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ABSTRACT. For a new class of Shimura varieties of orthogonal type over a totally
real number field, we construct special cycles and show the the modularity of Kudla’s

generating series in the cohomology group.

1. Introduction

For Hilbert modular surfaces, Hirzebruch and Zagier showed in that certain
generating series that have as coefficients the Hirzebruch-Zagier divisors are modular
forms of weight 1. Further inspired by this work, Gross, Kohnen and Zagier showed in
that a generating series that has Heegner divisors as coefficients is modular of
weight 3/2. This approach is unified by Borcherds in [Bo], who showed more generally
the modularity of generating series with Heegner divisor classes as coeflicients in the
Picard group over Q.

Kudla and Millson extended the results to Shimura varieties of orthogonal type over a
totally real number field and showed the modularity in the cohomology group in )
based on work from [KMI1], [KM2], [KM3]. This is further extended by Yuan, Zhang
and Zhang in [YZZ1], who showed the modularity of the generating series in the Chow
group.

In the current paper, inspired by the above work of Kudla and Millson, we construct
special cycles on a different Shimura variety of orthogonal type over a totally real number
field F' and show the modularity of Kudla’s generating series in the cohomology group.

We consider the Shimura variety corresponding to the reductive group Resp/q G,
where G = GSpin(V) is the GSpin group for V' a quadratic space over a totally real
number field F, [F : Q] = d. We choose V of signature (n,2) at e real places and
signature (n + 2,0) at the remaining d — e places. Kudla, Millson and Yuan, Zhang,
Zhang have treated the case of e = 1, while we allow e € {1,...,d}.

If e > 1, there is no simpler divisor case, which makes the analysis much harder. In
particular, there is a very technical convergence issue that does not appear in the work
of Kudla and Millson.
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We present now the setting of the paper. For F' be a totally real field with real
embeddings o1, ...04, let A = Ap be the ring of adeles of F' and let V be a quadratic
space over F' of signature (n,2) at the infinite places o1, ..., 0. and of signature (n+2,0)
elsewhere. Let G denote the reductive group GSpin(V') over F. We define the hermitian
symmetric domain D corresponding to G to be:

D =D x Dy x...x De,

where D; is the Hermitian symmetric domain of oriented negative definite 2—planes in
Vo, =V ®q,; R.

Then (Res F/Q G, D) is a Shimura datum and for any open compact subgroup K of
G(Ay), this gives us the complex Shimura variety:

Mg (C) ~ G(F)\D x G(Ay)/K.

For i =1,...,e we let Lp, be the complex line bundle corresponding to the points
of D;. We also define the projections maps p; : D — D; and then the line bundles
pfLp, € Pic(D) descend to line bundles L ; € Pic(Mg) ® Q.

Let W be a totally positive subspace of V', meaning that W,, = W ®,, R is a positive
subspace of V,, = V ®,, R for all places 1 < ¢ < d. We define Vi = W+ to be the space
of vectors in V' that are orthogonal to W, Gy = GSpin(Vyy) and Dy = Dy x- - - X Dyye
the Hermitian symmetric domain associated to Gy, where Dyy; consists of the lines in
D; perpendicular to W. We actually have the natural identifications:

Gw ={9€G:gw=wYweVi}, Dw ={(11,...,7) € D: {w, ;) =0, Yw e W,V1 <i < e},

where (-,-) is the inner product corresponding to ¢;, the quadratic form on Vj,, that
extends to V5, (C) by C-linearity.

Then (Resp/g Gw, Dw) is a Shimura datum and we have a morphism (Resp/g Gw, Dw) —

(Resp/g G, D) of Shimura data. For K < G(Ay) an open compact subgroup and
g€ G(Ay), we can define the complex Shimura variety:

Mygg—1w = Gw(F)\Dw x Gw(Ap)/(gKg™ n Gw(Ay)).

Moreover, we have an injection of My -1y into Mg given by:

MgKgfl,W — Mk, [Tv h] - [Tv hg]

We define the cycle Z(W, g)k to be the image of the morphism above. Note that
Z(W,g)K is represented by the subset Dy x Gw (Af)gK of D x G(Ay).

Now let z = (21,...,2,) € V(F)" and let U(x) := Spang{z,...,x,} be a subspace
of V. Then we define Kudla’s special cycles:
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Z(U(2),9)rx ((=1)c1(Liq) - cl(LIV(’e))T’_dimU, if U(x) is totally positive,

Z('Z'? g)K =
0, otherwise.

Here ¢; denotes the Chern class of a line bundle. We will also use the notation
U(x)> Dz = Dy(z), Va := Viy(z)- Note that if z = (21,...,2,) € V(F)", we have
e N NGy ,aswellas Dy = Dy n--- 0 Dy, .

Now we will define Kudla’s generating function. For any Schwartz-Bruhat functions
or € S(VT(Ap))E and ¢’ in Spy,.(A), where Sp,,(A) is the metaplectic cover of the
symplectic group Sp,,(A), we define the generating series:

Z(g.¢5)= > > r(gp)or(g )W) (95) Z (z,9) K
2eG(F)\VT" geGa(Ap)\G(Af)/K
Here 7 is the Weil representation of Spy,.(A) x O(V]), where T'(z) = 1((xi, 2j))1<ij<r €
M,.(F) is the intersection matrix of z, and Wy, is the standard Whittaker function
for T'(x). Note that when e = 1, for gy = Id and a careful choice of g/, we recover the
generating series presented by Yuan, Zhang and Zhang in [YZZI].
The following is the main theorem of the paper:

Theorem 1.1. Let ¢y € S(V"(Af))E be any Schwartz-Bruhat function invariant under
K. Then the series [Z(g',¢y)] is an automorphic form, discrete of parallel weight 1+ %
for g € g\f)%(A) and valued in H**" (M, C).

By modularity here we mean that, for any linear function [ : H?" (Mg, C) — C, the
generating series obtained by acting via [ on the cohomology classes of the special cycles

WZ(d,0p) = D] > (g1 b (g™ @) W) (90N Z (2, 9) k).
2eG(F)\VT" geGo(Ap)\G(Af)/ K
is absolutely convergent and an automorphic form with coefficients in C in the usual
sense.

The case e = 1 was proved by Kudla and Millson in [Kul], based on work from
[KM1], [KM2], [KM3]. Yuan, Zhang and Zhang proved further in [YZZ1] the modularity
of Z(¢',¢¢) in the Chow group. One can further conjecture that for e > 1 the series
Z(g',¢y) is an automorphic form, discrete of weight 1 + % for ¢’ € S«f)% (A) valued in
CH® (Mg )c. This is out of reach at the moment, but one can expect to extend the
methods of Borcherds (see [Bo]) to show the modularity in the Chow group.

We will present now the ideas of the proof. We prove the cases e > 1 by extending the
ideas of Kudla and Millson. For each cycle Z(z, g) we want to construct a Green current

n(z,g) of Z(z,g) in Mg(C). Via the isomorphism H3% (X, C) ~ HgBe%n,l)(XK,C)a
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where the former is deRham cohomology while the latter is Borel-Moore cohomology,
we have the identification of cohomology classes:

[Z(x,9)] = [w(n(z,g))],

where w(n(z, g)) is the Chern form corresponding to the Green current 7n(z, g).
Let x € V(F)" such that U(z) := Spanp{xi,...,x,} is a totally positive definite
k-subspace of V. Define

such that z} = z;,..., 2} = x;, with 1 <143 < --- < i < r the smallest indices for
which U(2’) = U(x).

We take the currents defined by Kudla and Millson no(a:;-,n) of D, i in D;, where
1 <j<k 1<i<e Taking further the *-product of the currents no(z}, ;) for
1 <4 <e, we get a Green current of D, ; in D;:

m(x', ) = no(zh, 1) = no(hy, ) * - -+ = mo(xy, T1)-

Taking the pullbacks via the projections p; : D — D; and taking the =-product, we
obtain a Green current of D, in D:

(@', 9) = pimi (', 1) = pim (2], o) % - x plm (2, 7e).
Furthermore, we average the current 75(2’, g) on a lattice to get
ns(a’,739,h) = Do m@ ), g (V)
YeGz (F)\G(F)

which is a Green current for G(F)(Dy x Gx(Ay)gK/K) in D x G(Ay)/K. Showing the
convergence of the sum in the definition n3(z’, 7; g, h) represents the most technical part
of the proof and it is treated in Section B.7]

As n3(2’,7;9,h) is invariant under the left action of G(F), n3(z’,7; g, h) descends to
a Green current ny(z’,7; g, h) of Z(U(z),9)k in M. Here G(F)(r,h)K € Mk.

Taking the Chern forms, the #-product turns into wedge product and the averages,
as well as the pullbacks are preserved. wy(z},7;) is the Chern form of ng(%,7;) that
is defined by Kudla and Millson in [Kul], based on work from [KMI], [KM2], [KM3].
Furthermore, we have

wi (2, 1) = wolz1, 7)) A -+ Awo(ah, ),
wo(2', 1) = piwr(a’, 1)) A phwr(a’,72) Ao A pEwr (2, Te))
are the Chern forms of (2, 7;) and n2(2’, 7) respectively, and

ws(z',7;9,h) = Z w2 (', 7)1, 4 p)gx (YR,
7Gx (F)\G(F)
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is the Chern form of the Green current ns(z’, 7; g, h). Finally, ws(2’, 7; g, h) descends to
wa(z’, 75 g, h) corresponding to the divisor Z(U(z), g)x in Mg and is the Chern form of
na(z’, 759, h).

We defined above wo, w3 and wy for 2’ € V(F)* with dimU(z') = k. We actually
can extend the definitions of wg,ws and wy for z € V(F)" when dimU(z) < r as
well. For z € V(F)", if dimU(z) = k, we have the equality of cohomology classes
[Z(U(x),9)] = [wa(z’,7;9,h)] in H?>**(Mg,C) and we can actually show further that
we also have:

[Z(z,9)] = [wa(z, 739, 1))
in H?"(Mp,C). Plugging in [wy(x,7;g,h)] for the cohomology class of [Z(x,g)], we
take the the pullback p* of the natural projection map p : D x G(Af)/K — Mg and
unwind the sums. Then we get:

P20 0] = Y, (9@ W (gho)wn (@, 7). (1)

zeV (F)"

It is enough to show that () is an automorphic form with values in H2¢"(D x
G(Ay)/K,C). We show this using the properties of the Kudla-Millson form on the
weight of each individual wy(z, 7;), as we can rewrite (I)) as:

P2 ] = Y, rgpes(@)r(ge) (e T w2, 7)),
zeV (F)"
and the RHS is a theta function of weight (n+2)/2 with values in H*"(DxG(As)/K,C),
thus it is automorphic.

Acknowledgements. The authors would like to thank Xinyi Yuan for suggesting
the problem and for very helpful discussions and insights regarding the problem. We
would also like to thank the anonymous reviewer for detailed feedback. ER would also
like to thank Max Planck Institute in Bonn for their hospitality, as well as to the TAS
of Tsinghua University where part of the paper was written.

2. Background

2.1. Complex Geometry. We will recall now some background from complex geom-
etry (see for example [CG], [GH]).

Let X be a connected compact complex manifold of dimension m. Suppose Y is a
closed compact complex submanifold of codimension d. Then Y has no boundary and
is thus a 2(m — d) chain in X. We can take the class of Y to be [Y] € Hy(,—q)(X,C).
Note that we have the perfect pairing:

Hym-a)(X,C) x Hat" ¥ (X,C) - C,
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given by (Y,n) — f n. Thus Hy(pm_g)(X,C) ~ chlgn—d) (X,C)¥. We also have the
Y
perfect pairing:
Hfllg%mid) (X’ (C) X HE[%(Xa (C) - C,

given by (n,w) — f n A w. Thus H;gnfd) (X,C)¥ ~ HX(X,C). We can compose
b's

these isomorphisms to get:
Hy (g (X, C) ~ HI}(X, C). (2)
For X non-compact, we similarly can take the isomorphism:
Hyl 4y (X.C) ~ Hyfm ¥ (X, C)" ~ H{(X.C), 3)

where the first group is the Borel-Moore homology, which allows infinite linear combi-
nations of simplexes, while the second group is the deRham cohomology with compact
support, which uses closed differential forms with compact support.

Now for Y a closed submanifold of X, in light of the above isomorphisms, a closed
2d-form w on X in H2%(X,C) represents the class [Y] in Hy(mm—q)(X, C) (respectively

HQB(%[_ (X, C) when X non-compact), if and only if

o=l
Y X

for any closed 2(m — d) form n on X.

If X is not connected, we restrict the above to each of the connected components.

2.2. Green currents and Chern forms. We recall some background on Green cur-
rents, following mainly [GS].

Let X be a quasi-projective complex manifold of dimension m. We define A?4(X) and
AP1(X) to be the spaces of (p, q)-differential forms, and, respectively, (p, q)-differential
forms with compact support. Let D, ,(X) = A29(X)* be the space of functionals that
are continuous in the sense of deRham [DR]. That is, for a sequence {w,} € AP4(X)
with support contained in a compact set K < X and for T' € D, ,(X), we must have
T(w,) — 0 if w, — 0, meaning that the coefficients of w, and finitely many of their
derivatives tend uniformly to 0.

We also recall the differential operators:

1
4mri

e - c_ i o
d=02+47, d*==(0-7), dd*=-d0.

2.2.1. Currents. We define DP9 := D,,,_p, ., the space of (p,q)-currents. Then we
have an inclusion AP7(X) — DP9(X) given by w — [w], where we define the current

wl@) = | wna (1)
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for any a e A" P"TI(X).
For Y < X a closed complex submanifold of dimension p, let ¢+ : Y < X be the
natural inclusion and we also define a current dy € DPP(X) by:

dy () = fy o,

for any a e AZ" PP,

Definition 2.1. A Green current for a codimension p analytic subvariety Y < X is a
current g € DP~YP=Y( X)) such that
ddcg + 0y = [wy] (5)

for some smooth form wy € APP(X).

m—-p,m—
AZTPTP e have:

f gddcnzf (,uy/\n—f 7.
X X Y

It implies that for a closed form with compact support n the LHS equals 0, and thus

This means for n €

f wy AN = f 7. Thus for g a Green current of Y in X, we have as cohomology classes
X Y

in the isomorphism (3)):

2.2.2. Green functions and Green forms. One natural way to obtain Green currents
is from Green functions. For Y < X a closed compact submanifold of codimension 1, a
Green function of Y is a smooth function

g: X\Y - R

which has a logarithmic singularity along Y. This means that for any pair (U, fi) with
U < X open and fy : U — C a holomorphic function such that Y n U is defined by
fu = 0, then the function

g+log|fU|2:U\(YmU)—>R

extends uniquely to a smooth function on U.

This definition can be extended for ¥ < X a closed complex submanifold of codi-
mension p of X. We can define smooth forms gy € AP~P~1(X) of logarithmic type
along Y such that the current [gy] € DP~1P~1 given as in (@) by:

[y ](n) = L nA gy,
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is a Green current. We call such smooth forms Green forms of Y in X. We will
occasionally abuse notation and use gy for both the Green form and the Green current
corresponding to gy .

2.2.3. Chern forms. Now let g be a Green function of Y < X, for Y a divisor on X.
For U c X let fy = 0 be the local defining equation of U n'Y. We define locally:

wy = dd(g + log | fu*)

By gluing together all wy we get a differentiable form wy over X. We call this the
Chern form associated to the Green function g. In general for Y of codimension p in
X, for a Green form gy of Y in X we call wy the Chern form corresponding to gy .

2.2.4. Star product. Another natural way to get Green currents is by taking their
wx-product. For Y, Z closed irreducible subvarieties of a smooth variety X such that Y
and Z intersect properly, let gy, gz Green forms of Y and Z, respectively. Then the
s-product [gy] * [gz] is defined by Gillet and Soulé in [GS] to be:

lov]*[9z] = [gv] A 0z + [wy] A gz, (6)

where [wy ] A gz(n) = f nAwy A gz and [gy] A 0z = me[m*gy], where 7 : Z — X is

the embedding map. Fo)i the definition of pushforwards of currents see [GS]. We can
also define similarly the #-product [gy ]| * Gz for gy a Green form of Y and Gz a Green
current for Z (see [GS]).

Moreover, from [SABK] (Theorem 4, page 50), when Y and Z have the Serre inter-
section multiplicity 1, then [gy ] * [gz] is a Green current for Y n Z and we have:

dd®([gy] = [9z]) = [wy A wz] —dynrz. (7)

2.2.5. Pullback. Also from [SABK] (3.2, page 50) for Z an irreducible smooth projec-
tive complex variety such that f : Z — X is a map with f~1(Y) # Z, then if gy is a
Green form of logarithmic type along Y, f*gy is a Green form of logarithmic type along
f~1(Y). We define the pullback of currents f*[gy] := [f*gy] and, when the components
of f71(Y) have Serre intersection multiplicity 1, the current f*[gy] satisfies:

ddcf*[gy] + 5f71(y) = [f*wy]. (8)

3. Construction of Green currents and Chern forms

In this section we will construct a Green current of Z(U, g)k in My for U a totally
positive subspace of V (F').
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3.1. The Shimura Variety. Recall g1,...,04 are the embeddings of F' into R and let
(V,q) be a quadratic space such that V,, =V ®,, R, has signature (n,2) for 1 <i <e
and signature (n+2,0) otherwise. V has the inner product given by (z,y) = ¢(z +y) —
q(z) — q(y). This can be naturally extended to V,, at each place o; for 1 < i < d, and
we denote by ¢; the quadratic form corresponding to this inner product.

We defined in the introduction the Hermitian symmetric domain

D=D;x---xD,,

where D; consists of all the oriented negative definite planes in V,,. We can actually
write explicitly the definition of D; as:

D; ={v eV, (C): (v,v) =0, (v,0) <0} /C* < P(V,,(C)),

where (-, -) is the inner product corresponding to ¢; that extends to V5, (C) by C-linearity,
and v — 0 is the involution on V,,(C) = V,, ®g C induced by complex conjugation on
C.

We now recall the definition of GSpin(V'). Let (V,q) be a quadratic space over F'
and C(V,q) = (®,V®*) /I be the Clifford algebra of (V,q), where we are taking the
quotient by the ideal I = {¢(v) —v®v| ve V}.

Then C(V,q) has dimension 24™() and we have a Z-grading on T(V) = @, V&*.
The map V — V, v — —v naturally extends to an algebra automorphism « : C'(V, q) —
C(V,q). Then there is a natural Z/2Z-grading on C(V, q) given by C(V,q) = Co(V,q) @
C1(V,q), where

Ci(V,q) = {x e C(V,q) : a(z) = (=1)'z}, i = 0, L.
We naturally have V < C1(V, q). Then we can define the GSpin group of V:
GSpin(V) = {g e Co(V,q)*| gVg~' =V},

We denote by G = GSpin(V') and note that G acts on V' by conjugation. The group
Resp /g G is reductive over Q and the pair (ResF/Q G, D) is a Shimura datum. For
K < G(AF) an open compact subgroup, this gives us the complex Shimura variety:

Mg (C) ~ G(F)\D x G(Aj)/K.

For more details on the Shimura variety My see [Sh].

We also define the complex line bundle Lp, to be the restriction to D; of the tauto-
logical complex line bundle on P(V,,(C)). Then for the projection maps p; : D — D,
we get the line bundles pfLp, € Pic(D), which further descend to the line bundles
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Lk, € Pic(Mg) ® Q over M, defined to be:
Lk, = G(I)\(p; Lp, x G(Ay)/K).

3.2. Green functions of D, ; in D;. We first recall how to construct a Green function
of D, ; in D;, where
D,;={reD,(r,xz) =0}
Let 7 € D;. It corresponds to a negative definite 2—plane W in V,,; and we can write
any x €V, as x = x; + 2,1 where x; € W and z,1 € W+, We define:

R(z,7) = —qi(x7), ¢-(z) = qi(z) + 2R(x, 7).

Note that this implies R(z,7) = 0 if and only if 7 € D, ;. For x # 0 and ¢;(z) < 0, then
D, ; is empty, and the statement that R(z,7) = 0 if and only if 7 € D, ; is void, thus
still true.

In terms of an orthogonal basis we can write 7 = a+ y/—1 with «, 3 € V,, such that
(e, B) = 0 and {a, ) = {B,8) < 0. Then 7 corresponds to the negative oriented plane
W, =Ra+ Rf c V(R), and we have:

@ (2,8
{avay ~ BBy

Another important property that we use is R(gx,g7) = R(x,7). This is easily seen

R(z,7) =

in the definition above as the inner product is invariant under the action of g.
Moreover, we show below that —log(R(x, 7)) is a Green function for D, ; in D;:

Lemma 3.1. For fited x €V, x # 0, and 7 € D;\D, ;, the function —log(R(z, 7)) is a
Green function for Dy ; in D;.

Proof: Recall the line bundle Lp, is the restriction to D; of the tautological complex
line bundle on P(V,,(C)). It has the fiber L, = 7C < V,(C) and we have a map:

$2(7) : Ly —> C, v (x,v).
This defines an element s,(7) € LY. As 7 varies, we get a map
sg: Di — L, 7 s4(7).

Then s, is a holomorphic section of the line bundle L}, . This section has a hermitian
Kz, vl
Is (T)H2 = TN
’ <v, D)
where v € L, is any nonzero vector. In terms of an orthogonal basis we can write
v = a + [+/—1 such that (o, 8) = 0 and {«, ) = {3, 5) < 0. Then

@2+ @B (@a? (B
(aoay + BBy~ Xaay 23,8

metric

Jsa(r)]”
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(0.0) . (o.8)
@ T BB

Computing directly gives us R(z,7) = 2 |s,(7)|*. It follows by a theorem of Poincaré-
Lelong (see Theorem 2, p. 41 in [SABK]) that —log(R(z, 7)) is a Green function for
Dm,i in Dz

and also x, =

For z € V(F') and 7 € D;, we have the Green function defined by Kudla and Millson
(see [Kull):
77(3377_) = f(QWR(ZE,T)), (9)

0 ,—x
where f(t) = —Ei(—t) = f 67 dx is the exponential integral. Note that f(t) =
t

—log(t) — v — . dx, where v is the Euler-Mascheroni constant. The function
f(t) is smooth ?)n (0,00), f(t) + log(t) is infinitely differentiable on [0,00), and f(t)
decays rapidly as ¢ — oo, thus using Lemma B.I] we easily see that n(x,7) is a Green
function of D, ; in D;.

Furthermore, Kudla and Millson have constructed explicitly the Chern form gp%)M(x, T)
of n(x, 7). We recall its definition and properties in the following section.

Note that we can consider n(xz,7) as a restriction to D; of the Green function

fr|s(0)|?) = (277‘%?;‘) of Pu(Vio) = {v € Pu(Viyey) : (v,2) = 0} inside

P(V;,(C)). Then the theory of Section [22] in particular the definition of the %-product,
hold by restricting to D;.

3.3. The Kudla-Millson form ¢, ,,. We will now recall some results from Kudla (see
[Kul]), based on previous work of Kudla and Millson (see [KMI], [KM2] and [KM3]).
Our goal is to present explicitly the construction of the form gpgj)w

For this section we will use the notation Vg for a quadratic space over R with signature
(n,2), G = GSpin(Wr) and D the space of oriented negative 2—planes in Vg. We fix a

point zp € D and let K = Stab(zy) be its stabilizer in GSpin(Vg). Then
D ~ G/K ~S0(n,2)/(SO(n) x SO(2)).

Let go = Lie(G) be the Lie algebra of G and ¢, = Lie(K) be the Lie algebra of K. We
denote the complexifications of these lie algebras by g and ¢, respectively. We also can
identify the Lie subalgebra pg < gg given by

pOZ{(E?TB) BEMnx2 } Mn><2

Moreover, we can give py a complex structure using J = (,1 0) € GLy(R) acting as
multiplication on the right. We denote by p; and p_ the +i eigenspaces of p. Then we
have a Harish-Chandra decomposition

g=t+p, +p_.
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Moreover for the space of differential forms of type (a,b) on D we have an isomor-
phism:

a,b
QD) ~ [C*(&) @ N ()]~
where on the RHS we have the wedge product A“*(p*) = A%p* A A’p* for p*,p*
the dual spaces of p, and p_, respectively.

Recall that §132m (R) is the metaplectic cover of Sps,,(R), and let K’ be the preimage
under the projection map Sps,,(R) — Sp,,,(R) of the compact subgroup:

(1), A+iBeUm)},

/2 whose square

where U(m) is the unitary group. The group K’ has a character det
descends to the determinant character of U(m).
Then Kudla and Millson constructed a Schwartz form

(z,7) € (S(V&") ® Q™™ (D))",

ol

where S(Vg") is the Schwartz space over Vg, and by invariance under G' we mean:

o) (g, g7) = 2 (2, 7).

We present their result below:

Theorem. There exists an element ™ (z,7) € (S(VF) ® Q™™(D))E with the fol-

KM
lowing properties:

(1) For k' € K' such that u(k') = (% &) under the natural map ¢ : Spy,,(R) —
Spo,, (R), then we have:

r(K )™ = (det (k') "5 2™

(’DK]% (’DK]%

(2) d®™ =0 i.e. for any x € VR, the form gpfé(m) (x,-) is a closed (m, m)-form on

KM M
D which is Gy -invariant.

We define below 4,0;’](&”) explicitly following [Kul]. The form 4,05(75’2’0 is denoted by (™)
in [Kul]. First we will construct gpi(’](&).

Note that we have an isomorphism

1,1
[S(VR) @ QD)) ~ [S(Vr) ® /\ p*]©

given by evaluating at 20. Recall that we identified the Lie algebra py = { ( BOT ’g ) :Be
Myx2(R)} ~ Myy2(R). Then we have the differential forms w; j € Q'(D) = QM°(D) @
QUY(D), 1< 1 < j < 2, defined by the function w; j € p, wi;j : po ~ Myx2(R) —

R given by the map 1 = ()1 <scn1<t<2 — Ui
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We first define for z = (), ..., 2("*?)) € V& the form gogj)w (z) that is also G-

invariant:

1
1 —27R(z,20)
(pgﬂ)w(x):e ( 0 (Z 2.1' (]wzl/\w]2_2_zwzl/\w22> (10)

7.71 =1

We further define gpi’;](&) (x) to be gpi{(ﬂl/} (z) = e 20 (x)gog(l])w (x), and finally, for z =
(x1,...,2m) € V™ we define:

P (@) = o) (1) A= A o) (2m), (11)
—2m Z 20 (T1)
as well as 2" (z) = e =h oM (z).

Recall the Green function n(z,7) = f(2rR(z,7)), where x € V(F) and 7 € D;. It
has the important property ([Ku2|, Proposition 4.10):

ddc[TI(x? )] + 5Daci = [‘Pg])w (LZ', )]7 (12)

where gp(ll)w e (S(V)®QH(D;))X is the Schwartz form defined above. This implies that
g{lj)w( ,7) is the Chern form corresponding to the Green function 7n(z, 7). Note that
(I2) is mentioned in [Ku3|], Theorem 4.10 for F' = Q, but holds in general for F' with a

fixed real place o; for which V, has signature (n,2).

3.4. Averaging of Green currents and their Chern forms. Now let z = (x1,...,2,) €
V(F)" such that U(z) = Spangp{zi,...,x,} is a totally positive k-subspace of V(F),

k < r. Our goal is to construct a Green current of Z(U(z), g) in M and its correspond-
ing Chern form.

We define 2/ = (27,...,2}) such that o} = z;,...,2) = z;, and U(2') = U(x).
To make this uniquely defined, we pick the smallest indices (i1, ...,4x) for which this
happens. Note further that as U(z) = U(z’), we also have D, = Dy, V, = V,, and
Gy = Gy

For 7€ D; and 2, € V(F) for 1 <j <r, 1 <i <e, we define as in (9):

fil), ) := f(2mR(x}, 7))

that is a Green function of wa in D;.
We can further fix zp; € D; for 1 < ¢ < e and we define the Kudla-Millson forms
1 1L,1)\G , , : : :
Eﬂ)w (2, 7i) € e (S(V)R@QUD;)LNE for 73 € Dy, 2 € S(V), as in Section 3.3} that satisfy
the equation:

dde[fi(x}, )] + 0p,, = [P, (5. (13)
As zf,...,z} are linearly independent, the submanifolds Dx;_,i intersect properly

inside D; and thus we can take the =-product of the Green functions fi(x;-,n) for
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1 < j < k. Denote

?’]1(1”,7}) = fz(xllﬂ—l) Kook fZ(‘T;wTZ)
k
Then, from (), this is a Green current for D, ; = Dy ; = Dy, = ﬂ Dm;,i in D; for
j=1

1<i<e.
As the star product turns into wedge product when we take the Chern forms (see

(@), the Chern form associated to n;(z;,7) is going to be:

wi (@', 7)) = oY (@, 1) A n D) (@), T).

Note that wy (2, 7;) = ¢¥) (2, 7;) and thus from the definition (@) of the star product,

KM
71 satisfies the equation:

dd°[m(«’,)] + p, , = [¢{F), (', -)]. (14)
Let p; : D — D; be the natural projections as before. Then, from (&), pin (z, ) is
a Green function of p} D, ; in D and the form p} cpgf]?“(x’ , T;) satisfies:

dd[pfm (e’ )] + 0p,, = [pfoll), (@', )] (15)

By taking the #-product, we define for 7 = (1q,...,7.) € D\D,:

(e, 7) = pim (e, ) - xpim (2l 7).

This is a Green current of D, in D. This follows from (§)), as the divisors p} D, ; have

Serre’s intersection multiplicity 1 in D. The Chern form of ny(z/, 7) is going to be:
wo(z', 1) = plwi(d', 1) A+ A plun (2, Te),

and it satisfies:
dd°[na(2',-)] + dp, = [wa(a,-)]. (16)

We further take for (7,h) € D x G(Ay) the average of Green currents:
ns(2’,739,h) = Do @ )G, aer (Vh).
Gz (F)\G(F)
Note that this can be rewritten as
(2, m9,0) = Y m(y el 1),
~vel'y
where T, = G.(F)\G(F) n G(A;)gKh™" is a lattice in G(F). Tt is clear from the
average that 73 has a singularity along G(F)(Dy x Gz(Af)gK/K) in D x G(Af)/K.
However, note that it is not obvious that this function converges. We are actually going

to prove in Section [B.7 the following proposition:
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Proposition 3.2. Let z € V(F)* such that U(x) is a totally positive k-subspace of
V(F). Then the defining sum of n3(xz,7;g,h) is absolutely convergent and ns(x,7;g,h)
is a Green current of G(F)(Dy x Go(Ay)gK/K) in D x G(Ay)/K.

This implies that n3(z’,7;9,h) is a Green current of G(F)(D, x Gx(Af)gK/K) in
D x G(Ay)/K. To get the Chern form we apply dd® locally and glue all the local forms
using again [SABK], Theorem 4, page 50. This is possible due to the discussion at the
end of the proof of Proposition in Section 3.7}

Then 73 has the Chern form:

w3(xlag;7—7 h) = Z w?(fyilxlaT)y
vl

where I', = G (F)\G(F) n G/(Af)gKh™! as before.

As n3 is invariant under the action of G(F'), it descends to a Green current via the
projection map p : D x G(Ay)/K — My to:

na(z’,7; g, h),

where (7, h) represent the class G(F)(r,h)K in M. The Green current condition ()
is also preserved under the projection map, and the singularity is given by exactly the
cycle Z(U(x), g)k inside the Shimura variety Mg . Thus we get:

Proposition 3.3. For 2’ defined as above, na(x’,7; g, h) is a Green current of Z(U(x), g) i
m MK .

Note that ws(z’, 7; g, h) descends as well to the Chern form wy(z’, 7; g, h) of na(2’, 75 g, h).
Moreover, the Chern form ws(z’,7;g,h) is the pullback under the projection map
p: D xG(Ay)/K — Mg of wy(z',7):

ws(x', 759, h) = p*wa(a’, 759, h).

3.5. Extending notation. In the previous section we have defined the Chern forms
wa,ws,wy for o’ = (xf,...,x)) with the coordinates z/,..., 2} linearly independent.
We want to extend the definition to z = (21,...,2%) in V(F)* when the coordinates
x1,...,x are linearly dependent over F. In order to do that, we take wi(z,7;) =

gpgfj)w (x,7:), wa(z,T) = pfwi(z,71) A -+ A piwi(z, Te), and

wy(x,mi9,h) = Y, wal@ ) g, ap)er (YR)-
YEG (F)\G(F)

We will show in Section [B.7] in Proposition 3.9 that w3 is well-defined.
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Also note that for U a totally positive k-dimensional subspace of V(F') we can pick
any y = (y1,...,yx) such that U(y) = U and n4(y, 7; g, h) is going to be a Green current
of Z(U,g) in Mk with its corresponding Chern form wy(y, 7; g, h).

We can actually extend the definition of 19,713, ws,ws for v € GL(Fy) when z =
(z1,...,7x) € V(F)¥ such that U(x) is a totally positive k-plane inside of V. We define:

n2(vx,7) = pim(viz, 1) * - - * pem (ve, Te),

where v; = 0;(v) € GLg(R) for 1 < i < e. Note that G,,;, = G5 and D, ; = D, ; for all
1 <i < e and n(ve,7) is a Green form of D, in D.
We define further:

ma(vz, T,k = >0 ma(vz, ) a, aer (YH),
VEGL (F)\G(F)
where n3(va, 7;9,h) is a Green form of G(F)(D, x Gy(Af)gK/K) in D x G(Ag)/K
The proof of convergence is similar to the one for ns(z,7;g,h).
The Chern forms of 7 (vx, 7) and n3(vz, 7) are going to be, respectively:

wo(ve, 7) = pfwr(viz, 71) A -+ A Diwi(ve, Te),
W3(’Uﬂj‘,7’;g, h) = Z w2(v$777—)1G’x(Af)gK(/7h)'
'YEG:D(F)\G( )
The Propositions 3.2] and B.9 extend as well for ns(vz,7;¢9,h) and ws(vz, 759, h),
thus they are well defined. As they are invariant under the action of G(F'), n3 and ws

further descend to the Green current ny(vz,7;9,h) of Z(U(x),g) in Mg that has the
corresponding Chern form wy(vz, 759, h).

Moreover, we extend the notation of wo,ws for z = (z1,...,z) with dimU(x) < k
by taking:
wo (v, 7) = pfwr(viz,71) A -+ A Drwi(ver, Te),
w3 (’Uﬂj‘, 759, h) = Z w2 (U$7 ’77—)1(;1 (Ap)gK (Vh)
YEG (F)\G(F)

Propositions 3.9 extends as well, making w3 well-defined in general.

3.6. Chern forms for x = 0. Recall that we defined in Section [B.1] the line bundles
Lk, € Pic(Mg ;) ®Q. For z = 0, we claim that we can still define w; for 1 <i <4 and
the same relationships hold as in Section 3.4l Moreover, we are going to have.

Z(07g) = W4(0,T)-
We define the Chern form w;(0,7;) = (—1)%05:) (0,7;). Here recall oY) (0,7;) =

M Prm
n
1

~3- Z}le,l A wja(7;) and <,0§<M 0,7)=N\" ngM (0,7;) as defined in Section 3.3
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We actually have:
Lemma 3.4. gog(l])w (0,7) = —c1(Lp,), for 1 <i<e.

This is Corollary 4.12 in [Ku3|]. Kudla considers F' = Q, but the result is unchanged
for a totally real number field F' with a fixed embedding o; into R such that V,, has
signature (n,2).

Thus from the lemma above we have wy(0,7;) = (—1)"c1(L},.)". Then as before we
define wy(0,7) = pfwi(0,71) A+ Apiwi(0, 7e). Note that we(0,7) = (=1)"piei(Lp, )" A
<o Apier(Lp, ). Furthermore, as Go = G, when we average over I'y, = Go(F)\(G(F) n
Go(Af)gKh™t) we get:

w3(0,739,h) = ws(0, 7).

Moreover, we have as before w3(0,7) = p*w4(0,7), and thus
wa(0,7) = (=1)"p*pier(Lp,)" ... p*pear(Lp,)" = (—1)“cr(Li)",

where ¢1(Ly) := e1(Ly ;) ... c1(Ly ). Finally, note that ws(0,7) is exactly the cycle
Z(0,9)k in M.

3.7. Convergence of n3(z,7;9,h) and ws(x,7;9,h). Now we are ready to show the
convergence of ns(z,7; g, h). More precisely, we are going to prove Proposition

Before we continue, we mention two short lemmas that tell us about the behavior of
R(x,7) when 7 varies in a compact set in D; and x varies in a lattice. The first lemma
tells us that the quadratic forms ¢, bound each other:

Lemma 3.5. Let K; < D; be a compact set. Fix 19 € K;. Then there exist ¢c,d > 0
such that

Gry (7) < gr(7) < dgry (2)
for all T € K;.

Proof: Let 7 € K; and x € V, x # 0. Consider the function ¢ : K; x {z € V| ¢, (x) =
1} - R, ¥(7,x) = ¢-(x). Since ¢, is positive definite, the set of vectors of norm 1 is a
sphere and thus compact. Hence the domain is compact and thus the image is compact,
and thus bounded. Since z # 0, it must also be bounded away from 0. Thus we can

find constants ¢, d such that:
x
c<q | ——= ] <d
Gro ()

and cqr, () < gr(x) < dgr,(z) as desired.

The second lemma tells us how R(x,7) increases when x varies in a lattice:
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Lemma 3.6. For a compact set Ky < D and a lattice T' = G(F'), there are only finitely
many v € I such that R(y 'z, 7;) < N for any 7 = (11,...,7.) € Ko. More precisely, if
dimV = n + 2, we have at most O(N™?*1) such v e T.

Proof: Fix some 79 € Ko n D;. If for y € Tz we have R(y,7;) = W < N, then

from the previous lemma this implies that there exists ¢ > 0 such that ¢, (y) < @

#. The result follows.

Thus y lies in a n + 2 dimensional sphere in V' of radius
Now we want to compute the summands of:

n3(w,g;mh) = Y pim (v e )« pym(y T ) w ek pine(y e Te),  (17)

vel'n
where I'y, = G, (F)\G(F) n Gz (Af)gKh™. Recall 0y (z,7;) = no(x1,7) * -+ - = no(wg, 74),
where ng(z,7;) = f(2nR(z,7;)).
We compute first the general formula for the #-product of N Green currents:

Lemma 3.7. Let fi,...,fn Green forms for the cycles Y1,...,Yn inside X, chosen
such that the star product [f1] * --- = [fn] is well-defined. Let p1,...,pn be their cor-
responding Chern forms. Then we have the =-product of N-terms:

N
[fl]*[fQ]*...*[fN]:Z(pl/\...goj_l/\[fj]/\(syj+l/\...A(;YN_
j=1

Proof: We denote 0; ; = 6 A dix1--- A Jj, wij = @i A -+ A for i < j and we
take d;; = ¢;; = 1 for i > j. We show the result by induction. For n = 2, we have
[f1] = [f2] = f1 A 02 + ¢1 A fo. Assume the result is true for n. Then we have:

n+1

[fo] * [fs] * - * far1 = Z V2.k—1 A [fr] A Oks1n41-

k=2

By definition, we have

[fa] = ([f2] = [fs] = - = [far1]) = [fi] A G2ms1 + 91 A ([f2] * [f3] = * [fns1])
n+1

= [A] A (Gomi1) + D) 01 A 21 A [fie] A Sksimin
k=2
n+1
This is exactly Z ©1.5—1 A [fe] A Ok+1,n+1 which finishes the proof.
k=1

We want to apply the above lemma to each of the #-products summands in (I7)) that
define n3:

pino(y try, ) * o pino (Y g, 1) ® ek pEne (v e, Te) * ek pEne (Y g, 7).
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Denote f; = pfno and ¢; = pfwg. Then we get the terms:

e

K
D e ) A A iy g m) A A b, (18)
iz1j=1

where all the terms before f; are the smooth forms ¢ and all the terms following f; are
the operators 9.

Proof of Proposition To show the convergence of 13, we need to show that
for p a smooth form with compact support, the integral N3 A i converges, where

X = D x G(Ay)/K. Note that we can cover the compacthupport supp(p) of p by
finitely many open sets and in each of them we can write p in local coordinates as a
linear combination of smooth functions that are bounded inside supp(p). Thus it is
enough to show that the form n3 converges to a smooth form on compacts.

We are interested in averaging the terms (I8):

e k
Z Z P1(y1, 1) Ao A Sy ) A A SpEp,
i=15=1
for 7 inside a compact set Ky < D, where the average is taken over y = (y1,...,yx) €
I'px. For the terms containing at least one d, the terms

o1(Y e, ) A A fil(y ) A A Op¥ Dy,

are nonzero only for 7. € D, However, this implies R(y~'2y, ) = 0 and this only

—lg; e

happens for finitely many v € I" when 7, € Ky inside a compact from Lemma Thus
the sum:

k e
Fiz,) =Y, Y Y e enm) A A (7w m) A AGep,
j=1 1=1 vel'y,
(1,5 #(e;k))

is finite. This leaves the last term:

Fy(z,7) = D, o1y e, 1) A A pe(V ko, ) A fely Mk Te),
€l

which we treat below in Lemma[3.8] We show that the sum F5(z, 7) converges uniformly
on compacts to a smooth form. This finishes the proof of the convergence in Proposition
10.2)

Note that Fj(x,7) is a finite sum of forms, while Fy(x,7) is the average of wedge
products of smooth forms which converges to a smooth form.

To check the Green current condition (Bl) is met by n3(z, 7; 9, h), again it is enough
to check the condition on compact sets. Note first that 7 € D,, only for finitely many
y € I'nz when 7 is inside a compact set Ky. For 7; € D, then we have a finite sum of
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terms 72 that satisfy the Green current condition [): dd“nz(y,7) + ép,, = [w2(y,7)].

For all the other terms, we do not have singularities, and as Z 79 (’y*lx, 7) and all its

vel'y
derivatives converge to a smooth form, we can just take dd® to get

dd® Y m(y e, T) = Y ddpp(v e, m) = Y wa(v e 7),
vel'n vel'n vel'n
giving us the condition (@l for n3. Moreover, note that its Chern form is:
“B(xyT;g7h):: }: a@(771x7T)
~vel'y
This finishes the proof of Proposition

As promised, we show the convergence of Fy(z,7) below:

Lemma 3.8. The average
Fy(m,mi9,h) = > o1(y1,m) A A0t 1) A Ay, Te) A Ae(Yrm1, Te) A fe (Ui Te)
yel'px

converges uniformly on compacts to a smooth form.

Proof: Let Ky be a compact. We are free to discard finitely many terms from our
average of the star product without affecting the convergence, so we discard the terms
for which f.(yg,7e) = 0 on Ko. For y = (yMi ... 4("*+2)%) coordinates determined by
the point zp; in D, ;, we recall the explicit definition of ¢;(y,7;) = pf¢,,, (y,7) that
we presented in Section 3.3t

_ _ , , 1
0i(y, ) =e 2mR(y:20.4) < Z y(s)’ly(t)’zpf(ws,u A Wi2i) — = Z P?(ws,u A Ws,2i)> .
1 Vs

<s,t<n 1<s<n
Thus, in the average, all the terms are of the form:
k e
—2m 3, 3 R(yj,20,:)
e ==t 2 Bz0.e) £ (yy. 7o) /\ /\ (o) (t ) pwsai A pFwrei(Ti)
(w)#(e k)
The forms p}ws 15, pfws2; are smooth on Ky and the values of the smooth functions
representing them in local coordinates are bounded inside a compact. As they are

independent of y, the convergence of Fy(x,7) reduces to the convergence of:

e—1 k k—1
—27 Z Z R(ijzo z) —27 Z R(ijzo,e)
Z e Tt e = fe(Yrs 7e) P(y).

yel'px
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1
Here P(y H H Z Z (y](-s)’zyj(»t)’z)f is a polynomial of degree 2k(e — 1).
j=1

1,<s,t<n f=0
(l )#(6 k)
Similarly, for computing the derivatives of Fy(z,z) we are reduced to computing

averages of the wedge products

0 0
—0R1717-1051717-_1(’01 (y1,71) A - —5R1 kﬁasl | (Y, T1) A
0 0 0

N e aBem PeWn Te) Ao A e el Te) A oo ey Te).

We will break the proof in two main steps below:

Step 1: We claim that it is enough to show that the sums:
> Lf (YK, 7e) (19)
6Re»k7-6656 v e\Yk,Te

yel'px

converge for any integers Ry, Ser = 0.

In order to show this, let us compute first the partial derivatives in 7; of the terms
©o(yj, ) with (j,7) # (k,e). We get:
%@(yﬁn) = ¢~ 2 R(ys20.) Z(y(s)’iy(t)’i)f%pfws,u A pjwi2i(Ti),
where f € {0,1} and 1 < s,t < n. Since pjws 2; A pfw: 2; are smooth forms on compacts,
the terms ﬁpfws,u A pfwy2i(T;) are smooth as well. Then the problem reduces to
showing that the coefficients:

—27 Z Z R(y3720 1) —2m Z R(ygyz() e) a
e T e fe(yr, 7e) P(y)

yel'px

ARy S W Te):

converge on compacts.
We can discard ﬁnitely many terms for which we have R(y;,7;) <1 for any pair (4, j)
with 1 <7 <eand 1 <j < k. Then we can bound

n 1
Z < (qi(zy) + Rlyj, )™
1f=0

s,t=

n2
QZ 517)) + R(y]7ZOZ)) . By

::]w

And thus we can further bound |P(y)| < C
i=1  j=1

(w)#(e k)

discarding finitely many terms from the lattice, we can bound e=2"Ru::7) R(y;, 20,,)™ <

1, for any 1 < m < n? and then

e RWi20:3) (q;(x;) + R(y;, 204))"

2

< (gilay) + )™,
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which is a constant. Thus we need to show that the sums:

0
/!
€ 2 Gy, e et
yel'px €
converge for any integers R, i, Se = 0, as claimed in (9.
Step 2: Now we show the convergence of (I9)), in two parts.

6727rR(yk ,T)

(1) First we show the case of Y fe(yk,7e). We have fe(yx,7e) < Rnre)

yel'px
e~ 2mR(yr.Te) for R(yk,7.) = 1, which happens for all except finitely many y;’s
from Lemma Furthermore, also from Lemma [B.6] since there are at most

n+2
O(z%) vectors yg in our sum with z < R(yg,7e) < z + 1, we are reduced to

& +2
Z 6_27&2(%),
z=1

which converges using the integral test.

the convergence of

(2) Now we show the convergence of (I9]) for the partial derivatives in 7. for the
term fe(yg, 7e). Note first that we can compute the derivatives:

o 727rR(yk,7—e) 0
a_%fe(ykﬂ—e) = Rl o R(yr, ),
0 e 2mR(yk:7e)
a—T_efe(yk,Te) Ry 7o) 0 R(yr, e).
We get in general terms of the form:
0 *CZR(ylmTe)

_ 27 R(yk,Te .
aRTeaST—ef6<yk7Te) Z R yk Te) H(aai,biR)y

where the above is a finite sum, P,(0R, yi) are polynomials in prr ab _R(yk, Te)s
and the constants ¢;,d; are integers that satisfy d; > l,and d; > ¢; = 0. This
can be easily shown by induction.

Excluding the terms for which R(yx, 7.) < 1, note that if we fix a basis (eq, ..., e,12)
for V5, , we have:

0 (s 0
W (Y» Te) = Z WR(‘%%),
thus we can further bound:
i ROk 7] < Maplae) + Bl 20.)

where M, is the upper bound of the values R(ej, 1) for 1 <j<n+2

2
097 0Te
and 7, in our compact.
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27rclR(yk Te)

As d; > ¢;, for R(yg,7e) = 1, we have £ CrRlgr )%

< 1 and using the above
bound we have more generally:

0 —27 Te) ()
|er(yka7'e)| < Me 2m R(yx. e)Q(R(yk,Te)),

where Q is a polynomial in R(yg,20.). Let D be the degree of @ and let
Qo(z) := Xlanla™ if Q := X anx".
Similarly as before, we have at most O(z =a ) values yj, such that z < R(yg, Te) <
z + 1 for 7. inside a compact, and the above convergence is equivalent to the

convergence of
[ee}

Z e_Q’TZznTH@VO(z +1),
z=1
which converges by the integral test.

Now we are also going to show:
Proposition 3.9. For x = (z1,...,2;) € V(F)¥, the form
ws(z,759,h) = D walmm)lg, aer (VR)

veGz (F)\G(F)
converges.

Proof: Note that the above statement follows for dimU(x) = k from the proof of
Proposition For the general case the proof is similar to that of Lemma B8 Using
the notation from Lemma 3.8 we can write:

w3, 739,h) = D, @1y T) A A @1k T1) A A P11, Te) A A Pe(Yks Te)-
yel'px

Using the definition of ¢;(y;, 7):

- , 1
iy, i) = e 2 0) ( Z y]s ! (t pr(ws 10 A We2i) — = Z i (Ws1i A ws,2i)> ;

1<s,t<n & 1<s<n

the terms pjws 1; A P} we 1; are independent of y, and we are reduced to the convergence
of the coefficients:
—2m Z Z R(ijzo l)

Z e i=1j=1 P(y),

yel'px

k 1
where P(y) = H Z( (). (t) )4, As in Lemma B8, we can bound:

i1=1j=11<s,t<n f=0

1
3 YN < (Rlyj. 204) + ail;)™
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Moreover, for (i,j) # (e, k), by discarding finitely many terms from the lattice we
have R(yg,7.) large enough and we can bound e~ 2™RWim) R(y;, 20,)™ < 1, for any
1 < m < n?. Thus the convergence reduces to showing that

Z e—2ﬂR(yk7ZO,e)(R<yk7 2075) + QE(xk))nz

yel'px

converges, or equivalently that any of the terms:

—2mR 2 e
Z e " k20, )R(ykv zO,e)m7
yel'px

converge for 1 < m < n?.

Again we have at most O(z%) values yj such that z <
R(yg,7e) < z + 1 for 7, inside a compact, thus the above reduces to the convergence of:

Z e 2 (2 + 1)mzn;2,

yel'px

which converges by the integral test. This finishes our proof.

4. Modularity of Z(¢', ¢)

We recall now the definition of the standard Whittaker function. Recall from Section
B3 that we defined Sp,, (R) to be the metaplectic cover of Spy,(R), K’ the preimage
under the projection map SNf)QT (R) — Spy,(R) of the compact subgroup {( 5 §), A +
iB € U(r)}, where U(r) is the unitary group. We also defined the character det'/? on
K' whose square descends to the determinant character of U(r).

For (V,q) a quadratic space over R of signature (n + 2,0), let ¢S (z4) € S(V]) be
the standard Gaussian:

¢ (r4) = T
where 1(z,7); = 2((%;,7;))1<i,j<r 18 the intersection matrix of z = (z1,...,2,) € VI
for the inner product (-,-) given by ¢4 on V.

Then for z € V] and 8 = %(m, x)4+ with 8 in Sym, . (R), the group of symmetric r x r

matrices, we define the Sth ”holomorphic” Whittaker function:

Ws(g) = r(9)¥5 (2),
where g € é\f)QT,(R) and r is the Weil representation of §f)27, (R) x O(V").
Using the Iwasawa decomposition of é\f)% (R), we can write each g in the form:
g=01) <8 () ) K, ve GL.(R)", k' € K,
and we have:
Wi(g) = det(v) "5 2™ AT det (k') "2,

where 7 = u + (v - v* )y/—1 is an element of H,, the Siegel upper half-space of genus r
(see [YZZI] for a reference).

)
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We can extend this definition for Fp. For g’ = (g))1<j<d € Spo, (Fip) = I1 Spy, (Ro,),
0j:F—R
we take:
Wa(g) = [ Woye(9).
0j:F—R
M ps 1 (1w vi O / : :
oreover, by writing each g; = (0 13) 0 (vT)-1 K} using the Iwasawa decomposi-
J
tion and taking 7; = u; +i(v; - v]T) as above, we get:
Walgh) = [ det(vy)™s et osm det(k)) ™.
0j:F—R

Recall from the Introduction that we defined T'(z) = i((zi,z;))1<ij<r to be the
intersection matrix in M, (F'). Note that for 1 < i < e the intersection matrix T'(z) is
different from the intersection matrix %(w, x)+ above, for which the inner product (-, -)
is positive-definite.

We extend the definition of W3 to 0;(3) ¢ Sym,.(R) for some 0;, 1 < j < e, by taking
Ws(gs) = 0.

For ¢ € Spy,(A), ¢ € (S (ViNE, we defined in the introduction Kudla’s generating
series:

Z(g.6)= )] > r(gp)dr (g7 2) Wiy (95) Z (2, 9)r- (20)

zeG(F)\V(F)" geGz(Ap)\G(Af)/K
We will show:

Theorem 4.1. The function Z(g', $) is an automorphic form parallel of weight 1+ n/2
for ¢’ € Spy,(A), ¢ € S(VI) with values in H**" (M, C).

Recall that in H?¢"(My,C) we have [Z(z,9)] = [wa(z/,759,h) A (—1)%c1(L})) "]
as cohomology classes, where ¢1(Ly) = ci(Ly,)...ci(Ly,). We are actually going
to show in Section 1] that [Z(z, g)] = [wa(z,7;9,h)] and we will replace in the sum
20) the cohomology class of the special cycle Z(z,g) with the cohomology class of

wyq(x,7;9,h). We are going to show first the following expansion of the pullback of
[Z(,6)] to D x G(A)/K:

Lemma 4.2. The pullback of the cohomology class [Z(g',¢)] to D x G(Ay)/K s the
cohomology class:

P2 o)) = D r(g)os(h )Wy (gh)wa (v, 7),
xeV(F)"

where p : DxG(Ay)/K — My is the natural projection map and g, = (é ui) <%’ (U’_To)—l) k!

is the Twasawa decomposition of g, = o;(¢’') for 1 <i < d.
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We claim that this will imply Theorem [l We will first discuss the pullback of
cohomology classes in Section [.]] and we will show Lemma [£.2] and Theorem [£.1] at the
end of the section.

4.1. Cohomology classes. First we would like to understand better how we take the
pullback of the cohomology classes [w3(z,7;9,h)] to H*"(D x G(Ay)/K,C).

Note that for z € V(F)" with U(x) a totally positive k-subspace of V', and g € G(Ay),
we have the equality of cohomology classes [Z(U(z),g)] = [wa(z’,g)] in H?**(M,C)
and we can take the pullback [ws3(2’,g)] to H?***(D x G(A;)/K,C). The pullback of
(=1)%c1(Ly,;) to H*(D x G(Ay)/K,C) is ws(0, 7).

We are actually going to show that the pullbacks of the Kudla cycles Z(U (), g)c1 (L)) %
can be represented by the cohomology class of [w3(z,g)] in H?**"(D x G(As)/K,C) in
the lemma below:

Lemma 4.3. In H**"(D x G(Ay)/K,C) we have the equality of cohomology classes:
[ws(2) A ws(0)TF)] = [ws()].

To show this, we first recall from [Kul], Lemma 7.3, how the pullback acts on the
Kudla-Millson form gpgfl)w. For 1 < i < e, recall that (V;,,¢) is a quadratic space of

signature (n, 2).

Lemma 4.4. Let U < V,, be a positive k-plane. For y € U, let ¢ € S(U¥) be the
standard Gaussian ¢S (y) = e~ ™) | Let w : Dy — D; be the natural injection. Then
under the pullback f; : QF(D;) — QF(Dy;) of differential forms, we have:

Gein = 9% ® Py
where prarvy, ®° € (S(UF) @ QFF(Dy )X is the Kudla-Millson form for the vector

space Viy = (U >L and Hermitian symmetric domain Dy ;.

For z € V(F)" such that U(z) is a totally positive k-subspace of V we defined

' = (xi,...,2). Let 2" = (xj,,...,2z; ) consist of the remaining components of z.

(m)

Just for this section, we will use the notation w; ’(x,7) for i = 2,3 when = =

(x1,...,2m) € V™. Using the above lemma, we are first going to show:

Lemma 4.5. With the above notation, the pullback of wér_k)(m”,T;g, h) to Dy x
Gu(Ap)gK /K via the inclusion map ¢ : Dy x Gy(Af)gK/K — D x G(Ay)/K equals:

L*wi(,f*k) (2", 759,h) = L*wg*k) (0,7;9,h) (21)
Proof: From the definition of gpggf we can write:
cpgj)wo(a;) = gpgfﬂ)f(a:') A cpg]\_lk)’o(m”). (22)
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Then from Lemma[4] for vy : Dy; — D; the natural embedding, we have i (T —F)0(2) =

KM
(VT ® (pg;f@;l)@”) = o5 (z ”)ng:Mk‘) (O), as 2” € U"*. Note that this implies:
i ") = o5 (). (23)

We first want to pullback everything to D, via the projection maps p; : D — D;. We
have the maps ¢y : Dy — D, p; : D — D;. Recall that

Dy =Dy, X -+ X Dy,

and we can further define the embedding ty; : Dy; — D; and the projection map
pui : Dy — Dy;. It is easy to see that (7; o py; = pi oty as maps from Dy to D;, thus
we also have the equality of pullbacks of differentials Q"*(D;) — Q"~*(Dy):

* * * *
by;otly; =ty °p;-

Then we get the equality:

—k k
pEe TR (2 ) = pi o TP (! ).

From (23]), we have the RHS equal to pUZcp;M‘Z (0 7;). Applying the same steps

also for cpg(M )(0), we get:

Gk (D070, m)) = P 0 1 (030, (0.7)) = 0 a(@l0,N) (0.72).

Thus we have:

el (e, m) = i (M (0,7m)) (24)
Note that we can further take the wedge product of if;pj (T M(z,7) for 1 <i<e
to get
iy (") = /\pz =R (z, 7, /\L*p* =Rz, 73),
and using (24]) this gives us ¢};(ws (T k) (0,7)). Note that this implies:
r—k r—k
oy (") = 1wy (0.7)) (25)

Finally, we are interested in the pullback of w!ik) (2",7;9,h) to Dy x Gu(Af)gK /K
via the inclusion map ¢ : Dy x Gy(Af)gK/K — D x G(Ay)/K. We have:

r—k r—k
vl @ g = Y el @ v ey ek (D),
YeGy (F)\G(F)
and using the pullback above for the RHS we get

S ey 0,97 16y (4 er (VR),
veGy (F)\G(F)
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which equals L*wé’“‘k)(o, 7; g, h). Thus we have L*wér_k) (2", 7;9,h) = L*wi(;_k) (0,735 9,h),
which is the result of the lemma.

Note that using ([23]) and (4] one can actually show that
[P\, (@)] = [¢8), (@) A P (0]

as cohomology classes in H?"(D;, C).
Moreover, using (25]) and (I6), one can further show that

[w§ (2)] = [w§" (@) A w§ ™ (0)]

as cohomology classes in H?"(D,C).
The proof of Lemma [£3] below is based on the same principle.

Proof of Lemma [4.3t To show the equality of cohomology classes, we need to show
that for a closed (I — r,l — r)-form p with compact support, where [ is the complex
dimension of D x G(Af)/K, we have:

f A wér) () = f A wi(,,k) (") A wi(,f_k)(O) (26)
DxG(As)/K DxG(Ay)/K
From ({), for a closed form p, as pu A wér_k) is a closed (I — k,l — k)-form we have:
j A wér) () = J TN wi(,f_k) (2")).
DxG(Af)/K DyxGu(Ap)gK/K

From (21]), we have t*(u A w:(,f*k) (") = 1*(pu A w:(,f*k) (0)), thus we get above:

f WA w:(,f) (x) = f (A wérik) (0)). (27)
DxG{Ag)/K Dy xGu(hp)gK /K

Using (@) for u A wér_k)(O) we get as well:

| wadd@rnsf o= [ fead o) )
DxGlAg)/K Dy x Gy (k)oK /K

Combining the two equations (27) and (28) we get (26).

Remarks on ws(vz) and wy(vz). We follow up with some remarks regarding
ws(ve, 759, h) and wy(ve,7;9,h) when v € GL,.(Fy) and x € V(F)" with U(x) totally
positive definite k-subspace of V(F'). We have defined them in Section Lemma [4.3]
extends easily for ws(vz,7;g,h) and wy(ve, 759, h) and we have as cohomology classes
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in H?"(D x G(Ay)/K,C):

[ws(vz, 73 9.h)] = [wa((vz), 759, h) A w§ ™ (0,7)].

As actually ws((vx)’) represents the same cohomology class as the preimages of
Z(U(vx),g) in D x G(Ay)/K, and as Z(U(x),g) = Z(U(vz),g), we have:

Lemma 4.6. (i) As cohomology classes in H**"(D x G(Af)/K,C), we have:
[ws (v, 739, )] = [ws(x, 75 9, h)]. (29)
(ii) Noting that (29) descends to My, we also have as cohomology classes in H**" (Mg, C):

[W4(’Ul‘,7';g, h)] = [W4($,T;g, h)] (30)

Proof of modularity: We will finish below the proofs of Lemma and Theorem
41l

Proof of Lemma The pullback to D x G(Ay)/K of wa(a’,7) is wy(2’,7) and
w3(0,7) is the pullback of (—1)*"¢f (L)) = Z(0,g). Then in ([20) we can write:

Pz o= > 3 r(d', )5 (2) Wi (glo) [ws (@, 75 9, ) iy ™ (0)].

2eG(F)\V(F)" geGa(Ap)\G(Ay)/K
Furthermore, from Corollary [d.3lwe have [w3(2’, g; 7, h) /\wi(,f )(O, 7)] = [ws(z, 759, h)]
as classes in H2"(D x G(Af)/K,C). From (29) we also have the equality of cohomology
classes [ws(x,7;9,h)] = [ws(vz,T;9,h)]. Thus we get:
AACRI I ED Y > (9", 9)0 1 (@)Wr(e)(95) [ws (v, g; 7, h)].

zeG(F)\V(F)" geGu(Ap\G(Ay)/K

By plugging in the definition ws(vz,7;9,h) = > we (v, ’77)1G1(Af)gK(7h),
VEG(F)\G(F)
we get the cohomology class p*[Z(¢’, )] equal to the cohomology class of:

> > (97 9) @5 (@)W (z)(9h) D walvr,ym)lg, agrn-1 ()
2eG(F\V (F)" geGe(Ap)\G(Af)/K ~veGz (F)\G(F)

We will unwind the sum below to get the result of the lemma. We interchange the

summations to get:
> > > (9%, 95 (2)Wr(e) (90w (v, v ), (4 )gx (YR).-
zeG(F)\V (F)" v€Ge (FN\G(F) geGx(Ap\G(Af)/K

Note that 1, (a,)gr(Yh) # 0 iff Yh € Gu(Af)gK, or equivalently if g € G,(Af)vhK,
and since we are summing for g € G,(Af)\G(Ay)/K, we can replace g by vh everywhere
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and get:

AVACROIEEEDY (9, Yh) D5 ()W) (gh w2 (v, yT).
2eG(F)\V (F)" veGa(F)\G(F)

Since the action of G(Ay) on ¢ is given by r(g}, vh)¢s(z) = r(g})¢f(h_17_1x) and

wo(ve,y7) = wo(y vz, 7) = wa(v(y~'z),7), then we have:

P2 = Y, rgpes(h e) Wy (gl Jwa (v, 7),
zeV (F)T

which gives us the result of the lemma.

Proof of Theorem (4.1t We would like to rewrite the sum of Lemma [4.2}

P2 o)) = D, m(g)bs(h 2 Wy (gh)wa(ve, T)
zeV (F)T
and first show that this sum is automorphic with values in H?"(D x G(Af)/K,C).
We recall the Iwasawa decomoposition of ¢ = (¢})i1<i<a € Sy, (Fy) to be g =
(54) (18 (vTo)fl) kf, where v; € GL,(R,,)", k} € K.

Recall that we have, for 1 < i <e, wi(z,7;) = ") (2, 7;) and wa(z,7) = piwi(x, 1) A

(
KM
-+ A piwi(z, 7). From the property (1) of the Theorem of Kudla and Millson we pre-
sented in Section 3.3l we have

T),0 nt2 7),0
PR = det(k) = o),
where cp%f(a;, 7)) = e 2" aiT@)y (7). Using the Weil representation this easily
extends to:
T(gg)cpg])\f (x,7;) = det(vi)# det(k‘;)nTH6_2”trT(Ui(z))(“iH”i'”iT)gpg/[ (vix, 7;).

We take the pullback to D via the projection maps p; : D — D;. We denote p;(z,7;) =

—2mtroi(T(@) g, (2, 7;) and thus we also have:

pren) (2,7) and @ (x,7;) = e
r(gh) (7 (2, 7)) = det(v) "% det(k)) s e 2T @NtivetDe, (4,0, 7).
Note that on the RHS we got W, (r(2))(9;)¢i(viz, 7;), thus:
r(90) (5 (2, 70)) = Wo (1)) () @i (vie, 7).

Furthermore, as we can rewrite

W) (950)p1 (012, 71) A -+ A e(Vet, Te) =

d
(W, (o)) (1) 01 (012, 71) A -+ A Wo (@) (90)Pe (e, 7)) | Wersay) (9
i=e+1
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we get:
W) (95) 1 (012, 1) Ao A Qe(Ve, Te) = 7(g50) 8" (2, 7),
d
where ¢°(x,7) = @J(z,71) A+ A p2(z,7e) |1 ¢oi(z). Recall that for i > e + 1,
1

1=e+
—mtr T(oi(z))

Wr(os2))(9i) = 7(9i)p0:(x). Here @g;(z) = e is the standard Gaussian, as
(Vs,, @) is positive definite for ¢ > e + 1.
Going back to the sum of Lemma E2], we thus get:
P2, ) = D) r(gper(h T a)r(gh)d° (),

zeV (F)"
and this is a theta function of weight (n + 2)/2 with values in the cohomology group
H?"(D x G(Af)/K,C). This means that for any linear functional I : H?"(D x
G(Ay)/K,C) — C acting on the cohomology part of ¢°(z,7), the generating series:

(W [2(d o) = Y, rlgp)ds(h™ 2)r(ge)l(¢° (7))

zeV (F)"

is a theta function of weight (n + 2)/2. Note that this series is obtained by unwinding:
P2 al= ) > (g, 9)5 (@)W () (950l (ws(x, 9)).

reG(FN\V(F)" geGa(Ap)\G(Af)/K

Zo(g0)= D > r(g, 9)bs (2) Wi (g )ws (@, 9).
2eG(F)\V(F)" geGa(Ap)\G(Af)/K
For the the natural projection p : D x G(Ay)/K — Mk, recall the pullback p* :
Q%*r(Mg) — Q%*"(D x G(Ay)/K), which further descends to the cohomology groups
p*: HX'(My) — H39 (D x G(Ay)/K) and the map is an injection.

We denote by SC?*" (M) the subspace of H2¢' (M) generated by the classes [ws(z, g)]
and by SC*"(D x G(Ay)/K) the subspace of H2¢ (M) generated by the classes
[w3(z,g)]. Then the above pullback map restricts to p* : SC?*"(Mg) — SC?*"(D x
G(Ay)/K) and it is an injection.

Then for any linear functional [ of SC**" (M), we can just define the linear functional
Ton SC*"(Dx G(Ay)/K) given by I(p*[w]) = I([w]), and thus [(Zo(¢', ¢)) = U([Z (g, $)])
is automorphic. Thus [Z(¢/, ¢)] is a theta function valued in H?¢"(Mf).

We can also easily check the weight of the theta function by computing r(k")¢° (z, 7) =
r(kD)es (z, ) A Ar (kL) el (z, ) ﬁ r(k})¢o i(x) which gives us the factor det(k:;)nTJr2

i=e+1
at each place 1.
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