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Partial sums of random multiplicative functions and extreme
values of a model for the Riemann zeta function

Marco Aymone, Winston Heap and Jing Zhao

Abstract

We consider partial sums of a weighted Steinhaus random multiplicative function and view this
as a model for the Riemann zeta function. We give a description of the tails and high moments
of this object. Using these we determine the likely maximum of T log T independently sampled
copies of our sum and find that this is in agreement with a conjecture of Farmer–Gonek–Hughes
on the maximum of the Riemann zeta function. We also consider the question of almost sure
bounds. We determine upper bounds on the level of squareroot cancellation and lower bounds
which suggest a degree of cancellation much greater than this which we speculate is in accordance
with the influence of the Euler product.

1. Introduction

In this paper, we investigate a model for the Riemann zeta function provided by a sum of
random multiplicative functions. To define these, let (f(p))p be a set of independent random
variables uniformly distributed on the unit circle (Steinhaus variables) where p runs over the set
of primes and let f(n) =

∏
pvp ||n f(p)vp . Alternatively, one can take (f(p))p to be independent

random ±1 with equal probability (Rademacher variables), and let f(n) be the multiplicative
extension of these to the squarefree integers.

The study of random multiplicative functions as a model for the usual deterministic
multiplicative functions was initiated by Wintner [35]. He considered the Rademacher case
as a model for the Möbius function and proved that the partial sums satisfy∑

n�x

f(n) � x1/2+ε (1)

almost surely, thus allowing him the assertion that ‘Riemann’s hypothesis is almost always
true’. We shall focus instead on the case of Steinhaus random multiplicative functions. In light
of their orthogonality relations

E[f(m)f(n)] = 1m=n,

one can think of Steinhaus f(n) as a model for nit with t ∈ R. This point of view has been
fruitfully used over the years with arguably the first instance being the pioneering work of Bohr
[10] (although the f(p) appeared in a different guise there). Given that

ζ( 1
2 + it) ∼

∑
n�T

1
n1/2+it
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for large t ∈ [T, 2T ], the above reasoning suggests that for Steinhaus f(n) the sum

Mf (T ) =
∑
n�T

f(n)√
n

provides a good model for the zeta function. We investigate various aspects of this sum, starting
with the value distribution of |Mf (T )|.

In the case of the zeta function, we have Selberg’s famous central limit theorem which states

that for V = L
√

1
2 log log T with L ∈ R fixed,

1
T
μ
(
t ∈ [T, 2T ] : |ζ( 1

2 + it)| � eV
) ∼ 1√

π log log T

∫ ∞

V

e−x2/ log log T dx

as T → ∞ where μ denotes Lebesgue measure. Regarding the uniformity of V , Selberg’s original
proof in fact allowed V � (log2 T log3 T )1/2 which was recently improved to V � (log2 T )3/5−ε

by Radziwi�l�l† [29]. It is expected that this asymptotic holds for all V � log2 T and that beyond
this range the distribution must change, if only slightly (see [29, Conjecture 2]). Jutila [24]
has given Gaussian upper bounds in the range 0 � V � log2 T whilst, under the assumption of
the Riemann hypothesis, Soundararajan [31] was able to extend similar bounds into the range
V � log2 T log3 T . This allowed for near sharp bounds on the moments of the Riemann zeta
function. For our sum Mf (T ), we prove the following.

Theorem 1. Let h(T ) → ∞ arbitrarily slowly and suppose (log2 T )1/2 log3 T � V �
log T/(log log T )h(T ). Then

P
(|Mf (T )| � eV

)
= exp

(
−(1 + o(1))

V 2

log( log T
V )

)
. (2)

If V = L
√

1
2 log log T with L > 0 fixed, then

P
(|Mf (T )| � eV

)� ∫ ∞

L

e−x2/2dx. (3)

Remark. The range of V in the lower bound (3) can be increased to o(log log T ) by applying
large deviation theory in Lemma 8 (see [6, Lemma 3.1]). Since (3) is sufficient for our purposes,
and there is only a small gap remaining in the range of V , we have left it as is.

Thus, in contrast to the zeta function we are able to essentially understand the distribution
in the range of larger V , whilst in the intermediate range the distribution is undetermined. The
lower bound (3) suggests that it remains log-normal in this range, which would certainly be
in analogy with the zeta function. Here, we remark that for the unweighted sum

∑
n�T f(n),

Harper [20] has shown that there definitely is a change in distribution around the intermediate
range, going from something with tails of the order e−2V when 1 � V �

√
log log T , to

something log-normal thereafter. At any rate, we believe that in the larger range V � log log T ,
the estimate (2) should indeed reflect the true behaviour of the zeta function. Here we note the
factor of V −1 in the term log((log T )/V ) of (2) which becomes significant when V � (log T )θ

with θ > 0.
As a quick corollary to these tail bounds, we can derive ‘likely bounds for the maxima of

independently sampled copies of Mf (T ).

†As stated, these results differ by those in the cited work by a factor of
√

log2 T on account of our
different normalisation.
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Corollary 1. Let f1, . . . , fN be chosen independently, where each fj is a Steinhaus random
multiplicative function. Then for N = T log T , we have

P

(
max

1�j�N

∣∣Mfj (T )
∣∣ � exp

(√
( 1
2 + ε) log T log log T

))
= 1 − o(1) (4)

for all ε > 0, whilst if ε < 0, the probability is o(1). If N = log T , then

P

(
max

1�j�N

∣∣Mfj (T )
∣∣ � (1 + ε) log T

)
= 1 − o(1) (5)

for all ε > 0, whilst if ε < 0, the probability is o(1).

Since the zeta function at height T oscillates on a scale of roughly 1/ log T (which can
be seen either by considering its zeros or its approximation by a Dirichlet polynomial),
one might expect that by sampling it at T log T independent points on the interval [T, 2T ]
one can pick up the maximum. From this point of view, (4) represents a model for
maxt∈[T,2T ] |ζ( 1

2 + it)| and is in agreement with a conjecture of Farmer–Gonek–Hughes [15]
which states that

max
t∈[T,2T ]

|ζ( 1
2 + it)| = exp

(
(1 + o(1))

√
1
2 log T log log T

)
.

They conjectured this in three different ways, one of which was via a random Euler product
as suggested by Granville and Soundararajan. This is the most interesting way for us since
we expect our sum to have some relation with a random Euler product, and perhaps it is not
surprising that our results are the same.

Similarly, (5) can be thought of as a short interval maximum maxh∈[0,1] |ζ( 1
2 + it + ih)|,

t ∈ [T, 2T ] and is in agreement with the leading order of a very precise conjecture of Fyodorov–
Hiary–Keating [16]. Much work has gone into this latter conjecture, including a proof to
leading order, independently by Arguin–Belius–Bourgade–Radziwi�l�l–Soundararajan [2] and
Najnudel [28], and an upper bound to second order by Harper [22]. However, sampling the fj
independently in this way may not provide a good model for these short interval maxima since
the values of the zeta function are correlated at this scale. Perhaps a better model in this case
would be to replace f(p) by f(p)p−ih with h ∈ [0, 1] (see [3]).

We shall prove (2) of Theorem 1 by considering the moments of |M(T )| whilst for (3), which
is just out of reach with moment bounds, we rely on the methods of Harper [21]. The moments
were initially considered by Conrey–Gamburd [13] who proved† that for fixed k ∈ N,

E[|Mf (T )|2k] ∼ ck(log T )k
2

where ck is an explicitly given constant. The case of real k was considered by Bondarenko–
Heap–Seip [11] with refinements in the low moments case coming from Heap [23] and then
Gerspach [17] who gave a fairly complete resolution of the problem by applying ideas from
Harper’s proof of Helson’s conjecture [21]. As a result, we know that

E[|Mf (T )|2k] 	k (log T )k
2

(6)

for all real, fixed k > 0. Concerning tail bounds, one often requires the moments in a uniform
range of k. The case of large k was considered in [12]; however, the viable range of k was
somewhat lacking for the lower bounds. Here, we are able to fix this deficiency and prove the
following.

†The result of Conrey–Gamburd was proved for Dirichlet polynomials but by the Bohr correspondence their
asymptotic formula applies to our sum of random multiplicative functions also.
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Theorem 2. For 10 � k � C log T/ log log T , we have

E[|Mf (T )|2k] = (log T )k
2
e−k2 log k−k2 log log k+O(k2). (7)

We also give some partial results for k in other ranges, including larger k (see Proposition 4)
and, by detailing Gerspach’s [17] proof for low moments, uniformly small k (see Theorem 5). We
remark that the proof of Theorem 2 is fairly elementary and does not require the probabilistic
machinery of Harper [20] who proved bounds of the same quality for the unweighted sum∑

n�T f(n). Our main tool is a hypercontractive inequality due to Weissler [34].
Another motivation for this work was to investigate the problem of almost sure bounds. Due

to its connection with partial sums of the Möbius function, almost sure bounds for the sum∑
n�T f(n) with f(n) a Rademacher random multiplicative function have been extensively

investigated. Improving the initial work of Wintner, in an unpublished work Erdös showed
that the almost sure bound in (1) can be improved to � T 1/2(log T )A. Halász [18] then gave
a significant improvement by proving the bound∑

n�T

f(n) � T 1/2 exp(c
√

log2 T log3 T ) a.s. (8)

Although the terms f(n), f(n + 1), . . . are not necessarily independent, one might reasonably
expect an almost sure bound on the level of the iterated logarithm, which would give√

2T log log T . By carrying out a suggestion of Halász to remove the term log3 T from the
exponential in (8), Lau–Tenenbaum–Wu [26] were in fact able to prove a result on this level
by showing that ∑

n�T

f(n) �
√
T (log log T )2+ε a.s. (9)

Around the same time, Basquin [7] independently proved the same bound using a connection
with sums over smooth numbers and an interesting observation interpreting these sums
as martingales.

Regarding omega theorems, the current best is due to Harper [19] who, improving on Halász
[18], showed that almost surely∑

n�T

f(n) 
= O(
√
T (log log T )−5/2−ε) (10)

for Rademacher f(n). Likely, many of these results have similar counterparts for Steinhaus
random multiplicative functions†.

Turning to our case, as a first attempt one can apply the Rademacher–Menshov Theorem‡

to show that Mf (T ) � (log T )3/2+ε almost surely. Somewhat surprisingly, the machinery of
Basquin [7] and Lau–Tenenbaum–Wu [26] does not improve this by much since on applying
a partial summation argument to (9) we get Mf (T ) � (log T )(log log T )2+ε almost surely (at
least, for Rademacher functions). We are able to give a further improvement over this.

Theorem 3. For all ε > 0, the following

Mf (T ) � (log T )1/2+ε

holds almost surely.

In terms of lower bounds, we prove the following.

†Although perhaps with slightly smaller powers of the double logarithms since there is more chance of
cancellation with Steinhaus variables.

‡Loosely, this states that if
∑∞

n=1(log n)2E|Xn|2 < ∞, then the series
∑∞

n=1 Xn converges almost surely.

Thus
∑∞

n=1
f(n)√

n(log n)3/2+ε converges almost surely, and hence, by partial summation the stated claim follows.
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Theorem 4. For all L > 0, the following

lim sup
T→∞

|Mf (T )|
exp(L

√
log log T )

= ∞

holds almost surely.

Thus, we have a considerable gap in our upper and lower bounds. The upper bound of
Theorem 3 is consistent with squareroot cancellation and represents the behaviour of a typical
random sum. Indeed, one of the main inputs in the proof is a bound for the (2 + ε)th moment.
If one could find a way to effectively input lower moments, this could probably be improved;
however, we have not been able to do so. We note that from Chebyshev’s inequality and bounds
for low moments in (6) we get that

P(|Mf (T )| � (log T )ε) = 1 − o(1)

as T → ∞ further suggesting that improvements of Theorem 3 might be possible.
The lower bound of Theorem 4 better displays the multiplicative nature of the problem. It

suggests the sum is potentially being dictated by its Euler product since

∏
p�T

(1 − f(p)p−1/2)−1 ≈ exp

⎛
⎝∑

p�T

f(p)p−1/2

⎞
⎠

and by the law of the iterated logarithm [25] we have

lim sup
T→∞

�∑p�T f(p)p−1/2√
log2 T log4 T

= 1.

In any case, our proof of Theorem 4 certainly relies on a connection with the Euler product.
One of the main inputs is that the event A in which Mf (T ) � exp((L + o(1))

√
log log T ) for

infinitely many integers T > 0 is a tail event, in the sense that any change to a finite set of
values (f(p))p∈S , with S is a finite subset of primes, does not change the outcome. Since the
values (f(p))p are independent, by the Kolmogorov zero–one law, A has probability either 0
or 1. By the Gaussian lower bound (3), A must have positive probability, and hence, actually
has probability 1.

It is interesting to note that, again, the machinery of the bound (10) gives little more than
Mf (T ) 
= O(1) almost surely, at least with a direct application.

2. Proof of Corollary 1

In this short section, we deduce Corollary 1 from Theorem 1. Let us first deal with (4). Set
V = c

√
log T log log T with c > 0. By the independence of the trials,

P

(
max

1�j�T log T

∣∣Mfj (T )
∣∣ � eV

)
= P
(|Mf (T )| � eV

)T log T

=
(
1 − P

(|Mf (T )| > eV
))T log T

= exp
(
−T (log T )

[
P
(|Mf (T )| > eV

)
+ O

(
P
(|Mf (T )| > eV

)2)])
By Theorem 1, we have

P
(|Mf (T )| > eV

)
= exp

(
−(1 + o(1))c2 log T log log T/(log(log T/c

√
log T log2 T ))

)
= exp(−(1 + o(1))2c2 log T ).
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This is o(1/T log T ) provided c > 1/
√

2 and hence our initial probability is 1 − o(1). If c <
1/
√

2, then this is not sufficiently small and our initial probability is o(1). From this proof,
we see that we can take c to be dependent on T and that with more precise tail bounds one
should be able to deduce the lower order terms. A similar proof gives (5).

3. Moment bounds

In this section, we prove Theorem 2 and give some additional bounds for the moments in other
ranges of k. We begin by proving Theorem 2.

3.1. Proof of Theorem 2

The implicit upper bound of Theorem 2 is from [12] and follows from Rankin’s trick along with
asymptotics for the tail sum

∑
p�y p

−1−σ. As mentioned in the introduction, we only need to
improve the range of k in the lower bounds. We show that this, in fact, follows from the same
essential ingredient which was a hyper-contractive inequality due to Weissler [34]. This can be
stated as follows. For ρ > 0 and a given random sum

F (T ) =
∑
n�T

anf(n)

with deterministic an ∈ C, let

Fρ(T ) =
∑
n�T

anf(n)ρΩ(n),

where Ω(n) denotes the number of not-necessarily-distinct prime factors of n. Then the
following appears in [8, section 3] (although in a slightly different form).

Lemma 2 (Weissler’s inequality). Let 0 < p � q and let 0 � ρ �
√
p/q. Then

E[|Fρ(T )|q]1/q � E[|F (T )|p]1/p.

This was originally proved for power series in one variable on the unit disk by Weissler [34].
Bayart [8] then extended this to multivariable power series using Minkowski’s inequality. By
the Bohr correspondence, these results apply to Dirichlet polynomials, or in our case, sums of
random multiplicative functions.

Lemma 3. Let k, T � 10. Then there exists a positive, absolute constant A such that

E

[
|Mf (T )|2k

]
� (log T )k

2
e−k2 log k−k2 log2 k−Ak2

.

If 0 < k � 10, then we may replace e−k2 log k−k2 log2 k−Ak2
by some positive absolute constant

C.

Proof. By Weissler’s inequality with p = 2k, q = 2k� and ρ = αk :=
√

k/k�, we have for
real k > 0,

E

[
|Mf (T )|2k

]
� E

⎡
⎢⎣
∣∣∣∣∣∣
∑
n�T

f(n)αΩ(n)
k√
n

∣∣∣∣∣∣
2�k�⎤⎥⎦

k/�k�

. (11)
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Let K = k� to ease notation. Then the expectation on the right-hand side is given by

E

⎡
⎢⎣
∣∣∣∣∣∣
∑
n�T

f(n)αΩ(n)
k√
n

∣∣∣∣∣∣
2K
⎤
⎥⎦ =

∑
n1···nK=nK+1···n2K

nj�T

α
Ω(n1)+···+Ω(n2K)
k

(n1 · · ·n2K)1/2

�
∑ ∗

n1···nK=nK+1···n2K
nj�T, nj∈S(Y )

α
Ω(n1)+···+Ω(n2K)
k

(n1 · · ·n2K)1/2

where
∑ ∗ denotes the sum where the products n1 · · ·nk and nk+1 · · ·n2k are restricted to

squarefree numbers and S(Y ) is the set of Y -smooth numbers with Y � T , that is, the set of
positive integers all of whose prime factors are no greater than Y . We proceed to remove the
condition nj � T in each summation variable.

For a given δ > 0, the tail sum for n1 takes the form

∑ ∗
n1···nK=nK+1···n2K

n1>T, nj�T, nj∈S(Y )

α
Ω(n1)+···Ω(n2K)
k

(n1 · · ·n2K)1/2
� 1
T δ

∑ ∗
n1···nK=nK+1···n2K

nj∈S(Y )

α
Ω(n1)+···Ω(n2K)
k

n
1/2−δ
1 (n2 · · ·n2K)1/2

=
1
T δ

∏
p�Y

(
1 +

α2
k(p

δ + K − 1) ·K
p

)

=
1
T δ

∏
p�Y

(
1 +

(pδ + K − 1) · k
p

)
,

where in the second line we have used that the condition n1 · · ·nK = nK+1 · · ·n2K is
multiplicative. By symmetry, we acquire 2K such error terms. After removing the restrictions
nj � T in the main term, we may write the resulting sum as an Euler product whose coefficient
of p−1 is K2α2

k = Kk. Thereby, we obtain the lower bound

∏
p�Y

(
1 +

Kk

p

)
− 2K

T δ

∏
p�Y

(
1 +

(pδ + K − 1) · k
p

)
.

In order to demonstrate the second term is little ‘oh’ of the main term, we consider the ratio

2K
T δ

∏
p�Y

(
1 + (pδ + K − 1)k/p

)
1 + Kk/p

� 2K
T δ

exp

⎛
⎝k
∑
p�Y

pδ − 1
p

⎞
⎠ =

2K
T δ

exp (O(kδ log Y ))

provided δ � 1/ log Y . If k � 10 choose δ = 1/ log Y and Y = T 1/(ck) for some c. Then this
ratio becomes exp(−ck + O(k)) which is � 1/2 provided c is large enough. If 0 < k � 10, then
we choose δ = 1/ log Y and Y = T 1/c for some c. In this case, the ratio is exp(−c + O(k)) which
again is � 1/2 provided c is large enough. With these choices, we acquire the lower bound

1
2

∏
p�Y

(
1 +

Kk

p

)
=

1
2

∏
p�K2

(
1 +

Kk

p

) ∏
K2<p�Y

(
1 +

Kk

p

)

= eO(K2) exp

⎛
⎝Kk

∑
K2<p�Y

1
p

+ O

⎛
⎝k4

∑
p>K2

p−2

⎞
⎠
⎞
⎠
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where we have used π(K2) � K2/ logK in the first product. Using this again for the error
term in the exponential, when k � 10 we acquire the lower bound

eO(K2)

(
log Y

2 logK

)Kk

= (log T )Kke−Kk log k−Kk log log k+O(k2)

since Y = T 1/ck in this case. After raising this to the power k/K, the result follows in this
range of k by (11). For 0 < k � 10, the result follows similarly. �

3.2. Larger k

Proposition 4. When k � c log T/ log log T , we have

E

[
|Mf (T )|2k

]
� eCk2

max(1, (log T )k
2
e−k2 log k), (12)

for some positive absolute C.

Proof. First suppose that k is an integer. Then

E

[
|Mf (T )|2k

]
=

∑
n1···nk=nk+1···n2k

nj�T

1√
n1 · · ·n2k

=
∑
n�Tk

dk,T (n)2

n
,

where dk,T (n) =
∑

n1···nk=n, nj�T 1. Removing the divisor restriction nj � T , this is

�
∑
n�Tk

dk(n)2

n
�
∑
n�Tk

dk2(n)
n

� T kσ
∑
n�1

dk2(n)
n1+σ

= T kσζ(1 + σ)k
2

for any σ > 0 where in the second inequality we have used that dk(n)2 � dk2(n) for k � 1. This
last inequality follows by comparison on prime powers and induction along with the formula
dk(pm) =

(
k+m−1

m

)
= 1

m! (k + m− 1)(k + m− 2) · · · k. Choosing σ = k/ log T and noting that
ζ(1 + σ) � max(1/σ, 1), the result follows for integer k. We can then interpolate to nonintegral
k by using Hölder’s inequality on noting that terms of the form (log T )k are absorbed into
eO(k2). �

3.3. Uniformly small k

For upper bounds on uniformly small moments, we make use of the recent progress of Gerspach
[17]. His result is stated for fixed k; however, with a careful reading of the proof, one can get
uniform bounds. We will give the main details. Interestingly, it appears that there is a slight
blow up of the constant as k → 0. We do not know if this is an artefact of the proof or a result
of some deeper change in the distribution around V ≈ √

log log T .

Theorem 5 [17]. Uniformly for 0 < k � 1, we have

E[|Mf (T )|2k] �C(log T )k
2
min

(
1
k2

, log log T
)
· min

(
1
k2

, log3 T

)

+
2
k

min
(

1
k
, log3 T

)

for some absolute constant C.



1626 MARCO AYMONE, WINSTON HEAP AND JING ZHAO

Outline of modified proof. One can check that the uniform version of [17, Proposition 4] is
given by the inequality

E[|Mf (T )|2k] � Ak

(log T )k
∑

0�j�J

E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝
∫ T 1−e−(j+1)

1

∣∣∣∣∣∣∣∣∣
∑
n>z

P (n)�T e−(j+1)

f(n)√
n

∣∣∣∣∣∣∣∣∣

2

dz

z1−2j/ log T

⎞
⎟⎟⎟⎠

k⎤⎥⎥⎥⎥⎦
+ Bk

∑
0�j�J

e−kej
E|Fj(1/2)|2k + J exp(−(1 + o(1))k

√
log T ) + 1,

where A,B are positive absolute constants, J = �log3 T �,
Fj(s) =

∏
p�T e−j

(1 − f(p)p−s)−1

and P (n) denotes the largest prime factor of n. The manipulations of Proposition 5 which lead
to the application of Parseval’s theorem (e.g., see Theorem 6) merely add an extra multiplicative
constant, and so we find that the first term of the above is

� cAk

(log T )k
∑

0�j�J

E

⎡
⎣(∫

R

|Fj( 1
2 − 2(j+1)

log T + it)|2
| 2(j+1)

log T + it|2

)k
⎤
⎦

for some c. Now, uniformly for 0 < k � 1, we have

E|Fj(1/2)|2k =
∏

p�T e−j

∑
m�0

dk(pm)2

pm
�

∏
p�T e−j

⎛
⎝1 + k2

∑
m�1

1
pm

⎞
⎠ � Dk2

(log T e−j

)k
2

for some D where we have used dk(pm) � k which is valid for m � 1 and k in this range.
Therefore, on changing the constant B from before, we arrive at the uniform bound

E[|Mf (T )|2k] � cAk

(log T )k
∑

0�j�J

E

⎡
⎣(∫

R

|Fj( 1
2 − 2(j+1)

log T + it)|2
| 2(j+1)

log T + it|2

)k
⎤
⎦

+ Bk(log T )k
2 ∑

0�j�J

e−kej + J exp(−(1 + o(1))k
√

log T ) + 1. (13)

We now focus on the remaining expectation.
Following [17], we break the range of integration down into various sub-ranges. By symmetry

in law, the expectation of the integral over t < 0 is equal to that over t > 0, so we focus on
this latter range. We then break this down as⎡

⎣∫
0<t� j+1

log T

+
X∑
i=1

∫ 2i j+1
log T

2i−1 j+1
log T

+
Y∑
i=1

∫ 2i ej

log T

2i−1 ej

log T

+
∞∑
i=1

∫ 2i

2i−1

⎤
⎦ |F|2
| 2(j+1)

log T + it|2
dt, (14)

where

X =
log(ej/(j + 1))

log 2
, Y =

log(e−j log T )
log 2

,

and F = Fj(1/2 − 2(j + 1)/log T + it) for short. Again by symmetry in law, the expectation
of the first integral of (14) is the same as that of the first term of the first sum. Therefore, we
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concentrate on the ranges in these three sums. Combining uniform versions of [17, Propositions
10, 11 and 12], we find that for Z � (j + 1)/ log T ,

E

⎡
⎣(∫ 2Z

Z

|F|2
| 2(j+1)

log T + it|2
dt

)k
⎤
⎦ � C

Z2k
·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e−jk2

Zk(log T )k
2
, j+1

log T � Z � ej

log T

e−jkZ2k−k2
(log T )k, ej

log T < Z � 1

e−jkZk(log T )k, 1 < Z.

(15)

These follow in the same way by applying [17, Lemma 8] which in fact holds for uniformly
small exponents b and c there (see ‘Euler product result 1’ of [20]).

Applying (15), we find that the expectation of the kth power of (14) is bounded above by

C

[
e−jk2

(log T )k
2

X∑
i=1

(
2i−1 j + 1

log T

)−k

+ e−jk(log T )k
Y∑

i=1

(
2i−1 ej

log T

)−k2

+ e−jk(log T )k
∞∑
i=0

2−ik

]

� C

[
Xe−jk2

(log T )k
2+k + e−jk2−jk(log T )k

2+k 1 − 2−Y k2

1 − 2−k2 + e−jk(log T )k
1

1 − 2−k

]
.

Since X � 2j and Y � 2 log log T , applying this in (13) gives that E[|Mf (T )|2k] is

�cCAk

[
2(log T )k

2 ∑
0�j�J

je−jk2
+ (log T )k

2
min( 1

k2 , Y )
∑

0�j�J

e−2jk2

+
2

k

∑
0�j�J

e−jk

]
+ Bk(log T )k

2 ∑
0�j�J

e−kej + J exp(−(1 + o(1))k
√

log T ) + 1

�C′(log T )k
2(

min( 1
k4 , (log3 T )2) + min( 1

k2 , log log T ) · min( 1
k2 , log3 T )

)
+

2

k
min( 1

k
, log3 T ) + log3 T exp(−(1 + o(1))k

√
log T ) + 1

for some absolute constant C′. Since the last two terms are of a lower order, this is

� C′′(log T )k
2
min( 1

k2 , log log T ) · min( 1
k2 , log3 T ) +

2

k
min( 1

k
, log3 T )

and so the result follows. �

4. Tail bounds: Proof of Theorem 1

Theorem 1 consists of two statements. The first gives upper and lower bounds for the
distribution in the range (log2 T )1/2 log3 T � V � log T/(log log T )h(T ) whilst the second gives
lower bounds when V = L

√
log2 T (small range). We further split the first of these into the

ranges (log2 T )1/2 log3 T � V � log log T (medium range) and log log T � V � log T/ log log T
(large range). We will deal with these in order starting with the large range.

4.1. Large range V

We begin with upper bounds since this is simpler.

Lemma 5. For log log T � V � C log T/ log log T , we have

P
(|Mf (T )| � eV

)
� exp

(
−(1 + o(1))

V 2

log ((log T )/V )

)
.
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Proof. By Chebyshev’s inequality and Theorem 2, we have

P
(|Mf (T )| � eV

)
�

E

[
|Mf (T )|2k

]
e2kV

� e−2kV e−k2 log k−k2 log2 k+O(k2)(log T )k
2

provided 10 � k � C log T/ log log T . If 1 � k � 10, then the same bound holds with the factor
e−k2 log k−k2 log2 k+O(k2) replaced by some absolute constant (by (6)). Then for 10 log2 T � V �
log T/ log log T , we may take k = V/ log((log T )/V ) in which case the right-hand side becomes

exp
(
− 2V 2

log((log T )/V )
+

V 2

log2((log T )/V )

(
log log T

− log(V/ log((log T )/V )) − log2(V/ log((log T )/V ) + O(1)
))

� exp
(
− V 2

log((log T )/V )
+

V 2

log2((log T )/V )
log log((log T )/V )

)
, (16)

which simplifies to the desired quantity. When log2 T � V � 10 log2 T , the same choice of k
gives the result. �

The lower bounds is where we gain the slight restriction on the size of V in the large range.

Lemma 6. Suppose log log T � V � C log T/ log log T . If V � log T/(log log T )h(T ) with
h(T ) → ∞ arbitrarily slowly, then

P
(|Mf (T )| > eV

)
� exp

(
−(1 + o(1))

V 2

log((log T )/V )

)
. (17)

Otherwise, we have

P
(|Mf (T )| > eV

)
� exp

(
−(1 + ε)

V 2

log((log T )/V )
− 10V 2 log2 V

log2((log T )/V )

)
, (18)

for any given fixed ε > 0.

Proof. Let

ΦT (V ) = P
(|Mf (T )| > eV

)
.

Then

E

[
|Mf (T )|2k

]
= 2k

∫ ∞

0

Φ(log u)u2k−1du = 2k
∫ ∞

−∞
Φ(u)e2kudu.

For a given V , we wish to show that there exists a k = kV and ε > 0 such that∫ V (1+ε)

V (1−ε)

Φ(u)e2kudu ∼
∫ ∞

−∞
Φ(u)e2kudu.

To motivate our choice of k later, we note that if indeed Φ(u) ≈ e−u2/ log(log T/u), then a quick
check shows that such a value of k must occur at k = V/ log(log T/V ).

Consider the upper tail. For this, we have∫ ∞

V (1+ε)

Φ(u)e2kudu �e−2kδV (1+ε)

∫ ∞

V (1+ε)

Φ(u)e2k(1+δ)udu

�e−2kδV (1+ε)

∫ ∞

−∞
Φ(u)e2k(1+δ)udu



PARTIAL SUMS OF RANDOM MULTIPLICATIVE FUNCTIONS 1629

for any δ > 0. Again, we must consider separately the ranges 1 � k � 10 and 10 � k �
C log T/ log log T so that the double logarithms in Theorem 2 make sense. We consider the
latter range since the former range can be dealt with similarly using the less complicated
bounds E[|Mf (T )|2k] 	 (log T )k

2
. Continuing, by Theorem 2, the above is

�(log T )k
2(1+δ)2e−2kδV (1+ε)−k2(1+δ)2 log k−k2(1+δ)2 log2 k+Ck2

�(log T )k
2[(1+δ)2−1]e−2kδV (1+ε)−k2[(1+δ)2−1] log k−k2[(1+δ)2−1] log2 k+Dk2

∫ ∞

−∞
Φ(u)e2kudu.

The factor in front of the integral is

exp
(−2kδV (1 + ε) + 2δ(1 + δ

2 )k2
(
log((log T )/k) − log2 k) + Dk2

))
.

On choosing k = V/ log(log T/V ), this becomes

exp
(
− 2δ(1 + ε)

V 2

log((log T )/V )
+ 2δ(1 + δ

2 )
V 2

log2((log T )/V )
(log((log T )/V )

− log2(V/ log((log T )/V ))) + D
V 2

log2((log T )/V )

)

which simplifies to

exp
(
− 2δ(ε− δ

2 )
V 2

log((log T )/V )
− V 2

log2((log T )/V )

[
2δ(1 + δ

2 ) log2(
V

log((log T )/V ) ) −D
])

.

Therefore, if we choose δ = ε, this has negative leading term in the exponential and hence is
o(1). Removing the double logarithm in the above, we get the upper bound

exp
(
−ε2

V 2

log((log T )/V )
+ D

V 2

log2((log T )/V )

)
,

which is still o(1) provided ε � 1/
√

log((log T )/V ).
Now consider the lower tail. Applying a similar argument, we have∫ V (1−ε)

−∞
Φ(u)e2kudu �e2kδV (1−ε)

∫ V (1−ε)

−∞
Φ(u)e2k(1−δ)udu

�e2kδV (1−ε)

∫ ∞

−∞
Φ(u)e2k(1−δ)udu.

By (7), this is

�(log T )k
2(1−δ)2e2kδV (1−ε)−k2(1−δ)2 log k−k2(1−δ)2 log2 k+Ck2

�(log T )k
2[(1−δ)2−1]e2kδV (1−ε)−k2[(1−δ)2−1] log k−k2[(1−δ)2−1] log2 k+Dk2

∫ ∞

−∞
Φ(u)e2kudu.

The factor in front of the integral simplifies to

exp
(
2kδV (1 − ε) − 2δ(1 − δ

2 )k2
(
log((log T )/k) − log2 k) + Dk2

))
.

On setting k = V/ log(log T/V ), this becomes

exp
(

2δ(1 − ε)
V 2

log((log T )/V )
− 2δ(1 − δ

2 )
V 2

log2((log T )/V )
(log((log T )/V )

− log2(V/ log((log T )/V ))) + D
V 2

log2((log T )/V )

)
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which simplifies to

exp
(
− 2δ(ε− δ

2 )
V 2

log((log T )/V )
+

V 2

log2((log T )/V )

[
2δ(1 − δ

2 ) log2(
V

log((log T )/V ) ) + D
])

.

Again, choosing δ = ε, this is o(1), although this time with the proviso

ε � max(
√

1/ log((log T )/V ), (log2 V )/ log((log T )/V )). (19)

We have therefore shown that for k = V/ log((log T )/V ) and ε satisfying (19),∫ V (1+ε)

V (1−ε)

Φ(u)e2kudu ∼
∫ ∞

−∞
Φ(u)e2kudu.

Since Φ is a non-increasing function, we infer

2V εΦ(V (1 + ε))e2kV (1−ε) �
∫ ∞

−∞
Φ(u)e2kudu � 2V εΦ(V (1 − ε))e2kV (1+ε).

For the right-hand inequality, by Theorem 2 with the above choice of k, we have

Φ(V (1 − ε)) � 1
4εkV

e−2kV (1+ε)+k2[log2 T−log k−log2 k−A]

� log((log T )/V )
V 2

exp
(
− (1 + 2ε)

V 2

log((log T )/V )

− V 2

log2((log T )/V )
[log2(V/ log((log T/V ))) + A]

)
.

This gives the second bound (18) of the lemma.
If V � log T/(log log T )h(T ) with h(T ) → ∞ arbitrarily slowly set

ε = 10max(
√

1/ log((log T )/V ), (log2 V )/ log((log T )/V ))

and note this is o(1). Then we get

Φ(V ) � exp
(
− V 2

log((log T )/V )
− 100V 2

log2((log T )/V )
(log2 V +

√
log((log T )/V ))

)

and the first bound (17) follows. �

4.2. Medium range

In the medium range (log2 T )1/2 log3 T � V � log log T , we make use of bounds for low
moments. Lemma 3 gives the lower bounds

E[|Mf (T )|2k] � C(log T )k
2

(20)

uniformly in the range 0 < k � 1 for some absolute constant C > 0 whilst Theorem 5 in the
range 1/

√
log log T � k � 1 gives the uniform bound

E[|Mf (T )|2k] � C(log2 T )(log3 T )(log T )k
2

(21)

for some (different) absolute constant C > 0.

Lemma 7 (Medium range V ). If (log2 T )1/2 log3 T � V � log log T , then

P
(|Mf (T )| � eV

)
= exp(−(1 + o(1))V 2/ log((log T )/V )).
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Proof. Given the range of V , it suffices to prove the bound

P
(|Mf (T )| � eV

)
= exp(−(1 + o(1))V 2/ log log T ).

For the upper bound, by Chebyshev’s inequality and (21), we have

P
(|Mf (T )| � eV

)
� Ce−2kV (log2 T )(log3 T )(log T )k

2

for 1/
√

log log T � k � 1. Choosing k = V/ log log T , the right-hand side is

� exp
(
− V 2

log log T
+ 2 log3 T

)
= exp

(
−(1 + o(1))

V 2

log log T

)

given the range of V .
For the lower bound, we proceed similarly to Lemma 6. As before let

ΦT (V ) = P
(|Mf (T )| > eV

)
so that

E

[
|Mf (T )|2k

]
= 2k

∫ ∞

−∞
Φ(u)e2kudu. (22)

Let 0 < k � 1 and ε > 0 to be chosen later. Again we have∫ ∞

V (1+ε)

Φ(u)e2kudu �e−2kδV (1+ε)

∫ ∞

−∞
Φ(u)e2k(1+δ)udu

for any δ > 0. From (22) and the bounds (20) and (21), this is

�C(2k)−1(log2 T )(log3 T )(log T )k
2(1+δ)2e−2kδV (1+ε)

�C ′(log2 T )(log3 T )(log T )k
2[(1+δ)2−1]e−2kδV (1+ε)

∫ ∞

−∞
Φ(u)e2kudu.

The factor in front of the integral is

� exp
(
2δ(1 + δ

2 )k2 log log T − 2kδV (1 + ε) + 2 log3 T
)

which on choosing k = V/ log log Y and δ = ε becomes

exp
(
−ε2

V 2

log log T
+ 2 log3 T

)
� exp

(
−ε2

2
V 2

log log T

)

provided ε � 2/
√

log3 T . A similar argument gives∫ V (1−ε)

−∞
Φ(u)e2kudu � exp

(
−ε2

2
V 2

log log T

)∫ ∞

−∞
Φ(u)e2kudu.

We have therefore shown that for k = V/ log log T and ε � 2/
√

log3 T , we have∫ V (1+ε)

V (1−ε)

Φ(u)e2kudu = (1 + O(e−ε2V 2/2 log log T ))
∫ ∞

−∞
Φ(u)e2kudu,

where the implicit constant may be taken to be 2. Since Φ is nonincreasing and V �
(log2 T )1/2 log3 T , we infer

(1 −O(e−ε2(log3 T )2))
∫ ∞

−∞
Φ(u)e2kudu � 2V εΦ(V (1 − ε))e2kV (1+ε).



1632 MARCO AYMONE, WINSTON HEAP AND JING ZHAO

By (20) with the above choice k = V/ log log T , we have

Φ(V (1 − ε)) �C
(1 −O(e−ε2(log3 T )2))

4εkV
e−2kV (1+ε)(log T )k

2

=C(1 −O(e−ε2(log3 T )2))
log log T

4εV 2
exp
(
−(1 + 2ε)

V 2

log log T

)
.

Choosing ε = 2/
√

log3 T , we get

Φ(V ) � exp
(
−(1 + o(1))

V 2

log log T

)
. �

4.3. Small range

We now turn to proving the remaining lower bound (3) of Theorem 1 which states that for
V = (L + o(1))

√
log log T with L > 0 fixed,

P
(|M(T )| � eV

)� ∫ ∞

L

e−x2/2dx.

We make use of Harper’s methods [21] following the proof of his Corollary 2 there.
We begin with the equivalent of [21, Lemma 8]. Letting Ê denote the conditional expectation

with respect to the variables (f(p))p�√
T and P̂ the corresponding conditional probability, this

states that if A denotes the event in which∣∣∣∣∣∣
∑
n�T

f(n)√
n

∣∣∣∣∣∣ �
1
2

Ê

∣∣∣∣∣∣
∑

n�T,P (n)>
√
T

f(n)√
n

∣∣∣∣∣∣,
then P̂(A) � 1 for any realisation of the (f(p))p�√

T , that is, P̂(A) is bounded away from 0
uniformly in T and the realisation of (f(p))p�√

T . We omit the proof of this since it follows
more or less verbatim; the only difference being a factor of 1/

√
n in the sums. Then, since

Ê

∣∣∣∣∣∣
∑

n�T,P (n)>
√
T

f(n)√
n

∣∣∣∣∣∣ = Ê

∣∣∣∣∣∣
∑

√
T<p�T

f(p)√
p

∑
n�T/p

f(n)√
n

∣∣∣∣∣∣ 	
⎛
⎜⎝ ∑

√
T<p�T

1
p

∣∣∣∣∣∣
∑

n�T/p

f(n)√
n

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

by Khintchine’s inequality (since the functions f(n) in the inner sum only depend on the
p �

√
T ), it suffices to prove the same lower bound for the probability

P

⎛
⎜⎝ ∑

√
T<p�T

1
p

∣∣∣∣∣∣
∑

n�T/p

f(n)√
n

∣∣∣∣∣∣
2

� e2V

⎞
⎟⎠.

Next we perform the smoothing step. With X = exp (
√

log T ), write

∑
√
T<p�T

1
p

∣∣∣∣∣∣
∑

n�T/p

f(n)√
n

∣∣∣∣∣∣
2

=
∑

√
T<p�T

X

p2

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

n�T/p

f(n)√
n

∣∣∣∣∣∣
2

dt

�1
4

∑
√
T<p�T

X

p2

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

n�T/t

f(n)√
n

∣∣∣∣∣∣
2

dt

−
∑

√
T<p�T

X

p2

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

T/t<n�T/p

f(n)√
n

∣∣∣∣∣∣
2

dt,
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where in the second line we have used the inequality |a + b|2 � 1
4 |a|2 − min(|b|2, 1

4 |a|2) �
1
4 |a|2 − |b|2. The expectation of the subtracted term here is

�
∑

√
T<p�T

1
p

∑
T/(p(1+1/X))<n�T/p

1
n

=
∑

√
T<p�T

1
p
(log(1 + 1/X) + O(p/T ))

� log log T
X

+
1

log T

by the prime number theorem. Therefore, by Chebyshev’s inequality, the probability that this
subtracted term is � e2V /

√
log T , is � 1

e2V
√

log T
. Since this is much smaller than our target

probability, we can ignore this term.
Returning to the first term, we have

∑
√
T<p�T

X

p2

∫ p(1+1/X)

p

∣∣∣∣∣∣
∑

n�T/t

f(n)√
n

∣∣∣∣∣∣
2

dt =
∫ T

√
T

∑
t/(1+1/X)<p�t

X

p2

∣∣∣∣∣∣
∑

n�T/t

f(n)√
n

∣∣∣∣∣∣
2

dt

and since by the prime number theorem

∑
t/(1+1/X)<p�t

X

p2
� X

log t

(
1

t/(1 + 1/X)
− 1

t

)
=

1
t log t

,

this is

�
∫ T

√
T

∣∣∣∣∣∣
∑

n�T/t

f(n)√
n

∣∣∣∣∣∣
2

dt

t log t
� 1

log T

∫ √
T

1

∣∣∣∣∣∣
∑
n�t

f(n)√
n

∣∣∣∣∣∣
2

dt

t

after letting t �→ T/t. We now note that we may add the condition n ∈ S(T ) in the sum with
no change, and then after applying a small shift we find this is

� 1
log T

∫ √
T

1

∣∣∣∣∣∣∣∣
∑
n�t

n∈S(T )

f(n)√
n

∣∣∣∣∣∣∣∣

2

dt

t1+
4 log log T

log T

.

Writing the integral as
∫∞
1

− ∫∞√
T
, we find that the expectation of the subtracted term is

� 1
log T

∫ ∞
√
T

⎛
⎜⎜⎝ ∑

n�t
n∈S(T )

1
n

⎞
⎟⎟⎠ dt

t1+
4 log log T

log T

�
∫ ∞
√
T

dt

t1+
4 log log T

log T

=
1

4 log T log log T
.

As before, this is seen to give a negligible contribution to the probability. Finally, we apply
Parseval’s Theorem for Dirichlet series.

Theorem 6 [27, Parseval’s Theorem, (5.26)]. For a given sequence of complex numbers
(an)∞n=1 consider the Dirichlet series A(s) =

∑∞
n=1 ann

−s and let σc denote its abscissa of
convergence. Then for any σ > max(0, σc) we have

∫ ∞

1

∣∣∣∣∣∣
∑
n�x

an

∣∣∣∣∣∣
2

dx

x1+2σ
=

1
2π

∫
R

|A(σ + it)|2
|σ + it|2 dt.
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Applying this, we find that

1
log T

∫ ∞

1

∣∣∣∣∣∣∣∣
∑
n�t

n∈S(T )

f(n)√
n

∣∣∣∣∣∣∣∣

2

dt

t1+
4 log log T

log T

=
1

log T

∫ ∞

−∞

|F ( 1
2 + 2 log log T

log T + it)|2
| 2 log log T

log T + it|2 dt,

where F (s) =
∏

p�T (1 − p−s)−1.
At this point, we notice a difference to the case covered by Harper. The denominator

of the integral on the right can get rather small around t ≈ 0, which is not the case for
the sum

∑
n�T f(n). To pick this up, we lower bound by the integral over the range

[−1/2 log T, 1/2 log T ]. In this way, we get the lower bound

� log T
4(log2 T )2

∫ 1/2 log T

−1/2 log T

|F ( 1
2 + 2 log log T

log T + it)|2dt

and have thus reduced the problem to the study of the probability

P

(
log T

∫ 1/2 log T

−1/2 log T

|F ( 1
2 + 2 log log T

log T + it)|2dt � e2V (log2 T )2
)
. (23)

We now proceed similarly with Jensen’s inequality although our ensuing analysis of the
leading term is considerably simplified. We have

log T
∫ 1/2 log T

−1/2 log T

|F ( 1
2 + 2 log log T

log T + it)|2dt

= log T
∫ 1/2 log T

−1/2 log T

exp(2 log |F ( 1
2 + 2 log log T

log T + it)|)dt

� exp

(
2 log T

∫ 1/2 log T

−1/2 log T

log |F ( 1
2 + 2 log log T

log T + it)|dt
)

= exp

⎛
⎝2 log T

∫ 1/2 log T

−1/2 log T

�
∑
p�T

[
f(p)p−it

p1/2+2 log2 T/log T
+

f(p)2p−2it

2p1+4 log2 T/log T

]
dt + O(1)

⎞
⎠

after applying the Euler product formula.
Let us remove the second sum in the exponential. First note that since

log T
∫ 1/2 log T

−1/2 log T

p−2itdt = 1 + O(log p/ log T )

and
∑

p�x log p/p � log x, we can remove the term p−2it at a cost of O(1). Now,∣∣∣∣∣∣
∑

p�(log T )5

�f(p)2

p1+4 log2 T/log T

∣∣∣∣∣∣ �
∑

p�(log T )5

1
p

= log3 T + O(1) (24)

and

E

∣∣∣∣∣∣
∑

(log T )5<p�T

�f(p)2

p1+4 log2 T/log T

∣∣∣∣∣∣
2

�
∑

(log T )5<p�T

1
p2

� 1
(log T )6
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by the Prime Number Theorem. Therefore,

P

⎛
⎝ ∑

(log T )5<p�T

�f(p)2

p1+4 log2 T/log T
� 1

⎞
⎠� 1/(log T )6

which, similarly to before, results in a negligible contribution compared to our target bound.
Inputting these developments into (23), we have reduced the problem to lower bounding the
probability

P

⎛
⎝2 log T

∫ 1/2 log T

−1/2 log T

�
∑
p�T

f(p)p−it

p1/2+2 log2 T/log T
dt � 2V + 3 log3 T

⎞
⎠,

where the extra log3 T term has come from (24). We can now complete the proof with the
following lemma.

Lemma 8. Let L > 0 be a fixed constant and V = (L + o(1))
√

1
2 log log T . Then

P

⎛
⎝∑

p�T

log T
∫ 1/2 log T

−1/2 log T

�(f(p)p−it
)

p1/2+2 log2 T/log T
dt � V

⎞
⎠ � (1 + o(1))

1√
2π

∫ ∞

L

e−x2/2dx.

Proof. Set f(p) = eiθp , where (θp)p are independent and identically distributed (i.i.d.) with
distribution uniform in the interval [0, 2π]. Thus, �(f(p)p−it) = cos(θp − t log p), and hence

log T
∫ 1/2 log T

−1/2 log T

�(f(p)p−it
)
dt = log T

∫ 1/2 log T

−1/2 log T

cos(θp − t log p)dt

=
log T
log p

(
sin
(
θp +

log p
2 log T

)
− sin

(
θp − log p

2 log T

))

= 2
log T
log p

sin
(

log p
2 log T

)
cos(θp),

where in the last equality we used that sin(a + b) = sin(a) cos(b) + sin(b) cos(a) and sin(a−
b) = sin(a) cos(b) − sin(b) cos(a). Define

ΣT :=
∑
p�T

log T
∫ 1/2 log T

−1/2 log T

�(f(p)p−it
)

p1/2+2 log2 T/log T
dt.

Thus, we have shown that

ΣT = 2
∑
p�T

1
p1/2+2 log2 T/ log T

log T
log p

sin
(

log p
2 log T

)
cos(θp).

Now note that (cos(θp))p are i.i.d. with E cos(θp) = 0 and E cos(θp)2 = 1/2. Then, since
sin(x)2 = 1−cos(2x)

2 = x2 + O(x4), we have

EΣ2
T = 2

∑
p�T

1
p1+4 log2 T/ log T

(log T )2

(log p)2

(
(log p)2

4(log T )2
+ O

(
(log p)4

(log T )4

))

=
1
2

∑
p�T

1
p1+4 log2 T/ log T

+ O(1)
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by Chebyshev’s estimate
∑

p�x log p/p � log x. Splitting the sum at p = T 1/ log log T we find
that ∑

p�T 1/ log log T

1
p1+4 log2 T/ log T

=
∑

p�T 1/ log log T

1
p

(
1 + O

(
log p log log T

log T

))

=
∑

p�T 1/ log log T

1
p

+ O(1)

= log log T − log3 T + O(1)

by Chebyshev’s estimate again and then Mertens’ Theorem. Since the tail sum is

�
∑

T 1/ log log T<p�T

1
p
� log3 T

we find that EΣ2
T = (1/2) log log T + O(log3 T ).

Now observe that each factor in ΣT is bounded by 1, due to the fact that | sin(x)| � x. Hence,
by the Central Limit Theorem for triangular arrays (see, for instance, [30, Theorem 2, p.334]),
we have that

ΣT√
1
2 log log T

→d N (0, 1),

as T → ∞ (where →d means convergence in distribution). �

5. Almost sure bounds

In this section, we are going to prove Theorem 3 using the Borel–Cantelli Lemma as our main
tool. As is typical, this consists of two main steps: a ‘sparsification’ step where the set of
points T is discretised to some sparser subset, and then a step where we bound the resultant
probabilities (typically via Chebyshev’s inequality and moment bounds). The sparsification
step of Lau–Tenenbaum–Wu [26, Lemma 2.3] loses a factor of a logarithm which is crucial for
us. Instead, we make use of a theorem of [9] (Lemma 11 below) which involves a finer analysis.
Our first two lemmas below provide the necessary moment bounds.

Lemma 9. Let (a(n))n∈N be a sequence of complex numbers such that a(n) 
= 0 only for a
finite number of n. Then, for any nonnegative integer 
, we have that

E

∣∣∣∣∣∣
∑
n�1

a(n)f(n)√
n

∣∣∣∣∣∣
2�

�

⎛
⎝∑

n�1

|a(n)|2τ�(n)
n

⎞
⎠

�

,

where τ�(n) =
∑

n1·...·n�=n 1.

Proof. We have

E

⎛
⎝∣∣∣∑

n�1

a(n)
f(n)√

n

∣∣∣2�
⎞
⎠ = E

⎛
⎝∣∣∣ ∑

n1,...,n��1

a(n1) · · · a(n�)
f(n1) · · · f(n�)√

n1 · · ·n�

∣∣∣2
⎞
⎠

=
∑

n1···n�=m1···m�

a(n1) · · · a(n�)a(m1) · · · a(m�)√
n1 · · ·n� ·m1 · · ·m�

=
∑
n�1

|
∑

n1···n�=n

a(n1) · · · a(n�)|2/n.
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By the Cauchy–Schwarz inequality, this is bounded above by∑
n�1

τ�(n)
n

∑
n1···n�=n

|a(n1) · · · a(n�)|2 �
∑
n�1

1
n

∑
n1···n�=n

|a(n1) · · · a(n�)|2τ�(n1) · · · τ�(n�)

=

⎛
⎝∑

n�1

|a(n)|2τ�(n)
n

⎞
⎠

�

,

where we have used τ�(n1 · · ·n�) � τ�(n1) · · · τ�(n�). �

Lemma 10. Uniformly for 1 � u < v, we have∑
u<n�v

τ(n)
n

� C(log v)4/3(log(v/u))2/3

for some positive absolute constant C.

Proof. We use classical improvements to Dirichlet’s bound for the error term in the divisor
problem. From [33, Theorem 12.4], for example, we have

D(x) :=
∑
n�x

τ(n) = x log x + (2γ − 1)x + O(x1/3).

Therefore, by partial summation∑
u<n�v

τ(n)
n

=
∫ v

u

1
x
· dD(x) =

D(x)
x

∣∣∣∣
v

u

+
∫ v

u

D(x)
x2

dx

= log(v/u) + O(u−2/3) +
∫ v

u

[
log x
x

+
2γ − 1

x
+ O(x−5/3)

]
dx

=
1
2
(log2 v − log2 u) + 2γ log(v/u) + O(u−2/3)

uniformly for 1 � u < v. The first term of the above is � log v log(v/u) whilst the third is
u−2/3 � (log u+1

u )2/3 � (log v
u )2/3. Accordingly,

∑
u<n�v

τ(n)
n

� log v log(v/u) + log(v/u) + (log(v/u))2/3

�(log v)4/3(log(v/u))2/3. �

Lemma 11 [9, Theorem 10.2, p. 107]. Let SN = X1 + · · · + XN . Suppose that α > 1/2 and
that β � 0. Let u1, . . . , uN be real numbers such that for all λ > 0

P(|Sj − Si| � λ) � 1
λ4β

⎛
⎝ ∑

i<n�j

un

⎞
⎠

2α

, 0 � i � j � N.

Then

P

(
max
k�N

|Sk| � λ

)
�α,β

1
λ4β

⎛
⎝∑

n�N

un

⎞
⎠

2α

.
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Proof of Theorem 3. Let Tj = exp(j4). We have, by Lemma 9, for any Tj−1 < u � v � Tj

that

E|Mf (v) −Mf (u)|4 �

⎛
⎝ ∑

u<n�v

τ(n)
n

⎞
⎠

2

.

Let ε > 0, 2 < r < 4 and write r = 2 + 2t = 2(1 − t) + 4t with t = t(ε) to be chosen later. Then
by Hölder’s inequality, for any Tj−1 < u � v � Tj , we have

E|Mf (v) −Mf (u)|r �
(
E|Mf (v) −Mf (u)|2)1−t(

E|Mf (v) −Mf (u)|4)t

�

⎛
⎝ ∑

u<n�v

1
n

⎞
⎠

1−t⎛
⎝ ∑

u<n�v

τ(n)
n

⎞
⎠

2t

.

But by Lemma 10,

∑
u<n�v

τ(n)
n

� (log v)4/3(log(v/u))2/3 � (log v)4/3

⎛
⎝ ∑

u<n�v

1
n

⎞
⎠

2/3

since
∑

u<n�v 1/n �
∫ v+1

u+1
dx/x � 1

2 log(v/u) uniformly for 1 � u < v. Therefore,

E|Mf (v) −Mf (u)|r �

⎛
⎝ ∑

u<n�v

1
n

⎞
⎠

1+t/3

(log Tj)8t/3.

Thus, Lemma 11 is applicable with β = r
4 , α = 1+t/3

2 and for some constant c0 > 0,

un = un(j) = c0
(log Tj)

8t/3
1+t/3

n
,

where Tj−1 < n � Tj . Here, we remark that the fact α > 1/2, and hence the use of Lemma 11,
was allowed by the improved error term of O(x1/3) in the divisor problem. In fact, any exponent
of x less than 1/2 would have sufficed here. Now, we have that

P

(
max

Tj−1<T�Tj

|Mf (T ) −Mf (Tj−1)| � (log Tj−1)1/2+ε

)

� 1
(log Tj−1)r/2+rε

⎛
⎝ ∑

Tj−1<n�Tj

1
n

⎞
⎠

1+t/3

(log Tj)8t/3 � (log(Tj/Tj−1)1+t/3(log Tj)8t/3

(log Tj−1)r/2+rε

� (j4 − (j − 1)4)1+t/3j32t/3

j2r+4rε
� j3+t+32t/3

j4+4t+4rε
� 1

j1−8t+4rε
.

Select 8t = 4ε so that −8t + 4rε > 0. Hence, by the Borel–Cantelli Lemma the following holds
almost surely:

max
Tj−1<T�Tj

|Mf (T ) −Mf (Tj−1)| � (log Tj−1)1/2+ε. (25)

Next, we recall that for any (log2 T )1/2 log3 T � V � c log T/ log2 T ,

P(|Mf (T )| � eV ) � exp
(
−(1 + o(1))

V 2

log(log T )/V

)
.
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Select, eV = (log Tj)1/2+ε, so that V = (1/2 + ε) log log Tj . Thus

P(|Mf (Tj)| � (log Tj)1/2+ε) � exp
(
−(1 + o(1))(1/2 + ε)2

(log log Tj)2

log(log Tj)/ log log Tj

)

= exp(−(1 + o(1))(1/2 + ε)2 log log Tj)

= exp(−(1 + o(1))(1 + 8ε + 4ε2) log j).

Thus, by the Borel–Cantelli Lemma, we conclude that almost surely

Mf (Tj−1) � (log Tj−1)1/2+ε. (26)

Now, for any arbitrarily large T , select j = j(T ) such that Tj−1 < T � Tj . Then by (25) and
(26), we conclude that almost surely

Mf (T ) = Mf (Tj−1) + (Mf (T ) −Mf (Tj−1)) � (log Tj−1)1/2+ε � (log T )1/2+ε. �

6. Omega bounds

In this section, we prove Theorem 4. We require the following estimate on y-smooth numbers
less than x.

Lemma 12. Let 2 � y � x and let Ψ(x, y) denote the number of integers less than or equal
to x all of whose prime factors are less than or equal to y. Then for y �

√
log x we have

Ψ(x, y) =
1

π(y)!

⎛
⎝∏

p�y

1
log p

⎞
⎠(log x)π(y)

(
1 + O

(
y2

log x log y

))
.

In particular, for fixed y we have Ψ(x, y) �ε x
ε for all ε > 0.

Proof. This is originally due to Ennola [14]. See also [32, Corollary 3.1, Section III.5.2]. �

Let (Xn)n∈N be a sequence of independent random variables. Let A be an event that is
measurable in the sigma algebra σ(X1, X2, . . .). We say that A is a tail event if for any fixed
y ∈ N, A is independent from X1, X2, . . . , Xy. The Kolmogorov zero–one law says that every
tail event either has probability 0 or 1. Let λ(T ) be an increasing function such that λ(T ) → ∞
as T → ∞. In the next lemma, we will show that the event

Aλ = {|Mf (T )| � exp((1 + o(1))λ(T )), for infinitely many integers T > 0}

is a tail event with respect to the (f(p))p, that is, that any change on the values (f(p))p∈S
with S, a finite subset of primes, will not change the outcome.

Lemma 13. Let Aλ be as above. Then Aλ is a tail event.

Proof. Let y > 0 and fy(n) be the multiplicative function such that for each prime p and
any power m ∈ N, fy(pm) = f(pm)�p>y. Let By,λ be the event in which |Mfy (T )| � exp((1 +
o(1))λ(T )) for infinitely many integers T . We are going to show that Aλ and By,λ are the
same event, and since the values (f(p))p are independent and By,λ does not depend on the first
values (f(p))p�y, we can conclude that Aλ is a tail event.
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First, we will show that By,λ ⊂ Aλ. Let gy(n) be the multiplicative function such that at
each prime p and any power m ∈ N, gy(pm) = μ(pm)f(pm)�p�y. Then fy = gy ∗ f and hence

Mfy (T ) =
∑
n�T

gy(n)√
n

Mf (T/n). (27)

Now observe that the set {n ∈ N : gy(n) 
= 0} has at most 2π(y) elements. Thus, in the event
By,λ, by the pigeonhole principle applied to (27), we obtain n �

∏
p�y p such that |Mf (T/n)| �

exp((1+o(1))λ(T ))
2π(y) = exp((1 + o(1))λ(T )) for infinitely many integers T . Thus By,λ ⊂ Aλ.

Now we will show that Aλ ⊂ By,λ. First we partition: Aλ = (Aλ ∩ Cy) ∪ (Aλ ∩ Cc
y), where Cy

is the event in which Mfy (T ) � exp(2λ(T )). Clearly the event Aλ ∩ Cc
y is contained in By,λ.

Now let hy(n) be the multiplicative function such that at each prime p and any power m ∈ N,
hy(pm) = f(pm)�p�y. Then f = hy ∗ fy and hence, for any U > 0

Mf (T ) =
∑
n�U

hy(n)√
n

Mfy (T/n) +
∑

U<n�T

hy(n)√
n

Mfy (T/n).

Now we will show that in the event Aλ ∩ Cy, the second sum in the right-hand side above is
o(1) for a suitable choice of U . Let uy(n) denote the indicator function of y-smooth numbers.
Then, by partial integration and Lemma 12:∑

U<n�T

hy(n)√
n

Mfy (T/n) � exp(2λ(T ))
∑

U<n�T

uy(n)√
n

� exp(2λ(T ))
(

(logU)π(y)

√
U

+
1
2

∫ ∞

U

Ψ(x, y)
x3/2

dx

)

� exp(2λ(T ))
∫ ∞

U

xε

x3/2
dx

� exp(2λ(T ))
U1/2−ε

.

Thus, for the choice U = U(T ) = exp(10λ(T )), we have shown that in the event Aλ ∩ Cy

Mf (T ) =
∑
n�U

hy(n)√
n

Mfy (T/n) + o(1). (28)

Now, by Lemma 12, the set {n � U : hy(n) 
= 0} has at most Ψ(U, y) � (logU)π(y) =
(10λ(T ))π(y) elements. Hence, in the event Aλ,L ∩ Cy, by the pigeonhole principle applied to
(28), we always find infinitely many integers T and n = n(T ) � U such that

|Mfy (T/n)| �
√
n exp((1 + o(1))λ(T ))

(10λ(T ))π(y)
� exp((1 + o(1))λ(T )).

Thus, Aλ ∩ Cy ⊂ By,λ, and hence Aλ = By,λ. �

Proof of Theorem 4. We argue as in [4, Lemma 3.2]. Let λ(T ) = L
√

log log T . We have that
the event Aλ is the event

⋂∞
n=1

⋃∞
T=n[|Mf (T )| � exp((L + o(1))

√
log log T )] and hence

P(Aλ) = lim
n→∞ P

( ∞⋃
T=n

[Mf (T ) � exp((L + o(1))
√

log log T )]

)

� δ > 0,
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where in the second line above we used the Gaussian lower bound (3). Thus, by the Kolmogorov
zero–one law, we conclude that P(Aλ) = 1. Hence, we have shown that for all L > 0,

lim sup
T→∞

|Mf (T )|
exp((L + o(1))

√
log log T )

� 1

almost surely. Since this holds for any given L > 0, the form stated in the theorem follows. �
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