebras was intro-
duced in [DSV15, Section 3] in relation with noncommutative deformation the-
ory. This notion is modelled by the nonsymmetric (pointed) topological op-
erad which is defined in a way similar to the aforementioned topological operad
GraS1 but starting from the complete linear graph Θn instead of the complete
graph Γn. Explicitelty, Θn is the graph on n vertices labeled by {1, . . . , n}
from left to right with one and only one edge between every consecutive pair
of vertices i i+ 1.

Θn = /.-,()*+1 /.-,()*+2 /.-,()*+3 · · · /.-,()*+n

The pointed topological ns operad AsS1 is defined by AsS1(n) := {∗}, for n = 0

and n = 1, and by AsS1(n) :=
(
S1
)n−1

, for n > 2, with partial composition
products are given by

(x1, . . . , xn−1) ◦i (y1, . . . , ym−1) := (x1, . . . , xi−1, y1, . . . , ym−1, xi, . . . , xn−1) .

Remark 5.5.1. This ns topological operad is formal [DSV15, Corollary 8.1.1].
Again, any topological space X can replace S1 in order to form a similar non-
symmetric topological operad. For instance, any topological space homotopy
equivalent to the circle, like C\{0} for instance, would produce a homotopy
equivalent operad, which is also formal.

Definition 5.5.2 (skew–symmetric quadratic data LG). The skew–symmetric
quadratic data LG, for Linear Graph, are spanned by

LG(n) :−
(
enii+1 , e

n
ii+1 ∧ enjj+1

)
,

where the set of generators enii+1 of degree 0 runs over the set of edges of Θn
and where the set of relations runs over all pairs of edges of Θn. For n = 0 and
for n = 1, we set LG(0) :− (0, 0) and LG(1) :− (0, 0).

The morphisms ◦k : LG(n) ⊕ LG(m) → LG(n + m − 1) of skew-symmetric
quadratic data defined by

enii+1 7→

{
en+m−1
i+m−1i+m for k 6 i ,

en+m−1
ii+1 for k > i ,

emij 7→ en+m−1
j+k−1j+k ,

endow the collection {LG(n)} with a nonsymmetric operad structure in the
symmetric monoidal category (QD−,⊕). The Lie operad L(LG) is made up
of the graphs with one edge (of degree 0) and with similar partial composition
maps.
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Proposition 5.5.3. The holonomy operad and the rational Magnus operad
associated to AsS1 are isomorphic to the Lie operad associated to the skew–
symmetric data LG:

gAsS1
∼= L(LG) ∼= gr

(
π1
(
AsS1

))
⊗Q .

Proof. This proof is similar to the proof of Proposition 5.4.5.

Mimicking the above definition of the operad Gra, we introduce a nonsymmetric
operad LGra made up of sub-graphs of the complete linear graph Θn and with
the insertion at vertex k for partial composition product:

/.-,()*+1 /.-,()*+2 /.-,()*+3 /.-,()*+4 ◦3 /.-,()*+1 /.-,()*+2 /.-,()*+3

= /.-,()*+1 /.-,()*+2 /.-,()*+3 /.-,()*+4 /.-,()*+5 /.-,()*+6

This actually forms a cocommutative Hopf nonsymmetric operad with the co-
product ∆(γ) :=

∑
γ′ ⊗ γ′′ where the edges from γ are distributed on γ′ and

γ′′.

Proposition 5.5.4. The following three cocommutative Hopf operads are iso-
morphic

H•

(
AsS1

)
∼= Sc

(
LG

¡) ∼= LGra .

Proof. This proof is similar to the proof of Proposition 5.4.6.

Again, the operad UL(LG) = AΛ(LG) in associative algebras is similar to
the operad LGra but made up of linear graphs with possibly multiple edges
(of degree 0) between consecutive vertices; the (algebra) product of two such
graphs amounts to consider the union of their sets of edges.

A noncommutative version of the notion of Batalin–Vilkovisky algebras was in-
troduced in [DSV15, Section 3]; it is modelled by the nonsymmetric topological
operad AsS1 ⋊S1. The associated skew–symmetric quadratic data is similar
but with n extra generators eni , for 1 6 i 6 n. The same results hold true
mutatis mutandis by considering now linear graphs with possible tadpoles.

/.-,()*+1 /.-,()*+2 /.-,()*+3 · · · /.-,()*+n

Remark 5.5.5. The homology nonsymmetric operads H•

(
AsS1

)
and

H•

(
AsS1 ⋊S1

)
can also be twisted à la Willwacher to produce dg non-

symmetric operads. Their homology with respect to the twisted differential
was computed in [DSV18, Section 6].
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5.6 Drinfeld–Kohno and Arnold–Orlik–Solomon, i.e. D2(n) ∼
Confn(C)

In this section, we refine the above mentioned Berger–Kontsevich–Willwacher
skew–symmetric quadratic data following the works of Drinfeld [Dri90] and
Kohno [Koh85]. We show that this refinement is canonical in a certain way.
This theory corresponds to the topological operad D2, called the little disks
operad, which is made up of configurations of disks inside the unit disk. It
is the mother of operads (the father being the endomorphism operad), which
arose from the recognition of double loop spaces in [BV73, May72]. Recall
that the components of the little disks operad are homotopy equivalent to the
configuration space of n points in the plane D2(n) ∼ Confn(C). Notice that
the little disks operad fails to be well pointed.

Definition 5.6.1 (Drinfeld–Kohno skew–symmetric quadratic data). The
Drinfeld–Kohno skew–symmetric quadratic data are spanned by

DK(n) :−
(
tnij , t

n
ij ∧ tnkl & tnij ∧

(
tnik + tnjk

))
,

where the set of generators tnij of degree 0 runs over the set of edges ij of Γn, and
where the first set of relations runs over pairs (ij, kl) of disjoint edges and the
second set of relations runs over triples of edges (ij, jk, kl) which form a triangle
in Γn. For n = 0 and for n = 1, we set DK(0) :− (0, 0) and DK(1) :− (0, 0).

We consider the same partial composition products as the ones for the Berger–
Kontsevich–Willwacher quadratic data given in Equation (17).

Proposition 5.6.2. The Drinfeld–Kohno skew-symmetric quadratic data
DK :=

(
{DK(n)}, {◦k}

)
forms an operad in the symmetric monoidal category

(QD−,⊕).

Proof. After the proof of Lemma 5.4.4, the only thing left to check is that the
various maps ◦k induce morphisms of quadratic data, that is

(◦k)
∧2
(
R(n)⊕ [V (n), V (m)]− ⊕R(m)

)
⊂ R(n+m− 1) ,

where we use the notation DK(n) = (V (n), R(n)). This can be proved by
straightforward but tedious computations. It becomes much easier with the
previous interpretation in terms of graph operad: one can see that any first
(respectively second) type relation in R(n) or R(m) is sent to any first (re-
spectively second) type relation in R(n + m − 1), that is pairs of disjoints
edges (respectively graphs whose edges form a triangle). Regarding the rela-
tion [V (n), V (m)]−, any of its elements tnij ∧ t

m
kl is sent, under (◦k)∧2, to a sum

of relations of first and second type.

The canonical morphisms of quadratic data DK(n) → BKW(n) induce a
canonical morphism of operads DK → BKW in QD−. More generally, we
call sub-operad of BKW any collection of skew-symmetric quadratic sub-data
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(V (n) , R(n)) ⊂ BKW(n) stable under the partial composition products ◦k,
where V (n) is generated by the set of edges tnij . As usual, the intersection of all
such sub-operads, explicitly given by the intersection of all the spaces of rela-
tions R(n) for a fixed n each time, produces the smallest sub-operad of BKW.
The following statement provides us with a universal operadic characterisation
of the Drinfeld–Kohno quadratic data.

Theorem 5.6.3. The operad DK is the smallest sub-operad of BKW.

Proof. Let us continue to use the notation DK(n) = (V (n), R(n)) and let us
consider a sub-operad P(n) := (V (n), S(n)) ⊂ BKW(n) of BKW. We have
to show that R(n) ⊂ S(n) and this follows from the fact that the partial
composition products ◦p : P(n) ⊕ P(m) → P(n+m− 1) sends [V (n), V (m)]−
to S(n+m−1) under (◦p)∧2. We begin with the relations of first type: tnij∧t

n
kl .

Using the action of the symmetric group, we can assume, without any loss of
generality, that (i, j, k, l) = (1, 2, 3, 4) and we conclude with

(◦3)
∧2
(
tn−1
12 ∧ t212

)
= tn12 ∧ tn34 .

We treat now the relations of seconde type: tnij ∧
(
tnik + tnjk

)
. Using again the

action of the symmetric group, the proof reduces to the case (i, j, k) = (1, 2, 3),
which is given by

(◦1)
∧2
(
tn−1
12 ∧ t212

)
=
(
tn13 + tn23

)
∧ tn12 .

In the lattice of operads made up of skew-symmetric data with generators
tnij and partial composition products ◦k, the Berger–Kontsevich–Willwacher
operad BKW is the maximal element and the Drinfeld–Kohno operad DK is
the minimal element.

Proposition 5.6.4. The holonomy operad associated to D2 is isomorphic to
the Lie operad associated to skew-symmetric quadratic data DK:

gD2
∼= L(DK) .

We will prove it below after the study of the (co)homology Hopf (co)operad.
Since the little disks operad is not well pointed, we cannot consider directly a Lie
operad of Magnus type here. Instead, one can consider the pointed topological
operad K2 introduced by M. Kontsevich in [Kon99], see also [Sin06], since this
latter one is homotopy equivalent to the little disks operad. Notice that both
operads, D2 [LV14] and K2 [ST18], are formal; they are even intrinsically Hopf
formal by [FW15].

Remark 5.6.5. Even if the little disks operad fails to be well pointed, its
components D2(n) ∼ Confn(C) are path connected with fundamental groups
isomorphic to the pure braid groups π1

(
Confn(C)

)
∼= PBn. They are also
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(rationally) formal by [Arn69]. So the Drinfeld–Kohno Lie algebras, as the
holonomy Lie algebras of Confn(C) are the Lie algebras of infinitesimal braids

L(DK(n)) =
Lie
(
tnij
)

([
tnij , t

n
kl

]
,
[
tnij , t

n
ik + tnjk

]) ∼= gr(PBn)⊗Q .

Remark 5.6.6. The fact that the little disks operad fails to be well pointed
should be seen as a richness. Instead of considering the fundamental group
π1 of a pointed topological space, one can consider the fundamental groupoid
Π1. This latter functor Π1 : (Top,×)→ (Grp,×) is cartesian and thus sends
topological operads to operads in groupoids. The operad in groupoids Π1(D2)
is equivalent to the operad in groupoids which encodes braided monoidal cat-
egories. Refining this operad with various "choices of base points" gives rise
to various operads in groupoids and the morphisms between them define the
notion of Drinfeld’s associators and Grothendieck–Teichmüller group(s), see
[Fre17] for more details.

The operad of chord diagrams is the operad

UL(DK) = AΛ(DK)

made up of the associative algebras of chord diagrams

UL(DK(n)) =
T
(
tnij
)

([
tnij , t

n
kl

]
,
[
tnij ,
(
tnik + tnjk

)]) .

The name comes from the following pictorial way to represent its elements:

t525t
5
13t

5
34t

5
24 =

1 2 3 4 5

• •
• •

• •
• •

.

It plays a seminal role in the theory of Drinfled’s associators [Dri90],
Grothendieck–Teichmüller group(s) [Fre17], the formality of the little discs op-
erad [Tam03, SW11, FW15] and Vassiliev knot invariants [BN95].

Definition 5.6.7 (Arnold–Orlik–Solomon symmetric quadratic data). The
Arnold–Orlik–Solomon symmetric quadratic data are spanned by

AOS(n) :−
(
ωnij , ω

n
ij ⊙ ω

n
jk + ωnjk ⊙ ω

n
ki + ωnki ⊙ ω

n
ij

)
,

where the set of generators ωnij of degree −1 runs over the set of edges ij of Γn,
and where the set of relations runs over increasing triples i < j < k. For n = 0
and for n = 1, we set AOS(0) :− (0, 0) and AOS(1) :− (0, 0).
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Arnold proved in [Arn69] that the Orlik-Solomon algebras

S
(
AOS(n)

)
=

S
(
ωnij
)

(
ωnij ⊙ ω

n
jk + ωnjk ⊙ ω

n
ki + ωnki ⊙ ω

n
ij

) ∼= H• (D2(n))

compute the cohomology algebras of the configuration spaces of points in the
plane. One can see by a direct computation that

DK! ∼= AOS .

Equivalently, this means that DK
¡ ∼= AOS∗, which provides us with the fol-

lowing presentation of the cocommutative coalgebras underlying the homology
operad

Sc
(
AOS∗(n)

)
= Sc

(
wnij , w

n
ij ⊙ w

n
kl & wnij ⊙

(
wnik + wnjk

))
∼= H•(D2(n)) ,

where wnij =
(
ωnij
)∗

= stnij has degree 1. The presentation of the homology
operad was given by F.R. Cohen in [Coh76]: it is shown to be isomorphic to
the the operad encoding Gerstenhaber algebras H•(D2) ∼= Gerst, see [LV12,
Section 13.3].

Proof of Proposition 5.6.4. We go back to the definition and we follow the same
kind of arguments as in the proof of Proposition 5.4.6. If we denote the operadic
structure maps of DK by ◦k, the ones of the homology operad H•(D2) by ◦̃k,
and the counits of the homology coalgebras by 1

n ∈ H•(D2(n)), we have the
following commutative diagram

H1(D2(n))⊕H1(D2(m))
◦k //

∼=

��

H1(D2(n+m− 1))

H1(D2(n))⊗Q1
m ⊕ Q1

n ⊗H1(D2(m))
◦̃k // H1(D2(n+m− 1)) .

The isomorphism of operads H•(D2) ∼= Gerst of [Coh76], see also the survey
[Sin13], identifies the following elements

wnij ←→

i j

1 n· · ·· · ·
•

and 1
n ←→

1 n· · ·

,

where • denotes the shifted Lie bracket and where the bottom corollas denote
the iterations of the commutative product. Under this correspondence, the
operad structure on Gerst produces the formulæ given in Equation (17). Let
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us illustrate this on the less trivial case: the partial composite wnij◦i1
m amounts

to graft the above right-hand side corolla with m leaves at the input i of the
left-hand side corolla. Using iteratively the Leibniz relation, one rewrites this
3-vertices trees into a sum of 2-vertices trees, which correspond to

wnij ◦i 1
m = wn+m−1

i j+m−1 + wn+m−1
i+1 j+m−1 + · · ·+ wn+m−1

i+m−2 j+m−1 + wn+m−1
i+m−1 j+m−1 .

The canonical morphism of operads DK→ BKW in QD− induces a canonical
morphism of operads in associative algebras between the operad of chord dia-
grams and the operad of graphs with multiple edges mentioned at the end of
Section 5.4. It also induces the canonical morphism Gerst → Gra of cocom-
mutative Hopf operads, whose deformation complex gives the Grothendieck–
Teichmüller Lie algebra grt in [Wil15].

5.7 Hypergraphs

The purpose of this subsection is to extend Section 5.4 from graphs to hyper-
graphs. This latter notion amounts to “graphs” where “edges” can now join an
arbitrary number of vertices.

Definition 5.7.1 (Hypergraph). An hypergraph is a pair (V,E) where V is a
set of vertices and where E is a set of subsets of V , called hyperedges.

In the sequel, we will mainly consider the sets V = n = {1, . . . , n}, for n > 2.
We will only consider hypergraphs where the elements of E have all cardinal
equal to k, for k > 2; they will be called k-hypergraphs. For example, the
complete k-hypergraph Γkn on n vertices is (V,E), where E is the set of all
subset of {1, . . . , n} with k-elements. In the case k = 2, we recover the complete
graph Γn = Γ2

n of Section 5.4.

Γ3
4 =

•1

•
2

•
3

•4

We define the topological operad of complete k-hypergraph by

GrakS1(n) := {∗} , for n < k, and GrakS1(n) :=
(
S1
)(nk) , for n > k .

The elements
{
µIÊ; I ⊂ n , |I| = k

}
of GrakS1(n) are thought of as collections

of labels, living in the circle S1, for every hyperedges I of the complete k-
hypergraph Γkn. The partial composition products ◦p : GrakS1(n)×GrakS1(m)→
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GrakS1(n+m− 1) of two collections {µI} and {µ′
J} are defined in a way similar

to that of the operad GraS1 . We first insert the complete k-hypergraph Γkm at
the pth vertex of the complete k-hypergraph Γkn and then we relabel the vertices
accordingly. The hyperedges coming from Γkn (respectively Γkm) are labeled by
the according µI (respectively µ′

J ). The hyperedges made up of k − 1 vertices
i1, . . . , ik−1 from Γkn and one vertex from Γkm are labelled by µi1,...,ik−1,p. All
the other hyperedges are labelled by the base point ∗.

Proposition 5.7.2. The data GrakS1 :=
(
{GrakS1(n)}, {◦p}

)
forms a pointed

topological operad, which is formal over Z.

Proof. It is straightforward to check the sequential and parallel axioms, the
equivariance with respect to the symmetric groups action, as well as the axioms
for the unit. The formality property is proved by the same arguments and
computations as in [DSV15, Section 8].

The special case k = 2 gives back the operad GraS1 = Gra2S1 of Section 5.4.

Definition 5.7.3 (k-Hypergraph skew–symmetric quadratic data). The k-
Hypergraph skew–symmetric quadratic data are spanned by

k-HG(n) := (tnI , t
n
I ∧ tnJ) ,

where the set of generators tnI of degree 0 runs over the set of hyperedges I of
Γkn and where the set of relations runs over all pairs (I, J) of hyperedges of Γkn.
For n < k, we set k-HG(n) := (0, 0).

We consider the following maps ◦p : k-HG(n)⊕ k-HG(m)→ k-HG(n+m− 1).
Let us denote I = {i1, . . . , ik} and use the notation I+a := {i1+a, . . . , ik+a}.

tnI 7→





tn+m−1
I+m−1 for p < i1 ,∑m−1
j=0 tn+m−1

i1,...,il−1,il+j,il+1+m−1,...,ik+m−1 for p = il ,

tn+m−1
i1,...,il,il+1+m−1,...,ik+m−1 for il < p < il+1,

tn+m−1
I for ik < p ,

tmI 7→ tn+m−1
I+p−1 .

(18)

Lemma 5.7.4. The aforementioned data k-HG :=
(
{k-HG(n)}, {◦p}

)
forms an

operad in the symmetric monoidal category (QD−,⊕).

Proof. Since the spaces of relations are the full spaces, the maps ◦p are mor-
phisms of quadratic data. One can check directly that they form an op-
erad structure. This can be done easily by viewing the elements tnI as the
k-hypergraph with one hyperedge I and respectively by inserting the empty k-
hypergraph at its pth vertex or by inserting it into the empty k-hypergraph.

In the special case k = 2, we recover the Berger–Kontsevich–Willwacher operad
BKW = 2-HG.
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Proposition 5.7.5. The holonomy operad and the rational Magnus operad
associated to GrakS1 are isomorphic to the Lie operad associated to skew-
symmetric quadratic data k-HG:

gGrak
S1

∼= L(k-HG) ∼= gr
(
π1
(
GrakS1

))
⊗Q .

Proof. This proof is the same mutatis mutandis as the one of Proposition 5.4.5

Let us introduce the k-hypergraph graded operad Grak. Its underlying S-
modules are spanned by sub-hypergraphs of Γkn, where each hyperedge receives
degree 1. The partial composition product γ1 ◦p γ2 amounts to first inserting
the k-hypergraph γ2 at the pth vertex of γ1, then relabelling accordingly the
vertices, and finally considering the sum of all the possible ways to connect the
hyperedges in γ1 containing the vertex p, to any possible vertex of γ2.

1 2

3

4

◦3

3 2

1

=

5 4

1 2

3

6

+

3 5

1 2

4

6

+

4 3

1 2

5

6

Every graded vector space Grak(n) forms a cocommutative coalgebra with the
coproduct ∆(γ) made up of the pairs of graphs γ′⊗γ′′ with the same n vertices
as γ but with hyperedges from γ distributed on γ′ and γ′′. The partial compo-
sition products preserve these coproducts, thus Grak forms a cocommutative
Hopf operad.

Proposition 5.7.6. The following three cocommutative Hopf operads are iso-
morphic

H•

(
GrakS1

)
∼= Sc

(
k-HG

¡) ∼= Grak .

Proof. This proof is similar to that of Proposition 5.4.6.

Remark 5.7.7. For any k > 2, there is a canonical morphism sLiek → Grak

from the operad of shifted k-Lie algebras which sends its generator to tk1...k.
This latter notion is made up of a “Lie bracket” of degree 1 with k-inputs
satisfying a generalised Jacobi relation, see [LV12, Section 13.11.3]. Since this
operad (unshifted) is the unit for the black product of k-ary quadratic operads,
one can develop a similar twisting procedure as that of [Wil15] according to
[DSV18, Remark 5.8]. The study of the resulting dg operad TwGrak is a very
interesting subject.
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5.8 Etingof–Henriques–Kamnitzer–Rains, i.e. M0,n+1(R)

In the very same way as the Drinfeld–Kohno quadratic data refines
the Berger–Kontsevich–Willwacher quadratic data in canonical way, the
Etingof–Henriques–Kamnitzer–Rains quadratic data refines the 3-Hypergraph
quadratic data in a canonical way. This new one actually comes from the topo-
logical operad made up of the real locus of the moduli spaces of stable curves
of genus 0 with marked pointsM0,n+1(R), studied in depth in [EHKR10].

Definition 5.8.1 (Etingof–Henriques–Kamnitzer–Rains skew-symmetric
quadratic data). The Etingof–Henriques–Kamnitzer–Rains skew–symmetric
quadratic data are spanned by

EHKR(n) :−
(
tnijk , t

n
ijk ∧ tnlmn & tnijk ∧

(
tnlmi + tnlmj + tnlmk

))
,

where the set of generators tnijk of degree 0 runs over the set of hyperedges
ijk of Γ3

n, and where the first set of relations runs over pairs (ijk, lmn) of
disjoint hyperedges and the second set of relations runs over pairs (ijk, {l,m})
formed by an hyperedge and two separate vertices of Γ3

n. For n < k, we set
EHKR(n) :− (0, 0).

We consider the same partial composition products as the ones for the 3-
Hypergraph quadratic data given in Equation (18).

Proposition 5.8.2. The Etingof–Henriques–Kamnitzer–Rains skew-
symmetric quadratic data EHKR :=

(
{EHKR(n)}, {◦p}

)
forms an operad

in the symmetric monoidal category (QD−,⊕).

Proof. As in the proof of Proposition 5.6.2, we only need to check that the var-
ious maps ◦p induce morphisms of quadratic data. Again, this can be achieved
easily with the 3-hypergraph description:
the first (respectively second) type relation in R(n) or R(m) is sent to any first
(respectively second) type relation in R(n +m − 1), that is pairs of disjoints
hyperedges (respectively a sum of hypergraphs based on pentagons with a dis-
tinguished triangle). Any element tnijk ∧ tmlmn of the relation [V (n), V (m)]− is
sent to a sum of relations of first and second type under (◦p)∧2.

The canonical morphisms of quadratic data EHKR(n) → 3-HG(n) induces
a canonical morphism of operads EHKR → 3-HG in QD−. The following
statement is a universal operadic characterisation of the Etingof–Henriques–
Kamnitzer–Rains skew-symmetric quadratic data.

Theorem 5.8.3. The operad EHKR is the smallest sub-operad of 3-HG.

Proof. This proof is similar to that of Theorem 5.6.3. It is also the particular
case n = 3 of Theorem 5.10.3.
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In the lattice of operads made up of skew-symmetric data with generators tnijk
and partial composition products ◦p, the 3-hypergraphs operad 3-HG is the
maximal element and the Etingof–Henriques–Kamnitzer–Rains operad EHKR
is the minimal element.

Proposition 5.8.4. The holonomy operad associated toM0,n+1(R) is isomor-
phic to the Lie operad associated to skew-symmetric quadratic data EKHR:

gM0,n+1(R)
∼= L(EHKR) .

Remark 5.8.5. The topological operadM0,n+1(R) fails to be well pointed; its
components are connected with fundamental groups π1

(
M0,n+1(R)

)
∼= PCn

called the pure cactus group in [EHKR10]. It important to notice that these
topological spaces however fail to be formal for n > 6. It is however con-
jectured in [EHKR10] that the Etingof–Henriques–Kamnitzer–Rains holonomy
Lie algebras are isomorphic to the Magnus construction

L(EHKR(n)) =
Lie
(
tnijk
)

([
tnijk, t

n
lmn

]
,
[
tnijk , t

n
lmi + tnlmj + tnlmk

]) ∼= gr(PCn)⊗Q .

The operad in groupoids Π1

(
M0,n+1(R)

)
is equivalent to the operad in

groupoids which encodes coboundary monoidal categories, see [HK06].

It is proved in [EHKR10, Proposition 3.1] that the Koszul dual symmetric data
EHKR! is equal to

EHKR!(n) =
(
ωnijk, ω

n
ijk ⊙ ω

n
klm + ωnjkl ⊙ ω

n
lmi + ωnklm ⊙ ω

n
mij + ωnlmi ⊙ ω

n
ijk + ωnmij ⊙ ω

n
jkl

)
,

where the generator have (homological) degree −1. The main theorem of
[EHKR10] asserts that this quadratic data provides us with a presentation
of the cohomology algebra:

S
(
EHKR!(n)

)

=
S
(
ωnijk

)
(
ωnijk ⊙ ω

n
klm + ωnjkl ⊙ ω

n
lmi + ωnklm ⊙ ω

n
mij + ωnlmi ⊙ ω

n
ijk + ωnmij ⊙ ω

n
jkl

)

∼= H•
(
M0,n+1(R)

)
.

A presentation for the homology operad is also given in loc. cit.: it is shown
to be isomorphic to the the operad encoding unital 2-Gerstenhaber algebras
H•(M0,n+1(R)) ∼= 2-uGerst. This kind of algebraic structure is made up of
a degree 0 unital commutative product and a degree 1 skew-symmetric “2-Lie
bracket” of arity 3 which satisfy generalised Leibniz and Jacobi relations.
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Proof of Proposition 5.8.4. This proof is similar to the one of Proposition 5.6.4.
The isomorphism of operads H•

(
M0,n+1(R)

)
∼= 2-uGerst of [EHKR10] identi-

fies the following elements

wnijk ←→

i j k

1 n· · ·· · ·
•

and 1
n ←→

1 n· · ·

,

where the degree 1 element wnijk stands for
(
ωnijk

)∗
= stnijk and where • denotes

the shifted 2-Lie bracket. Under this correspondence, the operad structure on
2-uGerst produces the formulæ given in Equation (18). For instance, the partial
composite wnijk ◦i 1

m gives

wnijk ◦i 1
m =

m−1∑

l=0

wn+m−1
i+l,j+m−1,k+m−1 ,

by the generalised Leibniz relation.

The canonical morphism of operads EHKR → 3-HG in QD− induces a mor-
phism of cocommutative Hopf operads

2-uGerst ∼= H•

(
M0,n+1(R)

)
∼= Sc

(
EHKR

¡)

→ Gra3 ∼= H•

(
Gra3S1

)
∼= Sc

(
3-HG¡)

.

In the light of [Wil15], the study of the deformation complex of this mor-
phism of operads is a very interesting question. What is the analogue of the
Grothendieck–Teichmüller Lie algebra grt (case n = 2) here (case n = 3)?

5.9 Linear hypergraphs and real brick manifolds BR(n)

Following the same pattern, one can give a k-hypergraph generalisation of
Section 5.5 too. The starting point amounts to considering only linear k-
hypergraphs, i.e. the ones made up of intervals of length k. We denote the
complete linear k-hypergraph by Θkn. We define the pointed topological ns
operad AskS1 by AskS1(n) := {∗}, for n < k, and by AsS1(n) :=

(
S1
)n−k+1

, for
n > k. Its elements

(
x1k, . . . , xn−k+1n

)
are seen as labels, living in S1, of the

intervals of lengths k of {1, n}. The partial composition products are given by(
x1k, . . . , xn−k+1n

)
◦i
(
y1k, . . . , ym−k+1m

)
:=

(
x1k, . . . , xi−k+1i, ∗, . . . , ∗︸ ︷︷ ︸

k−2

, y1k, . . . , ym−k+1m, ∗, . . . , ∗︸ ︷︷ ︸
k−2

, xii+k−1, . . . , xn−k+1n

)
.

The special case k = 2 gives back the operad AsS1 = As2S1 of Section 5.5.
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Definition 5.9.1 (Linear k-Hypergraph skew–symmetric quadratic data). The
Linear k-Hypergraph skew–symmetric quadratic data are spanned by

k-LHG(n) :=
(
tnii+k−1 , t

n
ii+k−1 ∧ tnjj+k−1

)
,

where the set of generators tnii+k−1 of degree 0 runs over the set of linear
hyperedges of Θkn and where the set of relations runs over all pairs of hyperedges
of Θkn. For n < k, we set k-LHG(n) := (0, 0).

We consider the following maps ◦p : k-LHG(n)⊕k-LHG(m)→ k-LHG(n+m−
1).

tnii+k−1 7→





tn+m−1
i+m−1i+k+m−2 for p 6 i ,

0 for i < p < i+ k − 1 ,

tn+m−1
ii+k−1 for i + k − 1 6 p ,

tmjj+k−1 7→ tn+m−1
j+p−1j+k+p−2 .

(19)

Lemma 5.9.2. The aforementioned data k-LHG :=
(
{k-LHG(n)}, {◦p}

)
forms

a nonsymmetric operad in the symmetric monoidal category (QD−,⊕).

Proof. The proof is straightforward.

In the special case k = 2, we recover the Linear Graph nonsymmetric operad
LG = 2-LHG.

Proposition 5.9.3. The holonomy operad and the rational Magnus operad as-
sociated to AskS1 are isomorphic to the Lie operad associated to skew-symmetric
quadratic data k-LHG:

gAsk
S1

∼= L(k-LHG) ∼= gr
(
π1
(
AskS1

))
⊗Q .

Proof. This proof is the same mutatis mutandis as the one of Proposition 5.4.5

One can define a linear k-hypergraph graded operad LGrak. Its underlying N-
modules are spanned by sub-hypergraphs of Θkn, where each hyperedge receives
degree 1. The partial composition product γ1 ◦p γ2 amounts to first inserting
the linear k-hypergraph γ2 at the pth vertex of γ1, then relabelling accordingly
the vertices, and finally keeping only the hyperedges of γ1 which do not contain
p, or for which p is a minimum or a maximum element.

Proposition 5.9.4. The following three cocommutative Hopf operads are iso-
morphic

H•

(
AskS1

)
∼= Sc

(
k-LHG¡) ∼= LGrak .

Proof. This proof is similar to that of Proposition 5.4.6.
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Remark 5.9.5. For any k > 2, there is a canonical morphism spAsk → LGrak

from the nonsymmetric operad of (shifted) partially associative k-algebras
[LV12, Section 13.11.1] which sends its generator to tk1k. Since this operad
(unshifted) is the unit for the black product of k-ary quadratic nonsymmetric
operads, one can develop a similar twisting procedure as that of [Wil15] ac-
cording to [DSV18, Remark 5.8]. The study of the resulting dg nonsymmetric
operad TwLGrak is again an interesting subject.

A non-commutative version for the moduli spacesM0,n+1 of stable curves with
marked points was given in [DSV15] by means of toric varieties called brick
manifolds and denoted by B(n). This family was endowed with a topological
nonsymmetric operad structure. The linear 3-hypergraph quadratic data is
related to this ns operad BR in the real case.

Proposition 5.9.6. The holonomy operad associated to BR is isomorphic to
the Lie operad associated to skew-symmetric quadratic data 3-LHG:

gBR

∼= L(3-LHG) .

Proof. The proof is similar to the proof of Proposition 5.8.4. It relies on the
isomorphism of ns operads H•

(
BR
)
∼= 2-ncGerst from [DSV15, Theorme 9.3.1]

which identifies the following elements

wnii+2 ←→

i i+ 1i+ 2

1 n· · ·· · ·
•

and 1
n ←→

1 n· · ·

,

where the degree 1 element wnii+2 stands for stnii+2 and where • denotes the
shifted 2-partially associative product. Under this correspondence, the ns
operad structure on 2-ncGerst produces exactly the formulæ given in Equa-
tion (19).

5.10 Generalisation

Even if the following definition is not prompted by a family of already
known topological operads, it is still possible to produce these skew-symmetric
quadratic data k-HG refining k-HG, for any k > 2, following a general canonical
procedure which coincides to the aforementioned examples in the cases k = 2
(Section 5.6) and k = 3 (Section 5.8).

Definition 5.10.1 (Refined k-Hypergraph skew–symmetric quadratic data).
The refined k-Hypergraph skew–symmetric quadratic data are spanned by

k-HG(n) :=
(
tnI , t

n
I ∧ tnJ & tni1...ik ∧

(
tnJ,i1 + · · ·+ tnJ,ik

))
,
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where the set of generators tnI of degree 0 runs over the set of hyperedges I
of Γkn, and where the first set of relations runs over pairs (I, J) of disjoint
hyperedges of Γkn, i.e. I ∩J = ∅, and the second set of relations runs over pairs
(I = {i1, . . . , ik}, J) formed by an hyperedge I and a disjoint set J of k − 1
vertices of Γkn. For n < k, we set k-HG(n) :− (0, 0).

We consider the same partial composition products as the ones for the k-
Hypergraph quadratic data given in Equation (18).

Proposition 5.10.2. The refined k-Hypergraph skew–symmetric quadratic data
k-HG :=

(
{k-HG(n)}, {◦p}

)
forms an operad in the symmetric monoidal cate-

gory (QD−,⊕).

Proof. The proof is similar to that of Proposition 5.6.2 and Proposition 5.8.2.
Relations of first type (respectively second type) are sent to relations of first
type (respectively second type) under the partial composition maps (◦p)∧2.
Any element of the relation [V (n), V (m)]− is sent to a sum of relations of first
and second type under (◦p)

∧2: for instance, the image of tnJ,p ∧ tmI is equal to

(∑

i∈I

tn+m−1

J̃,i+p−1
+
∑

i/∈I

tn+m−1

J̃ ,i+p−1

)
∧ tn+m−1

I+p−1

=

(∑

i∈I

tn+m−1

J̃,i+p−1

)
∧ tn+m−1

I+p−1 +
∑

i/∈I

(
tn+m−1

J̃,i+p−1
∧ tn+m−1

I+p−1

)
,

where J̃ is the "image" of J in the complete k-hypergraph Γkn+m−1, which is
produced after relabelling. The first term on the right-hand side is a relation
of second type and the second term on the right-hand side is a sum of relations
of first type.

The canonical morphisms of quadratic data k-HG(n) → k-HG(n) induces
a canonical morphism of operads k-HG → k-HG in QD−. The refined k-
Hypergraph skew–symmetric quadratic data is characterized by the following
universal operadic property.

Theorem 5.10.3. The operad k-HG is the smallest sub-operad of k-HG.

Proof. We proceed in the same way in the proof of Theorem 5.6.3. Let us
use the notation k-HG(n) = (V (n), R(n)) and let us consider a sub-operad
P(n) := (V (n), S(n)) ⊂ k-HG(n) of k-HG. We show that R(n) ⊂ S(n). We
begin with the relations of first type: tnI ∧t

n
J . Using the action of the symmetric

group, we can assume, without any loss of generality, that I = {1, . . . , k} and
J = {k + 1, . . . , 2k − 1}. We conclude with

(◦k+1)
∧2
(
tn−k+1
I ∧ tkI

)
= tnI ∧ tnJ .
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We treat now the relations of second type: tni1,...,ik ∧
(
tnJ,i1 + · · · + tnJ,ik

)
. Us-

ing again the action of the symmetric group, the proof reduces to the case
(i, j, k, l) = (1, 2, 3, 4), which is given by

(◦1)
∧2
(
tn−k+1
I ∧ tkI

)
=
(
tnJ,1 + · · ·+ tnJ,k

)
∧ tnI .

In the lattice of operads made up of skew-symmetric data with generators tnI
and partial composition products ◦p, the k-hypergraphs operad k-HG is the
maximal element and the refined k-hypergraphs operad k-HG is the minimal
element.

Definition 5.10.4 (Unital (k − 1)-Gerstenhaber algebra). A unital (k − 1)-
Gerstenhaber algebra, for k > 2, is a chain complex A equipped with an element
u ∈ A0 and two operations µ : A⊙2 → A of degree 0 and β : A⊙k → A of degree
1 satisfying the following relations.

Unit relations µ(u,−) = id and β(u,−, . . . ,−) = 0 .

Associativity relation µ ◦1 µ = µ ◦2 µ .

Leibniz relation β ◦1 µ = (µ ◦1 β)(2 3 ··· k k+1) + µ ◦2 β .

Jacobi relation
∑

σ∈Sh−1
k,k−1

(β ◦1 β)σ = 0 ,

where Sh−1
k,k−1 denotes the set of inverse of (k, k − 1)-shuffles, also known as

(k, k − 1)-unshuffles.

We denote the associated operad by uGerst(k−1), which is generated by three
generators, that we still denote respectively by u, µ, and β. We endow it with
a cocommutative Hopf operad structure by the following assignment:

∆(u) := u⊗ u

∆(µ) := µ⊗ µ

∆(β) := µk−1 ⊗ β + β ⊗ µk−1Ê ,

where µk−1 := µ ◦1 µ ◦1 · · ·µ ◦1 µ︸ ︷︷ ︸
k−1 times µ

.

Lemma 5.10.5. The above assignment defines a cocommutative Hopf operad
structure on uGerst(k−1).

Proof. We first need to show that the coproduct ∆ is well-defined on the quo-
tient of the free operad on u, µ, and β by the above relations. One can treat
in a straightforward way the unit and the Leibniz relations. The case of the
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associativity relation is given by the following computation performed in the
free operad

∆(µ ◦1 µ− µ ◦2 µ) = µ ◦1 µ⊗ µ ◦1 µ− µ ◦2 µ⊗ µ ◦2 µ

= (µ ◦1 µ− µ ◦2 µ)⊗ µ ◦1 µ+ µ ◦2 µ⊗ (µ ◦1 µ− µ ◦2 µ) .

The case of the Jacobi relation is treated as follows. Notice first that iterating
the Leibniz relation, one gets the relation

β ◦1 µ
k−1 =

k∑

i=1

(
µk−1 ◦1 β

)σi
,

where

σi :=

[
1 2 · · · k k + 1 · · · k + i− 1 k + i · · · 2k − 1
i k + 1 · · · 2k − 1 1 · · · i− 1 i+ 1 · · · k

]

We denote the induced element in the free operad by L := β ◦1 µk−1 −∑k
i=1

(
µk−1 ◦1 β

)σi . Similarly, the element representing the Jacobi relation
in the free operad is denoted by J. We conclude with the following computa-
tion:

∆(J) =

∑

σ∈Sh−1
k,k−1

(
(β ◦1 β)

σ ⊗ µ2(k−1) + µ2(k−1) ⊗ (β ◦1 β)
σ

+
(
β ◦1 µ

k−1
)σ
⊗
(
µk−1 ◦1 β

)σ
−
(
µk−1 ◦1 β

)σ
⊗
(
β ◦1 µ

k−1
)σ )

= J⊗ µ2(k−1) + µ2(k−1) ⊗ J+
∑

σ∈Sh−1
k,k−1

(
L⊗ µk−1 ◦1 β − µ

k−1 ◦1 β ⊗ L
)σ

.

In the end, it is enough to check the cocommutativity and the coassociativity
of the coproduct ∆ on the generators u, µ, and β.

Proposition 5.10.6 ([Kho19, Theorem 3.39]). The cocommutative Hopf operad

Sc
(
k-HG

¡)
is isomorphic to the cocommutative Hopf operad encoding unitary

(k − 1)-Gerstenhaber algebras, i.e.

Sc
(
k-HG

¡) ∼= uGerst(k−1) .

Proof. A full proof based on the Koszul duality theory can be find in
[Kho19]. Let us however sketch the strategy which extends the method of
[MR96, BDK07] to the general case k > 2.
Let us denote by uCom the operad encoding unital commutative algebras and
by sLie(k−1) the operad encoding shifted Lie (k − 1)-algebras [HW95]. The
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defining relations of the operad uGerst(k−1) can be interpreted as rewriting
rules which induces a distributive law [Mar96] and [LV12, Section 8.6]. As a
consequence, the underlying S-module of the operad uGerst(k−1) is isomorphic
to the operadic composite product

uGerst(k−1)
∼= uCom ◦ sLie(k−1) .

This latter S-module admits a basis made up of (commutative) forests of (k−1)-
trees, that is rooted trees with all vertices of valence equal to k, modulo the
Jacobi relation.
On the other hand, one can see that the quadratic algebras S

(
k-HG

!
(n)
)
, for

n > k, admit the following Koszul dual presentation

k-HG
!
(n) =

(
ωnI , ω

n
i1...ik

⊙ ωnik...i2k−1

+ ωni2...ik+1
⊙ ωnik+1...i2k−1i1

+ · · ·+ ωni2k−1i1...ik−1
⊙ ωnik−1...i2k−2

)
,

where the set of generators ωnI = s−1
(
tk1...k

)∗
of degree −1 runs over the set

of hyperedges I of Γkn, and where the set of relations runs over increasing
(2k − 1)-tuples i1 < · · · < i2k−1 .
We consider the pairing 〈 , 〉 : (uCom ◦ T (β)) (n)⊗ S(ωnI ) defined by

〈
µn−1, 1n

〉
= 1 and

〈
(µn−k ◦1 β)

σ, ωnI
〉
= 1 and 〈χ, ωnI 〉 = 0 ,

where σ is the (k, n− k) shuffle which sends {1, . . . , k} to I and {k+ 1, . . . , n}
to n \ I and where χ is an basis element of uCom ◦ T (β) different from
(µn−k ◦1 β)σ. It induces a well-defined and non-degenerate pairing 〈 , 〉 :(
uCom ◦ sLie(k−1)

)
(n) ⊗ S

(
k-HG

!
(n)
)
, which proves the isomorphism on the

level of the underlying S-modules

Sc
(
k-HG

¡) ∼= uGerst(k−1) .

By the definition of the pairing, this isomorphism respects to the arity-wise
coalgebra structures. It remains to show that it also respects the partial com-
position products: this can be done in a straightforward way by a computation
similar to the ones performed in the proofs of Proposition 5.6.4 and Proposi-
tion 5.8.4.
The most difficult part of the proof, not covered here, amounts to proving
that the pairing 〈 , 〉 is non-degenerate. This can be done by cumbersome
combinatorics or using the Koszul duality results [Kho19, Theorem 3.19 &
Theorem 3.21].

Remark 5.10.7. Considering the partitions of {1, . . . , n(k − 1) + 1} of size
l(k − 1) + 1, for 0 6 l 6 n, together with their refinement, one gets a poset
denoted by Π

(k)
n(k−1)+1, see [HW95]. This poset is actually the operadic partition

poset associated to the set-theoretical operad encoding algebras made up of a
commutative operation of arity k satisfying a totally associative relation, see
[Val07]. These posets are Cohen–Macaulay and their top Whitney homology
groups produce the cooperad (k − 1)-uGerst∗.
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Remark 5.10.8. We refer the reader to the forthcoming paper [Kho19] for
the homological properties of the quadratic data k-HG(n) and their associated
operads.

“In the other way round”, one can define a family of pointed topological operads
from the aforementioned skew-symmetric quadratic data as follows. We first
consider the operad L̂

(
k-HG

)
in the category of complete Lie algebras, see

[DSV18, Section 2]. Then we consider, from [BFMT15, Rob17], the following
pair of adjoint functors

L : simplicial sets complete dg Lie algebras : R .⊥

The right adjoint functor R is the representation functor defined by

R(g) := Homcomplete dg-Lie-alg (mc•, g) ,

where the cosimplicial complete dg Lie algebra mc• is given by quasi-free com-
plete dg Lie algebras

mcn :=
(
L̂ie

(
s−1∆n

)
, dÊ

)

on the desuspension of the standard n-simplicies. The left adjoint functor is
given by the left Kan extension

L := LanY mc•

along the Yoneda embedding Y: ∆→ simplicial sets. As a right adjoint, the
representation functor R from complete dg Lie algebras to pointed simplicial
sets is cartesian, it thus sends operads to operads. This produces a pointed
simplicial operad R

(
L̂
(
k-HG

))
. Finally, the geometric realisation functor,

again cartesian, provides us with the pointed topological operads

Ok :=
∣∣∣R
(
L̂
(
k-HG

))∣∣∣ .

More details on the above mentioned cartesian functor R, intimately related
to the rational homotopy theory of operads, will be given in the sequel of
this paper. Meanwhile, it is worth noticing that the representation functor
R is equal to the restriction from complete L∞-algebras to complete dg Lie
algebras of Getzler’s functor γ, see [Get09].

Proposition 5.10.9. The holonomy operad and the rational Magnus operad
associated to Ok are isomorphic to the Lie operad associated to skew-symmetric
quadratic data k-HG:

gOk
∼= L

(
k-HG

)
∼= gr

(
π1
(
Ok
))
⊗Q .

Proof. We first claim that, for any rational Lie algebra g, the rational Magnus
Lie algebra of |R(g)| is isomorphic to g. We notice first that, for any Lie algebra
g, the above definition of the functor R implies R(g)0 ∼= {0} and

R(g)n ∼=
{
(xij)06i<j6n ∈ g(

n+1
2 ) | BCH(xij , xjk) = xik, for 1 6 i < j < k 6 n

}
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for n > 1, where BCH stands for the Baker–Campbell–Hausdorff formula. Its
simplicial maps are given by

sk ((xij)) =





xij for i < j 6 k ,

xij−1 for i < k < j ,

xi−1j−1 for k < i < j ,

0 for i = k, j = k + 1 ,

and

dk ((xij)) =





xij for i < j 6 k ,

xij+1 for i < k 6 j ,

xi+1j+1 for k 6 i < j .

It is a Kan complex canonically pointed by 0, see for instance [RV20] for de-
tails. It is straightforward to compute its first simplicial homotopy group:
(π1(R(g)), ·) ∼= (g,BCH). This produces the first isomorphism of Lie algebras

gr
(
π1
(
|R(g)|

))
⊗Q ∼= g ,

by [Laz50].
Finally, we claim that, for any skew-symmetric quadratic data (V,R), the holon-
omy Lie algebra of

∣∣R
(
L̂(V,R)

)∣∣ is isomorphic to the quadratic Lie algebra
L(V,R). With the above description, it is straightforward to compute the ra-
tional simplicial groups of R(g), which gives H1(R(g)) ∼= sV and im∆ ∼= s2R.
This implies the isomorphism of of Lie algebras:

g|R(L̂(V,R))|
∼= L(V,R) .

All these isomorphisms are natural and respect the operad structures.

Let us sum up the results of the previous sections into the following table.

k = 2 k = 3 k > 4

Max BKW↔ GraS1 3-HG↔ Gra3S1 k-HG↔ GrakS1

Min DK↔ D2 EHKR↔M0,n+1(R) k-HG↔
∣∣∣R
(
L̂(k-HG)

)∣∣∣

Remark 5.10.10. In the case of linear hypergraphs, one can see that the lattice
of nonsymmetric operads made up of skew-symmetric data with generators
tnii+k−1 and partial composition products ◦p contains only one element: the
nonsymmetric operad k-LHG. Therefore, there is no way to refine it following
the above pattern.

The canonical morphism of operads k-HG → k-HG in QD− induces a mor-
phism of cocommutative Hopf operads

(k − 1)-uGerst ∼= H•

(∣∣∣R
(
L̂(k-HG)

)∣∣∣
)
∼= Sc

(
k-HG

¡)

→ Grak ∼= H•

(
GrakS1

)
∼= Sc

(
k-HG¡)

.
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Studying the associated deformation complex would solve the following ques-
tion: what is the kth analogue (case n = k) of the Grothendieck–Teichmüller
Lie algebra grt (case n = 2)?
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