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GENERATING SERIES OF A NEW CLASS OF ORTHOGONAL

SHIMURA VARIETIES

EUGENIA ROSU, DYLAN YOTT

Abstract. For a new class of Shimura varieties of orthogonal type over a totally

real number field, we construct special cycles and show the the modularity of Kudla’s

generating series in the cohomology group.

1. Introduction

For Hilbert modular surfaces, Hirzebruch and Zagier showed in [HZ] that certain

generating series that have as coefficients the Hirzebruch-Zagier divisors are modular

forms of weight 1. Further inspired by this work, Gross, Kohnen and Zagier showed in

[GKZ] that a generating series that has Heegner divisors as coefficients is modular of

weight 3{2. This approach is unified by Borcherds in [Bo], who showed more generally

the modularity of generating series with Heegner divisor classes as coefficients in the

Picard group over Q.

Kudla and Millson extended the results to Shimura varieties of orthogonal type over a

totally real number field and showed the modularity in the cohomology group in [Ku1],

based on work from [KM1], [KM2], [KM3]. This is further extended by Yuan, Zhang

and Zhang in [YZZ1], who showed the modularity of the generating series in the Chow

group.

In the current paper, inspired by the above work of Kudla and Millson, we construct

special cycles on a different Shimura variety of orthogonal type over a totally real number

field F and show the modularity of Kudla’s generating series in the cohomology group.

We consider the Shimura variety corresponding to the reductive group ResF {QG,

where G “ GSpinpV q is the GSpin group for V a quadratic space over a totally real

number field F , rF : Qs “ d. We choose V of signature pn, 2q at e real places and

signature pn ` 2, 0q at the remaining d ´ e places. Kudla, Millson and Yuan, Zhang,

Zhang have treated the case of e “ 1, while we allow e P t1, . . . , du.
If e ą 1, there is no simpler divisor case, which makes the analysis much harder. In

particular, there is a very technical convergence issue that does not appear in the work

of Kudla and Millson.
1
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We present now the setting of the paper. For F be a totally real field with real

embeddings σ1, . . . σd, let A “ AF be the ring of adeles of F and let V be a quadratic

space over F of signature pn, 2q at the infinite places σ1, . . . , σe and of signature pn`2, 0q
elsewhere. Let G denote the reductive group GSpinpV q over F . We define the hermitian

symmetric domain D corresponding to G to be:

D “ D1 ˆD2 ˆ . . . ˆDe,

where Di is the Hermitian symmetric domain of oriented negative definite 2´planes in

Vσi
“ V bσi

R.

Then pResF {QG,Dq is a Shimura datum and for any open compact subgroup K of

GpAf q, this gives us the complex Shimura variety:

MKpCq » GpF qzD ˆGpAf q{K.

For i “ 1, . . . , e we let LDi
be the complex line bundle corresponding to the points

of Di. We also define the projections maps pi : D Ñ Di and then the line bundles

p˚
i LDi

P PicpDq descend to line bundles LK,i P PicpMKq b Q.

Let W be a totally positive subspace of V , meaning that Wσi
“ W bσi

R is a positive

subspace of Vσi
“ V bσi

R for all places 1 ď i ď d. We define VW “ WK to be the space

of vectors in V that are orthogonal toW , GW “ GSpinpVW q andDW “ DW,1ˆ¨ ¨ ¨ˆDW,e

the Hermitian symmetric domain associated to GW , where DW,i consists of the lines in

Di perpendicular to W . We actually have the natural identifications:

GW “ tg P G : gw “ w,@w P VW u, DW “ tpτ1, . . . , τeq P D : xw, τiy “ 0, @w P W,@1 ď i ď eu,

where 〈¨, ¨〉 is the inner product corresponding to qi, the quadratic form on Vσi
, that

extends to Vσi
pCq by C-linearity.

Then pResF {QGW ,DW q is a Shimura datum and we have a morphism pResF {QGW ,DW q Ñ
pResF {QG,Dq of Shimura data. For K Ă GpAf q an open compact subgroup and

g P GpAf q, we can define the complex Shimura variety:

MgKg´1,W “ GW pF qzDW ˆGW pAf q{pgKg´1 XGW pAf qq.

Moreover, we have an injection of MgKg´1,W into MK given by:

MgKg´1,W Ñ MK , rτ, hs Ñ rτ, hgs.

We define the cycle ZpW, gqK to be the image of the morphism above. Note that

ZpW, gqK is represented by the subset DW ˆGW pAf qgK of D ˆGpAf q.
Now let x “ px1, . . . , xrq P V pF qr and let Upxq :“ SpanF tx1, . . . , xru be a subspace

of V . Then we define Kudla’s special cycles:
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Zpx, gqK “

$
&
%
ZpUpxq, gqK pp´1qec1pL_

K,1q . . . c1pL_
K,eqqr´dimU , if Upxq is totally positive,

0, otherwise.

Here c1 denotes the Chern class of a line bundle. We will also use the notation

Gx :“ GUpxq, Dx :“ DUpxq, Vx :“ VUpxq. Note that if x “ px1, . . . , xrq P V pF qr, we have

Gx “ Gx1
X ¨ ¨ ¨ XGxr , as well as Dx “ Dx1

X ¨ ¨ ¨ XDxr .

Now we will define Kudla’s generating function. For any Schwartz-Bruhat functions

φf P SpV rpAf qqK and g1 in ĂSp2rpAq, where ĂSp2rpAq is the metaplectic cover of the

symplectic group Sp2rpAq, we define the generating series:

Zpg1, φf q “
ÿ

xPGpF qzV r

ÿ

gPGxpAf qzGpAf q{K

rpg1
f qφf pg´1xqWT pxqpg1

8qZpx, gqK .

Here r is the Weil representation of ĂSp2rpAq ˆOpV r
Aq, where T pxq “ 1

2
pxxi, xjyq1ďi,jďr P

MrpF q is the intersection matrix of x, and WT pxq is the standard Whittaker function

for T pxq. Note that when e “ 1, for gf “ Id and a careful choice of g1
8 we recover the

generating series presented by Yuan, Zhang and Zhang in [YZZ1].

The following is the main theorem of the paper:

Theorem 1.1. Let φf P SpV rpAf qqK be any Schwartz-Bruhat function invariant under

K. Then the series rZpg1, φf qs is an automorphic form, discrete of parallel weight 1` n
2

for g1 P ĂSp2rpAq and valued in H2erpMK ,Cq.

By modularity here we mean that, for any linear function l : H2erpMK ,Cq Ñ C, the

generating series obtained by acting via l on the cohomology classes of the special cycles

lpZpg1, φf qq “
ÿ

xPGpF qzV r

ÿ

gPGxpAf qzGpAf q{K

rpg1
f qφf pg´1xqWT pxqpg1

8qlpZpx, gqKq.

is absolutely convergent and an automorphic form with coefficients in C in the usual

sense.

The case e “ 1 was proved by Kudla and Millson in [Ku1], based on work from

[KM1], [KM2], [KM3]. Yuan, Zhang and Zhang proved further in [YZZ1] the modularity

of Zpg1, φf q in the Chow group. One can further conjecture that for e ą 1 the series

Zpg1, φf q is an automorphic form, discrete of weight 1 ` n
2
for g1 P ĂSp2rpAq valued in

CHerpMKqC. This is out of reach at the moment, but one can expect to extend the

methods of Borcherds (see [Bo]) to show the modularity in the Chow group.

We will present now the ideas of the proof. We prove the cases e ą 1 by extending the

ideas of Kudla and Millson. For each cycle Zpx, gq we want to construct a Green current

ηpx, gq of Zpx, gq in MKpCq. Via the isomorphism H2er
dR pXK ,Cq » HBM

2erpn´1qpXK ,Cq,
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where the former is deRham cohomology while the latter is Borel-Moore cohomology,

we have the identification of cohomology classes:

rZpx, gqs “ rωpηpx, gqqs,

where ωpηpx, gqq is the Chern form corresponding to the Green current ηpx, gq.
Let x P V pF qr such that Upxq :“ SpanF tx1, . . . , xru is a totally positive definite

k-subspace of V . Define

x1 :“ px1
1, . . . , x

1
kq

such that x1
1 “ xi1 , . . . , x

1
k “ xik with 1 ď i1 ă ¨ ¨ ¨ ă ik ď r the smallest indices for

which Upx1q “ Upxq.
We take the currents defined by Kudla and Millson η0px1

j, τiq of Dxj ,i in Di, where

1 ď j ď k, 1 ď i ď e. Taking further the ˚-product of the currents η0px1
j , τiq for

1 ď i ď e, we get a Green current of Dx,i in Di:

η1px1, τiq “ η0px1
1, τiq ˚ η0px1

2, τiq ˚ ¨ ¨ ¨ ˚ η0px1
k, τiq.

Taking the pullbacks via the projections pi : D Ñ Di and taking the ˚-product, we
obtain a Green current of Dx in D:

η2px1, gq “ p˚
1η1px1, τ1q ˚ p˚

2η1px1, τ2q ˚ ¨ ¨ ¨ ˚ p˚
eη1px1, τeq.

Furthermore, we average the current η2px1, gq on a lattice to get

η3px1, τ ; g, hq “
ÿ

γPGxpF qzGpF q

η2px1, γτq1GxpAf qgKpγhq,

which is a Green current for GpF qpDx ˆGxpAf qgK{Kq in DˆGpAf q{K. Showing the

convergence of the sum in the definition η3px1, τ ; g, hq represents the most technical part

of the proof and it is treated in Section 3.7.

As η3px1, τ ; g, hq is invariant under the left action of GpF q, η3px1, τ ; g, hq descends to

a Green current η4px1, τ ; g, hq of ZpUpxq, gqK in MK . Here GpF qpτ, hqK P MK .

Taking the Chern forms, the ˚-product turns into wedge product and the averages,

as well as the pullbacks are preserved. ω0px1
j, τiq is the Chern form of η0px1

j , τiq that

is defined by Kudla and Millson in [Ku1], based on work from [KM1], [KM2], [KM3].

Furthermore, we have

ω1px1, τiq “ ω0px1, τiq ^ ¨ ¨ ¨ ^ ω0px1
k, τiq,

ω2px1, τq “ p˚
1ω1px1, τ1qq ^ p˚

2ω1px1, τ2q ^ ¨ ¨ ¨ ^ p˚
eω1px1, τeqq

are the Chern forms of η1px1, τiq and η2px1, τq respectively, and

ω3px1, τ ; g, hq “
ÿ

γPGxpF qzGpF q

ω2px1, γτq1GxpAf qgKpγhq,
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is the Chern form of the Green current η3px1, τ ; g, hq. Finally, ω3px1, τ ; g, hq descends to

ω4px1, τ ; g, hq corresponding to the divisor ZpUpxq, gqK in MK and is the Chern form of

η4px1, τ ; g, hq.
We defined above ω2, ω3 and ω4 for x1 P V pF qk with dimUpx1q “ k. We actually

can extend the definitions of ω2, ω3 and ω4 for x P V pF qr when dimUpxq ă r as

well. For x P V pF qr, if dimUpxq “ k, we have the equality of cohomology classes

rZpUpxq, gqs “ rω4px1, τ ; g, hqs in H2ekpMK ,Cq and we can actually show further that

we also have:

rZpx, gqs “ rω4px, τ ; g, hqs
in H2erpMK ,Cq. Plugging in rω4px, τ ; g, hqs for the cohomology class of rZpx, gqs, we
take the the pullback p˚ of the natural projection map p : D ˆ GpAf q{K Ñ MK and

unwind the sums. Then we get:

p˚rZpg1, φqs “
ÿ

xPV pF qr

rpg1
f qφf pxqWT pxqpg1

8qω1px, τq. (1)

It is enough to show that (1) is an automorphic form with values in H2erpD ˆ
GpAf q{K,Cq. We show this using the properties of the Kudla-Millson form on the

weight of each individual ω0px, τiq, as we can rewrite (1) as:

p˚rZpg1, φqs “
ÿ

xPV pF qr

rpg1
f qφf pxqrpg1

8qpe´2π tr T pxqω1px, τqq,

and the RHS is a theta function of weight pn`2q{2 with values inH2erpDˆGpAf q{K,Cq,
thus it is automorphic.

Acknowledgements. The authors would like to thank Xinyi Yuan for suggesting

the problem and for very helpful discussions and insights regarding the problem. We

would also like to thank the anonymous reviewer for detailed feedback. ER would also

like to thank Max Planck Institute in Bonn for their hospitality, as well as to the IAS

of Tsinghua University where part of the paper was written.

2. Background

2.1. Complex Geometry. We will recall now some background from complex geom-

etry (see for example [CG], [GH]).

Let X be a connected compact complex manifold of dimension m. Suppose Y is a

closed compact complex submanifold of codimension d. Then Y has no boundary and

is thus a 2pm ´ dq chain in X. We can take the class of Y to be rY s P H2pm´dqpX,Cq.
Note that we have the perfect pairing:

H2pm´dqpX,Cq ˆH
2pm´dq
dR pX,Cq Ñ C,
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given by pY, ηq Ñ
ż

Y

η. Thus H2pm´dqpX,Cq » H
2pm´dq
dR pX,Cq_. We also have the

perfect pairing:

H
2pm´dq
dR pX,Cq ˆH2d

dRpX,Cq Ñ C,

given by pη, ωq Ñ
ż

X

η ^ ω. Thus H
2pm´dq
dR pX,Cq_ » H2d

dRpX,Cq. We can compose

these isomorphisms to get:

H2pm´dqpX,Cq » H2d
dRpX,Cq. (2)

For X non-compact, we similarly can take the isomorphism:

HBM
2pm´dqpX,Cq » H

2pm´dq
dR,c pX,Cq_ » H2d

dRpX,Cq, (3)

where the first group is the Borel-Moore homology, which allows infinite linear combi-

nations of simplexes, while the second group is the deRham cohomology with compact

support, which uses closed differential forms with compact support.

Now for Y a closed submanifold of X, in light of the above isomorphisms, a closed

2d-form ω on X in H2d
dRpX,Cq represents the class rY s in H2pm´dqpX,Cq (respectively

HBM
2pm´dqpX,Cq when X non-compact), if and only if

ż

Y

η “
ż

X

ω ^ η

for any closed 2pm ´ dq form η on X.

If X is not connected, we restrict the above to each of the connected components.

2.2. Green currents and Chern forms. We recall some background on Green cur-

rents, following mainly [GS].

Let X be a quasi-projective complex manifold of dimensionm. We define Ap,qpXq and
A

p,q
c pXq to be the spaces of pp, qq-differential forms, and, respectively, pp, qq-differential

forms with compact support. Let Dp,qpXq “ A
p,q
c pXq˚ be the space of functionals that

are continuous in the sense of deRham [DR]. That is, for a sequence tωru P Ap,qpXq
with support contained in a compact set K Ă X and for T P Dp,qpXq, we must have

T pωrq Ñ 0 if ωr Ñ 0, meaning that the coefficients of ωr and finitely many of their

derivatives tend uniformly to 0.

We also recall the differential operators:

d “ B ` B, dc “ 1

4πi
pB ´ Bq, ddc “ i

2π
BB.

2.2.1. Currents. We define Dp,q :“ Dm´p,m´q the space of pp, qq-currents. Then we

have an inclusion Ap,qpXq Ñ Dp,qpXq given by ω Ñ rωs, where we define the current

rωspαq “
ż

X

ω ^ α, (4)
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for any α P Am´p,m´q
c pXq.

For Y Ă X a closed complex submanifold of dimension p, let ι : Y ãÑ X be the

natural inclusion and we also define a current δY P Dp,ppXq by:

δY pαq “
ż

Y

ι˚α,

for any α P Am´p,m´p
c .

Definition 2.1. A Green current for a codimension p analytic subvariety Y Ă X is a

current g P Dp´1,p´1pXq such that

ddcg ` δY “ rωY s (5)

for some smooth form ωY P Ap,ppXq.

This means for η P Am´p,m´p
c , we have:

ż

X

gddcη “
ż

X

ωY ^ η ´
ż

Y

η.

It implies that for a closed form with compact support η the LHS equals 0, and thusż

X

ωY ^ η “
ż

Y

η. Thus for g a Green current of Y in X, we have as cohomology classes

in the isomorphism (3):

rY s “ rωY s.

2.2.2. Green functions and Green forms. One natural way to obtain Green currents

is from Green functions. For Y Ă X a closed compact submanifold of codimension 1, a

Green function of Y is a smooth function

g : XzY Ñ R

which has a logarithmic singularity along Y . This means that for any pair pU, fU q with

U Ă X open and fU : U Ñ C a holomorphic function such that Y X U is defined by

fU “ 0, then the function

g ` log |fU |2 : UzpY X Uq Ñ R

extends uniquely to a smooth function on U .

This definition can be extended for Y Ă X a closed complex submanifold of codi-

mension p of X. We can define smooth forms gY P Ap´1,p´1pXq of logarithmic type

along Y such that the current rgY s P Dp´1,p´1 given as in (4) by:

rgY spηq “
ż

X

η ^ gY ,
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is a Green current. We call such smooth forms Green forms of Y in X. We will

occasionally abuse notation and use gY for both the Green form and the Green current

corresponding to gY .

2.2.3. Chern forms. Now let g be a Green function of Y Ă X, for Y a divisor on X.

For U Ă X let fU “ 0 be the local defining equation of U X Y . We define locally:

ωU “ ddcpg ` log |fU |2q

By gluing together all ωU we get a differentiable form ωY over X. We call this the

Chern form associated to the Green function g. In general for Y of codimension p in

X, for a Green form gY of Y in X we call ωY the Chern form corresponding to gY .

2.2.4. Star product. Another natural way to get Green currents is by taking their

˚-product. For Y,Z closed irreducible subvarieties of a smooth variety X such that Y

and Z intersect properly, let gY , gZ Green forms of Y and Z, respectively. Then the

˚-product rgY s ˚ rgZ s is defined by Gillet and Soulé in [GS] to be:

rgY s ˚ rgZ s “ rgY s ^ δZ ` rωY s ^ gZ , (6)

where rωY s ^ gZpηq “
ż

X

η ^ ωY ^ gZ and rgY s ^ δZ “ π˚rπ˚gY s, where π : Z Ñ X is

the embedding map. For the definition of pushforwards of currents see [GS]. We can

also define similarly the ˚-product rgY s ˚GZ for gY a Green form of Y and GZ a Green

current for Z (see [GS]).

Moreover, from [SABK] (Theorem 4, page 50), when Y and Z have the Serre inter-

section multiplicity 1, then rgY s ˚ rgZ s is a Green current for Y X Z and we have:

ddcprgY s ˚ rgZ sq “ rωY ^ ωZs ´ δY XZ . (7)

2.2.5. Pullback. Also from [SABK] (3.2, page 50) for Z an irreducible smooth projec-

tive complex variety such that f : Z Ñ X is a map with f´1pY q ‰ Z, then if gY is a

Green form of logarithmic type along Y , f˚gY is a Green form of logarithmic type along

f´1pY q. We define the pullback of currents f˚rgY s :“ rf˚gY s and, when the components

of f´1pY q have Serre intersection multiplicity 1, the current f˚rgY s satisfies:

ddcf˚rgY s ` δf´1pY q “ rf˚ωY s. (8)

3. Construction of Green currents and Chern forms

In this section we will construct a Green current of ZpU, gqK in MK for U a totally

positive subspace of V pF q.



GENERATING SERIES OF A NEW CLASS OF ORTHOGONAL SHIMURA VARIETIES 9

3.1. The Shimura Variety. Recall σ1, . . . , σd are the embeddings of F into R and let

pV, qq be a quadratic space such that Vσi
“ V bσi

R, has signature pn, 2q for 1 ď i ď e

and signature pn`2, 0q otherwise. V has the inner product given by 〈x, y〉 “ qpx`yq ´
qpxq ´ qpyq. This can be naturally extended to Vσi

at each place σi for 1 ď i ď d, and

we denote by qi the quadratic form corresponding to this inner product.

We defined in the introduction the Hermitian symmetric domain

D “ D1 ˆ ¨ ¨ ¨ ˆDe,

where Di consists of all the oriented negative definite planes in Vσi
. We can actually

write explicitly the definition of Di as:

Di “ tv P Vσi
pCq : 〈v, v〉 “ 0, 〈v, v̄〉 ă 0u {Cˆ Ă PpVσi

pCqq,

where 〈¨, ¨〉 is the inner product corresponding to qi that extends to Vσi
pCq by C-linearity,

and v ÞÑ v̄ is the involution on Vσi
pCq “ Vσi

bR C induced by complex conjugation on

C.

We now recall the definition of GSpinpV q. Let pV, qq be a quadratic space over F

and CpV, qq “
`
‘kV

bk
˘

{I be the Clifford algebra of pV, qq, where we are taking the

quotient by the ideal I “ tqpvq ´ v b v| v P V u.
Then CpV, qq has dimension 2dimpV q and we have a Z-grading on T pV q “

À
k V

bk.

The map V Ñ V , v Ñ ´v naturally extends to an algebra automorphism α : CpV, qq Ñ
CpV, qq. Then there is a natural Z{2Z-grading on CpV, qq given by CpV, qq “ C0pV, qq ‘
C1pV, qq, where

CipV, qq “ tx P CpV, qq : αpxq “ p´1qixu, i “ 0, 1.

We naturally have V Ă C1pV, qq. Then we can define the GSpin group of V :

GSpinpV q “ tg P C0pV, qqˆ| gV g´1 “ V u,

We denote by G “ GSpinpV q and note that G acts on V by conjugation. The group

ResF {QG is reductive over Q and the pair pResF {QG,Dq is a Shimura datum. For

K Ă GpAF q an open compact subgroup, this gives us the complex Shimura variety:

MKpCq » GpF qzD ˆGpAf q{K.

For more details on the Shimura variety MK see [Sh].

We also define the complex line bundle LDi
to be the restriction to Di of the tauto-

logical complex line bundle on PpVσi
pCqq. Then for the projection maps pi : D Ñ Di,

we get the line bundles p˚
i LDi

P PicpDq, which further descend to the line bundles
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LK,i P PicpMKq b Q over MK , defined to be:

LK,i “ GpF qzpp˚
i LDi

ˆGpAf q{Kq.

3.2. Green functions of Dx,i in Di. We first recall how to construct a Green function

of Dx,i in Di, where

Dx,i “ tτi P D, 〈τ, x〉 “ 0u.
Let τ P Di. It corresponds to a negative definite 2´plane W in Vσi

and we can write

any x P Vσi
as x “ xτ ` xτK where xτ P W and xτK P WK. We define:

Rpx, τq “ ´qipxτ q, qτ pxq “ qipxq ` 2Rpx, τq.

Note that this implies Rpx, τq “ 0 if and only if τ P Dx,i. For x ‰ 0 and qipxq ă 0, then

Dx,i is empty, and the statement that Rpx, τq “ 0 if and only if τ P Dx,i is void, thus

still true.

In terms of an orthogonal basis we can write τ “ α`β
?

´1 with α, β P Vσi
such that

xα, βy “ 0 and xα,αy “ xβ, βy ă 0. Then τ corresponds to the negative oriented plane

Wτ “ Rα` Rβ Ă V pRq, and we have:

Rpx, τq “ ´xx, αy2
xα,αy ´ xx, βy2

xβ, βy .

Another important property that we use is Rpgx, gτq “ Rpx, τq. This is easily seen

in the definition above as the inner product is invariant under the action of g.

Moreover, we show below that ´ logpRpx, τqq is a Green function for Dx,i in Di:

Lemma 3.1. For fixed x P V , x ‰ 0, and τ P DizDx,i, the function ´ logpRpx, τqq is a

Green function for Dx,i in Di.

Proof: Recall the line bundle LDi
is the restriction to Di of the tautological complex

line bundle on PpVσi
pCqq. It has the fiber Lτ “ τC Ă Vσi

pCq and we have a map:

sxpτq : Lτ Ñ C, v ÞÑ xx, vy.

This defines an element sxpτq P L_
τ . As τ varies, we get a map

sx : Di Ñ L_
Di
, τ ÞÑ sxpτq.

Then sx is a holomorphic section of the line bundle L_
Di
. This section has a hermitian

metric

}sxpτq}2 “ |xx, vy|2
|xv, vy| ,

where v P Lτ is any nonzero vector. In terms of an orthogonal basis we can write

v “ α ` β
?

´1 such that xα, βy “ 0 and xα,αy “ xβ, βy ă 0. Then

}sxpτq}2 “ xx, αy2 ` xx, βy2
|xα,αy ` xβ, βy| “ ´ xx, αy2

2xα,αy ´ xx, βy2
2xβ, βy
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and also xτ “ xx, αy
xα,αyα ` xx, βy

xβ, βyβ.

Computing directly gives us Rpx, τq “ 2 }sxpτq}2 . It follows by a theorem of Poincaré-

Lelong (see Theorem 2, p. 41 in [SABK]) that ´ logpRpx, τqq is a Green function for

Dx,i in Di.

For x P V pF q and τ P Di, we have the Green function defined by Kudla and Millson

(see [Ku1]):

ηpx, τq “ fp2πRpx, τqq, (9)

where fptq “ ´Eip´tq “
ż 8

t

e´x

x
dx is the exponential integral. Note that fptq “

´ logptq ´ γ ´
ż t

0

e´x ´ 1

x
dx, where γ is the Euler-Mascheroni constant. The function

fptq is smooth on p0,8q, fptq ` logptq is infinitely differentiable on r0,8q, and fptq
decays rapidly as t Ñ 8, thus using Lemma 3.1 we easily see that ηpx, τq is a Green

function of Dx,i in Di.

Furthermore, Kudla and Millson have constructed explicitly the Chern form ϕ
p1q
KM px, τq

of ηpx, τq. We recall its definition and properties in the following section.

Note that we can consider ηpx, τq as a restriction to Di of the Green function

fp2π}sxpvq}2q “ fp2π |xx,vy|2

|xv,vy| q of PxpVσipCqq :“ tv P PxpVσipCqq : 〈v, x〉 “ 0u inside

PpVσi
pCqq. Then the theory of Section 2.2, in particular the definition of the ˚-product,

hold by restricting to Di.

3.3. The Kudla-Millson form ϕ
KM

. We will now recall some results from Kudla (see

[Ku1]), based on previous work of Kudla and Millson (see [KM1], [KM2] and [KM3]).

Our goal is to present explicitly the construction of the form ϕp1q
KM

.

For this section we will use the notation VR for a quadratic space over R with signature

pn, 2q, G “ GSpinpVRq and D the space of oriented negative 2´planes in VR. We fix a

point z0 P D and let K “ Stabpz0q be its stabilizer in GSpinpVRq. Then

D » G{K » SOpn, 2q{pSOpnq ˆ SOp2qq.

Let g0 “ LiepGq be the Lie algebra of G and k0 “ LiepKq be the Lie algebra of K. We

denote the complexifications of these lie algebras by g and k, respectively. We also can

identify the Lie subalgebra p0 Ă g0 given by

p0 “
 `

0 B
BT 0

˘
: B P Mnˆ2pRq

(
» Mnˆ2pRq.

Moreover, we can give p0 a complex structure using J “
`

0 1
´1 0

˘
P GL2pRq acting as

multiplication on the right. We denote by p` and p´ the ˘i eigenspaces of p. Then we

have a Harish-Chandra decomposition

g “ k ` p` ` p´.
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Moreover for the space of differential forms of type pa, bq on D we have an isomor-

phism:

Ωa,bpDq » rC8pGq b
a,bľ

pp˚qsK ,
where on the RHS we have the wedge product

Źa,bpp˚q “ Źa
p˚

` ^ Źb
p˚

´ for p˚
`, p

˚
´

the dual spaces of p` and p´, respectively.

Recall that ĂSp2mpRq is the metaplectic cover of Sp2mpRq, and let K 1 be the preimage

under the projection map ĂSp2mpRq Ñ Sp2mpRq of the compact subgroup:

t
`

A B
´B A

˘
, A` iB P Upmqu,

where Upmq is the unitary group. The group K 1 has a character det1{2 whose square

descends to the determinant character of Upmq.
Then Kudla and Millson constructed a Schwartz form

ϕ˝,pmq
KM

px, τq P pSpV m
R q b Ωm,mpDqqG,

where SpV m
R q is the Schwartz space over V m

R , and by invariance under G we mean:

ϕ˝,pmq
KM

pgx, gτq “ ϕ˝,pmq
KM

px, τq.

We present their result below:

Theorem. There exists an element ϕ˝,pmq
KM

px, τq P pSpV m
R q b Ωm,mpDqqG with the fol-

lowing properties:

(1) For k1 P K 1 such that ιpk1q “
`

A B
´B A

˘
under the natural map ι : ĂSp2mpRq Ñ

Sp2mpRq, then we have:

rpk1qϕ˝,pmq
KM

“ pdetpk1qqn`2

2 ϕ˝,pmq
KM

.

(2) dϕ˝,pmq
KM

“ 0 i.e. for any x P V m
R , the form ϕ˝,pmq

KM
px, ¨q is a closed pm,mq-form on

D which is Gx-invariant.

We define below ϕ˝,pmq
KM

explicitly following [Ku1]. The form ϕpmq,˝
KM

is denoted by ϕpmq

in [Ku1]. First we will construct ϕ˝,p1q
KM

.

Note that we have an isomorphism

rSpVRq b Ω1,1pDqsG » rSpVRq b
1,1ľ

p˚sK

given by evaluating at z0. Recall that we identified the Lie algebra p0 “
 `

0 B
BT 0

˘
: B P

Mnˆ2pRq
(

» Mnˆ2pRq. Then we have the differential forms ωi,j P Ω1pDq “ Ω1,0pDq ‘
Ω0,1pDq, 1 ď i ď n, 1 ď j ď 2, defined by the function ωi,j P p˚

0 , ωi,j : p0 » Mnˆ2pRq Ñ
R given by the map u “ pustq1ďsďn,1ďtď2 Ñ uij.
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We first define for x “ pxp1q, . . . , xpn`2qq P VR the form ϕp1q
KM

pxq that is also G-

invariant:

ϕp1q
KM

pxq “ e´2πRpx,z0q

˜
nÿ

i,j“1

2xpiqxpjqωi,1 ^ ωj,2 ´ 1

2π

nÿ

i“1

ωi,1 ^ ωi,2

¸
. (10)

We further define ϕ˝,p1q
KM

pxq to be ϕ
˝,p1q
KM pxq “ e´2πqz0 pxqϕp1q

KM
pxq, and finally, for x “

px1, . . . , xmq P V m we define:

ϕpmq
KM

pxq “ ϕp1q
KM

px1q ^ ¨ ¨ ¨ ^ ϕp1q
KM

pxmq, (11)

as well as ϕ˝,pmq
KM

pxq “ e
´2π

mř
i“1

qz0pxiq
ϕpmq

KM
pxq.

Recall the Green function ηpx, τq “ fp2πRpx, τqq, where x P V pF q and τ P Di. It

has the important property ([Ku2], Proposition 4.10):

ddcrηpx, ¨qs ` δDx,i
“ rϕp1q

KM
px, ¨qs, (12)

where ϕp1q
KM

P pSpV qbΩ1,1pDiqqK is the Schwartz form defined above. This implies that

ϕp1q
KM

px, τq is the Chern form corresponding to the Green function ηpx, τq. Note that

(12) is mentioned in [Ku3], Theorem 4.10 for F “ Q, but holds in general for F with a

fixed real place σi for which Vσi
has signature pn, 2q.

3.4. Averaging of Green currents and their Chern forms. Now let x “ px1, . . . , xrq P
V pF qr such that Upxq “ SpanF tx1, . . . , xru is a totally positive k-subspace of V pF q,
k ď r. Our goal is to construct a Green current of ZpUpxq, gq inMK and its correspond-

ing Chern form.

We define x1 “ px1
1, . . . , x

1
kq such that x1

1 “ xi1 , . . . , x
1
k “ xik and Upx1q “ Upxq.

To make this uniquely defined, we pick the smallest indices pi1, . . . , ikq for which this

happens. Note further that as Upxq “ Upx1q, we also have Dx “ Dx1 , Vx “ Vx1 and

Gx “ Gx1 .

For τi P Di and x
1
j P V pF q for 1 ď j ď r, 1 ď i ď e, we define as in (9):

fipx1
j , τiq :“ fp2πRpx1

j , τiqq

that is a Green function of Dx1
j ,i

in Di.

We can further fix z0,i P Di for 1 ď i ď e and we define the Kudla-Millson forms

ϕp1q
KM

px1
j , τiq P pSpV q bΩpDiqp1,1qqG for τi P Di, x

1
j P SpV q, as in Section 3.3, that satisfy

the equation:

ddcrfipx1
j , ¨qs ` δDx1

j
,i

“ rϕp1q
KM

px1
j , ¨qs. (13)

As x1
1, . . . , x

1
k are linearly independent, the submanifolds Dx1

j ,i
intersect properly

inside Di and thus we can take the ˚-product of the Green functions fipx1
j , τiq for
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1 ď j ď k. Denote

η1px1, τiq “ fipx1
1, τiq ˚ ¨ ¨ ¨ ˚ fipx1

k, τiq.

Then, from (7), this is a Green current for Dx,i “ Dx1,i “ DUpx1q,i “
kč

j“1

Dx1
j ,i

in Di for

1 ď i ď e.

As the star product turns into wedge product when we take the Chern forms (see

(7)), the Chern form associated to η1pxj , τq is going to be:

ω1px1, τiq “ ϕp1q
KM

px1
1, τiq ^ ¨ ¨ ¨ ^ ϕp1q

KM
px1

k, τiq.

Note that ω1px1, τiq “ ϕpkq
KM

px1, τiq and thus from the definition (6) of the star product,

η1 satisfies the equation:

ddcrη1px1, ¨qs ` δDx,i
“ rϕpkq

KM
px1, ¨qs. (14)

Let pi : D Ñ Di be the natural projections as before. Then, from (8), p˚
i η1px, τiq is

a Green function of p˚
iDx,i in D and the form p˚

i ϕ
pkq
KM,i

px1, τiq satisfies:

ddcrp˚
i η1px1, ¨qs ` δDx,i

“ rp˚
i ϕ

pkq
KM

px1, ¨qs (15)

By taking the ˚-product, we define for τ “ pτ1, . . . , τeq P DzDx:

η2px1, τq “ p˚
1η1px1, τ1q ˚ ¨ ¨ ¨ ˚ p˚

eη1px1, τeq.

This is a Green current of Dx in D. This follows from (8), as the divisors p˚
iDx,i have

Serre’s intersection multiplicity 1 in D. The Chern form of η2px1, τq is going to be:

ω2px1, τq “ p˚
1ω1px1, τ1q ^ ¨ ¨ ¨ ^ p˚

eω1px1, τeq,

and it satisfies:

ddcrη2px1, ¨qs ` δDx “ rω2px1, ¨qs. (16)

We further take for pτ, hq P D ˆGpAf q the average of Green currents:

η3px1, τ ; g, hq “
ÿ

γPGxpF qzGpF q

η2px1, γτq1GxpAf qgKpγhq.

Note that this can be rewritten as

η3px1, τ ; g, hq “
ÿ

γPΓh

η2pγ´1x1, τq,

where Γh “ GxpF qzGpF q X GxpAf qgKh´1 is a lattice in GpF q. It is clear from the

average that η3 has a singularity along GpF qpDx ˆ GxpAf qgK{Kq in D ˆ GpAf q{K.

However, note that it is not obvious that this function converges. We are actually going

to prove in Section 3.7 the following proposition:
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Proposition 3.2. Let x P V pF qk such that Upxq is a totally positive k-subspace of

V pF q. Then the defining sum of η3px, τ ; g, hq is absolutely convergent and η3px, τ ; g, hq
is a Green current of GpF qpDx ˆGxpAf qgK{Kq in D ˆGpAf q{K.

This implies that η3px1, τ ; g, hq is a Green current of GpF qpDx ˆ GxpAf qgK{Kq in

DˆGpAf q{K. To get the Chern form we apply ddc locally and glue all the local forms

using again [SABK], Theorem 4, page 50. This is possible due to the discussion at the

end of the proof of Proposition 3.2 in Section 3.7.

Then η3 has the Chern form:

ω3px1, g; τ, hq “
ÿ

γPΓh

ω2pγ´1x1, τq,

where Γh “ Gx1 pF qzGpF q XGx1pAf qgKh´1 as before.

As η3 is invariant under the action of GpF q, it descends to a Green current via the

projection map p : D ˆGpAf q{K Ñ MK to:

η4px1, τ ; g, hq,

where pτ, hq represent the class GpF qpτ, hqK in MK . The Green current condition (5)

is also preserved under the projection map, and the singularity is given by exactly the

cycle ZpUpxq, gqK inside the Shimura variety MK . Thus we get:

Proposition 3.3. For x1 defined as above, η4px1, τ ; g, hq is a Green current of ZpUpxq, gqK
in MK .

Note that ω3px1, τ ; g, hq descends as well to the Chern form ω4px1, τ ; g, hq of η4px1, τ ; g, hq.
Moreover, the Chern form ω3px1, τ ; g, hq is the pullback under the projection map

p : D ˆGpAf q{K Ñ MK of ω4px1, τq:

ω3px1, τ ; g, hq “ p˚ω4px1, τ ; g, hq.

3.5. Extending notation. In the previous section we have defined the Chern forms

ω2, ω3, ω4 for x1 “ px1
1, . . . , x

1
kq with the coordinates x1

1, . . . , x
1
k linearly independent.

We want to extend the definition to x “ px1, . . . , xkq in V pF qk when the coordinates

x1, . . . , xk are linearly dependent over F . In order to do that, we take ω1px, τiq “
ϕpkq

KM
px, τiq, ω2px, τq “ p˚

1ω1px, τ1q ^ ¨ ¨ ¨ ^ p˚
eω1px, τeq, and

ω3px, τ ; g, hq “
ÿ

γPGxpF qzGpF q

ω2px, γτq1GxpAf qgKpγhq.

We will show in Section 3.7 in Proposition 3.9 that ω3 is well-defined.
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Also note that for U a totally positive k-dimensional subspace of V pF q we can pick

any y “ py1, . . . , ykq such that Upyq “ U and η4py, τ ; g, hq is going to be a Green current

of ZpU, gq in MK with its corresponding Chern form ω4py, τ ; g, hq.

We can actually extend the definition of η2, η3, ω2, ω3 for v P GLkpF8q when x “
px1, . . . , xkq P V pF qk such that Upxq is a totally positive k-plane inside of V . We define:

η2pvx, τq “ p˚
1η1pv1x, τ1q ˚ ¨ ¨ ¨ ˚ p˚

eη1pvex, τeq,

where vi “ σipvq P GLkpRq for 1 ď i ď e. Note that Gvix “ Gx and Dvix,i “ Dx,i for all

1 ď i ď e and η2pvx, τq is a Green form of Dx in D.

We define further:

η3pvx, τ ; g, hq “
ÿ

γPGxpF qzGpF q

η2pvx, γτq1GxpAf qgKpγhq,

where η3pvx, τ ; g, hq is a Green form of GpF qpDx ˆ GxpAf qgK{Kq in D ˆ GpAf q{K.

The proof of convergence is similar to the one for η3px, τ ; g, hq.
The Chern forms of η2pvx, τq and η3pvx, τq are going to be, respectively:

ω2pvx, τq “ p˚
1ω1pv1x, τ1q ^ ¨ ¨ ¨ ^ p˚

eω1pvex, τeq,

ω3pvx, τ ; g, hq “
ÿ

γPGxpF qzGpF q

ω2pvx, γτq1GxpAf qgKpγhq.

The Propositions 3.2 and 3.9 extend as well for η3pvx, τ ; g, hq and ω3pvx, τ ; g, hq,
thus they are well defined. As they are invariant under the action of GpF q, η3 and ω3

further descend to the Green current η4pvx, τ ; g, hq of ZpUpxq, gq in MK that has the

corresponding Chern form ω4pvx, τ ; g, hq.
Moreover, we extend the notation of ω2, ω3 for x “ px1, . . . , xkq with dimUpxq ď k

by taking:

ω2pvx, τq “ p˚
1ω1pv1x, τ1q ^ ¨ ¨ ¨ ^ p˚

eω1pvex, τeq,
ω3pvx, τ ; g, hq “

ÿ

γPGxpF qzGpF q

ω2pvx, γτq1GxpAf qgKpγhq.

Propositions 3.9 extends as well, making ω3 well-defined in general.

3.6. Chern forms for x “ 0. Recall that we defined in Section 3.1 the line bundles

LK,i P PicpMK,iq b Q. For x “ 0, we claim that we can still define ωi for 1 ď i ď 4 and

the same relationships hold as in Section 3.4. Moreover, we are going to have:

Zp0, gq “ ω4p0, τq.

We define the Chern form ω1p0, τiq “ p´1qrϕprq
KM

p0, τiq. Here recall ϕp1q
KM

p0, τiq “

´ 1

2π

nÿ

j“1

ωj,1 ^ ωj,2pτiq and ϕprq
KM

p0, τiq “ Źr ϕp1q
KM

p0, τiq as defined in Section 3.3.
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We actually have:

Lemma 3.4. ϕp1q
KM

p0, τiq “ ´c1pL_
Di

q, for 1 ď i ď e.

This is Corollary 4.12 in [Ku3]. Kudla considers F “ Q, but the result is unchanged

for a totally real number field F with a fixed embedding σi into R such that Vσi
has

signature pn, 2q.
Thus from the lemma above we have ω1p0, τiq “ p´1qrc1pL_

Di
qr. Then as before we

define ω2p0, τq “ p˚
1ω1p0, τ1q^¨ ¨ ¨^p˚

eω1p0, τeq. Note that ω2p0, τq “ p´1qrep˚
1c1pL_

D1
qr^

¨ ¨ ¨ ^ p˚
ec1pL_

De
qr. Furthermore, as G0 “ G, when we average over Γh “ G0pF qzpGpF q X

G0pAf qgKh´1q we get:

ω3p0, τ ; g, hq “ ω2p0, τq.
Moreover, we have as before ω3p0, τq “ p˚ω4p0, τq, and thus

ω4p0, τq “ p´1qrep˚p˚
1c1pL_

D1
qr . . . p˚p˚

ec1pL_
De

qr “ p´1qrec1pL_
Kqr,

where c1pL_
Kq :“ c1pL_

K,1q . . . c1pL_
K,eq. Finally, note that ω4p0, τq is exactly the cycle

Zp0, gqK in MK .

3.7. Convergence of η3px, τ ; g, hq and ω3px, τ ; g, hq. Now we are ready to show the

convergence of η3px, τ ; g, hq. More precisely, we are going to prove Proposition 3.2.

Before we continue, we mention two short lemmas that tell us about the behavior of

Rpx, τq when τ varies in a compact set in Di and x varies in a lattice. The first lemma

tells us that the quadratic forms qτ bound each other:

Lemma 3.5. Let Ki Ă Di be a compact set. Fix τ0 P Ki. Then there exist c, d ą 0

such that

cqτ0pxq ď qτ pxq ď dqτ0pxq
for all τ P Ki.

Proof: Let τ P Ki and x P V , x ‰ 0. Consider the function ψ : Ki ˆtx P V | qτ0pxq “
1u Ñ R, ψpτ, xq “ qτ pxq. Since qτ0 is positive definite, the set of vectors of norm 1 is a

sphere and thus compact. Hence the domain is compact and thus the image is compact,

and thus bounded. Since x ‰ 0, it must also be bounded away from 0. Thus we can

find constants c, d such that:

c ď qτ

˜
xa
qτ0pxq

¸
ď d

and cqτ0pxq ď qτ pxq ď dqτ0pxq as desired.

The second lemma tells us how Rpx, τq increases when x varies in a lattice:
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Lemma 3.6. For a compact set K0 Ă D and a lattice Γ Ă GpF q, there are only finitely

many γ P Γ such that Rpγ´1x, τiq ď N for any τ “ pτ1, . . . , τeq P K0. More precisely, if

dimV “ n` 2, we have at most OpNn{2`1q such γ P Γ.

Proof: Fix some τ0 P K0 X Di. If for y P Γx we have Rpy, τiq “ qτipyq´a

2
ă N, then

from the previous lemma this implies that there exists c ą 0 such that qτ0pyq ă a`2N
c

.

Thus y lies in a n` 2 dimensional sphere in V of radius
b

a`2N
c

. The result follows.

Now we want to compute the summands of:

η3px, g; τ, hq “
ÿ

γPΓh

p˚
1η1pγ´1x, τ1q ˚ p˚

2η1pγ´1x, τ2q ˚ ¨ ¨ ¨ ˚ p˚
eηepγ´1x, τeq, (17)

where Γh “ GxpF qzGpF q XGxpAf qgKh´1. Recall η1px, τiq “ η0px1, τiq ˚ ¨ ¨ ¨ ˚ η0pxk, τiq,
where η0px, τiq “ fp2πRpx, τiqq.

We compute first the general formula for the ˚-product of N Green currents:

Lemma 3.7. Let f1, . . . , fN Green forms for the cycles Y1, . . . , YN inside X, chosen

such that the star product rf1s ˚ ¨ ¨ ¨ ˚ rfN s is well-defined. Let ϕ1, . . . , ϕN be their cor-

responding Chern forms. Then we have the ˚-product of N -terms:

rf1s ˚ rf2s ˚ ¨ ¨ ¨ ˚ rfN s “
Nÿ

j“1

ϕ1 ^ . . . ϕj´1 ^ rfjs ^ δYj`1
^ ¨ ¨ ¨ ^ δYN

.

Proof: We denote δi,j “ δi ^ δi`1 ¨ ¨ ¨ ^ δj , ϕi,j “ ϕi ^ ¨ ¨ ¨ ^ ϕj for i ď j and we

take δi,j “ ϕi,j “ 1 for i ą j. We show the result by induction. For n “ 2, we have

rf1s ˚ rf2s “ f1 ^ δ2 ` ϕ1 ^ f2. Assume the result is true for n. Then we have:

rf2s ˚ rf3s ˚ ¨ ¨ ¨ ˚ fn`1 “
n`1ÿ

k“2

ϕ2,k´1 ^ rfks ^ δk`1,n`1.

By definition, we have

rf1s ˚ prf2s ˚ rf3s ˚ ¨ ¨ ¨ ˚ rfn`1sq “ rf1s ^ δ2,n`1 ` ϕ1 ^ prf2s ˚ rf3s ˚ ¨ ¨ ¨ ˚ rfn`1sq

“ rf1s ^ pδ2,n`1q `
n`1ÿ

k“2

ϕ1 ^ ϕ2,k´1 ^ rfks ^ δk`1,n`1

This is exactly
n`1ÿ

k“1

ϕ1,k´1 ^ rfks ^ δk`1,n`1 which finishes the proof.

We want to apply the above lemma to each of the ˚-products summands in (17) that

define η3:

p˚
1η0pγ´1x1, τ1q ˚ . . . p˚

1η0pγ´1xk, τ1q ˚ ¨ ¨ ¨ ˚ p˚
eηepγ´1x1, τeq ˚ ¨ ¨ ¨ ˚ p˚

eηepγ´1xk, τeq.
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Denote fi “ p˚
i η0 and ϕi “ p˚

i ω0. Then we get the terms:

eÿ

i“1

kÿ

j“1

ϕ1pγ´1x1, τ1q ^ ¨ ¨ ¨ ^ fipγ´1xj, τ1q ^ ¨ ¨ ¨ ^ δp˚
e Dxk

, (18)

where all the terms before fi are the smooth forms ϕ and all the terms following fi are

the operators δ.

Proof of Proposition 3.2: To show the convergence of η3, we need to show that

for µ a smooth form with compact support, the integral

ż

X

η3 ^ µ converges, where

X “ D ˆ GpAf q{K. Note that we can cover the compact support supppµq of µ by

finitely many open sets and in each of them we can write µ in local coordinates as a

linear combination of smooth functions that are bounded inside supppµq. Thus it is

enough to show that the form η3 converges to a smooth form on compacts.

We are interested in averaging the terms (18):

eÿ

i“1

kÿ

j“1

ϕ1py1, τ1q ^ ¨ ¨ ¨ ^ fipyj, τ1q ^ ¨ ¨ ¨ ^ δp˚
e Dxk

,

for τ inside a compact set K0 Ă D, where the average is taken over y “ py1, . . . , ykq P
Γhx. For the terms containing at least one δ, the terms

ϕ1pγ´1x1, τ1q ^ ¨ ¨ ¨ ^ fipγ´1xj , τ1q ^ ¨ ¨ ¨ ^ δp˚
e Dxk

are nonzero only for τe P Dγ´1xk,e
. However, this implies Rpγ´1xk, τeq “ 0 and this only

happens for finitely many γ P Γ when τe P K0 inside a compact from Lemma 3.6. Thus

the sum:

F1px, τq “
kÿ

j“1

eÿ

i“1
pi,j‰pe,kqq

ÿ

γPΓh

ϕ1pγ´1x1, τ1q ^ ¨ ¨ ¨ ^ fipγ´1xj , τ1q ^ ¨ ¨ ¨ ^ δp˚
e Dxk

is finite. This leaves the last term:

F2px, τq “
ÿ

γPΓh

ϕ1pγ´1x1, τ1q ^ ¨ ¨ ¨ ^ ϕepγ´1xk´1, τeq ^ fepγ´1xk, τeq,

which we treat below in Lemma 3.8. We show that the sum F2px, τq converges uniformly

on compacts to a smooth form. This finishes the proof of the convergence in Proposition

3.2.

Note that F1px, τq is a finite sum of forms, while F2px, τq is the average of wedge

products of smooth forms which converges to a smooth form.

To check the Green current condition (5) is met by η3px, τ ; g, hq, again it is enough

to check the condition on compact sets. Note first that τi P Dyi only for finitely many

y P Γhx when τ is inside a compact set K0. For τi P Dyi then we have a finite sum of
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terms η2 that satisfy the Green current condition (5): ddcη2py, τq ` δDy,τ “ rω2py, τqs.
For all the other terms, we do not have singularities, and as

ÿ

γPΓh

η2pγ´1x, τq and all its

derivatives converge to a smooth form, we can just take ddc to get

ddc
ÿ

γPΓh

η2pγ´1x, τq “
ÿ

γPΓh

ddcη2pγ´1x, τq “
ÿ

γPΓh

ω2pγ´1x, τq,

giving us the condition (5) for η3. Moreover, note that its Chern form is:

ω3px, τ ; g, hq “
ÿ

γPΓh

ω2pγ´1x, τq.

This finishes the proof of Proposition 3.2.

As promised, we show the convergence of F2px, τq below:

Lemma 3.8. The average

F2px, τ ; g, hq “
ÿ

yPΓhx

ϕ1py1, τ1q^¨ ¨ ¨^ϕ1pyk, τ1q^¨ ¨ ¨^ϕepy1, τeq^¨ ¨ ¨^ϕepyk´1, τeq^fepyk, τeq

converges uniformly on compacts to a smooth form.

Proof: Let K0 be a compact. We are free to discard finitely many terms from our

average of the star product without affecting the convergence, so we discard the terms

for which fepyk, τeq “ 0 on K0. For y “ pyp1q,i, . . . , ypn`2q,iq coordinates determined by

the point z0,i in Dy,i, we recall the explicit definition of ϕipy, τiq “ p˚
i ϕKM

py, τiq that

we presented in Section 3.3:

ϕipy, τiq “ e´2πRpy,z0,iq

˜
ÿ

1ďs,tďn

ypsq,iyptq,ip˚
i pωs,1i ^ ωt,2iq ´ 1

π

ÿ

1ďsďn

p˚
i pωs,1i ^ ωs,2iq

¸
.

Thus, in the average, all the terms are of the form:

e
´2π

kř
j“1

eř
i“1

Rpyj ,z0,iq

e2πRpyk ,z0,eqfepyk, τeq
eľ

i“1

kľ

j“1
pi,jq‰pe,kq

pypsq,i
j y

ptq,i
j qfp˚

i ωs,1i ^ p˚
i ωt,2ipτiq

The forms p˚
i ωs,1i, p

˚
i ωs,2i are smooth on K0 and the values of the smooth functions

representing them in local coordinates are bounded inside a compact. As they are

independent of y, the convergence of F2px, τq reduces to the convergence of:

ÿ

yPΓhx

e
´2π

e´1ř
i“1

kř
j“1

Rpyj ,z0,iq

e
´2π

k´1ř
j“1

Rpyj ,z0,eq

fepyk, τeqP pyq.
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Here P pyq “
eź

i“1

kź

j“1
pi,jq‰pe,kq

ÿ

1,ďs,tďn

1ÿ

f“0

pypsq,i
j y

ptq,i
j qf is a polynomial of degree 2kpe´ 1q.

Similarly, for computing the derivatives of F2px, zq we are reduced to computing

averages of the wedge products

B
BR1,1τ1BS1,1τ1

ϕ1py1, τ1q ^ ¨ ¨ ¨ ^ B
BR1,kτ1BS1,kτ1

ϕ1pyk, τ1q ^ . . .

^ B
BRe,1τeBSe,1τi

ϕepy1, τeq ^ ¨ ¨ ¨ ^ B
BRe,k´1τeBSe,k´1τe

ϕepyk´1, τeq ^ B
BRe,kτeBSe,kτe

fepyk, τeq.

We will break the proof in two main steps below:

Step 1: We claim that it is enough to show that the sums:

ÿ

yPΓhx

B
BRe,kτeBSe,kτe

fepyk, τeq (19)

converge for any integers Re,k, Se,k ě 0.

In order to show this, let us compute first the partial derivatives in τi of the terms

ϕpyj , τiq with pj, iq ‰ pk, eq. We get:

B
BRτiBSτi

ϕpyj , τiq “ e´2πRpyj ,z0,iq
ÿ

pypsq,iyptq,iqf B
BRτiBSτi

p˚
i ωs,1i ^ p˚

i ωt,2ipτiq,

where f P t0, 1u and 1 ď s, t ď n. Since p˚
i ωs,2i ^p˚

i ωt,2i are smooth forms on compacts,

the terms B
BRτiBSτi

p˚
i ωs,1i ^ p˚

i ωt,2ipτiq are smooth as well. Then the problem reduces to

showing that the coefficients:

ÿ

yPΓhx

e
´2π

e´1ř
i“1

kř
j“1

Rpyj ,z0,iq

e
´2π

k´1ř
j“1

Rpyj ,z0,eq

fepyk, τeqP pyq B
BRe,kτeBSe,kτe

fepyk, τeq.

converge on compacts.

We can discard finitely many terms for which we have Rpyj , τiq ď 1 for any pair pi, jq
with 1 ď i ď e and 1 ď j ď k. Then we can bound

nÿ

s,t“1

1ÿ

f“0

pypsq,i
j y

ptq,i
j qf ď pqipxjq `Rpyj, τqqn2

.

And thus we can further bound |P pyq| ď C

eź

i“1

kź

j“1
pi,jq‰pe,kq

pqipxjq ` Rpyj, z0,iqqn2

. By

discarding finitely many terms from the lattice, we can bound e´2πRpyj ,τiqRpyj , z0,iqm ď
1, for any 1 ď m ď n2 and then

e´Rpyj ,z0,iqpqipxjq `Rpyj, z0,iqqn2 ď pqipxjq ` 1qn2

,
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which is a constant. Thus we need to show that the sums:

C 1
ÿ

yPΓhx

B
BRe,kτeBSe,kτe

fepyk, τeq

converge for any integers Re,k, Se,k ě 0, as claimed in (19).

Step 2: Now we show the convergence of (19), in two parts.

(1) First we show the case of
ř

yPΓhx

fepyk, τeq. We have fepyk, τeq ď e´2πRpyk,τq

Rpyk ,τeq ď

e´2πRpyk ,τeq for Rpyk, τeq ě 1, which happens for all except finitely many yk’s

from Lemma 3.6. Furthermore, also from Lemma 3.6, since there are at most

Opz n`2

2 q vectors yk in our sum with z ď Rpyk, τeq ď z ` 1, we are reduced to

the convergence of
8ÿ

z“1

e´2πzzpn`2

2
q,

which converges using the integral test.

(2) Now we show the convergence of (19) for the partial derivatives in τe for the

term fepyk, τeq. Note first that we can compute the derivatives:

B
Bτe

fepyk, τeq “ e´2πRpyk ,τeq

2πRpyk, τeq
B

Bτe
Rpyk, τeq,

B
Bτe

fepyk, τeq “ e´2πRpyk ,τeq

2πRpyk, τeq
B

Bτe
Rpyk, τeq.

We get in general terms of the form:

B
BRτeBSτe

fepyk, τeq “ e´2πRpyk ,τeq
ÿ

i

e´ciRpyk ,τeq

Rpyk, τeqdi PipBai,biRq,

where the above is a finite sum, PipBR, ykq are polynomials in B
BaiτeBbi τe

Rpyk, τeq,
and the constants ci, di are integers that satisfy di ě 1,and di ą ci ě 0. This

can be easily shown by induction.

Excluding the terms for whichRpyk, τeq ď 1, note that if we fix a basis pe1, . . . , en`2q
for Vσe , we have:

B
BRτeBSτe

Rpyk, τeq “ ´
n`2ÿ

j“1

pypjq,e
k q2 B

BRτeBSτe
Rpej , τeq,

thus we can further bound:

| B
BaτeBbτe

Rpyk, τeq| ď Ma,bpqepxkq `Rpyk, z0,eqq,

where Ma,b is the upper bound of the values B
BaτeBbτe

Rpej , τeq for 1 ď j ď n` 2

and τe in our compact.
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As di ą ci, for Rpyk, τeq ě 1, we have e´2πciRpyk,τeq

p2πRpyk ,τeqqdi
ă 1 and using the above

bound we have more generally:

| B
BRτeBSτe

fepyk, τeq| ď Me´2πRpyk ,τeq rQpRpyk, τeqq,

where Q̃ is a polynomial in Rpyk, z0,eq. Let D be the degree of Q̃ and let
ĂQ0pxq :“ ř |an|xn if Q :“ ř

anx
n.

Similarly as before, we have at mostOpz n`2

2 q values yk such that z ď Rpyk, τeq ď
z ` 1 for τe inside a compact, and the above convergence is equivalent to the

convergence of
8ÿ

z“1

e´2πzz
n`2

2 ĂQ0pz ` 1q,

which converges by the integral test.

Now we are also going to show:

Proposition 3.9. For x “ px1, . . . , xkq P V pF qk, the form

ω3px, τ ; g, hq “
ÿ

γPGxpF qzGpF q

ω2px, γτq1GxpAf qgKpγhq

converges.

Proof: Note that the above statement follows for dimUpxq “ k from the proof of

Proposition 3.2. For the general case the proof is similar to that of Lemma 3.8. Using

the notation from Lemma 3.8, we can write:

ω3px, τ ; g, hq “
ÿ

yPΓhx

ϕ1py1, τ1q ^ ¨ ¨ ¨ ^ ϕ1pyk, τ1q ^ ¨ ¨ ¨ ^ ϕ1py1, τeq ^ ¨ ¨ ¨ ^ ϕepyk, τeq.

Using the definition of ϕipyj, τiq:

ϕipyj , τiq “ e´2πRpyj ,z0,iq

˜
ÿ

1ďs,tďn

y
psq,i
j y

ptq,i
j p˚

i pωs,1i ^ ωt,2iq ´ 1

π

ÿ

1ďsďn

p˚
i pωs,1i ^ ωs,2iq

¸
,

the terms p˚
i ωs,1i ^ p˚

i ωt,1i are independent of y, and we are reduced to the convergence

of the coefficients:

ÿ

yPΓhx

e
´2π

eř
i“1

kř
j“1

Rpyj ,z0,iq

P pyq,

where P pyq “
eź

i“1

kź

j“1

ÿ

1ďs,tďn

1ÿ

f“0

pypsq,i
j y

ptq,i
j qf . As in Lemma 3.8, we can bound:

ÿ

1ďs,tďn

1ÿ

f“0

pypsq,i
j y

ptq,i
j qf ď pRpyj , z0,iq ` qipxjqqn2

.
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Moreover, for pi, jq ‰ pe, kq, by discarding finitely many terms from the lattice we

have Rpyk, τeq large enough and we can bound e´2πRpyj ,τiqRpyj, z0,iqm ď 1, for any

1 ď m ď n2. Thus the convergence reduces to showing that
ÿ

yPΓhx

e´2πRpyk ,z0,eqpRpyk, z0,eq ` qepxkqqn2

converges, or equivalently that any of the terms:
ÿ

yPΓhx

e´2πRpyk ,z0,eqRpyk, z0,eqm,

converge for 1 ď m ď n2. Again we have at most Opz n`2

2 q values yk such that z ď
Rpyk, τeq ď z ` 1 for τe inside a compact, thus the above reduces to the convergence of:

ÿ

yPΓhx

e´2πzpz ` 1qmz n`2

2 ,

which converges by the integral test. This finishes our proof.

4. Modularity of Zpg1, φq

We recall now the definition of the standard Whittaker function. Recall from Section

3.3 that we defined ĂSp2rpRq to be the metaplectic cover of Sp2rpRq, K 1 the preimage

under the projection map ĂSp2rpRq Ñ Sp2rpRq of the compact subgroup t
`

A B
´B A

˘
, A `

iB P Uprqu, where Uprq is the unitary group. We also defined the character det1{2 on

K 1 whose square descends to the determinant character of Uprq.
For pV`, q`q a quadratic space over R of signature pn` 2, 0q, let ϕ˝

`px`q P SpV r
`q be

the standard Gaussian:

ϕ˝
`px`q “ e´π trpx,xq` ,

where 1
2

px, xq` “ 1
2
ppxi, xjqq1ďi,jďr is the intersection matrix of x “ px1, . . . , xrq P V r

`

for the inner product p¨, ¨q given by q` on V`.

Then for x P V r
` and β “ 1

2
px, xq` with β in SymrpRq, the group of symmetric r ˆ r

matrices, we define the βth ”holomorphic” Whittaker function:

Wβpgq “ rpgqϕ˝
`pxq,

where g P ĂSp2rpRq and r is the Weil representation of ĂSp2rpRq ˆOpV rq.
Using the Iwasawa decomposition of ĂSp2rpRq, we can write each g in the form:

g “ p 1 u
0 1 q

´
v 0
0 pvT q´1

¯
k1, v P GLrpRq`, k1 P K 1,

and we have:

Wβpgq “ detpvqn`2

4 e2πi tr βτ detpk1qn`2

2 ,

where τ “ u ` pv ¨ vT q
?

´1 is an element of Hr, the Siegel upper half-space of genus r

(see [YZZ1] for a reference).
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We can extend this definition for F8. For g1 “ pg1
jq1ďjďd P ĂSp2rpF8q “ ś

σj :F ãÑR

ĂSp2rpRσj
q,

we take:

Wβpg1
8q “

ź

σj :F ãÑR

Wσjpβqpg1
jq.

Moreover, by writing each g1
j “

`
1 uj

0 1

˘ ´ vj 0

0 pvTj q´1

¯
k1
j using the Iwasawa decomposi-

tion and taking τj “ uj ` ipvj ¨ vTj q as above, we get:

Wβpg1
8q “

ź

σj :F ãÑR

detpvjqn`2

2 e2πi tr σjpβqτj detpk1
jqn`2

2 .

Recall from the Introduction that we defined T pxq “ 1
2

pxxi, xjyq1ďi,jďr to be the

intersection matrix in MrpF q. Note that for 1 ď i ď e the intersection matrix T pxq is

different from the intersection matrix 1
2

px, xq` above, for which the inner product p¨, ¨q
is positive-definite.

We extend the definition of Wβ to σjpβq R SymrpRq for some σj , 1 ď j ď e, by taking

Wβpg1
8q “ 0.

For g1 P ĂSp2rpAq, φ P pSpV r
A qqK , we defined in the introduction Kudla’s generating

series:

Zpg1, φq “
ÿ

xPGpF qzV pF qr

ÿ

gPGxpAf qzGpAf q{K

rpg1
f qφf pg´1xqWT pxqpg1

8qZpx, gqK . (20)

We will show:

Theorem 4.1. The function Zpg1, φq is an automorphic form parallel of weight 1`n{2
for g1 P ĂSp2rpAq, φ P SpV r

A q with values in H2erpMK ,Cq.

Recall that in H2erpMK ,Cq we have rZpx, gqs “ rω4px1, τ ; g, hq ^ pp´1qec1pL_
Kqqr´ks

as cohomology classes, where c1pL_
Kq “ c1pL_

K,1q . . . c1pL_
K,eq. We are actually going

to show in Section 4.1 that rZpx, gqs “ rω4px, τ ; g, hqs and we will replace in the sum

(20) the cohomology class of the special cycle Zpx, gq with the cohomology class of

ω4px, τ ; g, hq. We are going to show first the following expansion of the pullback of

rZpg1, φqs to D ˆGpAf q{K:

Lemma 4.2. The pullback of the cohomology class rZpg1, φqs to D ˆ GpAf q{K is the

cohomology class:

p˚rZpg1, φqs “
ÿ

xPV pF qr

rpg1qφf ph´1xqWT pxqpg1
8qω2pvx, τq,

where p : DˆGpAf q{K Ñ MK is the natural projection map and g1
i “

`
1 ui
0 1

˘ ´ vi 0

0 pvTi q´1

¯
k1
i

is the Iwasawa decomposition of g1
i “ σipg1q for 1 ď i ď d.
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We claim that this will imply Theorem 4.1. We will first discuss the pullback of

cohomology classes in Section 4.1 and we will show Lemma 4.2 and Theorem 4.1 at the

end of the section.

4.1. Cohomology classes. First we would like to understand better how we take the

pullback of the cohomology classes rω3px, τ ; g, hqs to H2erpD ˆGpAf q{K,Cq.
Note that for x P V pF qr with Upxq a totally positive k-subspace of V , and g P GpAf q,

we have the equality of cohomology classes rZpUpxq, gqs “ rω4px1, gqs in H2ekpMK ,Cq
and we can take the pullback rω3px1, gqs to H2ekpD ˆ GpAf q{K,Cq. The pullback of

p´1qec1pL_
Kq to H2pD ˆGpAf q{K,Cq is ω3p0, τq.

We are actually going to show that the pullbacks of the Kudla cycles ZpUpxq, gqc1pL_
Kqr´k

can be represented by the cohomology class of rω3px, gqs in H2erpD ˆ GpAf q{K,Cq in

the lemma below:

Lemma 4.3. In H2erpD ˆGpAf q{K,Cq we have the equality of cohomology classes:

rω3px1q ^ ω3p0qpr´kqs “ rω3pxqs.

To show this, we first recall from [Ku1], Lemma 7.3, how the pullback acts on the

Kudla-Millson form ϕpkq
KM

. For 1 ď i ď e, recall that pVσi
, qiq is a quadratic space of

signature pn, 2q.

Lemma 4.4. Let U Ă Vσi
be a positive k-plane. For y P U , let ϕ˝

` P SpUkq be the

standard Gaussian ϕ˝
`pyq “ e´πqipyq. Let ιU : DU,i Ñ Di be the natural injection. Then

under the pullback ι˚U : ΩkpDiq Ñ ΩkpDU,iq of differential forms, we have:

ι˚Uϕ
pkq,˝
KM

“ ϕ˝
` b ϕpkq,˝

KM,VU
,

where ϕKM,VU

pkq,˝ P pSpUkq b Ωk,kpDU,iqqK is the Kudla-Millson form for the vector

space Vi,U “ 〈U〉K and Hermitian symmetric domain DU,i.

For x P V pF qr such that Upxq is a totally positive k-subspace of V we defined

x1 “ pxi1 , . . . , xikq. Let x2 “ pxj1 , . . . , xjr´k
q consist of the remaining components of x.

Just for this section, we will use the notation ω
pmq
i px, τq for i “ 2, 3 when x “

px1, . . . , xmq P V m. Using the above lemma, we are first going to show:

Lemma 4.5. With the above notation, the pullback of ω
pr´kq
3 px2, τ ; g, hq to DU ˆ

GU pAf qgK{K via the inclusion map ι : DU ˆGU pAf qgK{K Ñ D ˆGpAf q{K equals:

ι˚ω
pr´kq
3 px2, τ ; g, hq “ ι˚ω

pr´kq
3 p0, τ ; g, hq (21)

Proof: From the definition of ϕprq,˝
KM

we can write:

ϕprq,˝
KM

pxq “ ϕpkq,˝
KM

px1q ^ ϕpr´kq,˝
KM

px2q. (22)
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Then from Lemma 4.4, for ιU : DU,i Ñ Di the natural embedding, we have i˚Uϕ
pr´kq,˝
KM

px2q “
pϕ˝

` b ϕpr´kq,˝
KM,VU,i

qpx2q “ ϕ˝
`px2qϕpr´kq

KM,VU,i
p0q, as x2 P U r´k. Note that this implies:

i˚Uϕ
pr´kq
KM

px2q “ ϕpr´kq
KM,VU,i

p0q. (23)

We first want to pullback everything to D, via the projection maps pi : D Ñ Di. We

have the maps ιU : DU ãÑ D, pi : D Ñ Di. Recall that

DU “ DU,1 ˆ ¨ ¨ ¨ ˆDU,e,

and we can further define the embedding ιU,i : DU,i ãÑ Di and the projection map

pU,i : DU Ñ DU,i. It is easy to see that ιU,i ˝ pU,i “ pi ˝ ιU as maps from DU to Di, thus

we also have the equality of pullbacks of differentials Ωr´kpDiq Ñ Ωr´kpDU q:

p˚
U,i ˝ ι˚U,i “ ι˚U ˝ p˚

i .

Then we get the equality:

ι˚Up
˚
i ϕ

pr´kq
KM

px2, τiq “ p˚
U,i ˝ ι˚U,iϕpr´kq

KM
px2, τiq.

From (23), we have the RHS equal to p˚
U,iϕ

pr´kq
KM,VU,i

p0, τiq. Applying the same steps

also for ϕpr´kq
KM

p0q, we get:

ι˚Up
˚
i pϕpr´kq

KM
p0, τiqq “ p˚

U,i ˝ ι˚U,ipϕpr´kq
KM

p0, τiqq “ p˚
U,ipϕpr´kq

KM,VU,i
p0, τiqq.

Thus we have:

ι˚Up
˚
i ϕ

pr´kq
KM

px, τiq “ ι˚Up
˚
i pϕpr´kq

KM
p0, τiqq (24)

Note that we can further take the wedge product of ι˚Up
˚
i ϕ

pr´kq
KM

px, τiq for 1 ď i ď e

to get

ι˚Uω
pr´kq
2 px2q “ ι˚U

eľ

i“1

p˚
i ϕ

pr´kqpx, τiq “
eľ

i“1

ι˚Up
˚
i ϕ

pr´kqpx, τiq,

and using (24) this gives us ι˚U pωpr´kq
2 p0, τqq. Note that this implies:

ι˚Uω
pr´kq
2 px2q “ ι˚U pωpr´kq

2 p0, τqq (25)

Finally, we are interested in the pullback of ω
pr´kq
3 px2, τ ; g, hq to DU ˆGU pAf qgK{K

via the inclusion map ι : DU ˆGU pAf qgK{K Ñ D ˆGpAf q{K. We have:

ι˚ω
pr´kq
3 px2, τ ; g, hq “

ÿ

γPGU pF qzGpF q

ι˚Uω
pr´kq
2 px2, γτq1GU pAf qgKpγhq,

and using the pullback above for the RHS we get
ÿ

γPGU pF qzGpF q

ι˚Uω
pr´kq
2 p0, γτq1GU pAf qgKpγhq,
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which equals ι˚ω
pr´kq
3 p0, τ ; g, hq. Thus we have ι˚ωpr´kq

3 px2, τ ; g, hq “ ι˚ω
pr´kq
3 p0, τ ; g, hq,

which is the result of the lemma.

Note that using (23) and (14) one can actually show that

rϕprq
KM

pxqs “ rϕpkq
KM

px1q ^ ϕpr´kq
KM

p0qs

as cohomology classes in H2rpDi,Cq.
Moreover, using (25) and (16), one can further show that

rωprq
2 pxqs “ rωpkq

2 px1q ^ ω
pr´kq
2 p0qs

as cohomology classes in H2rpD,Cq.
The proof of Lemma 4.3 below is based on the same principle.

Proof of Lemma 4.3: To show the equality of cohomology classes, we need to show

that for a closed pl ´ r, l ´ rq-form µ with compact support, where l is the complex

dimension of D ˆGpAf q{K, we have:
ż

DˆGpAf q{K

µ^ ω
prq
3 pxq “

ż

DˆGpAf q{K

µ^ ω
pkq
3 px2q ^ ω

pr´kq
3 p0q (26)

From (5), for a closed form µ, as µ^ ω
pr´kq
3 is a closed pl ´ k, l ´ kq-form we have:

ż

DˆGpAf q{K

µ^ ω
prq
3 pxq “

ż

DUˆGU pAf qgK{K

ι˚pµ^ ω
pr´kq
3 px2qq.

From (21), we have ι˚pµ ^ ω
pr´kq
3 px2qq “ ι˚pµ^ ω

pr´kq
3 p0qq, thus we get above:

ż

DˆGpAf q{K

µ^ ω
prq
3 pxq “

ż

DUˆGU pAf qgK{K

ι˚pµ^ ω
pr´kq
3 p0qq. (27)

Using (5) for µ^ ω
pr´kq
3 p0q we get as well:

ż

DˆGpAf q{K

µ^ ω
pkq
3 px1q ^ ω

pr´kq
3 p0q “

ż

DUˆGU pAf qgK{K

ι˚pµ^ ω
pr´kq
3 p0qq. (28)

Combining the two equations (27) and (28) we get (26).

Remarks on ω3pvxq and ω4pvxq. We follow up with some remarks regarding

ω3pvx, τ ; g, hq and ω4pvx, τ ; g, hq when v P GLrpF8q and x P V pF qr with Upxq totally

positive definite k-subspace of V pF q. We have defined them in Section 3.5. Lemma 4.3

extends easily for ω3pvx, τ ; g, hq and ω4pvx, τ ; g, hq and we have as cohomology classes
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in H2erpD ˆGpAf q{K,Cq:

rω3pvx, τ ; g, hqs “ rω3ppvxq1, τ ; g, hq ^ ω
pr´kq
3 p0, τqs.

As actually ω3ppvxq1q represents the same cohomology class as the preimages of

ZpUpvxq, gq in D ˆGpAf q{K, and as ZpUpxq, gq “ ZpUpvxq, gq, we have:

Lemma 4.6. (i) As cohomology classes in H2erpD ˆGpAf q{K,Cq, we have:

rω3pvx, τ ; g, hqs “ rω3px, τ ; g, hqs. (29)

(ii) Noting that (29) descends toMK , we also have as cohomology classes in H2erpMK ,Cq:

rω4pvx, τ ; g, hqs “ rω4px, τ ; g, hqs. (30)

Proof of modularity: We will finish below the proofs of Lemma 4.2 and Theorem

4.1.

Proof of Lemma 4.2: The pullback to D ˆ GpAf q{K of ω4px1, τq is ω3px1, τq and

ω3p0, τq is the pullback of p´1qercr1pL_
Kq “ Zp0, gq. Then in (20) we can write:

p˚rZpg1, φqs “
ÿ

xPGpF qzV pF qr

ÿ

gPGxpAf qzGpAf q{K

rpg1, gqφf pxqWT pxqpg1
8qrω3px1, τ ; g, hq^ωpr´kq

3 p0qs.

Furthermore, from Corollary 4.3 we have rω3px1, g; τ, hq^ωpr´kq
3 p0, τqs “ rω3px, τ ; g, hqs

as classes in H2erpDˆGpAf q{K,Cq. From (29) we also have the equality of cohomology

classes rω3px, τ ; g, hqs “ rω3pvx, τ ; g, hqs. Thus we get:

p˚rZpg1, φqs “
ÿ

xPGpF qzV pF qr

ÿ

gPGxpAf qzGpAf q{K

rpg1, gqφf pxqWT pxqpg1
8qrω3pvx, g; τ, hqs.

By plugging in the definition ω3pvx, τ ; g, hq “ ř
γPGxpF qzGpF q

ω2pvx, γτq1GxpAf qgKpγhq,

we get the cohomology class p˚rZpg1, φqs equal to the cohomology class of:
ÿ

xPGpF qzV pF qr

ÿ

gPGxpAf qzGpAf q{K

rpg1
f , gqφf pxqWT pxqpg1

8q
ÿ

γPGxpF qzGpF q

ω2pvx, γτq1GxpAf qgKh´1pγq.

We will unwind the sum below to get the result of the lemma. We interchange the

summations to get:
ÿ

xPGpF qzV pF qr

ÿ

γPGxpF qzGpF q

ÿ

gPGxpAf qzGpAf q{K

rpg1
f , gqφf pxqWT pxqpg1

8qω2pvx, γτq1GxpAf qgKpγhq.

Note that 1GxpAf qgKpγhq ‰ 0 iff γh P GxpAf qgK, or equivalently if g P GxpAf qγhK,

and since we are summing for g P GxpAf qzGpAf q{K, we can replace g by γh everywhere
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and get:

p˚rZpg1, φqs “
ÿ

xPGpF qzV pF qr

ÿ

γPGxpF qzGpF q

rpg1
f , γhqφf pxqWT pxqpg1

8qω2pvx, γτq.

Since the action of GpAf q on φ is given by rpg1
f , γhqφf pxq “ rpg1

f qφf ph´1γ´1xq and

ω2pvx, γτq “ ω2pγ´1vx, τq “ ω2pvpγ´1xq, τq, then we have:

p˚rZpg1, φqs “
ÿ

xPV pF qr

rpg1
f qφf ph´1xqWT pxqpg1

8qω2pvx, τq,

which gives us the result of the lemma.

Proof of Theorem 4.1: We would like to rewrite the sum of Lemma 4.2:

p˚rZpg1, φqs “
ÿ

xPV pF qr

rpg1qφf ph´1xqWT pxqpg1
8qω2pvx, τq

and first show that this sum is automorphic with values in H2erpD ˆGpAf q{K,Cq.
We recall the Iwasawa decomoposition of g1 “ pg1

iq1ďiďd P ĂSp2rpF8q to be g1
i “`

1 ui
0 1

˘ ´ vi 0

0 pvTi q´1

¯
k1
i, where vi P GLrpRσi

q`, k1
i P K 1

i.

Recall that we have, for 1 ď i ď e, ω1px, τiq “ ϕprq
KM

px, τiq and ω2px, τq “ p˚
1ω1px, τ1q^

¨ ¨ ¨ ^ p˚
eω1px, τeq. From the property (1) of the Theorem of Kudla and Millson we pre-

sented in Section 3.3, we have

rpk1
iqϕprq,˝

KM
“ detpk1

iq
n`2

2 ϕprq,˝
KM

,

where ϕprq,˝
KM

px, τiq “ e´2π tr σipT pxqqϕ
KM

px, τiq. Using the Weil representation this easily

extends to:

rpg1
iqϕprq,˝

KM
px, τiq “ detpviq

n`2

2 detpk1
iq

n`2

2 e´2π trT pσipxqqpui`ivi¨vTi qϕprq
KM

pvix, τiq.

We take the pullback toD via the projection maps pi : D Ñ Di. We denote ϕipx, τiq “
p˚
i ϕ

prq
KM

px, τiq and ϕ˝
i px, τiq “ e´2π trσipT pxqqϕipx, τiq and thus we also have:

rpg1
iqpϕ˝

i px, τiqq “ detpviq
n`2

2 detpk1
iq

n`2

2 e´2π tr T pσipxqqpui`ivi¨vTi qϕipvix, τiq.

Note that on the RHS we got WσipT pxqqpg1
iqϕipvix, τiq, thus:

rpg1
iqpϕ˝

i px, τiqq “ WσipT pxqqpg1
iqϕipvix, τiq.

Furthermore, as we can rewrite

WT pxqpg1
8qϕ1pv1x, τ1q ^ ¨ ¨ ¨ ^ ϕepvex, τeq “

pWσ1pT pxqqpg1
1qϕ1pv1x, τ1q ^ ¨ ¨ ¨ ^WσepT pxqqpg1

eqϕepvex, τeqq
dź

i“e`1

WσipT pxqqpg1
iq,
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we get:

WT pxqpg1
8qϕ1pv1x, τ1q ^ ¨ ¨ ¨ ^ ϕepvex, τeq “ rpg1

8qφ˝px, τq,

where φ˝px, τq “ ϕ˝
1px, τ1q ^ ¨ ¨ ¨ ^ ϕ˝

epx, τeq
dś

i“e`1

ϕ0,ipxq. Recall that for i ě e ` 1,

WT pσipxqqpgiq “ rpgiqϕ0,ipxq. Here ϕ0,ipxq “ e´π tr T pσipxqq is the standard Gaussian, as

pVσi
, qiq is positive definite for i ě e ` 1.

Going back to the sum of Lemma 4.2, we thus get:

p˚rZpg1, φqs “
ÿ

xPV pF qr

rpg1
f qφf ph´1xqrpg1

8qφ˝px, τq,

and this is a theta function of weight pn ` 2q{2 with values in the cohomology group

H2erpD ˆ GpAf q{K,Cq. This means that for any linear functional l : H2erpD ˆ
GpAf q{K,Cq Ñ C acting on the cohomology part of φ˝px, τq, the generating series:

lpp˚rZpg1, φqsq “
ÿ

xPV pF qr

rpg1
f qφf ph´1xqrpg1

8qlpφ˝px, τqq

is a theta function of weight pn` 2q{2. Note that this series is obtained by unwinding:

p˚rZpg1, φqs “
ÿ

xPGpF qzV pF qr

ÿ

gPGxpAf qzGpAf q{K

rpg1, gqφf pxqWT pxqpg1
8qlpω3px, gqq.

Denote

Z0pg1, φq “
ÿ

xPGpF qzV pF qr

ÿ

gPGxpAf qzGpAf q{K

rpg1, gqφf pxqWT pxqpg1
8qω3px, gq.

For the the natural projection p : D ˆ GpAf q{K Ñ MK , recall the pullback p˚ :

Ω2erpMKq Ñ Ω2erpD ˆ GpAf q{Kq, which further descends to the cohomology groups

p˚ : H2er
dR pMKq Ñ H2er

dR pD ˆGpAf q{Kq and the map is an injection.

We denote by SC2erpMKq the subspace ofH2er
dR pMKq generated by the classes rω4px, gqs

and by SC2erpD ˆ GpAf q{Kq the subspace of H2er
dR pMKq generated by the classes

rω3px, gqs. Then the above pullback map restricts to p˚ : SC2erpMKq Ñ SC2erpD ˆ
GpAf q{Kq and it is an injection.

Then for any linear functional l of SC2erpMKq, we can just define the linear functional
rl on SC2erpDˆGpAf q{Kq given by rlpp˚rωsq “ rlprωsq, and thus rlpZ0pg1, φqq “ lprZpg1, φqsq
is automorphic. Thus rZpg1, φqs is a theta function valued in H2erpMKq.

We can also easily check the weight of the theta function by computing rpk1qφ˝px, τq “

rpk1
1qϕ˝

1px, τ1q^¨ ¨ ¨^rpk1
eqϕ˝

epx, τeq
dś

i“e`1

rpk1
iqφ0,ipxq which gives us the factor detpk1

iq
n`2

2

at each place i.
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