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The low-dimensional homology of finite-rank Coxeter groups

RACHAEL BOYD

We give formulas for the second and third integral homology of an arbitrary finitely
generated Coxeter group, solely in terms of the corresponding Coxeter diagram. The
first of these calculations refines a theorem of Howlett, while the second is entirely new
and is the first explicit formula for the third homology of an arbitrary Coxeter group.

20F55, 20J05, 20J06, 55T05

1 Introduction

Given a Coxeter group W with finite generating set S and corresponding system (W, S),
denote the associated Coxeter diagram by Dy (see Definitions 2.1 and 2.6).

In this paper, variations on this diagram are defined, and Theorems A and B below
calculate the second and third integral homology for any finite-rank Coxeter group W,
in terms of the zeroth and first cellular homologies of these new diagrams, considered
as cell complexes in their own right.

Throughout this paper we will always denote the cyclic group Z/nZ as Z, . Previously,
it was known that the first and second homology groups of a Coxeter group were
isomorphic to Z5', where r; = rankgz,(H;(W;Z)) and both r; and r are known.
The computation of Hy(W;Z) is a straightforward computation of the abelianisation.
The computation of H,(W;Z) is due to Howlett [9]. Thara and Yokonuma [11] give
results for the second cohomology of certain finite Coxeter groups, with coefficients
in C*. These results agree with Howlett’s theorem for the groups in question.

Theorem A below gives a refinement of Howlett’s theorem by introducing a natural-
ity statement. The method of proof is new and uses a spectral sequence argument.
Theorem B is the first explicit formula for H3(W;Z) and extends the same method.
This method could be extended to produce computations of higher homologies, the
drawback being that the differentials in the spectral sequence become more difficult
to handle as the homological degree increases. Terms that we use while stating our
results below will be defined in Section 2.
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1.1 Second homology

Given a diagram D, let E(D) and V(D) be the set of edges and set of vertices of D,
respectively. Let Dy be the Coxeter diagram corresponding to Coxeter system (W, .S).
Then V(Dw) = S and to every pair s # ¢ € S there is an associated label m(s, 1) €
N U oo.
Definition 1.1 We introduce three new diagrams: Dy, Deven and D, .
e Let Dogq be the diagram with V(Dygq) = S and
e(s,t) € E(Doga) <= m(s,t) is odd.
e Let Deyen be the diagram with V(Deyen) = S and
e(s,t) € E(Deven) < 2 # m(s,t) is even.
e Let D,, be the diagram with
V(Deo) = {{s,t}|s,t €8, m(s, t) =2},
e({s1.11}, {52, 12}) € E(Dse) < 51 =52 and m(t1,1) is odd.
Theorem A Given a finite-rank Coxeter system (W, S), there is a natural isomorphism
Hy(W:Z) = Ho(Dao; Z2) @ L2[E(Deven)] ® H1(Dodd: Z2),

where in the first and final term of the right-hand side the diagrams are considered as
1—dimensional cell complexes.

Remark 1.2 Computing the rank of the right-hand side recovers Howlett’s theorem [9].

Consider the category where the objects are Coxeter systems and the morphisms are
full inclusions (Definition 2.11); then group homology acts as a functor to the category
of abelian groups. The right-hand side of the isomorphism in Theorem A assigns to a
Coxeter diagram Dy the three new diagrams Dygqq, Deven and Do, and furthermore
assigns to these diagrams an abelian group. The total outcome is again a functor to
abelian groups. Naturality says that the isomorphism of the statement is a natural
isomorphism of functors.

1.2 Third homology

To state this theorem we introduce four new diagrams.
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Definition 1.3 Let Dy be a Coxeter diagram corresponding to the Coxeter system
(W, S).

e Let Dy, be the diagram with
V(Dg,) ={{s.t}|s,t €S, m(s, t) =3},
e({s1,11}, {52, 12}) € E(D4,) <= s1=s2and m(i1,12) = 2.

e Let D, 2r, be the diagram with

V(D o2te) ={{s,t,u}|s,t,ucs, m(s,t)=m(s,u)=2, m(t,u) =2r is even},

e({s1,t1,u1}, {s2, 12, uz}) € E(D, 2r4) <= t1 =12, U1 =Uuz, m(sy, s2) is odd.
e Let Dy, be the diagram with

V(Dgy) = s, t,uf|s,t,uesS, m(s,t) =m(t,u) =3 and m(s,u) = 2},
e({s1,t1,u1}, {52, 12, u2}) € E(Dgy) <= 11 =12, u1 = uz, m(s1,52) =2.

o Let DY be the CW-complex formed from the diagram D,, by attaching a 2—cell
to every square.

Theorem B Given a finite-rank Coxeter system (W, S), there is an isomorphism

H3(W;Z) = Ho(Doua: Z2) ® Ho(Da,; Z3) ® ( @ Zm(s,t))

3<m(s,t)<oo

@HO(D-oZ—’.QZZ)@( &y Zz)

W(H3)SW
W(B3)SW

® (Ho(Day: Z2) O Ho(Dawi Z2)) & H1 (DL Z),

where each diagram is viewed as a cell complex. In this equation, () denotes a known
nontrivial extension of Ho(D 4,; Z2) by Ho(D..; Z2) fully described via an extension
matrix Xy from Definition 5.40.

We note that the unpublished PhD thesis of Harris [8] contains an independent compu-
tation of the third integral homology of a Coxeter group, which differs from Theorem B
in many cases.

The finite Coxeter groups were classified in the 1930s by Coxeter [3]. This classification
is described in Theorem 2.7. We use Theorems A and B to calculate the second and third
integral homology of the finite Coxeter groups, and give the results in the appendix.
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1.3 Outline of the proof

Given a Coxeter system (W, §) these results arise from the computation of the isotropy
spectral sequence for a contractible CW—complex upon which the Coxeter group W
acts, called the Davis complex. Cells in the Davis complex correspond to finite Coxeter
groups that appear in W, the spherical subgroups. These have Coxeter systems (W7, T'),
where Wr is a finite Coxeter group and 7" C S. The set of 7 C S which generate
spherical subgroups of a fixed Coxeter group W is denoted by S.

The isotropy spectral sequence abuts to the integral homology of W, and the E! terms
are given by the sums of twisted homologies of the spherical subgroups Wr of W for
T a given size:
E),= @ H,Wr:Zr)= Hpyg(W:L).

TeS

IT|=p
For the proof of Theorem A the groups on the E! terms and d! differential of the
spectral sequence are simple to compute. We see there are no further differentials that
will affect the diagonal corresponding to Ho(W;7Z) on the E°° page, so the limiting
terms are equal to the £2 terms. There is only one nonzero term on the diagonal so
there are no possible extension problems and Theorem A follows.

For Theorem B, the computation of the E! terms relies heavily on a free resolution
for Coxeter groups, described by De Concini and Salvetti [5]. The computer algebra
package PyCox, due to Geck [6], is used (though not strictly necessary) to complete
some of the longer calculations required.

In order to apply the d! differential to computations using this resolution, a chain map
between resolutions is computed in the required degrees. Using these tools, the E? page
of the spectral sequence on the diagonal corresponding to H3(W;Z) is computed.
Following this, we use a variety of techniques to prove that all further differentials to
and from this diagonal are in fact zero. This includes defining a pairing for the isotropy
spectral sequence.

The possible extension problems arising on the limiting page at this diagonal are treated
by considering representing subgroups of W for each class and mapping between the
corresponding spectral sequences. From these computations we note there is only one
nontrivial extension and thus Theorem B follows.
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Organisation of the paper

We start with background on Coxeter groups and an introduction to the Davis complex
Xw of W in Section 2. We then introduce the isotropy spectral sequence in Section 3,
and prove some associated desired results. Following this, Section 4 proves Theorem A
and Section 5 proves Theorem B.
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2 Coxeter groups

This expository section follows [4].

Definition 2.1 A Coxeter matrix on a finite set S is a symmetric S x S matrix M
with entries m(s,t) in N U {co} for s,¢ € S. This matrix must satisfy m(s,t) =1 if
and only if s = ¢, and m(s,t) = m(t, s) must be greater than 1 when s # ¢. A Coxeter
matrix M has an associated Coxeter group W, with presentation

W = (S| (s1)"D) =¢).

We call (W, S) a Coxeter system, and we call |S| the rank of (W, S). We adopt the
convention that (W, @) is the trivial group.

Remark 2.2 The condition m(s,s) = 1 implies that all generators of the group are

2

involutions, i.e. s“ =e forall s in S.

Definition 2.3 Define the length function on a Coxeter system (W, S) to be the
function £: W — N which maps w in W to the minimal word length required to
express w in terms of the generators in S. That is, we set £(e) = 0, and if w # e then
there exists a minimal k£ > 1 such that w = s1 --- s for s; in S.

Definition 2.4 For k € N, define 7 (a, b; k) to be the word of length k, given by the

alternating product of a and b, i.e.
length k

——
w(a,b;k)=abab....
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2614 Rachael Boyd

Remark 2.5 When m(s, 1) # 0o, the relations (sz)”®*) = ¢ can be rewritten as

(s, t;m(s,t)) =m(t,s;m(s,t)).

Definition 2.6 Given a Coxeter system (W, S), the associated Coxeter diagram, de-
noted by Dy, is a labelled graph with vertices indexed by the generating set S. Edges
are drawn between the vertices corresponding to s and ¢ in .S when m(s,?) > 3 and
labelled with m(s,¢) when m(s,t) > 4 (or co). When the diagram Dy is connected,
W is called an irreducible Coxeter system.

Theorem 2.7 (classification of finite Coxeter groups; Coxeter [3]) A Coxeter system
is finite (i.e. gives rise to a finite Coxeter group) if and only if it is the (direct) product of
finitely many finite irreducible Coxeter systems. The following is a complete list of the
diagrams corresponding to finite irreducible Coxeter systems, and therefore classifies
finite Coxeter groups:

Infinite families Exceptional groups
Ap (n=1) —eo—o --0—o Fy o—oio—o
B, (n>2) — oo ..0— H; — oo

D, (n>4) :>_,. Hy 5

*r—o—o—0
I(p) (p=5) e Ee o—o—I—o—~
Eg ’—.—I—.—.—.—.
Notation Throughout this paper, for ease of notation we may write I(2), I(3)

and I5(4) instead of A1 x A1, A and B;, respectively. Whenever we write I(p),
we will specify for which p the result corresponds.

Definition 2.8 We say that a finite irreducible Coxeter group W is of type D if its
corresponding diagram is given by D, and we denote this Coxeter group by W (D).
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Remark 2.9 The Coxeter group of type A, , or W(A,), is isomorphic to the sym-
metric group S,+1 and the Coxeter group of type I»(p), or W(I»(p)), is isomorphic
to the dihedral group D ,. Similarly, the Coxeter group of type By, or W(B,), is
isomorphic to the signed permutation group Z,? S, , and W(D),,) is isomorphic to an
index 2 subgroup of W(B,) such that the signs in each permutation multiply to +1.

2.1 Products and subgroups

Consider two Coxeter systems (U, Sy) and (V, Sy) and denote by Dy U Dy the
diagram created by placing Dy and Dy beside each other, disjointly.

Lemma 2.10 The diagram Dy U Dy defines a Coxeter group W = U x V, with
diagram Dy = Dy U Dy and generating set Sy := Sy U Sy .

Definition 2.11 A map ¢: Dy —Dy of Coxeter diagrams is a full inclusion if 1: U —
W is injective and m(t(s), t(t)) = m(s,t) for every s,¢ € U. In this setting we call
Dy a full subdiagram of Dyy .

Definition 2.12 Let (W, S) be a Coxeter system. For each 7" C S, denote by Wr the
subgroup of W generated by 7. We call subgroups that arise in this way parabolic

subgroups.

Proposition 2.13 [4, Theorem 4.1.6(1))] For Wt a parabolic subgroup, (Wr,T) is a
Coxeter system in its own right, and defines a full inclusion Dy, < Dy . Similarly, a
full inclusion corresponds to a parabolic subgroup.

The next result concerns cosets of parabolic subgroups. Let (W, S) be a Coxeter
system, and 7" and 7’ be subsets of S.

Lemma 2.14 [4, Lemma 4.3.1] There is a unique element of minimal length in the
double coset WrwWry.

Definition 2.15 [4, Definition 4.3.2] We say an element w in W is (T, T')-reduced
if w is the shortest element in WrwWry:.

Remark 2.16 Given the parabolic subgroup Wz in W, w in W is (T, &)-reduced
if £(tw) =4(t) +£L(w) =1+ £(w) for all ¢ in 7. Note that this implies w cannot be
written in such a way that it starts with any letter in 7. Likewise we say w in W is
(@, T)-reduced if £(wt) =£(w)+ 1 forall ¢ in T.
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Definition 2.17 A finite parabolic subgroup is called a spherical subgroup.

Since the diagrams of parabolic subgroups appear as full subdiagrams of the Coxeter
diagram, given a Coxeter system (W, S) we identify its spherical subgroups via occur-
rences of the irreducible diagrams from Theorem 2.7 in Dy, and disjoint unions of
such diagrams.

Definition 2.18 Given a Coxeter system (W, S), we denote by S the set of all subsets
of S which generate spherical subgroups of W, i.e.

S={T € S | Wr is finite}.
2.2 The Davis complex

In this section we introduce the Davis complex for a Coxeter group.

Definition 2.19 A coset of a spherical subgroup is called a spherical coset. For a
Coxeter system (W, S) and a subgroup Wz, we denote the set of cosets by

W/WT = {wWT | w e W}
The poset of spherical cosets is denoted by WS:
ws = |_Jiw/wr},
TeS

where WS is partially ordered by inclusion. The group W acts on the poset WS by
left multiplication and the quotient poset is S.

Lemma 2.20 [4, Theorem 4.1.6(iii)] Given T and U in S and w and v in W, the
cosets wWy and vWr satisfy wWy C vWr if and only if wlveWrand UCT.

Definition 2.21 [4, Section 7.2] One can associate to a Coxeter system (W, S) a
CW-complex called the Davis complex. This is denoted by Xy and is the geometric
realisation of the poset WS. That is, every spherical coset wWr is realised as a vertex
or O—cell, and for every ordered chain of p + 1 spherical cosets there is a p—cell in
the Davis complex,

w()WTO C w1WT1 C 11)2VVT2 Cc---C prTp,

where w; isin W and 7; isin S for all 0 <i < p. The associated Coxeter group W
acts on the Davis complex by left multiplication on the cosets.
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Definition 2.22 For every finite Coxeter group W with generating set .S, one can
define a canonical representation of the Coxeter group W on R”, where n = | S| (see
[4, Section 6.12] for details). Given this representation we define the Coxeter polytope,
or Coxeter cell, of W to be the convex hull of the orbit of a generic point x in R”
under the W —action. This polytope has dimension n = | S|, and we denote it by Cy .
A detailed definition can be found in [4, Section 7.3].

Proposition 2.23 [4, Lemma 7.3.3] If W is a finite Coxeter group then Xy is
homeomorphic to the barycentric subdivision of the Coxeter cell Cy .

Definition 2.24 A coarser cell structure can be given to Xy : consider only those
spherical cosets which are present as subsets of a chosen coset wWr and denote
this by WS<yw, . The realisation of WS<y,w, is a subcomplex of Xy . In fact,
|WS<ww;| = |WrSt|, where St denotes the set of spherical subsets of 7. Since Wr
is finite, the realisation of WrS7 is homeomorphic to the barycentric subdivision
of its Coxeter cell Cy,.. Therefore, the realisation is homeomorphic to a disk,
ie. |[WrST| = DIT!. The cell structure on Sy is therefore given by associating
to the subcomplex WS<y,w,- its corresponding Coxeter cell: a p—cell where p = |T'|.
The 0—cells are given by cosets of the form WS<,w,, i.e. the set {wW | w € W},
and therefore associated to elements of W (recall Wy = {e}). By Lemma 2.20 a
set of vertices X will define a p—cell precisely when X = wWr for T € S and
|T'| = p. There is an action of W on the cells of Xy given by left multiplication,
and this makes Xy into a W —complex in the sense of [2]. The stabiliser of a p—
cell wWy under this action is the finite subgroup wWzw ™! and upon identification of
the cell wWr with Cy,. this acts by reflections in the usual way.

We use the following results concerning the Davis complex in this paper:
Proposition 2.25 [4, Theorem 8.2.13] For any Coxeter group W, X is contractible.

Lemma 2.26 [4, Example 7.4.4] Suppose W and S decompose as W = U x V
and S =Sy USy. Then S = Sy xSy and Ly = Xy X Xy is an isomorphism of
CW-=omplexes provided we use the coarser cell structure.

3 The isotropy spectral sequence

We give explicit formulas for the terms on the E! page of the isotropy spectral sequence
for the Davis complex, as well as the d! differential, which is induced by a transfer
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map. We also introduce a pairing for the isotropy spectral sequence of the Davis
complex in Section 3.2.

3.1 Isotropy spectral sequence for the Davis complex

We consider the isotropy spectral sequence for a Coxeter system (W, S) and related Xy .
Recall the definition of the isotropy spectral sequence from [2, VII, Equation(7.10)].
For more background see [1] or [2].

Consider the action of W on Xy and denote the stabiliser of a cell o by W, . Denote
the orientation module of ¢ by Z,. We consider the isotropy spectral sequence for
integral homology.

Lemma 3.1 Under the W —action on Xy, a set of orbit representatives of p —cells is
Op={eWr|T €S, |T|=p}.

The stabiliser of a cell 0 = eWr is Wy = Wr and the action of an element w of Wrp
on Z is the identity if £(w) is even, or negation if £(w) is odd.

Proof Recall that each p—cell of Xy is represented by a spherical coset wWr,
where |T'| = p and the vertices of the cell are given by the set {vWy | v € wWy}. The
group W acts by left multiplication and so we can choose the orbit representatives of
p—cells to be the cosets eWr = Wr, where |T| = p and T is in S. The stabiliser of
a cell represented by Wr is Wr itself. Every element in the generating set 7' of Wr
acts on the cell by reflection, reversing the orientation of the cell. The action of an
element of Wr on the orientation module will therefore be the identity if the element
has even length, or negation if the element has odd length. O

Recall that the Davis complex is contractible (Proposition 2.25) and hence acyclic.
Then, under the choices of Lemma 3.1, the isotropy spectral sequence is

Ey,=H,W:Co(Sw.Z) = @ H,Wo:Zo)= @ HyWr:Zr)
oc€e0 TesS

’ ITI=p = Hp4q(W:Z)
since Zg ® 7 = 7, which we write as Z7 for the orientation module of the cell Wr.
This gives E! page as shown in Figure 1. The zeroth column only has one summand,
since only the empty set satisfies the criteria of generating a spherical subgroup and
having size zero. For the first column, note that all generators in S generate a cyclic
group of order 2. Denote the subgroup generated by s in S by Ws.
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1 1 1
3 HsWoi Zo) <= @ Hs(Wi: ) < @ Hs(Wr:Zr) <~ @ Hy(WriZ1)
‘e e =

1 1 1
2| Hy(WoiZo) <= P HoWii Z0) <= @ Hx(Wr:Zr) <~ P Hx(Wr:Zr)

tes Tes TeS
IT|=2 |T|=3

1 1 1
V| H\WoiZo) <= P Hi(Wy: 2) <~ ) Hi(WriZr) <~ @ Hi(WriZr)

teS TeS TeS
|T|=2 |T|=3

1 1 1
0| Ho(Wo:Zo) <~ @ HoWi: Z) <~ ) Ho(Wr:Z1) <~ B Ho(Wr:Zr)

teS TesS Tes
IT|=2 |T|=3

0 1 2 3

Figure 1: The E! page of the isotropy spectral sequence for the Davis complex.

We denote the d! differential component restricted to the H,(Wr; Z7) component in
the source and projected to the H,(Wy; Zy) component in the target by d } U-

Proposition 3.2 The map d} y 1s nonzero only when U C T and is given by the
transfer map
djl",Ui HyWr:,Z1)— Hyg(Wy: Zy).

On the chain level we compute Hy(Wr; ZT) as homology of Z1 Qw, Fw, for Fy,
a projective resolution of Z over ZWr and we compute Hy(Wy ; Zy) as homology
of Zu ®w, Fwy,. Let m ® x be in ZT ® Fw, and Wy\Wr be a set of coset
representatives for Wy in Wr . Then, on the chain level, the transfer map is

d}’U:mtX)xi—) Z m-g ' Qg-x.
gEWu\Wr

Proof This proof follows the description of the d ! differential for the isotropy spectral
sequence in [2, Section VIL.8]. Recall that an orbit representative for a p—cell is
eWr for T in § and |T| = p. The set Fr of cells in the image of the cellular
differential d(Wr) is given by cells wWy with |U| = p—1 and wWy C Wr. This is
satisfied if and only if U C T and w € Wr by Lemma 2.20. Since Wr is the stabiliser
of the cell eWr, the orbit set (Fr/Wr) is givenby {U C T | |U| = p — 1}, which
is a subset of O,_1. The intersection Stab(Wr) N Stab(Wy) = Wr N Wy = Wy and
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the action of Wy on Zr precisely mimics the action of Wy on Zg . Therefore,

1
d |Hq(WT;ZT) = Z IT,U,
UeFr/Wr

where 7,y is the transfer map t7,y: Hy(Wr:Zr) — H,(Wy: Zy).

Note that cycles in Hy(Wr; Z ) are represented by chains in Z1 ® Fy,. . Letting m®x
be an element on the chain level yields the formula, where the transfer map on the
chain level is computed via [2, Section IIL.9]. O

To compute Hy(W;Z) and H3(W;Z) we consider the E°° groupsonthe p+¢g =2
diagonal and the p + ¢ = 3 diagonal of Figure 1, respectively. Entries on the E' page
are given by summing over finite Coxeter groups with generating set a certain size, and
the classification of finite Coxeter groups from Theorem 2.7 provides a finite selection
of possible groups for each size of generating set.

Lemma 3.3 Given a Coxeter system (W, S), let V — W be a parabolic subgroup.
Then there is a map of isotropy spectral sequences E (V) — E(W) that is an inclusion
on the E' page.

Proof The inclusion j: V < W induces an inclusion Wy Sy C WS, hence a map
between the realisations i: Xy < Xy, and therefore a map

Cp(Sv.Z) 25 Cp(Zw. 7).

We have the diagram

1 1
E, V) E, (W)

H Hgssix) H
Hy(V:Cp(By.Z2)) ————— Hy(W: Cp(Zw ., Z))

= =

D H,Wy:Zy) s @ Hy(Wri L)
UeSy TeS
U|=p IT|=p

where the dotted map is induced by the map on p—cells on the central row. Every
spherical subgroup of V is also a spherical subgroup of W, corresponding to a map
between the p—cells represented by these spherical subgroups. Therefore the dotted
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map is an inclusion of summands. Since the d! differential is defined via the transfer
map on each summand, all d! differentials in E (V) will map under the inclusion to
the same differential in £(W). The inclusion on the E! page therefore induces a map
of spectral sequences on further pages. O

3.2 Pairings on the isotropy spectral sequence

We consider a pairing of spectral sequences, for use in Section 5.6. We follow [12],
in particular Section 4 on products. For filtered complexes A, B and C, if a pairing
A® B — C is a morphism of filtered complexes, i.e. if F,A-FyB C F,14C, then
this induces a morphism of spectral sequences

E"(A® B) — E"(C).

Combining this with the Kiinneth map E"(4) ® E"(B) - E"(A ® B) (which is
induced by the Kiinneth map on homology on the E! page) defines a pairing

¢: E"(A)® E"(B) — E"(C)

which satisfies the Leibniz formula for differentials, i.e. for x in E”(A) and y in E”(B)
the pairing satisfies

di(p(x ® y)) = ¢(df(x) ® ¥) + (=1)*ED ¢ (x @ dL (1))

For finite Coxeter groups Wy and Wy, let Wy = Wy x Wy, where X :=U UV asin
Section 2.1. For the remainder of this section we fix the following notation: Let W} be
the Coxeter group corresponding to 1 € {V, U, X}. Let Sy be the generating set of W;
and let S; be S for the Coxeter system (W, I) (see Definition 2.18). Let X be the
Davis complex Xy, and F I be a projective resolution of Z over ZWy. Let E(I)
denote the isotropy spectral sequence for Wy. Then E(I) is the spectral sequence
related to the double complex F I'eC (27.7) (see [2, Section VIL.7]). Denote the
double complex by I, , and the associated total complex by 7'/. Then the spectral
sequence E (/) has corresponding filtration

Fp(T)n) = P In—ii-

i<p
Lemma 3.4 The product map Wy x Wy — Wy determines a map on chain complexes

CiXy.2)®Cj(Zy,Z) > Cit;j(Xx,2).
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Proof The product map induces a map of posets
WuSu x Wy Sy — WxSx, W, ., vWr,) = uv(Wr,ury, ).

This in turn induces a map on their realisations Xy X Xy — Xy, which is the map
giving the decomposition Xy = Xy x Xy in Lemma 2.26. Consider C;(X7,7Z)
and note that p—cells of X are represented by cosets wWr, where T € Sy. Given
an i —cell of Xy represented by uWr, and a j—cell of Xy represented by vWr, we
use the above poset map and define an (i + j)—cell of Xy represented by uvWr, 1, .
This gives a pairing C;(Xy,Z)® Cj(2y.Z) = Ci+j(Xx,Z). m]

Proposition 3.5 The map
®: E"U)QE"(V)— E"(X)
induced by the pairings
FYeoF - FX, and Ci(3y.2)®C;j(Sy.Z) > Citj(Ex.Z)

gives a pairing of spectral sequences, under which the differentials satisfy the Leibniz
formula.

Proof We apply the hypothesis of [12, Section 4] and show that the map TU TV —
TX is a morphism of filtered complexes. We have on the n'" level that

Fo(TDn) =@ In-ii =P FL ® Ci(31.2)
i<p i<p

for I in {U,V, X}. Since Wy x Wy = Wy, there is a pairing FkU ® FIV — FkX+l
(e.g. FX = FUV ® FV [2, V, Proposition 1.1]). Putting this together with the pairing
CiZy,2)®Cj(Zy,Z)— Cit+j(Xx,Z) from Lemma 3.4 gives

Fp(TU)- Fy(TV) C Fp4g(TX),

as required in [12]. O

Theorem 3.6 Under the decomposition on the E! page of the spectral sequence

Eyp (1) = Hy(F ®w, Cp(21,2)) = ) Hy Wy L)
I__ES]
|I|=p
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the pairing of Proposition 3.5 induces a pairing @, given by the Kiinneth map when
restricted to individual summands,

Cu: Hy(Wyg: Zg) ® Hy Wyi Zy) = Hy g (W x Wy Zg @ L)
= Hq+q/(W}?;Zy).

It follows that the differentials in the isotropy spectral sequence for the Davis complex
satisfy a Leibniz formula with respect to the pairing P .

Proof We now consider this pairing under the decomposition on the E! page of the
isotropy spectral sequence,

E) ()= Hy(Fl ®w, Cp(£1.2)) = € H,(Wp:Zp).
I__€S1
[I|=p

described in [2, Chapter VII]. Under this decomposition the above isomorphism re-
stricted to a single summand on the right is given by the map t«, induced by the
inclusion v: F ®w,. Cp(S7,Z7) — FY 9w Cp(Ew,7Z),

Hy(FT ®w, Cp(21,Z7)) —2— Hy(FY ®w Cp(Sw. 7))

HyWr; L) ————— Hy(FY ®w Cp(Sw,Z))

If a Coxeter group Wy arises as a product Wy = Wy x Wy, then the pairing @, along
with the E! decomposition for each group gives the diagram

[

1 1 1
Ep,q(U) ® Ep/,q/(V) E(p+p’),(q+q/)(X)

[
Hy(FY@w, Cp(Su, 2)®Hy (F) @w,, Cp (v, Z))— Hyio gt (FE @wy Cpi pr (Ex, 7))

Dix | = Dix | =
D
D H W2 ® @ HyWyiZy) s @ Hypy WyiZy)
UGSU VESV YGSX
|U|=p Vi=p’ |X|=p+p’

The isomorphisms are induced by the componentwise inclusions given by ¢4 on each
summand. The map ®. is defined so that the diagram commutes, i.e. it is induced
by ® and the two vertical isomorphisms. On each summand of the bottom left factor it
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is given by the composite
Hq(WU; ZU)®HQ/(WV’ Zv) L) Hq+q/(W(7XWV3 ZU®ZV) i) Hq+q/(W)?; Zy),

where here X := U U V. Here the first map is given by the homology cross product
[2, Section V.3], and the second map is due the fact that if Wz x Wy; = Wy then the
orientation modules satisfy Z g ® Zj; = Zx . This map is precisely the Kiinneth map
on homology. Extending this componentwise definition to the tensor product of the
summations gives the map &, that lifts to the map & on the top row. a

4 Calculation of Hy(W ; Z)

From Section 3.1, the isotropy spectral sequence for (W, S) has E! page as in Figure 1,
and the E°° page will give filtration quotients of H,(W;Z) onthe p+¢q =2 diagonal.
We compute the diagonal on the E? page and note that no further differentials affect
this diagonal, so the result follows.

In the following, let (W, S) be a Coxeter system and £ 1}’ ¢ =E 1}, ¢(W) bethe E ! terms
of the isotropy spectral sequence for the Davis complex of (W, .S).

Proposition 4.1 The terms E{ , and E| | are zero.

Proof We have Eé,z = Hy(Wy; Z») = 0, since Wy is the trivial group. The Ell’1
term is given by

El, =P HW::Zy).
teS

where the nontrivial group element ¢ acts by negation. Then Hy(W;;Z;) = 0 follows
from taking the standard projective resolution for a cyclic group of order 2 and these
coefficients. i

4.1 Homology at E} |

Recall that
E}o= P HoWr:Zr).

TeS
|T|=2
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From Proposition 4.1, this will be the only contributing group to the p 4+¢g = 2 diagonal
on the £ page. We start by computing E%,o’ which is given by the homology of the
sequence

1 1
P HoWi:Z) <~ @ Ho(Wr:Zr) <~ @ Ho(Wr:Zr).
tes TeS TeS
|T|=2 |T|=3
Recall that the d ! differential is given by the transfer map defined in Proposition 3.2.
Lemma 4.2 Forall T in S suchthat |T| >0, Hi(Wr:ZT1)=17Z.

Proof The zeroth homology is given by the coinvariants of the coefficient module Z7
under the group action. Since in our case each group generator acts as multiplication
by —1, we compute homology to be the group Z5. O

For X € S, let 1y be the generator for the summand Ho(Wx, Zyx) of E;,o-

Lemma 4.3 When U is a subset of T, the transfer map for the bottom row of the
spectral sequence is

d}’U: Ho(Wr;Z1) =72 — Hi(Wy; Zy) = Za,
{O it |Wr|/|Wy| is even,
lT axd . .
ly if |[Wr|/|Wy]| is odd.

Proof From [2, Section II1.9(B)], the transfer map acts on coinvariants as

dfy: HiWr: Z1) = Zy — Ho(Wy: Zy) = Z»,
Ir— ), glu= ) lu
g €Wy \Wr gEWy\Wr

since g-1 = =£1 isin the class of 1 in Zy /Wy . Noting that we are mapping into Z,
and the number of entries in the sum is |W7|/|Wy | completes the proof. m|

Lemma 4.4 When U has cardinality 1 and T = {s, t} has cardinality 2, the transfer
map d! restricted to the T summand is given by
s+ 1; if m(s,t) odd,

dl . Ir) =
|HoWrs2)(IT) 0 if m(s,t) even.

Proof Note that [Wy| =2 forall x in S and, since Wy ;) is isomorphic to a dihedral
group, |Wis | =2 xm(s,t). Apply Lemma 4.3 to compute the differential. |
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Definition 4.5 We say that a Coxeter group with generating set 7 = {s,,u} is of
type X it Wr = W(I2(p)) x W(A1) and p > 3 is odd, i.e. Dy, has the form

p odd

———o
s t

<o

Lemma4.6 If T ={s,t,u} then d! restricted to the Hy(Wr; Z7) summand is

Liguy + 1y if Wr is of type X,

dl . I7) =
|H0(WT7ZT)( T) 0 otherwise.

Proof There are a finite number of Coxeter diagrams that may represent Wr, given
by Theorem 2.7. The order of these groups and their rank 2 subgroups is documented
in the table below, where p > 2:

Wr Dw Wrl Wil (Wil Wil
W(A3) - — 24 6 4 6
W(D3) ;Lto—I’ 48 8 4 6
W(Hs3) 55;’_'_5 120 10 4 6
W(L(p) xW(d) s e 4p 2p 4 1

Calculating |Wr|/|Wr-| for T’ C T in each of these cases and applying Lemma 4.3
completes the proof. |

Proposition 4.7 The homology at Ezl,0 is given by
Ho(Des: Z2) ® Z2[ E(Deven)] ® H1(Dodd: Z2),

where the diagrams are as defined in Definition 1.1 and are viewed as 1—-dimensional
complexes.

Proof Consider the calculations of the transfer maps in Lemmas 4.4 and 4.6, and
observe the following splitting:
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P HoWi; Z,) — P Howr:Zr) — P Howr:Zr)

tesS TeS TeS
|T|=2 |T|=3

H ]

P Ho(Wr:Z7) «—— P Howr:Zr)

T={s,t} Wr type X
m(s,t)=2

@
B HoWwr:zr)

T={s,t}
m(s,t)#2 even

®
D Ho W2 —— D HoWisZo)

tes T={s,t}
m(s,t) odd

Calculating the homology of the top row in turn gives a splitting

coker( @ HO(WT,ZT)L @ HO(WT§ZT))

Wr type X T={s,t}
m(s,t)=2
1
® @ HoWr:iZr)e ker( P Ho(WT;ZT)LGBHo(WT;ZT)).
T={s,t} T={s,1} tes
m(s,t)#2 even m(s,t) odd

We now define an isomorphism & = 1 @ &, @ €3 from these three groups, to the three
groups in the statement of the proposition,

Ho(Deo; Z2) @ Z2 [ E(Deven)] @ H1(Dodd: Z2).

The map between the first groups is

81100ker( @ HO(WT,ZT)£> @ HO(WT§ZT))_>HO(D.o§Z2),

Wr type X T={s,t}
m(s,t)=2

Lis,ry = s, 23],

where [{s,7}] is the generator for the summand of Hg(D,,; Z2) corresponding to the
connected component containing {s,7}.

Recall from Lemma 4.6 that the transfer map on summands Ho(Wi;,y: Z7T) is
given by dl(l{s’,,u}) = lgeuy + Ly if Wr ois of type X. Therefore generators
of Ho(Wr; Z) for triples of type X get mapped to sums of generators of Ho(Wr;Z7)
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corresponding to commuting pairs. These are exactly vertices of D,,, and a triple of
type X gives the corresponding edge of D,,. Therefore the map ¢ is well defined
and, moreover, it is an isomorphism.

For Z3[E(Deven)], let {s,t} be the basis element corresponding to the edge between s
and ¢, and note that edges only exist if m(s,?) is even and greater than 2. Then &, is
the isomorphism defined by

g0 @ HoWr:iZr) > Zo|E(Deven)].  Lisuy > {5.1}.

T={s,t}
m(s,t)#2, even

For H1(Doad; Z2), note that Dygq has no 2—cells, so Hj(Dogq; Z>) is the kernel of
the cellular differential d: C; — Cp, where C; = Zy[E(Doad)], Co = Z>[S] and
d({s,t}) = s +t. Recall from Lemma 4.4 that the transfer map is given on summands
Ho(Wis.11: Z1) = Zp by d (1g5.11) = 15 + 1 if m(s, 1) is odd. Therefore we define
a chain map

@ Ho(Wr: Z1) — Za[E(Doad)], Ly, = 48,1},

T={s,t}
m(s,t) odd

and this map induces an isomorphism e3 between homologies. |

4.2 Proof of Theorem A

Theorem 4.8 Given a finite-rank Coxeter group W with diagram Dy, recall from
Definition 1.1 the definition of the diagrams De,, Dodqg and Deyen. Then there is a
natural isomorphism

HZ(W; Z) = H()(D..; ZZ) @ ZZ[E(Deven)] ) Hl (Dodd; ZZ),
where in the first and final term of the right-hand side the diagrams are viewed as cell

complexes.

Proof The p + g = 2 diagonal of the isotropy spectral sequence in Figure 1 gives
filtration quotients of H,(W;Z) on the E* page. The E? page has only one nonzero
term on this diagonal,

E3 ¢Ho(Das; Z2) ® Z2[E (Deven)) @ Hi(Dodd; Z2).

All differentials d” for r > 2 with source or target the E5 ¢ position either originate at or
map to a zero group. Therefore the p+¢g =2 diagonal on the limiting £ °° page is given
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by the diagonal on the E? page. Since there is only one nonzero group on the diagonal,
there are no extension problems and this group gives H(W;Z), as required. |

5 Calculation of H3(W ; Z)

Recall the isotropy spectral sequence for the Coxeter group W has E! page as shown
in Figure 1 in Section 3.1, and the E°° page gives H3(W;Z) (up to extension) on the
p +¢q = 3 diagonal.

In Section 5.1 the free resolution for finite Coxeter groups by De Concini and Salvetti [5]
is introduced and the chain map between resolutions is computed in Section 5.2. Using
these tools, we compute the E? page of the spectral sequence on the p +¢ = 3
diagonal. Following this, Section 5.6 proves that all further differentials to and from
this diagonal are zero. The possible extension problems arising on the limiting page at
this diagonal are treated and discussed in Section 5.7 and all of these computations are
fed into the proof of Theorem B in Section 5.8.

5.1 Free resolution for Coxeter groups

In [5], De Concini and Salvetti introduce a free resolution of Z over ZW for a finite
Coxeter group W. We use this throughout this section to calculate the low-dimensional
homologies of finite Coxeter groups that appear as summands in the E! entries of the
spectral sequence.

Definition 5.1 Let (W, S) be a Coxeter system for a finite Coxeter group W. Let
(Cx, 84) be the chain complex with Cy, the free Z W —module with basis elements e(T").
Here I is a flag of subsets of the generating set S with cardinality k, thatis, I" € Sy,
where

Sp 1= {rz(n Sho--) | cs, Y| =k}.
i>1
For 7 in I3, let Wll; "M be the set of minimal left coset representatives of Wr;\(r)
in Wr,. Then 8;: Cx — Ci—; is ZW —linear and defined on basis elements by

(1) SreMy= Y > Yoo ) EEERger),

i>1 tel; hGi\{z}
IT; [>T} 1] I'BEWFi
B Tip1BChi\{z}
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where the flag T/ in C_; is given by
M= 2 DL D G\e) DB ' Hf DB 2D )

and the exponent « (T, i, 7, B) is as defined below. The differential is well defined from
Lemma 2.14. We choose an ordering for the set of generators S and let o (8, [}) be
the number of inversions, with respect to this ordering, in the map I}, — B~} 8. We
let u(I7, v) be the number of generators in I; which are less than or equal to 7 in the
ordering on S. Then the exponent is described by the formula

d

i—1
a(T,i, 7. ) =i-LB)+ ) Il +p(@ o)+ Y (B Tk

k=1 k=i+1

During this proof we adopt the convention that the generators are always ordered
alphabetically (e.g. s <t < u). We also denote the generator corresponding to a flag
of length d, (IT1 D I3 D--- D Iy), by I'T,5,5--o1, » Wwhere we omit the set notation
for each I, for example I, Isog or Iy ;55 (which corresponds to I' = {s, 7} D {s}).

Theorem 5.2 [5] The chain complex (Cx, 8«) from Definition 5.1 is a free resolution
of W over ZW.

Example 5.3 We give an example of the resolution for finite Coxeter groups with one
generator S = {s}, from C3 to Cy:

§3=(s—1) 8o=(1+s) §1=(s—1)
C3 = (Ty555) ——— C3 = (Ty55) ——— C; = (Iy) —— Co = (Tp).

The differential from Iy to I’y is given by the following formula, noting that coset
representatives of Wy in W are e and s; we recall the formula for 8 (e(T")) from (1):

51Ty = Y ()T bsPEr, = (s — DIy,
B=e,s
where we compute

0
a(Ts. 1s.e) = 1) + ) Tl + p(s.5) =0+0+1=1,
k=1

0
a(Ts. 1,s.8) = 1e(s) + Y [Tl +pu(s.8) = 1+0+1=2.
k=1
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Similarly, the differential §,: C; — C; is given by

B(Tios) = ) (D222 DBL = (14 9T
B=e,s
where we compute
1
a(Tyos.2.5.€) =2L(e) + Y [T +pu(s.8) =0+ 1+1=2,
k=1
1
a(Tyos,2,8,5) =20(s) + Z [Tkl 4+ p(s,s) =24+1+1=4.
k=1

Finally, the differential §3: C3 — C, is given by

83(F53s3s) = Z (_1)a(rsjsjs’3’s’ﬂ)ﬁrs3s = (S - 1)Fs3s’

B=e,s
where we compute
2
a(Tyo5os.3.5.€) = 30(e) + Y [Tk + pls.s) =0+2+1=3,
k=1
2
a(Tyo5os.3.8.8) =30(s) + > |Te| + pu(s.8) =342+ 1=6.
k=1

Definition 5.4 Define p(s,t; j) to be the alternating product of s and ¢ of length j,
ending in an s (as opposed to 7 (s, t; j), which is the alternating product starting in

an s), i.e. )
length j

. ——
p(s.t;j)y=...sts.

Example 5.5 Consider the resolution for finite Coxeter groups with two generators
S ={s,t}, from C3 to Cy and with m(s, t) finite. Then the formulas for differentials
which do not follow from the previous example are

m(s,t)—1 m(s,t)—1
L= Y, /M pls T+ Y D3 p@, s 9T,
j=0 g=0

(1—p(t.s;m(s,t) — 1)) Tios — (1 + 5) Ty if m(s,t) is even,
[ios — p(s, t;m(s, t) — )5 — (1 4+ 5) [y if m(s,t) is odd,
(=14 p(s.t:m(s, 1) = 1)) Tior — (1 + )Ty, if m(s, 1) is even,
—Gor + p(t,s;m(s, t) — Dios — (1 +6) Ty if m(s,t) is odd.

53 (Fs,tDs) = {

3 (Fs,tDt) = {
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Recall we wish to compute homologies of finite Coxeter groups Wz with twisted
coefficients Z, in which the action of the generators on Z7 is given by negation.
To calculate the twisted homologies we tensor the resolution with Z under the group
action. We show this in the case of our two examples.

Example 5.6 We consider the resolution of Example 5.3 tensored with Z under the
group action:

A, 8 _Te S e, fem e Yo
Here the differentials are calculated as follows:
63(1 ® Iinsos) = 1Q((s—1)os) = —2(1 ® [yoy),
§2(1® Iios) = 1@ (1 +5)T5) =0,
(Il =10 ((s—DHIp) =21 Iy).

Example 5.7 We consider the computations of differentials in Example 5.5 and, upon
tensoring with Z under the group action, this gives the differentials

S2(1® I ) = —m(s, ) (1 @ I;) + m(s, 1) (1 ® T),

2(1 ® Iyo5) if m(s,t) is even,
1R~ —1Q I3~ if m(s,t) is odd,
—2(1®I;>;) if m(s,t) is even,
1G5+ 1o if m(s,t) is odd.

83(1 ® 1—‘s,tDs) = {

(1@ I o) = {

5.2 Collapse map

In this section we define a chain map, which we call the collapse map, between
De Concini and Salvetti’s resolution for a finite Coxeter group W and that for a
subgroup Wr [5].

Recall that in the isotropy spectral sequence for the Davis complex, the d! differential
has the form of a transfer map, given in Proposition 3.2. In the following sections we
calculate these twisted homology groups using the De Concini and Salvetti resolution.
Upon applying the transfer map to a generator of Hy«(Wr;ZT), the image will be in
terms of the resolution for the group Wr. However, we require the image to be in
terms of the resolution for Wy and so we apply the collapse map in the appropriate
degree to achieve this.
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We first recall the following lemmas from [7]. Recall from Definition 2.4 that w(a, b; k)
is defined to be the word of length k, given by the alternating product of a and b.

Lemma 5.8 (Deodhar’s lemma [7, Lemma 2.1.2]) For (W, S) a Coxeter system, let
Wr be a spherical subgroup of a finite Coxeter group W, let v be (T, @)-reduced
(Definition 2.15) and Iet s be in S. Then either vs is (T, @)-reduced or vs = tv for
somet inT.

Lemma5.9 [7,Lemma 1.2.1] If s and u arein S, m(s, u) is finite, and w in W sat-
isfies £(ws) < £(w) and £(wu) < £(w), then it follows that w = w' (7 (s, u; m(s, u))),
where w’ is (&, Wy ,,3) —reduced.

Definition 5.10 Denote the De Concini—Salvetti resolution for (W, S) by (Cx, 8x)
and for the subgroup (W7, T) by (Dx, 6«). We define the collapse map in degree i to
be the Wr—equivariant linear map f;: C; — D; for 0 <i <2 as shown below:

§ § ) 8

3 G 2 Cl 1 Co 0z
le flJ( fol

8 1} ] I}

3 D, 2 D 1 Do 0 7

As a Z[W]-module, C4 has basis given by e(I"), so as a Z[Wr]-module, C, has
basis given by v-e(I") for v a (T, @)-reduced element of W. We therefore define f;
on v-e(I') and extend the map linearly and Wz —equivariantly. By Lemma 5.8, for s € S,
vs is either (7, @)-reduced or vs = tv for some ¢ in T. This gives us the cases, in
each definition,

Jo(wIy) =1},
0 if vs is (T, @)-reduced,
vly) =
ST {Ft ifvs=tvforteT,

0 if vs is (T, @)-reduced,
FtDt if vs =tv for ¢ ET,

So(vTins) = {

I;, ifvs=tvandvu =rvfort,reT,

fo(vlsy) = {

0 otherwise.

The remainder of this section is devoted to proving that f is a chain map.

Algebraic € Geometric Topology, Volume 20 (2020)



2634 Rachael Boyd

Lemma 5.11 The following square commutes:

8
Co —2-7

fol
8o

D0—>Z

Proof Let w in W. For each basis element wl, the square is given by

8
wly —2 7,

|

fowly) —2 Z

Since fp is defined Wr —equivariantly, if w = w’v for w’ in Wr and v is a (T, @)-
reduced element, then, from Definition 5.10,

fo(ng) = f()(tUFg) =1- fO(UFg) = trg.
It follows, since 69 maps all generators to 1, that the square commutes. a

Lemma 5.12 The following square commuites:

8
C1—1>C0

fll fol
81

D1—>D0

Proof Since all maps are Wr—equivariant, we need only consider the square on
generators multiplied by a (7, @)-reduced element v. We recall the image of §; from
Example 5.3:

§
vy — s v(s — DI

fll fol
81

N @Iy) —— fo(v(s —DIp)

Here the two cases for the element vs, given by Lemma 5.8, give the following cases
for fo, from Definition 5.10:
0 if vs is (7, @)-reduced,
folw(s = D) = oo (.2)
(t—1HIy ifvs=tv.
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This is precisely the image of fj(vIy) from Definition 5.10 under the differential &; .
Therefore the square commutes. |
For s and u in §, consider the following three cases, given by Lemma 5.8:

(1) Neither vs nor vu is (7, @)-reduced, that is, vs =tv and vu = rv for ¢ and r
in 7.

(2) One of vs and vu is (T, @)-reduced; without loss of generality, let vs = tv
and vu be (T, @)-reduced.

(3) Both vs and vu are (T, @)-reduced.

Recall from Definition 5.4 that p(s,u;m) is the alternating product of s and u of
length m ending in s.

Lemma 5.13 We have that

m(s,u)—1 m(s,u)—1
Ale(C X GO Y Do )

j=0 g=0
82(I3,) incase (1),
=40 in case (2),
0 in case (3).

Proof For case (1), since f1 acts Wr—equivariantly,
Si(v(p(s,us HNW) = fi(p@,r; j)vy) = pt,r; j)(fi(wh) = p(t,r; )Ty
and similarly f1(vp(u,s; g)Ts) = p(r,t; g)I;. Furthermore, m(¢,r) = m(s,u) since
w(t,rym(s,u))v =vnr(s,u;m(s,u)) =vr(u,s;m(s,u)) = nz(r,t;m(s,u))v,

and, by right multiplication by v, (¢, r;m(s,u)) = 7 (r,t;m(s,u)), so m(t,r) is
a divisor of m(s,u). Applying a similar argument in reverse gives that m(s,u) is a
divisor of m(¢,r), and so m(s,u) = m(¢, r). Therefore, since f; acts linearly,

m(s,u)—1 m(s,u)—1
fl(v( S ) pe s Tt Y (—1)g+2p<u,s;g)rs))

Jj=0 g=0
m(t,r)—1 m(t,r)—1

= > W Hperi L+ Y (DEp(ri )l = 82T,
j=0 g=0
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For case (2), we first prove that if vs = tv and vu is (T, @)-reduced, it follows
that v(mw(u,s;k)) is also (T, @)-reduced for all 2 < k < m(s,u) — 1. Note that
since vs = tv, from Lemma 5.8, £(vs) > £(v). Suppose v(w(u, s;k)) is not (T, &)—
reduced and choose minimal k for which this is the case. Then, for some ¢ in T, it
follows that v(w(u, s;k)) = qu(mw(u,s;k —1)) and so w = v(;w(u, s; k)) satisfies the
hypothesis of Lemma 5.9, that is, £(wu) < £(w) and £(ws) < £(w). Therefore,

w=w (7, s;m(s,u))) = v(mu,s;k)).

By right multiplication by (7 (u, s;k))~! we have v = w’ p(s, u;m(s,u) — k). There-
fore v satisfies £(vs) < £(v), but this contradicts vs = tv. Therefore v(w(u, s;k)) is
also (7, @)-reduced for all 2 < k <m(s,u)— 1. Computing f7, it follows that

Si(v(p(s.us j)T))

fl(v(n(u,s;j)Fu)) =0 if j iseven, j #m(s,u)—1,
t- filve(u,s; j—1HL,)=t-0=0 if jisodd, j #m(s,u)—1,
fl(vn(u,s;m(s, t)— I)Fu) =I; if j =m(s,u)—1 and is even,
t-fi (vn(u,s;m(s, t) —2)Fu) =t-0 if j =m(s,u)—1 and is odd,

and similarly

S1(wp(u,s; g)Ts)

fily) =T if g=0,

t- filve(u,s;g—DI)=t-0=0 if g is even, g ¢ {0, m(s,u) — 1},
=4 filve(u,s; g)s) =0 if g is odd, g # m(s,u) — 1,

t- fi(vm(u,sim(s, 1) —2)I5) =1-0=0 if g =m(s,u)—1 and is even,

filvr(u,sim(s, 1) = DIy) =T if g =m(s,u)— 1 and is odd,

so it follows, in the setting of case (2), that we have

m(s,u)—1 m(s,u)—1
fl(v( S ) pu N+ Y (—1)g+2p(u,s;g>rs))

j=0 §=0
T+ (=1)mD=1H20 = 0 if m(s, u) is even,
L+ (=)L =0 if m(s, u) is odd.

For case (3), if both vs and vu are (T, @)-reduced, then, by the same argument as in
case (2), v(mw(u,s;k)) and v(7(s,u; k)) are also (T, @)-reduced for 2 <k <m(s, u).
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Computing f7 in the setting of case (3) gives

m(s,u)—1 m(s,u)—1
fl(v( S ) N+ Y (—1)g+2p(u,s;g)rs))=o. 0
j=0 g=0
Lemma 5.14 The following square commutes:

8
C2—2>C1

le f1l
8

D2—>D1

Proof Since all maps are Wr—equivariant, let v be a (T, @)-reduced element and
consider the square on generators left-multiplied by v. We recall the image of &, from
Example 5.5. We must consider both forms of generators of C:

I3
Vs ———— v(1 +5)Ty

o

s 2 A1 +5)T3)

8
o —— 0(X ST 1) (s, 1 Tt T =082 p(u, 51 9)T)

12 fﬂ

FrO0T) 2 fi(0 (TS0 =1+ pls,us Ty
+Zm(su) 1( 1)g+2p(u’s;g)rs))

Computing f1(v(1 + s)I§), we have

0 if vs is (T, @)-reduced,

filv(1+9)Ty) = {(1 +0I  if vs = tv.

This is precisely the image of f>(vIss) from Definition 5.10 under the differential &, .
Therefore the left-hand square commutes.

The bottom right entry of the right-hand square is given in Lemma 5.13. This is precisely
the image of f»(vIy,,) from Definition 5.10 under the differential §,. Therefore the
right-hand square commutes. |
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Proposition 5.15 The maps fo, f1 and f» in Definition 5.10 form part of a chain
map f,: Co — D,.

Proof This is a consequence of Lemmas 5.11, 5.12 and 5.14, which show that all the
required squares commute. |

In the following sections the tools we have developed are utilised to compute the
E? terms of the isotropy spectral sequence for the Davis complex. When a proof is
omitted, this is due to its being a straightforward calculation of homology. All omitted
proofs can be found in [1, Appendix B].

Lemma 5.16 Forr > 1, we have Ej, = H;(Wg:Zg) = 0.

It follows that the E(}’3 term of the diagonal is zero on the E°° page.

5.3 Homology at E!

We use the De Concini—Salvetti resolution [5] and the transfer (Proposition 3.2) and
collapse (Definition 5.10) maps to compute the differentials for the following section
of the spectral sequence:

1 1
0= Hy(Wo: Zo) <~ (D Hy(Wi: 7)<~ @ Ha(WriZr).
teS TeS
|T|=2

Let W; and W7 be as in the above sequence, and T = {s,¢}.

Lemma 5.17 In terms of the De Concini—Salvetti resolution, the homologies in the
above sequence are Hy(W;; Z) = Z», generated by 1 ® I3~ , and

Zo @ Zy if m(s,t) is even,

Hy(Wr:ZT1) =
2T 21) = 4. if m(s, ) is odd,

generated by 1 ® I'so5 and 1 ® ;5 when m(s, t) is even, and with these generators
being identified when m(s, t) is odd.

Lemma 5.18 Foru in T, d}u is given by
df.: Hy(Wis3: Z1) = Hy(Wy; Zyy), 1@ Tyns > 1 Q@ Do,

if m(s, t) is odd, and the zero map if m(s,t) is even.
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Proof We first apply the transfer map from Proposition 3.2 to the generator(s) of
Hy(Wis,1y: Z1), followed by the degree 2 collapse map f> from Definition 5.10. O

Proposition 5.19 The E 12,2 entry of the isotropy spectral sequence for (W, S) is given
by Ho(Dodd: Z2)-

Proof On the E' page we compute homology of the sequence

0L Pz, P Z0Zne P o

teS TeS TeS
T={s,t} T={s,t}
m(s,t) even m(s,t) odd

The left-hand map is the zero map and the right-hand map is defined via Lemma 5.18.
Applying the splitting technique as in the proof of the H,(W;Z) calculation (see
Proposition 4.7) gives homology equal to Ho(Doad; Z2), as required. a

5.4 Homology at E; |
The E! page at Ezl,1 has the form

P H Wiz < P 5z < @ HWr ).

teS TeS TeS
|T|=2 |T|=3

Proposition 5.20 The first homology Hy(Wr; ZT) is as follows for finite W with

T ={s,t,u}:
Wr Dw, H\(Wr; Z7T) generator
W(A3) e Z3 o
4
W(B3) S — 7o a=p
5
W(H;) S 0
W(l2(p)) x W(A1) p o Zo®7Z, if piseven «o,pB if piseven
p=2 st u 7y if p is odd B if pisodd

Generators are given by the De Concini—Salvetti resolution for Wr ; we set

a=(180)—(1&L) and B=(1®T)—(1&L).
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Proposition 5.21 When T = {s,t}, H\(Wr; ZT) = Zm(s,r) With generator in the De
Concini—Salvetti resolution given by y = 1 @ I — 1 ® I ;.

Proposition 5.22 Let s in S. Then H;(Ws;Zs) = 0.

We now introduce some notation. If H;(Wr;Z7) only has one generator, then we
represent that generator in the E ;, ¢ summation of homologies by drawing the dia-
gram Dy,.. We represent d 1 H; (Wr:Z7) by drawing a map from the diagram Dyy,. to
the diagrams representing generators in the image of d!| H; (Wr:Z7)» With signs and
scalar multiplication as required. In some cases H; (W7 ; ZT) has either zero or two
generators, but in these cases there are no nonzero differentials.

Proposition 5.23 The nonzero differentials on the E' page at Ezl,1 are given as

D HWiZ) < P HiWr:Zr) <~ @ Hi(WriZp).

teS TeS TeS
|T|=2 |T|=3

—e O 6—0 <— ——0

N t t u N t u
p odd

° e b e o <— o—e@ ]

s u t u N t u

Proof This proof involves calculating the differential ¢! via the transfer and collapse
maps. This can be calculated by hand, but we use Python and the PyCox package [6].
These calculations can be found in [1, Appendix B]. O

Proposition 5.24 Recall from Definition 1.3 the diagrams D,, and D4, . Then the
E%,l entry of the isotropy spectral sequence for (W, S) is given by

Ho(Dae; Z2) ® Ho(Dg,: Z3) ® ( . Zm(s,t))-

m(s,t)>3,7#00

Proof Consider the d! differentials at Eil , given in Proposition 5.23, and apply the
splitting technique as in Proposition 4.7. |
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5.5 Homology at E} |

Lemma 5.25 The nonzero d! differentials at E 31’0 are given by the maps

d! d!
@ HO(WT;ZT)<— @ HO(WT§ZT)<— @ HO(WT;ZT)
TeS TeS TeS
IT|=2 |T|=3 IT|=4
d! d!
@ z @ z. @ z
TeS TeS TeS
|T=2 |T|=3 |T|=4
p odd
) o | @ o — | o—@ °
t u N u N t u
*—o—0 | 0—0—0 | —0—0—0
S t u t u v S t u v
g even q even p odd g even
° *——o ° *—=e —— 6—0 *——e
t u v N u v N t u v
g odd g odd
o *——o + o *——o
t u v s u v p odd g odd
p odd p odd K} t u v
*——e o |+ eo—eo °
t v S t u

Proof Lemma 4.6 gives the image of the left-hand map. To compute the right-hand
map we consider the index of spherical subgroups, by Lemma 4.3. Computing the
index of each subgroup as in Lemma 4.6 gives nonzero maps, as required. O

Proposition 5.26 Recall from Definition 1.3 the diagrams pU Dee2re and Dy, .

o0’

Then the E §,0 of the isotropy spectral sequence for (W, S) is given by

E3 o= H\(D5: Z2) ® Ho(D. 22s: Z2) ® Ho(Da,: L) & ( @ Zz)-
W(H3)CW
W(B3)SW
Proof Splitting the d! differentials of Lemma 5.25 as in Proposition 4.7, we can
equate the homology of the sequence in Lemma 5.25 to the components on the right-
hand side above. |

5.6 Further differentials are zero

Recall the isotropy spectral sequence for the Davis complex associated to a Coxeter
system (W, S), given in Figure 1. Then on the p+¢ = 3 diagonal the spectral sequence
has E2 page as shown in Figure 2.
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A = Ho(Doad; Z2),

B = Ho(Das: Z2) & Ho(Da,: Z3) & ( &y Zm<s,,)),

m(s,t)>3,7#00
C = H1(D3: Z2) ® Ho(Dy 220 Z2) & Ho(Da,: Z2) ® ( ay zz),
W(H3)CW
W(B3)=W

Figure 2: The E? page of the isotropy spectral sequence for the Davis
complex of a Coxeter system (W, S).

The E® page of this spectral sequence gives us filtration quotients for H3(W;Z) on
this diagonal. The arguments in this section shows that all possible further differentials
to and from this diagonal are zero. Since the spectral sequence is first quadrant, from
Figure 2 there are only three possible further differentials that may affect the p +¢q¢ =3
diagonal:

(1) d* E3, — A.

(2) d* E;,— B.

(3) d3: Ejo— E3,.
We first prove two lemmas which will reduce the cases for which we compute differ-
entials originating at E Z,o in cases (2) and (3). Let W4 and Wp be nontrivial finite
groups such that the size of their generating sets S4 and Sp sum to 4. Denote the
isotropy spectral sequence for Wy x Wp by E(A x B). Then the E ‘}’0 term in the

spectral sequence is
E4o= Ho(Wsq x Wg; ZuB).

Lemma 5.27 With notation as above, the possible d? and d* differentials originating
at EZ’O for r =2 or r = 3 in the spectral sequence E(A x B) are zero.
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Proof By the Kiinneth theorem for group homology (see e.g. [2]) we have the short
exact sequence

0~ P Hi(Wa:Za)®z Hj(Wa: Zp) => Hi(Wa x Wa: ZauiB)

i+j=k
— @ TorIZ(H,'(WA; Z7.4),Hj(Wg:Zp)) — 0

i+j=k—1
since Z4 ® Zg = Z 4,8. When k = 0 the torsion term is zero, hence
Ho(Wa;Za) ®z Ho(Wp; Zp) => Ho(Wa x Wg; Z41B)-
By Theorem 3.6, there is a pairing
®,: E(A)® E(B) > E(AX B)

which is given on individual summands of the E! terms by the Kiinneth map. Since
E i,o(A x B) has only one summand, ®, is given by the Kiinneth map above, which
is an isomorphism. Let |[S4| = « and |Sp| = B and recall o 4+ B = 4. Then, under the
pairing D, all cycles in E z{,o (A x B) correspond to a pair of cycles:

Eqo(A)® Ej o(B) = Efo(Ax B).

It follows that all d ! differentials from E i,o (Ax B) are described via the Leibniz rule by
differentials from E olt,O (A) and E ﬁli,o (B). Therefore the kernel of d! from E i,o(A X B)
is given by a pairing of elements in the kernel of d! from E olz,O(A) and the kernel
of d! from E /513 o(B). and so the Kiinneth map is onto on the E? page:

EZo(A)® E} o(B) > E o(Ax B),

and the d? differentials from E f’O(A X B) are again defined via the Leibniz rule. Since
« and B are both less than 4, the d* differentials in E(A4) and E(B) arise at E}
where p < 4. But all possible targets of a d? differential from such an E;,o are zero
(consider Figure 2). Thus the further differentials mapping from E 4%,0 (A x B) are zero.

The d? differential with target EiO(A x B) originates at a 0 group, since the
spectral sequence is first quadrant. Since the d? with source E 2,0 (A x B) is also
Zero, E‘%,O(A X B) = E;Z”O(A X B). By a similar argument, Eg,O(A) = ES,O(A)
and E E’O(B) = EE,O(B)' It follows that the Kiinneth map is also onto on the E> page
and therefore, by the same argument as the d? case, the d3 differential originating at
E; o(Ax B) is zero. O
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Lemma 5.28 Consider a differential d* or d* originating from a summand in E}, 0
for r =2 or r = 3. If the corresponding cycle at the E j’O term occurs in a summand
Ho(Wy x Wg:Z4.,8) for Wy and Wg nontrivial subgroups of W, then the d? or d>
differential is zero.

Proof By Lemma 3.3, the inclusion of groups Wy x Wp < W gives an inclusion
of spectral sequences on the E! page E!(A4 x B) — E(W). Therefore differentials
mapping from cycles corresponding to the Ho(Wy x Wg; Z4.,p) summand at position
E i,o in E(W) will be induced via this map by differentials in E(A x B). From
Lemma 5.27, the d? and d? differentials originating at the E 2,0 position are zero
in E(Ax B). d

We therefore only need to consider differentials originating at the E 2,0 components
for r =2 or r = 3, which correspond to Ho(W7r; Z1) summands of E i,o for Wr
irreducible groups, namely for Wr of type A4, By, D4, F4 and Hy. As in the
previous sections we denote the generator of Ho(Wr;Z1) = Z» by Dy, .

Lemma 529 The d' differentials on the E! page at the E i,o position for the
summands Ho(Wr; ZT) corresponding to Coxeter groups of type A4, B4, D4, F4
and H, are nonzero in the single case

1 1
P HoWr:Zr) <= @ HoWr:Zr) <~ €D Ho(Wr;Zr),

TeS TeS TeS
|T|=3 |T|=4 |T|=5

*—o—0 | 0—0—0 <
N t u t u v N t u v

Proof From Lemma 5.25 we have the maps from the central groups to the left. The
finite Coxeter groups with five generators for which the A4, B4, D4, F4 and Hy
diagrams are subdiagrams are the groups of type As, B5, D5 and the groups created by
taking the product with A ;. Recall from Lemma 4.3 that in this case d! is determined
by the index of the subgroup. In the case of the product groups, the index of the 4—
generator subgroup is 2 and hence the transfer map is zero. The remaining computations
we compute using Python and PyCox [6], though formulas for each group size can be
found in [10]. In each case the index of the subgroup is even, hence the transfer map is
Zero. d

Proposition 5.30 If d! applied to a generator of a summand Hy,(Wr; ZT) on the
E' page is identically zero on the chain level, then the higher differentials which
originate at cycles corresponding to this generator on the E™ page are also zero.
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Proof The d! differential of the isotropy spectral sequence is given by the transfer
map on the chain level by Proposition 3.2. In general, higher differentials of the spectral
sequence for a double complex are induced by combinations of the differentials on the
chain level, and lifting on the chain level. Therefore, if the d 1 differential is zero on
the chain level for the cycle representing a term E? | then the higher differentials will

p.q°
also be zero. O

Corollary 5.31 The d? and d? differentials originating at Eg forr=2orr=3
corresponding to cycles on the E i,o summands for groups of type B4, D4, F4 and Hy

are zero.

Proof This is a consequence of Lemma 5.29, and Proposition 5.30, if the transfer
maps from Lemma 4.3 originating at Ho(Wr;Z7) for these groups are identically
zero on the chain level (and not just zero modulo 2). This is satisfied if, alongside
there being an even number of cosets, there are identical numbers of cosets with odd
and even length. We use Python [6] and compute that there are equal numbers of coset
representatives of even and odd length for every 3—generator subgroup of B4, D4, F4
and Hy. O

The remaining potentially nonzero differentials originating at the Eg, 4 position for r =2
or r = 3 correspond to cycles on the Ei,o summand Ho(W(A4);ZT).

Lemma 5.32 The potential d? and d* differentials originating at the Eg’ 4 position
for r =2 or r =3 and corresponding to cycles on the Ei,o summand Ho(W(A4); ZT)

are zero.

Proof If the further differentials were nonzero then they would also be nonzero
in the spectral sequence for W(A4) by Lemma 3.3. The E? page for the Coxeter
group W(A4) is given by Figure 2 with

A=0, B=Z,®Z3, C=12Z»,.

The computation of this is given in [1, Appendix B]. The third integral homology of
the symmetric group S5, which is isomorphic to W(A4y), is

H3(W(A4):Z) =Z12®Zr = 73D L4 ® Lo,

which is precisely given if the groups on the p +¢ = 3 diagonal of the E? page are the
E®° terms, or filtration quotients, for H3(W(A4); Z) (there is a nontrivial extension
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of Zy by Z,, which we will discuss in the following section). Therefore no higher
differentials in or out of this diagonal can be nonzero. |

Proposition 5.33 The possible d? and d? differentials originating at the E}, .0 Pposi-
tion for r = 2 or r = 3 in the spectral sequence are zero.

Proof This is a direct result of Lemma 5.28, Corollary 5.31 and Lemma 5.32. |

Lemma 5.34 Let Wr and Wy be nontrivial finite Coxeter groups, and the size of
their generating sets sum to 3. Then the potential d? differential originating at the E g 1
position is zero.

Proof The group Wz x Wy must be W(Ix(p)) x W(Ay) for p > 2, by the classifi-
cation of finite Coxeter groups.

When p is even, the E? page for the Coxeter group W(I(p)) x W(A1) is given by
Figure 2 with

A=7o®Zo B2z, B=7Zr®Zr®7Zy, C=17Zs,

which is computed in [1, Appendix B]. The third integral homology can be computed
via the Kiinneth formula for groups to be

Hy(W(I2(p)) x W(A1);2) = Lo @ Lo @ LoD Lo Lp ® Lo ® L.
Similarly, when p is odd, the E2 page is given by Figure 2 with
A=7Z2®7Z>, B=Zr®Z,, C=0
and the Kiinneth formula gives the homology to be
H3(W(I2(p)) x W(A1): L) = Lo @ L p & Zo.

In both cases, the group homology calculated via Kiinneth is precisely given if the
groups on the p + ¢ = 3 diagonal of the E? page are the E® terms. Therefore no
higher differentials in or out of this diagonal can be nonzero. |

Lemma 5.35 Suppose a d? differential in the isotropy spectral sequence for W
originates at a cycle in E 3%’1 represented by a homology class in E31’1 of a subgroup
Wr x Wy of W such that neither Wy nor Wy is the trivial group. Then this d>
differential is zero.

Proof This proof mimics Lemma 5.28, using Lemma 3.3, and Lemma 5.34. |
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Proposition 5.36 The possible d? differential originating at the E _%’1 group in the
spectral sequence is zero.

Proof The E il entry is calculated by computing the homology of the sequence

&P Hi(Wr: Z7) <~ o, Hy(Wr: Zr) <~ P Hvr:Zr).

TeS TeS TeS
|T|=2 |T|=3 |T|=4

Recall the left-hand map from Proposition 5.23. The possible d? differential acts on
cycles in summands of the form Hy(W7; Zt) for |T| = 3.

If d? acts on a cycle in the summand Hy(W(A3); Zt) = Z3 (from Proposition 5.20),
it must map to zero, since the target £ 12’2 = Hy(Doaq: Z>) is all 2—torsion.

If d? acts on a cycle in the summand H(Wy:Z7) for Wr the group W(B3)
or W(Hj3), it will map to zero, as the representing cycles transfer identically to zero
on the chain level by the proof of Proposition 5.23, so we apply Proposition 5.30.

Lemma 5.35 covers the final cases, where the d? acts on a cycle in the summand

H\(Wr; Zt) for Wr = W(I2(p)) x W(Ay) for p > 2. o

5.7 Extension problems

Since all further differentials at the p 4+ ¢ = 3 diagonal are zero, the £2 page shown in
Figure 2 gives the limiting, or E£°°, terms on this diagonal. The spectral sequence on
this diagonal converges to filtration quotients of H3(W;Z), so we consider possible
extensions on this diagonal. That is, there is a filtration of H3(W;Z),

Fo CF1CF,C F3=H3(W;Z),
where E(‘)”% =Fy, Ei’?z:Fl/Fo, ng’l = F>/F; and E;’?0=F3/F2. We have Fp=0

and so E75 = Fy.

Proposition 5.37 The group F1 = A = Ho(Dogq; Z>) splits off as a direct summand
of H3y(W;7Z).

Proof Consider a homomorphism ¥ from a Coxeter group W with generating set S
to the cyclic subgroup of order 2 generated by ¢ in S, which we denote by W;. If 51
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and s, in S satisfy m(sy,s2) is odd, we require ¥ (s1) = ¥ (s2), whereas, if m(sy, 52)
is even, there is no requirement on . A summand of

A=F = Ho(Pua:Z2) = P 2
70(Doda)
is represented by a vertex of Dy . For the vertex 7, denote the corresponding summand
of A by Z,(t). We define the homomorphism ¥ from W to W; to be zero on all but
one of the connected components of Dyqq, namely the 1 component:

VW W, . {t if s anc.l t are in the same component of 7¢(Dogq),
e otherwise.
Then the map V¥ induces a map ¥, which fits into the diagram
Za(t) s A Hy(W:Z) —2 Hy(Wy: Z)

|

Zr

where H3(W;;Z) = Z, is computed by noting that the E°° page of the isotropy
spectral sequence for W; has only the group Ho(Dogdq; Z2) = Z»(t) onthe p+¢q =3
diagonal. The inclusion map A < H3(W;Z) comes from the fact that A = F; and so
is a subgroup of H3(W;Z). The identity isomorphism gives us that H3(W;Z) splits
as

H3(W:Z) = Za(t) & ker(Y+)

and so there are no nontrivial extensions involving the Z,(¢) summand of A. Repeating
this argument over all summands gives that there are no nontrivial extensions involving
A and so A = Fy splits off in H3(W; Z), as required. |
We therefore have the filtration

0CFICFHCF=H3W,Z)=F, & F;

and we let F, = F1 @ F) and F3 = F; @ Fj. It follows that Ezof’l =B=F/Fi=F,
and E¢G = C = F3/F, = F3/F,, so Fj fits into the exact sequence

0 F} F} F}/F) ——0

2
I I I
0 B F} C 0

i.e. F} is an extension of C by B.
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Lemma 5.38 There exist no nontrivial extensions between the Hoy(D, $24: Z7) sum-
mand of C and the groups at B in the spectral sequence of Figure 2.

Proof A summand of Hy(D, 2z,; Z>) is represented by a vertex in D, g2r, corre-
sponds to an I(2p) U Ay (p > 1) subdiagram present in Dyy. We compute the
spectral sequence for the Coxeter group V = W(I»(2p)) x W(A1) corresponding
to this diagram, and note that by Lemma 3.3 the inclusion of the subgroup V into
the group W induces a map of spectral sequences. Therefore, if there is a trivial
extension in the spectral sequence for V' corresponding to the I>,(2p) L A summand
of Hy(D, «2z.; Z7), this extension will be trivial in the spectral sequence for W. This
is because the splitting of the extension sequence in E (V') will give a splitting of the
extension sequence in E (W), under the map of spectral sequences. The E°° page for
the Coxeter group V' is given by Figure 2 with

A=Zo®ZLo® 2Ly, B=Zo®Zr®ZLzp, C=1ZLs,
which is computed in [1, Appendix B]. Therefore,
H3(V;Z)=F;® F1 = Fy® (Z2 ® 72 ® Z»),
where F3’ is an extension of Zy by Zo ® Zo & Z3p.

The third integral homology of V' can be computed via the Kiinneth formula for groups
to be

H3(W(I,2p)) x W(A1);Z) = Lo ® Lo D Lo D Lo ® Lop & Lo & Zo.

Therefore we see that Fj ' =Tl ® Ly DLy B 7y p and it follows that there is no
nontrivial extension between the Ho (D, 42r,; Z») component of C and B. O

Lemma 5.39 The extension between the Ho(D4,:7Z>) summand in C and the
Hy(D..; Z,) summand in B is nontrivial.

Proof A summand of Ho(D4,;Z>) is represented by a vertex of D 4, corresponding
to an A3 subdiagram present in Dy . The E°° page of spectral sequence for the
subgroup V = W(A3) corresponding to this diagram is given by Figure 2 with

A=172, B=Lx®Zs, C=1ILs,
which is computed in [1, Appendix B]. Therefore,
H3(ViZ)=F;& F1 = F5 & Z»,
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where Fj is an extension of Zy by Z, @ Z3. Recall that V' is isomorphic to the
symmetric group Sy, and H3(S4;Z) = Z12 ® Z> . The unique extension which will
obtain this result is

0>ZrP7Zsz—>74DZs— Zo—0,

giving H3(V;Z) =74 ®Z3 D Z» = Z12 @ Z>. By Lemma 3.3 the inclusion of the
subgroup V into the group W gives a map of spectral sequences, under which the
extension sequence above is mapped as follows:

0——Zp®Z3s —— L4y Plz—— Zp——0

T

0 B F} C 0

Therefore the extension in E (V) corresponding to the A3 summand of Ho(D4,;7Z>)
is present in the spectral sequence for W. It follows that there exists a nontrivial
extension from each summand of Ho(D4,:Z2) to Ho(Da.; Z2). O

Definition 5.40 For a Coxeter system (W, S), let I = mg(D..), J = m9(Dy;), let
the connected component of a vertex {s,u} in mo(D,,) be denoted by [{s, u}] and the
connected component of a vertex {s, 7, u} in mo(D4,) be denoted by [{s,?,u}]. We
define the extension matrix Xy to be the || x |J| matrix with entries

XG. /) 1 ifi =[{s,u}]and j = [{s,t,u}],
l’ = .
/ 0 otherwise.

Lemma 5.41 The extension of Ho(D4,;Z2) by Ho(D..:Z>) in the spectral se-
quence is completely determined by the extension matrix Xw defined in Definition 5.40.
The extension sequence in question is

0—— H()(D..; Zz) Y — Ho(DA3; Zz) — 0

00— EB 7 Y EB Ziyg —— 0
70(Dee) ”O(DA3)

and the entry X (i, j) of Xy dictates whether the extension between the i Z, on the
left and j™ 7, on the right is trivial (if X(i, j) = 0) or Z4 (if X(i, j) = 1).
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Proof For two finite indexing sets I and J, the extensions of &) J Z> by P 1 Lo are
classified by

Ext(@ Z,, @zz) — PP 70 = PP 7o
1 J J 1 J

1

Under this classification, an extension is given by an / xJ matrix X with entries X (i, j)
in Z,. The X(i, j) entry is zero if the restriction to these summands in the extension
sequence is trivial, and 1 if the extension is the nontrivial extension of Z, by Z»,
giving Z4.

Consider the extension sequence. By Lemma 5.39, we know that the projection on the
right to a Z, summand [{s,#,u}] in mo(Dy4,) is the nontrivial extension by the Z,
summand [{s, u}] in 79(D..). Let I = mo(D..) and J = mo(D4,); then the matrix X
is precisely Xy from Definition 5.40. |

Lemma 5.42 There exist no nontrivial extensions between the

D 7

W(H3)SW
W(B3)SW

summand of C and the groups at B in the spectral sequence of Figure 2.

Proof We recall that subdiagrams of the form H3 and B3 in Dy represent these
summands of C. We compute the spectral sequence for the groups corresponding to
these diagrams, and compare to the third homology of the corresponding group W(H3)
or W(B3) as computed using the De Concini—Salvetti resolution [5]. Through these
comparisons we observe that there are no nontrivial extensions present, as in the proof
of Lemma 5.38. These calculations are in [1, Appendix B]. a

Lemma 5.43 A class H,(D3;7Z,) in C exists only when the spectral sequence
is calculated for a Coxeter system (W, S) for which Dy has a subdiagram of the
form Y U Ay, where Y is a 1—cycle in the Coxeter diagram Dyqq. That is, a class
in Hy (D.D.; Z7) is represented in Dy, by a loop containing only odd edges, along with

a vertex disjoint from this loop.

Proof Suppose vertices {f1,...,1} of Dy represent a 1-cycle in Dygg and the
vertex s is disjoint. Then {(¢1,s),..., (tk,s)} represents a 1—cycle in DE. To
show that all classes in H;(DL;

o0’

Z,) are represented by cycles of this form, suppose
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that {(x1,y1),...,(xp, yp)} represents a 1—cycle in DL . Without loss of general-
ity, suppose x; = x». Since there exists an edge between (x1,y;) and (x1, y2)
in D,,, m(y1, y2) must be odd. Now either x; = x3 or y, = y3; suppose y» = y3.
It follows that m(x1, x3) is odd, so in Dy there is a subdiagram of the form

odd odd
[ . d
X1 X3 1 Y2

It follows that in the diagram D,, there is a subdiagram

(x1,51) (x3,y1)

(x1,¥2) (x3,¥2)

and since this is a square, it is a 2—cell in DY. Therefore, in H{(D;Z5>) the
cycle {(x1,y1),(x1,¥2),(x3,¥2),(x3,y1)} is a boundary. It follows that replac-
ing the subcycle {(x1,y1), (x1,¥2), (x3,y2)} of {(x1,y1),...,(xp,yp)} with the
vertex {(x3,y1)} gives representatives of the same class in H;(DL;Z5), and the
original cycle becomes {(x3, 1), (x4, y4) ..., (xp, yp)}. Without loss of generality,
we can now assume that x3 = x4 and we return to the start of the analysis of the
cycle. By reiterating this procedure we build a cycle equivalent, via boundaries,
to {(x1,¥1),...,(xg, i)} and where x; = x; for all 7. This is exactly a subdiagram

of the form Y LI A in the Coxeter diagram Dy, where Y is a loop in Dyqq .- O

Lemma 544 Let W = W(Y) x W(A) be a Coxeter group such that Y represents a
1—cycle in Dyqq; then, for some 0 <m in N,

H3s(W;Z) =~ H3;(W(Y); Z) ® 7.
Proof By the Kiinneth formula for group homology,
H3(W;Z) = Hs(W(Y); Z) ® L2 ® Ho(W(Y); Z) @ Hi(W(Y): Z)
and since the first and second integral homologies of any Coxeter group are all 2—

torsion the result follows. O

Proposition 5.45 When W = W(Y) x W(A1) is such that Y represents a 1—cycle
0.

oo’

in Doyyq, there are no nontrivial extensions between the H1(Dg,; Z») component in C

and B.
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Proof We note that should nontrivial extensions exist, the homology H3(W; Z) would
have at least one more summand with torsion greater than 2—torsion, in comparison to
the homology H3(W(Y);Z). This is due to the fact that H;(DL; Z») is zero in the
spectral sequence for H3(W(Y);Z), so the extension would not occur here. We also
note that transitioning from W(Y') to W does not alter any nontrivial extensions in the
spectral sequence for W(Y') between the summand Ho(D..; Z2) and Ho(D4,;Z2).
From Lemma 5.44 we have that H3(W;Z) has no summands with higher than 2—
torsion that do not also appear in H3(W(Y);Z). |
o

Lemma 5.46 There exist no nontrivial extensions from the H1(Dg,; Z>) component

of C to B.

Proof A class of Hi(DLl;Z,) is represented by a subgroup with diagram of the
form Dy = Y U A such that Y represents a 1—cycle in Dyqq, by Lemma 5.43.
By Proposition 5.45 no nontrivial extensions exist between this class and B in the
spectral sequence for the representing subgroup. Therefore, by a similar argument to
Lemma 5.38, there are no nontrivial extensions from this class. |

5.8 Proof of Theorem B

Theorem 5.47 Given a finite-rank Coxeter system (W, S) there is an isomorphism

H3(W;Z) = Ho(Doud; Z2) ® Ho(Da,: Z3) & ( P Zm(s,t))

3<m(s,t)<oo

EBHO(D..Z_r.;Zz)EB( P Zz)

W(H3)SW
W(B3)CW

@ (Ho(Da,: Z2) O Ho(Daw: Z2)) ® H1 (D Z5),

where each diagram is as in Definition 1.3 and viewed as a cell complex. In this
equation, () denotes the nontrivial extension of Ho(D 45;Z2) by Ho(D..: Z2) given
by the extension matrix Xy in Definition 5.40.

Proof The extension problems are solved in Lemmas 5.38, 5.39, 5.42 and 5.46.
It follows that the only nontrivial extension is the extension of Ho(Dy4,;Z2) by
Ho(D,.; Z>), which is determined by the extension matrix Xy of Definition 5.40 by
Lemma 5.41.
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The computation of the p 4+ g = 3 diagonal of the isotropy spectral sequence for the
Davis complex, alongside the solutions to these extension problems, gives the formula
for H3(W;Z) as stated in the theorem. a

Appendix Table of results for finite Coxeter groups

The finite Coxeter groups were classified in the 1930s by Coxeter [3]. This classification
is described in Theorem 2.7. We use Theorems A and B to calculate the second and
third integral homology of the finite irreducible Coxeter groups, and give the results in
Table 1 below. We include Hy(W; Z) for completeness.

w H\(W:Z) Hy(W: Z) H3(W.Z)
Zz n=1
A, 7 0 n<2 Zor® 753 n=2
n>1 2 Zy n>3 Zr®LyBLs n=>34
Z%@Z3®Z4 n>>5
Z%@Z4 n=2
B 7 n=2| 23073074 n=3
>”2 Ly ®Ls Zo®7, n=3| Z3®L3DZ: n=4
n
B Ly@Zr®7Zy n>4 ZS®Zs®Z3 n=5
Ly®Zs®L; n>6
L3®Zs®L; n=4
Dy 2 2
0> 4 Zz Zz@Zz 22@236924 n=>5
B L3®Zs®L; n>6
I,(p) Z» p odd 0 podd Zr®ZLp p odd
p=5| Z,®Z, peven Z, peven Zr®Zy®Zy peven
F, Zr® Lo Zr®ZLo ZQ@Z";@%
H; Zs Zs Z3®ZL3®Ls
H, Zy Zy 23D 73 ®La®Ls
E¢ Zy Z> Z%EBZ3EBZ4
E; Zy Z> L3®7Z3®ZLa
Eg Zy Zy 220 73® L4

Table 1: Homology of finite Coxeter groups.
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