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Abstract

In this paper we realize the moduli spaces of cubic fourfolds with specified automorphism groups
as arithmetic quotients of complex hyperbolic balls or type IV symmetric domains, and study their
compactifications. Our results mainly depend on the well-known works about moduli space of cubic
fourfolds, including the global Torelli theorem proved by Voisin ([Voi86]) and the characterization of the
image of the period map, proved independently by Looijenga ([Loo09]) and Laza ([Laz09, Laz10]). The
key input for our study of compactifications is the functoriality of Looijenga compactifications, which we
formulate in the appendix (section A).
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1 Introduction

Cubic fourfold is an intensively studied object in algebraic geometry. The remarkable work by Voisin in
1986 ([Voi86]) showed the global Torelli theorem for smooth cubic fourfolds. Based on this, Allcock-Carlson-
Toledo ([ACT11]) and Looijenga-Swierstra ([LS07]) realized the moduli space of smooth cubic threefolds as an
arrangement complement in an arithmetic ball quotient. Recently Laza-Pearlstein-Zhang ([LPZ17]) realized
the moduli space of pairs consisting of a cubic threefold and a hyperplane as an arrangement complement
in a type IV arithmetic quotient. In both cases, the authors studied compactifications of the moduli spaces.
In this paper we characterize the moduli spaces of cubic fourfolds with specified automorphism groups,
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and identify the GIT-compactifications with Looijenga compactifications. This generalizes the two results
mentioned above.

Let F be the normalization of the irreducible subvariety parameterizing smooth cubic fourfolds with
specified action by finite group A (see section 2 for the setup). Let n = dimF . Let X be a cubic fourfold
in F . Consider the induced action of A on H4(X,C), and let ζ be the character corresponding to H3,1(X).
Denote H4(X)ζ to be the ζ-eigenspace, which admits a natural Hermitian form h induced by the topological
intersection pairing on H4(X,Z) (see section 4.1). Then h has signature (n′, 2) if ζ = ζ; (n′, 1) otherwise
(see proposition 4.1). The first main theorem of the paper is the following:

Theorem 1.1 (Main Theorem 1). (i) We have equality n′ = n.

(ii) The Hodge structure on H4(X)ζ gives an algebraic isomorphism P : F ∼= Γ\(D − Hs). Here D is a
complex hyperbolic ball if h has signature (n, 1); a type IV symmetric domain otherwise. The group Γ is
an arithmetic group acting proper discontinuously on D and Hs is a Γ-invariant hyperplane arrangement
in D.

(iii) The period map P extends naturally to an algebraic isomorphism F1
∼= Γ\(D − H∗), where F1 is a

natural partial completion of F , adding cubic fourfolds with at worst ADE-singularities, and H∗ is a
Γ-invariant hyperplane arrangement contained in Hs.

Denote F to be the GIT-compactification of F , see section 2.2. We characterize F via:

Theorem 1.2 (Main Theorem 2). There is an isomorphism between projective varieties F ∼= Γ\DH∗

.

Here Γ\DH∗

is the Looijenga compactification of Γ\(D−H∗), see section A.5 in appendix.

Notice that in [GAL11], smooth cubic fourfolds with prime-order automorphisms are classified and form
13 irreducible subvarieties in the moduli of cubic fourfolds (see section 6.1). Two of the examples in the list
are exactly the cases dealt in [ACT11], [LS07] and [LPZ17].

Structure of the Paper: We briefly introduce the main content of each section.

In section 2 we introduce the notion of symmetry type, and set up the geometric invariant theory of
hypersurfaces with specified symmetry type.

In section 3 we review concepts about cubic fourfolds, and introduce the global Torelli theorem which
was proved by Voisin ([Voi86]).

In section 4 we define the moduli of T-marked cubic fourfolds, and the local period map for those cubic
fourfolds. We show that the local period map is an open embedding and characterize its image. Finally we
discuss the global period maps by passing to certain quotients.

In section 5 we investigate the compactifications of both sides of the period map for symmetric cubic
fourfolds, and identify them.

In section 6 we give some examples and relate them to the previous works.

In section A, we review Looijenga compactification of an arrangement complement in a complex hyper-
bolic ball or type IV domain. We prove functoriality of Looijenga compactifications.

Convention: All algebraic varieties are defined over the field of complex numbers. The adjectives open,
closed refer to analytic topology and Zariski-open, Zariski-closed are used for Zariski topology.

Notation:

(d, k): dimension and degree of a hypersurface

V : complex vector space of dimension k + 2
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F : degree d polynomial in k + 2 variables

X : degree d k-fold; cubic fourfold when (d, k) = (3, 4)

A: a finite subgroup of SL(V ), containing µk+2 the center of SL(V )

A: image of A in PSL(V )

λ: character of A with specified restriction to µk+2

T : equivalence class of (A, λ), called symmetry type of degree d k-fold

V : eigenspace of Symd(V ∗) corresponding to (A, λ)

C: centralizer of A in SL(V )

N : a reductive group acting on V
Vsm/Vss: subspace of smooth/semi-stable points in V
F : GIT quotient of Vsm by N

Fm: moduli space of cubic fourfolds with T -markings

F1: moduli space of cubic fourfolds of type T , which admits at worst ADE singularities

F : GIT quotient of Vss by N , which is a compactification of F
M: moduli space of smooth cubic fourfolds

M: GIT compactification of M
(Λ0)Λ: (primitive) middle cohomology lattice of cubic fourfold

ϕ: topological intersection pairing

η: square of hyperplane class

D̂: local period domain for cubic fourfolds

Γ̂: monodromy group of the universal family of smooth cubic fourfolds

H∆/H∞: Γ̂-invariant hyperplane arrangement in D

ζ: character of A, induced by the action of A on H3,1(X)

Λζ: eigenspace of (Λ0)C corresponding to the character ζ

σX/σ: representation of A on H4(X,Z)/Λ

hX/h: Hermitian form on H4(X)ζ/Λζ

D: local period domain for cubic fourfolds of symmetry type T

Γ: monodromy group for universal family of smooth cubic fourfolds of symmetry type T

X: locally Hermitian symmetric variety (used in Appendix)

Hs/H∗: Γ-invariant hyperplane arrangements in D

Γ\DH∗

: Looijenga compactification of Γ\(D−H∗)

P̃: local period map

P: global period map

2 General Setup: Symmetric Hypersurfaces

2.1 Space of Symmetric Polynomials

Let V be a complex vector space of dimension k + 2. Denote Symd(V ∗) to be the space of degree d
polynomials on V . We have the natural action of SL(V ) on Symd(V ∗), namely, g(F ) = F ◦g−1 for g ∈ SL(V )
and F ∈ Symd(V ∗).

The center of SL(V ) is the group µk+2 consisting of (k+2)-th roots of unity. Let A be a finite subgroup
of SL(V ) containing µk+2 and denote A = A/µk+2 the image of A in PSL(V ). Then Symd(V ∗) is a
representation of A.
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Notice that for any ξ ∈ µk+2 and F ∈ Symd(V ∗), we have ξ(F ) = ξ−dF . Let λ : A −→ C× be a character
of A such that λ|µk+2

sends ξ ∈ µk+2 to ξ−d. Let Vλ be the λ-eigenspace of Symd(V ∗). We write V = Vλ for
short. Geometrically, an element in V determines a degree d hypersurface (not necessarily smooth) in PV ,
whose automorphism group contains A.

Two pairs (A1, λ1) and (A2, λ2) are called equivalent if and only if there exists g ∈ SL(V ) such that
gA1g

−1 = A2 and λ1(a1) = λ2(ga1g
−1). We call an equivalence class a symmetry type, denoted by T .

There is a poset structure on the space of symmetry types, namely, T2 ≤ T1 if T1, T2 are represented by
(A1, λ1), (A2, λ2) respectively, such that A1 ⊂ A2 and λ1 = λ2|A1

. Notice that the space V depends on the
representative (A, λ) of T .

For F ∈ V , we denote Z(F ) to be the hypersurface determined by F in PV . For X = Z(F ), we denote
Aut(X) to be the group of elements in PSL(V ) preserving X , and Aut(F ) to be the preimage of Aut(X) in
SL(V ). From [MM64] (theorem 1 and theorem 2) we have:

Theorem 2.1 (Matsumura-Monsky). When X is smooth, d ≥ 3, k ≥ 2,

(i) the group Aut(X) is finite,

(ii) if (d, k) 6= (4, 2), the group Aut(X) contains all biregular automorphisms of X.

Apparently, the group A embeds into Aut(X), for any X = Z(F ). We propose the following conditions
on the symmetry type T :

Condition 2.2. The linear space V contains a point F determining smooth hypersurface.

Condition 2.3. The linear space V contains a point F with the determined hypersurface X smooth and
A = Aut(X).

For T satisfying condition 2.2, a generic point in V determines a smooth hypersurface. We have similar
result about condition 2.3:

Proposition 2.4. If T = [(A, λ)] satisfies condition 2.3, then a generic element in V determines a smooth
hypersurface X with A = Aut(X).

Proof. Suppose F ∈ V with X = Z(F ) smooth, and A = Aut(X). Then any small deformation F1 of F in
V determines a smooth hypersurface Z(F1). By theorem 2.5 in [Zhe17], when F1 is sufficiently close to F ,
there exists g ∈ PSL(V ) such that gAut(Z(F1))g

−1 ⊂ Aut(X) = A. Since F1 ∈ V , we have A ⊂ Aut(Z(F1)),
hence A = Aut(Z(F1)).

2.2 Geometric Invariant Theory for Symmetric Hypersurfaces

Now we assume that d ≥ 3, k ≥ 2. Given a symmetry type T = [(A, λ)] satisfying condition 2.2,
let

C = {g ∈ SL(V )
∣∣gag−1 = a, ∀a ∈ A}

and
N = {g ∈ SL(V )

∣∣gAg−1 = A, λ(gag−1) = λ(a), ∀a ∈ A}
be two reductive subgroups of SL(V ). For reductivity, see [LR79], lemma 1.1.

Lemma 2.5. There is a natural action of N on V, under which the points in V defining smooth hypersurfaces
are stable.

Proof. For any g ∈ N and F ∈ V , we need to show g(F ) ∈ V . For any a ∈ A, we have:

a(g(F )) = g(g−1ag(F )) = g(λ(g−1ag)F ) = gλ(a)F = λ(a)g(F ),

which implies g(F ) ∈ V by definition of V . Therefore, there is a natural action of N on V .
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Now take F ∈ V with X = Z(F ) smooth. Then Aut(X) is finite by theorem 2.1. Since the stabilizer
group of F under action of N is a subgroup of Aut(F ), hence also finite. Moreover, NF is closed in SL(V )F ,
and the latter is closed in Symd(V ∗) since F is smooth. Thus NF is closed in Symd(V ∗), hence also closed
in V . We conclude that F is stable under the action of N .

Denote Vsm = {F ∈ V
∣∣Z(F ) smooth}, Vss the set of semi-stable elements in V under the action of N , and

PVsm, PVss their projectivizations. By lemma 2.5, we can take F = N\\PVsm to be the GIT quotient, with
compactification F = N\\PVss. Different representatives of the symmetry type induce canonically isomorphic
GIT-quotients. Define M = SL(V )\\PSymd(V ∗)sm to be the moduli space of smooth degree d hypersurfaces
in P(V ), with compactification M = SL(V )\\PSymd(V ∗)ss. We have the following proposition:

Proposition 2.6. There is a natural morphism j : F −→ M sending [F ] ∈ F to [F ] ∈ M for any F ∈ Vsm.
This morphism is finite. When T satisfies condition 2.3, the morphism j is a normalization of its image.

Proof. Here we use a projective version of the main theorem in [Lun75]. See the argument of proposition 8
in [Res10]. Since A is a finite group, there exists certain symmetric power Syml(V) on which the A-action is
trivial. Consider the SL(V )-action on the coordinate ring

⊕
m Symlm(Symd(V ∗)∗) of (P(Symd(V ∗)),O(l)).

Notice that N is of finite index in the normalizer of A in SL(V ). By the main theorem in [Lun75], we have
a finite morphism

j̃ : Spec((
⊕

m

Symlm(V∗))N ) −→ Spec((
⊕

m

Symlm(Symd(V ∗)∗))SL(V ))

sending semi-stable points to semi-stable points, and preserving the cone structures. Thus j̃ does not contract
any line, so descends to a finite morphism j : F −→ M. The morphism j sends [F ] ∈ F to [F ] ∈ M for any
F ∈ Vsm.

We claim that when T satisfies condition 2.3, the morphism j is generically injective. Take generically
F1, F2 ∈ V and assume [F1] = [F2] in M. Then there exists g ∈ SL(V ) with g(F1) = F2. By the calculation

g−1ag(F1) = g−1a(F2) = g−1λ(a)F2 = λ(a)F1 (1)

we have that g−1ag ∈ SL(V ) is an automorphism of Z(F1). By the genericity of F1, we have A ∼= Aut(F1),
which implies that g−1ag ∈ A. Then by equation (1) and F1 ∈ V , we have λ(g−1ag) = λ(a). This implies
that g ∈ N , hence [F1] = [F2] in F . Thus j is generically injective.

Moreover, since F is normal and projective, j is a normalization of its image.

Let T = [(A, λ)] be a symmetry type satisfying condition 2.2. Consider the automorphism groups Aut(F )
for all F ∈ Vsm

T . There exists F ′ ∈ Vsm
T such that #Aut(F ) is minimal. Fix this polynomial F ′, and denote

A′ = Aut(F ′). We have a symmetry type T ′ = [(A′, λ′)], where a(F ′) = λ′(a)F for all a ∈ A′. We have
T ≥ T ′, and T ′ satisfies condition 2.3. For T ′, there are the corresponding N ′,V ′ and F ′. We have the
following proposition:

Proposition 2.7. There exists a natural finite morphism F −→ F ′.

Proof. By proposition 2.6, we have two finite morphisms j : F −→ M and j′ : F ′ −→ M, and the latter
one is a normalization of its image. We show that j and j′ have the same image. Firstly, we have that
j′(F ′) ⊂ j(F) since V ′ ⊂ V . By lemma 2.5 in [Zhe17], when F ′′ ∈ V is sufficiently close to F ′, there exists
g ∈ SL(V ), such that gAut(F ′′)g−1 ⊂ Aut(F ′) = A′. By minimality of #A′, we have gAut(F ′′)g−1 = A′.
This implies that Aut(g(F ′′)) = A′, hence g(F ′′) ∈ V ′. We then have that dim(j(F)) ≤ dim(j′(F ′). By
irreducibilities of the two images, they are the same.

By universal property of normalization, the morphism j factors through j′. Therefore, we have naturally
a finite morphism F −→ F ′.

Remark 2.8. The fiber of the finite morphism F −→ F ′ over [F ′] is bijective to the orbit of (A, λ) in the
set of subdatas of (A′, λ′) under the action of N ′.
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2.3 Universal Deformation

We fix a type T = [(A, λ)] satisfying condition 2.2, and assume d ≥ 3 and k ≥ 2. Next we use Luna’s
étale slice theorem to describe the local structure of F , and construct the universal family of smooth degree
d k-folds of type T . We follow the argument in [Zhe17] (section 2). For Luna’s étale slice theorem and its
proof, one can refer to [Lun73] or [PV94].

Denote G to be the centralizer of A in PSL(V ), which acts on the affine variety PVsm. For any x ∈ PVsm,
we denote Gx to be the orbit of x and Gx to be the stabilizer of x. By lemma 2.5, Gx is closed in the affine
variety PVsm and Gx is finite. By Luna’s étale slice theorem, there exists a smooth, locally closed, Gx-
invariant subvariety S containing x, such that:

(i) The image of κ : G×Gx S −→ PVsm, denoted by U , is Zariski-open and G-invariant,

(ii) The morphism κ : G×Gx S −→ U is étale,

(iii) The morphism G\\κ : Gx\\S −→ G\\U is étale,

(iv) The above two morphisms induce an isomorphism

G×Gx S ∼= U ×
G\\U

Gx\\S. (2)

We can shrink S in the analytic category such that:

(v) S is Gx-invariant, contractible and contains x, with U = κ(G ×Gx S) a G-invariant open subset of
PVsm,

(vi) the morphism between analytic spaces: Gx\\S −→ G\\U is an isomorphism.

From (2), we have an isomorphism between analytic spaces:

G×Gx S ∼= U,

by which we have a principal Gx-bundle G× S −→ U . In particular, G× S covers U .

Definition 2.9. For any symmetry type T , we define a category CT
d,k as follows. The objects are families of

degree d k-folds of type T with a specified central fiber, and the morphisms are holomorphic maps between
families, sending central fiber to central fiber and compatible with the action of A.

Proposition 2.10. The family XS of degree d k-folds of type T over S has the following universal prop-
erty. For any subfamily XS′ −→ S′ ⊂ U of degree d k-folds of type T containing a central fiber X ′ with
isomorphism f : X ′ ∼= X commuting with A, we have a unique morphism in the category CT

d,k:

XS′

f̃−−−−→ XSy
y

S′ −−−−→ S

such that the restriction of f̃ to X ′ is f .

Moreover, for any two fibers X1, X2 of XS with an isomorphism g : X1 −→ X2 commuting with A, we
can extend g uniquely to a morphism g̃ : XS −→ XS in CT

d,k

Proof of proposition 2.10. The base S′ lies in U and is covered by G × S. Thus we have a unique lifting
S′ →֒ G× S, sending x′ to (f−1, x). In other words, we have uniquely f̃ : XS′ −→ XS , which restricts to f
on X ′.

Now suppose X1, X2 are two fibers of XS with isomorphism g : X1
∼= X2. Denote x1, x2 the corre-

sponding base points in S. Then (g, x1), (id, x2) ∈ G × S have the same image in U . Since G × S −→ U
is a principal Gx-bundle, the two pairs (g, x1) and (id, x2) are Gx-equivalent, hence g ∈ Gx. The corollary
follows.
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We have the following lemma, which will be used in the proof of proposition 4.8. Since it holds for
general degree d k-folds, we state and prove it here.

Lemma 2.11. Let

X S × PV

S

be a family of smooth degree d k-folds, with the base S contractible. Suppose there is a group Ã, such that
for all s ∈ S, the fiber Xs admits a biregular action of Ã, with induced actions on Hn(Xs,Z) compatible

with respect to the local trivialization. Then there is an action of Ã on the whole family X −→ S inducing
on each fiber the existed action.

We need another lemma from [JL17] (proposition 2.12) and [MM64]:

Lemma 2.12. For d ≥ 3, k ≥ 2, and a smooth degree d k-fold X, the induced action of Aut(X) on Hk(X,Z)
is faithful.

Proof of lemma 2.11. Take any s ∈ S. By theorem 2.5 in [Zhe17], there is a universal hypersurface family X ′

of Xs, such that any isomorphism between two fibers (may coincide) of X ′ comes from an automorphism of
the central fiber Xs. There exists an open neighbourhood U of s in S, with a unique morphism X |U −→ X ′.

Then for any s′ ∈ U , the action of Ã on Xs′ is induced by a subgroup Ã′ of Aut(Xs). By lemma 2.12,

and compatibility of induced action of Ã on Xs and Xs′ , we have that Ã = Ã′ as subgroups of Aut(Xs).

Therefore, the actions of Ã on fibers of X −→ S glue to an action of Ã on the whole family.

3 Review: Period Map for Smooth Cubic Fourfolds

In this section we recall some fundamental facts on period map for cubic fourfolds, the main references
are [Voi86], [Has00a], [Loo09], [Laz09, Laz10].

Take (d, k) = (3, 4). Then we have M the moduli of smooth cubic fourfolds, as a Zariski-open subset
of its GIT compactification M. Let X be a smooth cubic fourfold. We denote ϕX to be the intersection
pairing on H4(X,Z). Then (H4(X,Z), ϕX) is an odd unimodular lattice of signature (21, 2). Denote ηX to
be square of the hyperplane class of X . Then H4

0 (X,Z) = η⊥X is an even sublattice of discriminant 3. Now
we define (Λ,Λ0, η) to be an abstract data isomorphic to (H4(X,Z), H4

0 (X,Z), ηX), this does not depend on
the choice of the cubic fourfold X .

Definition 3.1. A marking of the cubic fourfold X is an isomorphism Φ: H4(X,Z) ∼= Λ sending ηX to η.

Two marked cubic fourfolds (X1,Φ1) and (X2,Φ2) are called equivalent if there exists a linear isomor-
phism g : X1 −→ X2 such that Φ1 = g∗Φ2. Let Mm be the set of equivalence classes of marked cubic
fourfolds. From [Zhe17], section 3, we have:

Proposition 3.2. The set Mm is a complex manifold in a natural way.

Next we define the period domain and period map for cubic fourfolds. Let

D̃ := P{x ∈ (Λ0)C
∣∣ϕ(x, x) = 0, ϕ(x, x) < 0}.

this is an analytically open subset of a quadric hypersurface in P(Λ0)C, and has two connected components.
We have naturally a holomorphic map

P̃ : Mm −→ D̃
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sending (X,Φ) ∈ Mm to Φ(H3,1(X)). It is called the local period map for cubic fourfolds.

Let D̂ be one connected component of D̃ and Γ̂ the index 2 subgroup of Aut(Λ, ϕ, η) which respects the

component D̂. Then Γ̂ is an arithmetic group acting on D̂ and P̃ descends to

P : M −→ Γ̂\D̂,

which is called the (global) period map for cubic fourfolds.

Remark 3.3. The subgroup Γ̂ consists of elements in Γ with spinor norm 1. Since there exist vectors in Λ0

with self intersection −2, the group Γ̂ is of index 2 in Aut(Λ, ϕ, η).

The global Torelli theorem is originally proved by Voisin ([Voi86]), with an erratum ([Voi08]) based on
some work by Laza ([Laz09]):

Theorem 3.4 (Voisin). The period map P is an open embedding.

Remark 3.5. In fact, the period map P is algebraic, see discussion in [Has00b] (proposition 2.2.3).

We give a lemma which will be constantly used. See [Zhe17] (theorem 1.1).

Lemma 3.6. Take X a smooth cubic fourfold, then Aut(X) ∼= Aut(H4(X,Z), ϕX , ηX , H3,1(X)).

We have a refined version of theorem 3.4:

Proposition 3.7 (Voisin, Hassett, Looijenga, Laza). The local period map P̃ is an open embedding, with

image being the complement of a hyperplane arrangement invariant under the action of Aut(Λ, η) on D̃.

Proof. Combining theorem 3.4 and lemma 3.6 we have injectivity. The characterization of the image of P̃

is due to Looijenga ([Loo09]) and Laza ([Laz10] (theorem 1.1), more precise version will be discussed in
proposition 4.7.

4 Period Maps for Symmetric Cubic Fourfolds

4.1 Local Period Map for Symmetric Cubic Fourfolds

In this section we are going to discuss the local and global period maps for symmetric cubic fourfolds.
Let (d, k) = (3, 4), and fix a symmetry type T = [(A, λ)] satisfying condition 2.2. We first introduce the local
period domains with action of arithmetic groups. Let X = Z(F ) for a generic point F ∈ V . Recall that the
action of A on X induces an action of A on H3,1(X). This action is a character ζ : A −→ C× with trivial
restriction on µk+2. We denote

H4(X)ζ = {x ∈ H4(X)
∣∣ax = ζ(a)x, ∀a ∈ A}.

Define a Hermitian form h : H4(X)ζ ×H4(X)ζ −→ C by h(x, y) = ϕ(x, y). Denote σX to be the action of
A on H4(X,Z). Let σ be a action of A on Λ, making (Λ, η, σ) isomorphic to (H4(X,Z), ηX , σX). Denote
Λζ ⊂ Λ0 ⊗ C to be the ζ-eigenspace of the action of A on (Λ0)C.

Proposition 4.1. The Hermitian form h has signature (n′, 2) if ζ = ζ (this is also equivalent to ζ(A) ⊂ µ2);
it has signature (n′, 1) otherwise. Here n′ is a non-negative integer independent of the choice of X.

Proof. Notice that the lattice H4(X,Z) has signature (21, 2), with negative part H3,1(X)⊕H1,3(X). If ζ(A)
is not contained in µ2, we have ζ 6= ζ. Since H1,3 lies in ζ-eigenspace, the signature of h is (n′, 1).

For the case ζ(A) ⊂ µ2, both H3,1(X) and H1,3(X) are contained in Hζ , hence h has signature (n′, 2).
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An isomorphisms Φ: (H4(X,Z), ηX , σX) ∼= (Λ, η, σ) is called a T-marking of X . We consider pairs
consisting of a smooth cubic fourfold and its T-marking. Two such pairs (X1,Φ1) and (X2,Φ2) are equivalent
if there exists g ∈ G such that Φ1 = g∗Φ2. Let Fm be the set of equivalence classes of such pairs, we
have:

Proposition 4.2. The set Fm is naturally a complex manifold.

Proof. First we describe the local charts on Fm. Take a point (X,Φ) ∈ Fm, and take a universal deformation
XS −→ S of X as in proposition 2.10. Since S is contractible, the local system R4π∗(Z) is trivializable over
S and the T-marking Φ of X naturally extends to T-marking of every fiber of XS −→ S. Thus we have a
map

α : S −→ Fm.

We first show that α is injective. Suppose X1, X2 are two fibers of XS , with Φ1,Φ2 the induced T-markings
by Φ respectively, such that (X1,Φ1) and (X2,Φ2) represent the same point in Fm. Then there exists
g : X1

∼= X2 with Φ2 = Φ1 ◦ g∗. By proposition 2.10 we have g ∈ Gx and Φ = Φ ◦ g∗, hence g∗ = id. By
lemma 3.6 we have g = id. Thus α is injective.

By definition, Fm is covered by countably many such α(S), and they form a basis of a topology. To
show Fm is a complex manifold, we need to prove that the topology is Hausdorff. Suppose not, then we have
two non-separated points (X,Φ), (X ′,Φ′) ∈ Fm. Then X and X ′ are isomorphic (because F is separated).
Without loss of generality, we just assume X ′ = X . Take XS −→ S the universal family as in proposition
2.10, and

α, α′ : S −→ Fm

induced by Φ and Φ′. Now since (X,Φ) and (X ′,Φ′) are non-separated, we have α(S) ∩ α′(S) 6= ∅. Thus
there exists x1 ∈ S with corresponding cubic fourfold X1, such that the two pairs (X1,Φ) and (X1,Φ

′)
represent the same point in Fm. Then there is an automorphism g of X1, such that Φ′ = Φ◦g∗. Proposition
2.10 implies that g is also an automorphism of X and satisfies the above relation. Thus (X,Φ) = (X,Φ′)
in Fm, contradiction. We showed the Hausdorff property, hence conclude that Fm is naturally a complex
manifold.

Remark 4.3. Proposition 4.2 can be generalized to degree d k-folds (d ≥ 3, k ≥ 2) with specified automor-
phism group. The argument is the same.

When h has signature (n′, 1), we define DT = P{x ∈ Λζ

∣∣ϕ(x, x) < 0}, which is a hyperbolic complex

ball of dimension n′; when h has signature (n′, 2), define DT to be a component of P{x ∈ (Λ0)ζ
∣∣ϕ(x, x) =

0, ϕ(x, x) < 0}, which is a type IV symmetric domain of dimension n′.

We define local period map for symmetric cubic fourfolds of type T as the map from Fm to DT ⊔ DT ,

sending (X,Φ) to Φ(H3,1(X)), still denoted by P̃. We make the choice of DT such that P̃ has nonempty
image in DT . Write D = DT if there is no confusion.

4.2 Properties of Local Period Maps for Symmetric Cubic Fourfolds

We need to review basic works by Laza ([Laz09, Laz10]). In [Laz09] Laza classified stable and semistable
cubic fourfolds. One of the main theorems is:

Theorem 4.4 ([Laz09]). A cubic fourfold with at worst ADE-singularities is stable.

Laza proved that the period map P : M −→ Γ̂\D̂ extends to the moduli space M1 of cubic fourfolds
with at worst ADE singularities, and characterized its image. The results are gathered in the following
theorem:
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Theorem 4.5 ([Laz10]). The period map P : M −→ Γ̂\D̂ has image Γ̂\(D̂ − H∞ − H∆), and extends
holomorphically to

P : M1 −→ Γ̂\D̂

with image Γ̂\(D̂−H∞). Here H∞,H∆ are two Γ̂-invariant hyperplane arrangements in D̂, with the quotients

Γ̂\H∞ and Γ̂\H∆ irreducible.

Remark 4.6. This characterization of the image P(M) was conjectured by Hassett in [Has00b]. Hassett
defined the special cubic fourfolds, some of which correspond to polarized K3 surfaces. The hyperplane
arrangements H∆ and H∞ are two particular ones, parameterizing nodal cubic fourfolds and secent lines of
determinantal cubic fourfold, and corresponding to K3 surfaces of degree 6 and 2 respectively. See [Has00b],
section 4.2 and 4.4.

We have also the following marked-version of theorem 4.5:

Proposition 4.7. The local period map P̃ : Mm −→ D̃ has image D̃−H∞ −H∆ −H∞ −H∆.

Proof. By theorem 4.5, the image of P̃ lies in D̃−H∞ −H∆ −H∞ −H∆. Take any point x in D̃−H∞ −
H∆ −H∞ − H∆. By theorem 4.5 the point [x] ∈ Γ̂\(D̂ −H∞ − H∆) lies in the image of P : M −→ Γ̂\D̂.

Thus the orbit Aut(Λ, η)x intersects with P̃(Mm). Notice that the set P̃(Mm) is Aut(Λ, η)-invariant,
hence contains the orbit Aut(Λ, η)x. We showed the surjectivity.

For a specified type T , we have a natural embedding D ⊔ D →֒ D̃. Denote Hs = D ∩ (H∆ ∪ H∞ ∪
H∆ ∪ H∞) and H∗ = D ∩ (H∞ ∪ H∞). The local period map P̃ : Fm −→ D ⊔ D has image contained in
D ⊔ D−Hs −Hs.

Proposition 4.8. The local period map P̃ : Fm −→ D⊔D is an open embedding, with image either D−Hs

or D ⊔D−Hs −Hs. In particular, n′ = n.

Proof. We have a closed embedding π : D ⊔ D →֒ D̃. There is a natural map j : Fm −→ Mm. Suppose
(X1,Φ1), (X2,Φ2) represent the same point in Mm, then there exists a linear isomorphism g : X1

∼= X2 such
that

g∗ = Φ−1
1 ◦ Φ2 : H

4(X2,Z) −→ H4(X1,Z)

Since Φ1,Φ2 are compatible with the action of A on H4(X1,Z), H4(X2,Z), so is g∗. Lemma 3.6 implies that
g is compatible with the actions of A on X1, X2. Thus (X1,Φ1), (X2,Φ2) represent the same point in Fm.
We showed the injectivity of j.

Combining with the following commutative diagram:

Fm D ⊔D

Mm D̃

P̃

j π

P̃

we obtain the injectivity of P̃ : Fm −→ D ⊔ D. In particular, n ≤ n′.

Since the differential of P̃ : Mm −→ D̃ is injective everywhere, so is the differential of P̃ : Fm −→ D⊔D.

Take (X,Φ) ∈ Fm. Let x = Φ(H3,1(X)) ∈ D ⊔ D and y be any point in the component of D ⊔ D

containing x. Since both D−Hs and D−Hs are connected, there exists a path

γ : [0, 1] −→ D ⊔ D−Hs −Hs

with γ(0) = x and γ(1) = y. The path γ has a unique lifting in Mm. By proposition 3.7, we can choose
a family X −→ [0, 1] of cubic fourfolds, with marking Φ of every fiber, such that (X0,Φ) = (X,Φ) and
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Φ(H3,1(Xs)) = γ(s), for all s ∈ [0, 1]. Since γ(s) ∈ D ⊔ D, the Hodge structure on H4(Xs,Z) has action of
A induced by Φ. By lemma 3.6, there exists an action of A on Xs for any s ∈ [0, 1], inducing compatible
action on H4(Xs,Z). By lemma 2.11, actions of A are of the same type T . Thus we obtain a lifting of γ in

Fm, hence y ∈ P̃(Fm).

If P̃(Fm) ⊂ D, then P̃(Fm) = D−Hs; otherwise P̃(Fm) intersects with both D and D, which implies

that P̃(Fm) = D ⊔ D−Hs −Hs.

We introduce an involution on Mm. Take any smooth cubic fourfold X = Z(F ), and a marking
Φ: H4(X,Z) −→ Λ. Let X ′ = Z(F ). There exists a homeomorphism τ from X to X ′ given by complex
conjugation. Let ι be the involution on Mm sending (X,Φ) to (X ′,Φ ◦ τ∗). Consider smooth cubic fourfold
X = Z(F ) such that F has real coefficients. Then τ is a diffeomorphism of X , and τ∗ sends H3,1(X) to
H1,3(X). Therefore, choosing any marking Φ of X , the points [(X,Φ)] and [(X,Φ ◦ τ∗)] lie in different
components of Mm. This implies that the involution ι exchanges the two components of Mm.

Next we give criterions on number of connected components of Fm. For a symmetry type T = [(A, λ)], we

define the complex conjugate T of T to be [(Ã, λ̃)], where Ã is the complex conjugate of A, and λ̃(a) = λ(a)

for all a ∈ Ã. From definition, the involution ι exchanges the two spaces Fm
T and Fm

T
.

Proposition 4.9. Given a symmetry type T = [(A, λ)].

(i) If ζ is not real, then Fm is connected.

(ii) If T = T , then Fm has two components.

(iii) If T satisfies condition 2.3, and T 6= T , then Fm is connected.

Proof. Suppose ζ is not real, then P̃(Fm) lies in the ball associated to (Λζ , h). Thus Fm is connected.

Suppose T = T , then Fm is preserved by ι. Thus Fm has two components.

Suppose Fm has two components, then P̃(Fm) = D ⊔ D−Hs −Hs. Thus Fm is preserved by ι. Thus
Fm

T
= Fm

T . This can not happen if T satisfies condition 2.3 and T 6= T . The third part follows.

4.3 Global Period Map

In this section we are going to define the global period domain for symmetric cubic fourfolds of type T
as an arithmetic quotient of D, and study the global period map.

Let (d, k) = (3, 4) and fix a symmetry type T = [(A, λ)] satisfying condition 2.2. Let Γ = {ρ ∈ Γ̂
∣∣ρAρ−1 =

A} be the normalizer of A in Γ̂. Take ρ ∈ Γ̂ and a point x ∈ Λζ . We claim that ρx ∈ Λζ . In fact, take any
a ∈ A, we have

aρx = ρρ−1aρx = ρζ(ρ−1aρ)x = ζ(ρ−1aρ)ρx.

Since ρ ∈ Γ̂, we have ρ[x] ∈ D̂. The two characters ζ and ρ−1ζρ both give non-definite eigensubspaces of ΛC.
We conclude that ζ = ρ−1ζρ, hence ρx ∈ Λζ. This gives a natural action of Γ on D.

Let NA be the normalizer of A in Aut((Λ0)Q, ϕ), which is a reductive algebraic subgroup. The group
Γ is an arithmetic subgroup of NA, see also appendix. The arithmetic quotient Γ\D is a quasi-projective
variety thanks to the Baily-Borel compactification (see section A.3 in appendix). We denote (Fm)1 to be

the connected component of Fm such that P̃((Fm)1) = D−Hs.

Proposition 4.10. The local period map P̃ : (Fm)1 −→ D − Hs descends to an algebraic isomorphism
P : F ∼= Γ\(D−Hs).

Proof. There are natural analytic morphisms from Fm to F , and D − Hs to Γ\(D − Hs) respectively. We
define the global period map P : F −→ Γ\(D− Hs) as follows. Take F ∈ Vsm. We choose a T -marking Φ

11



of X = Z(F ), such that Φ(H3,1(X)) ∈ D (this also means that (F,Φ) ∈ (Fm)1). We define

P([F ]) = [P̃(X,Φ)].

We show this map is well-defined. Take F1, F2 ∈ Vsm with T -markings Φ1,Φ2 respectively. Suppose
there exists g ∈ N , such that g(F1) = F2. We have an induced map

g∗ : H4(Z(F2),Z) −→ H4(Z(F1),Z).

Next we show ρ = Φ1g
∗Φ−1

2 ∈ Γ. Denote a′ = gag−1. Since g ∈ N , we have a′ ∈ A. we have the following
commutative diagram:

Λ H4(Z(F2),Z) H4(Z(F1),Z) Λ

Λ H4(Z(F2),Z) H4(Z(F1),Z) Λ

Φ−1

2

a′

g∗

a′∗

Φ1

a∗ a

Φ−1

2 g∗ Φ1

This implies that, as automorphisms of Λ, a′ = ρ−1aρ. Thus ρ ∈ Γ. We then have a well-defined analytic
morphism P : F −→ Γ\(D−Hs).

By definition we have the following commutative diagram:

(Fm)1 D−Hs

F Γ\(D−Hs).

P̃

j π

P

(3)

We next show P : F −→ Γ\(D−Hs) is an isomorphism.

We first show injectivity. Suppose (F1,Φ1), (F2,Φ2) ∈ Fm, with Φ1(H
3,1(Z(F1))) and Φ2(H

3,1(Z(F2)))
representing the same point in Γ\(D − Hs). Then there exists ρ ∈ Γ, such that ρΦ1(H

3,1(Z(F1))) =
Φ2(H

3,1(Z(F2))). The map
Φ−1

2 ρΦ1 : H
4(Z(F1),Z) −→ H4(Z(F2),Z)

preserves the polarized Hodge structures. By lemma 3.6, we have g ∈ SL(V ), with gF2 equals to F1 after
rescaling of F2, and g∗ = Φ−1

2 ρΦ1. For any a ∈ A, we have a∗ : H4(Z(F1),Z) −→ H4(Z(F1),Z). We have
g−1ag acting on Z(F2), which induces:

(g−1ag)∗ = g∗a∗g∗−1 = (Φ−1
2 ρΦ1)(Φ

−1
1 aΦ1)(Φ

−1
1 ρ−1Φ2) = Φ−1

2 ρaρ−1Φ2

Since ρ ∈ Γ, we have ρaρ−1 ∈ A. Again by lemma 3.6, we have g−1ag ∈ A. Since

g−1agF2 = g−1aF1 = λ(a)g−1F1 = λ(a)F2,

we have λ(g−1ag) = λ(a). We conclude g ∈ N . Thus P is injective.

By proposition 4.8, the composition of

(Fm)1 −→ D−Hs −→ Γ\(D−Hs)

is surjective. By commutativity of diagram (3), the composition of

(Fm)1 −→ F −→ Γ\(D−Hs)

is also surjective, hence P : F −→ Γ\(D−Hs) is surjective.

The algebraicity of P can be deduced from its extension to certain compactifications on both sides, see
theorem 5.3. An alternative argument follows the proof of proposition 2.2.3 in [Has00b] using Baily-Borel
compactification and Borel extension theorem.
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5 Compactifications

In this section we are going to study the compactifications of both two sides of P : F −→ Γ\(D −
Hs). The essential ingredient is the identification of the GIT-compactification of the moduli space of cubic
fourfolds and the Looijenga compactification of the global period domain, proved by Looijenga [Loo09]
and Laza [Laz10] independently. Depending on this, we will prove theorem 1.2, and then deduce (iii) of
theorem 1.1. In theorem 5.6, we give a criterion when the Looijenga compactification is actually Baily-Borel
compactification.

Let (d, k) = (3, 4). Recall that from theorem 4.5 we have isomorphism P : M1
∼= Γ̂\(D̂ − H∞). From

[Loo09] and [Laz10] we have:

Theorem 5.1 (Looijenga, Laza). The period map P extends to P : M −→ Γ̂\D̂
H∞

.

Recall that H∗ = D ∩ (H∞ ∪ H∞), which is a Γ-invariant hyperplane arrangement in D. We have a
morphism between locally symmetric varieties

Γ\D −→ Aut(Λ, η)\D̃ ∼= Γ̂\D̂.

We can construct the Looijenga compactification Γ\DH∗

of Γ\(D − H∗) (see appendix A). From theorem
A.14, we have:

Proposition 5.2. There exists finite morphism π : Γ\DH∗ −→ Γ̂\D̂
H∞

. If T satisfies condition 2.3, then
this morphism is a normalization of its image.

We now state our main theorem:

Theorem 5.3. The global period P : F ∼= Γ\(D−Hs) extends to an algebraic isomorphism P : F ∼= Γ\DH∗

.

We need the following fact in algebraic geometry. We give the proof for reader’s convenience.

Lemma 5.4. Let f1 : Z1 −→ Y and f2 : Z2 −→ Y be finite morphisms between irreducible algebraic vari-
eties. Suppose Z1, Z2 are normal. Moreover, there exists Zariski-open subset Ui of Zi, i = 1 or 2, with
a biholomorphic map g : U1 −→ U2, such that f1 = f2 ◦ g. Then g extends to an algebraic isomorphism
Z1 −→ Z2.

Proof. Let C(Z) be the field of rational functions on an irreducible algebraic variety Z, and M(Z) the field
of meromorphic functions. We claim g∗C(Z2) = C(Z1). Let x ∈ C(U2) = C(Z2). Since C(U2) is a finite
extension of C(Y ), g∗x is finite over C(U1). We can find a Zariski-open subset U◦

1 of U1, with a Galois

covering Ũ −→ U◦
1 , such that g∗x ∈ C(Ũ). Since g∗x ∈ M(U◦

1 ), it is invariant under the action of Deck
transformations. Thus g∗x ∈ C(U◦

1 ) = C(Z1). The claim follows.

Without loss of generality, we assume Y is affine. The coordinate ring C[Zi] is the integral closure of
C[Y ] in C(Zi). So g∗C[Z2] = C[Z1]. Thus g extends to an algebraic isomorphism Z1

∼= Z2.

Proof of theorem 5.3. We have the following commutative diagram:

F Γ\(D−Hs)

F Γ\DH∗

M Γ̂\D̂
H∞

∼=

j π

P

(4)
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with both j, π finite morphisms. Since F is Zariski-open in F , the image j(F) contains a Zariski-open subset

of j(F). Thus j(F) is the closure of j(F) in M. The same argument shows that π(Γ\DH∗

) is the closure of

π(Γ\(D −Hs)) in Γ̂\D̂
H∞

. By commutativity of diagram (4), the two images j(F) and π(Γ\(D −Hs)) are

identified via P, so are j(F) and π(Γ\DH∗

). By proposition 2.6, proposition 5.2 and lemma 5.4, we have an

identification between F and Γ\DH∗

which extends P : F ∼= Γ\(D−Hs). This identification is the extended

global period map P : F ∼= Γ\DH∗

.

The proof of the above theorem does not use algebraicity of P. Actually, we can deduce algebraicity of
P from theorem 5.3. At this point, we already finish the proof of part (i), (ii) of theorem 1.1 and theorem
1.2. In the rest of this section, we prove part (iii) of theorem 1.1.

Let V1 be the subset of V consisting of cubic forms of type T defining cubic fourfolds with at worst
ADE-singularities. The points in V1 are stable with respect to the action of SL(V ) on Sym3(V ∗), hence also
stable with respect to the action of N on V . Define F1 = N\\PV1 the moduli space of cubic fourfolds of type
T with at worst ADE-singularities. We have:

Proposition 5.5. The period map P : F −→ Γ\(D − Hs) extends to an algebraic isomorphism P : F1
∼=

Γ\(D−H∗).

Proof. From definition we have j(F1) = j(F) ∩ M1 and j−1(j(F1)) = F1. From proposition 2.6, the
morphism j : F1 −→ M1 is finite. On the other hand, we have

π(Γ\(D−H∗)) = π(Γ\DH∗

) ∩ Γ̂\(D̂−H∞)

and
π−1(π(Γ\(D−H∗))) = Γ\(D−H∗).

From proposition 5.2, the morphism π : Γ\(D−H∗) −→ Γ̂\(D̂−H∞) is finite. By theorem 4.5 and theorem
5.3, the two images j(F1) and π(Γ\(D − H∗)) are identified via P. By lemma 5.4, we have algebraic
isomorphism P : F1

∼= Γ\(D−H∗).

If the hyperplane arrangement H∗ is empty, then the Looijenga compactification of Γ\D is actually the
Baily-Borel compactification. In the rest of this section, we give a criterion of emptiness of H∗ from the
perspective of GIT. Following the notation in section 6 of [Laz09], there is a rational curve χ parametrizing
certain semi-stable cubic fourfolds, given by:

ga,b(x0, . . . , x5) =

∣∣∣∣∣∣

x0 x1 x2 + 2ax5

x1 x2 − ax5 x3

x2 + 2ax5 x3 x4

∣∣∣∣∣∣
+ bx3

5 (5)

where (a : b) ∈ WP (1 : 3). We denote the cubic fourfold corresponding to (a : b) to be X(a:b). When b = 0,
the corresponding cubic fourfold X(1:0) is the determinantal cubic fourfold. The singular locus of X(1:0) is the

image of the Veronese embedding PV3 →֒ PSym2(V3) ∼= PV . Here V3 is a three dimensional complex vector
space with Sym2(V3) ∼= V . This induces a natural map from GL(V3) to GL(V ). Let G1 be the intersection
of SL(V ) with the image of GL(V3) −→ GL(V ).

For b 6= 0, the singular locus of the cubic fourfold X(a:b) is the image of PV2 →֒ P(Sym4(V2)⊕C) ∼= PV .

Here V2 is a two dimensional complex vector space with Sym4(V2) ⊕ C ∼= V . Let G̃2 be the subgroup
of GL(V2) × C∗ consisting of elements (g, u) such that (det g)2/u is a third root of unity. Let G2 be the

intersection of SL(V ) with the image of the natural map G̃2 −→ GL(V ). The center of SL(V ) is contained
in both G1 and G2.

The automorphism group Aut(X(1:0)) is the image of G1 in PSL(V ), and this induces a character λ1 of
G1. Explicitly, for g ∈ GL(V3) representing an element in G1, we have λ1(g) = det(g)4. The automorphism
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group of X(0,1) is the image of G2 in PSL(V ), and this induces a character λ2 of G2 with λ2((g, u)) = u3.
We have the following criterion:

Theorem 5.6. The following three statements are equivalent:

(i) The hyperplane arrangement H∗ is nonempty,

(ii) The space Vλ intersects with SL(V )χ,

(iii) The pair (A, λ) factor through (G1, λ1) or (G2, λ2) defined as above.

Proof. The discussion above shows that (ii) and (iii) are equivalent.

We next show the first two statements are equivalent. Firstly we show that the image of j : F → M
intersects with the image of χ in M if and only if (ii) holds. If (ii) holds, the intersection point survives after
taking GIT quotients since the SL(V ) orbits of points in χ are closed. If j(F) intersects with the image of χ
at [F ] in M , then we take the representative F in Vλ with closed N -orbit. According to the main theorem
in [Lun75], the SL(V )-orbit of F is also closed. So F is contained in SL(V )χ.

Secondly we recall that the blow-up and blow-down construction in Looijenga compactification Γ̂\D̂
H∞

gives a strata of projective line P1 corresponding to χ. We claim that H∗ is nonempty if and only if the

image of Γ\DH∗

intersects with the P1. From the proof of functoriality of semi-toric compactification in
appendix A.4, we know that DΣ intersects with H∞ if and only if D intersects with H∞. So the image of

Γ\DH∗

intersects with the P1 if and only if D intersects with H∞. The equivalence of (i) and (ii) follows.

We will apply this criterion to prime-order groups, see proposition 6.5.

6 Examples and Related Constructions

Now given a symmetry type T = [(A, λ)] for cubic fourfolds, we can obtain a global period map P : F ∼=
Γ\DH∗

. A closely related question is to classify automorphism groups of cubic fourfolds. There are 13
conjugacy classes of prime-order automorphisms of smooth cubic fourfolds (see [GAL11]). For two of them,
our main theorems recover some of the main results in [ACT02, ACT11], [LS07] and [LPZ17]. We will discuss
these examples in more details in sections 6.1 and 6.2.

Cubic fourfolds have very close relation with hyper-Kähler manifolds, see [BD85],[Has00b]. We briefly
recall the story. For a smooth cubic fourfold X , consider its Fano scheme of lines F1(X). This is a hyper-
Kähler fourfold of K3[2] type. Automorphism group of a smooth cubic fourfold X is naturally identified with
the automorphism group of the polarized hyper-Kähler manifold F1(X) (the polarization is from Veronese
embedding), see [Fu16].

The classification of automorphisms and automorphism groups of hyper-Kähler manifolds have appealed
a lot of interests recently. A celebrated result of Mukai ([Muk88]) says that there are 11 maximal finite
groups of symplectic automorphisms of K3 surfaces. More precisely, these 11 groups are exactly those
maximal subgroups of the Mathieu group M23 with at least 5 orbits in their induced action on {1, 2, . . . , 24}.
The proof by Mukai was simplified by Kondō using Niemeier lattices ([Kon98]). It turns out that using Leech
lattice instead of Niemeier lattices, one can obtain a more uniform treatment (see [GHV12] and [Huy16]).
About higher dimensional cases, there is a systematic study by Mongardi in his thesis ([Mon12, Mon13,
Mon16]).

In [HM14], Höhn and Mason classified all maximal symplectic automorphism groups of hyper-Kähler
fourfolds of K3[2] type. Those groups are all subgroups of the Conway group (automorphism group of the
Leech lattice quotient by its center).

Another closely related problem is to characterize the moduli spaces of symmetric or lattice-polarized
hyper-Kähler manifolds. There are works [DK07] (section 11), [AST11] (section 9), [BCS15], [Jou16], [Cam16]
(section 3), [BCS16] (section 5) along this direction.
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6.1 Prime-order Automorphisms of Smooth Cubic Fourfolds

The classification of prime-order automorphisms of smooth cubic fourfolds was given in [GAL11] (theorem
3.8). For readers’ convenience we present the result in this section. (There was a small mistake in [GAL11],
theorem 3.8. The second example with p = 5 contains only singular cubic fourfolds. This is pointed out in
[BCS16], remark 6.3).

Theorem 6.1 ([GAL11]). Let ω be a prime p-th root of unity and ρ = (m0, · · · ,m5) be the automorphism
of V ∼= C6 given by (x0, · · · , x5) 7→ (ωm0x0, · · · , ωm5x5). The list of smooth cubic polynomials F preserved
by the action under ρ is as follows:

T 1
2 : ρ = (0, 0, 0, 0, 0, 1), n = 14,

F = L3(x0, · · · , x4) + x2
5L1(x0, · · · , x4).

T 2
2 : ρ = (0, 0, 0, 0, 1, 1), n = 12,

F = L3(x0, · · · , x3) + x2
4L1(x0, · · · , x3) + x4x5M1(x0, · · · , x3) + x2

5N1(x0, · · · , x3).

T 3
2 : ρ = (0, 0, 0, 1, 1, 1), n = 10,

F = L3(x0, x1, x2) + x0L2(x3, x4, x5) + x1M2(x3, x4, x5) + x2N2(x3, x4, x5).

T 1
3 : ρ = (0, 0, 0, 0, 0, 1), n = 10,

F = L3(x0, · · · , x4) + x3
5.

T 2
3 : ρ = (0, 0, 0, 0, 1, 1), n = 4,

F = L3(x0, · · · , x3) +M3(x4, x5).

T 3
3 : ρ = (0, 0, 0, 0, 1, 2), n = 8,

F = L3(x0, · · · , x3) + x3
4 + x3

5 + x4x5M1(x0, · · · , x3).

T 4
3 : ρ = (0, 0, 0, 1, 1, 1), n = 2,

F = L3(x0, x1, x2) +M3(x3, x4, x5).

T 5
3 : ρ = (0, 0, 0, 1, 1, 2), n = 7,

F = L3(x0, x1, x2) +M3(x3, x4) + x3
5 + x3x5L1(x0, x1, x2) + x4x5M1(x0, x1, x2).

T 6
3 : ρ = (0, 0, 1, 1, 2, 2), n = 8,

F = L3(x0, x1) +M3(x2, x3) +N3(x4, x5) +
∑

i=1,2;j=3,4;k=5,6

aijkxixjxk.

T 7
3 : ρ = (0, 0, 1, 1, 2, 2), n = 6,

F = x2L2(x0, x1) + x3M2(x0, x1) + x2
4L1(x0, x1) + x4x5M1(x0, x1) + x2

5N1(x0, x1) + x4N2(x2, x3) + x5O2(x2, x3).

T 1
5 : ρ = (0, 0, 1, 2, 3, 4), n = 4,

F = L3(x0, x1) + x2x5L1(x0, x1) + x3x4M1(x0, x1) + x2
2x4 + x2x

2
3 + x3x

2
5 + x2

4x5.

T 1
7 : ρ = (1, 2, 3, 4, 5, 6), n = 2,

F = x2
0x4 + x2

1x2 + x0x
2
2 + x2

3x5 + x3x
2
4 + x1x

2
5 + ax0x1x3 + bx2x4x5

T 1
11 : ρ = (0, 1, 3, 4, 5, 9), n = 0,

F = x3
0 + x2

1x5 + x2
2x4 + x2x

2
3 + x1x

2
4 + x3x

2
5.

Here the lower index is the prime p, the polynomials Li,Mi, Ni are of degree i, and n is the dimension of
the corresponding GIT-quotient.
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Remark 6.2. This classification offers 13 symmetry types with #A a prime number 2, 3, 5, 7 or 11. Those
symmetry types may not satisfy condition 2.3.

By Griffiths residue calculus ([Gri69]), for a smooth cubic fourfold X = Z(F ), the complex line H3,1(X)

is generated by ResX( Ω
F 2 ). Here Ω = Σ5

i=0(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx5. By direct calculation, we
have:

Proposition 6.3. (i) For type T = T 2
2 , T

3
3 , T

4
3 , T

6
3 , T

1
5 , T

1
7 , T

1
11, we have ζ = 1.

(ii) For type T = T 1
2 , T

3
2 , we have ζ = −1

(iii) For type T = T 1
3 , T

2
3 , T

5
3 , T

7
3 , we have ζ(ρ) equals to ω or ω.

We already proved that P(Fm) is either D−Hs or D⊔D−Hs−Hs. From proposition 4.9, we have:

Proposition 6.4. (i) If T = T 1
3 , T

2
3 , T

5
3 , T

7
3 , then D is a complex hyperbolic ball and P̃(Fm) = D−Hs.

(ii) If T = T 1
2 , T

2
2 , T

3
2 , T

3
3 , T

4
3 , T

6
3 or T 1

7 , then D is a type IV domain and P̃(Fm) = D ⊔ D−Hs −Hs.

Now we apply theorem 5.6 for prime-order cases.

Proposition 6.5. For T = T 1
2 , T

3
2 , T

2
3 , T

3
3 , T

4
3 , T

7
3 , T

1
11, we obtain isomorphism between GIT compactifica-

tion F with Baily-Borel compactification Γ\Dbb
. For T = T 2

2 , T
5
3 , T

6
3 , T

1
5 , T

1
7 , we do not obtain Baily-Borel

compactification.

Proof. We will only do the calculation for p = 2, the other cases are similar. If (A, λ) factors through (G1, λ1),
then there exists g ∈ GL(V3) with order 2, such that the image of g generates A. We can choose basis of V3,
such that the matrix corresponds to g is diag(1,−1,−1). The image of g in GL(V ) is diag(1, 1, 1, 1,−1,−1).
If (A, λ) factors through (G1, λ1), then we can choose (g, u) ∈ GL(V2)⊗C∗ such that g2 = id and (det g2)/u
is a third root of unity. Under suitable basis, we have g = diag(1,−1). Then the image of (g, u) in SL(V )
is diag(1, 1,−1,−1,−1,−1). In both two cases, the characters λ1 and λ2 are trivial. By theorem 5.6, the
symmetry type T 2

2 does not give Baily-Borel compactification and T 1
2 , T

3
2 give Baily-Borel compactifications.

6.2 Examples revisit

Take T = T 1
3 , then T = [(A = µ3, λ = 1)] satisfies condition 2.3. The space F can be identified with the

moduli space of smooth cubic threefolds. The local period domain D is a complex hyperbolic ball of dimension
10 with an action of an arithmetic group Γ. Then theorem 1.1 and theorem 1.2 recover the main results
in [LS07] and [ACT11]. By proposition 6.5, the hyperplane arrangement H∗ is nonempty. Actually, from
[LS07] and [ACT11], the quotients Γ\Hs has two irreducible components, and Γ\H∗ is irreducible.

Take T = T 1
2 , then T = [(A = µ2, λ = 1)] satisfies condition 2.3. In this case, the moduli space F

turns out to be the moduli space of pairs consisting of a cubic threefold and a hyperplane section. This
is recently studied in [LPZ17]. Denote W1 = H0(P4,O(3)) the space of cubic forms in x0, . . . , x4 and
W2 = H0(P4,O(1)) to be the space of linear forms in x0, . . . , x4. We have an identification W1 ⊕W2

∼= V
sending (L3, L1) to L3 + x2

5L1. In their paper [LPZ17], the authors defined F to be a GIT-quotient of
(PW1 × PW2,O(3) ⊠ O(1)) by SL(5,C). Direct calculation shows that N = C = SL(5,C) × Z ⊂ SL(V ),
where Z = {diag(u, u, u, u, u, u−5)

∣∣u ∈ C×} is the center. The following proposition gives the relation of our
constructions with that in [LPZ17]:

Proposition 6.6. We have identification between polarized projective varieties:

Z\\(PV ,O(1)) ∼= (PW1 × PW2,O(3)⊠O(1)).
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Proof. It is equivalent to show

⊕

k

(H0(PV ,O(k)))Z ∼=
⊕

k

H0(PW1 × PW2,O(3k)⊠O(k))

as graded algebras. The action of Z on W1 has weight 3, and on W2 weight −9.

We have the direct sum decomposition

Symm(V∗) =
⊕

k+l=m

SymkW∗
1 ⊗ SymlW∗

2

with Z-action of weight −3k + 9l. The weight zero part has k = 3l and m = 4l. So we obtain identification
of the two polarized varieties.

Moreover, by proposition 6.5, the hyperplane arrangement H∗ is empty in this case, and we obtain identi-

fication between F and Baily-Borel compactification Γ\Dbb
. This recovers the main result in [LPZ17].

A Locally Symmetric Varieties and Looijenga compactifications

It is well-known that the normalization of each stratum in the orbifold loci of a locally Hermitian
symmetric variety is still a locally Hermitian symmetric variety. For reader’s convenience, we include a
discussion of this fact in section A.1. In the rest of the appendix, we prove that similar result holds for
Looijenga compactifications.

We will recall the construction of Looijenga compactifications of arithmetic quotients X of complex hy-

perbolic balls or type IV domains. There are two steps. The first is the semi-toric blowup X
Σ
, which is an

intermediate compactification of arithmetric quotient X sitting between Baily-Borel and toroidal compacti-
fications. We will recall the geometric construction of Baily-Borel compactifications of complex hyperbolic
balls and type IV domains in section A.3, and recall the semi-toric blow-up construction in section A.4. The

second step is successive blow-up constructions along the hyperplane arrangement in X
Σ

and blow-down
construction of certain induced strata (We will sketch this in section A.5).

A.1 Orbifold Loci of Locally Symmetric Varieties

In this section we show the normalization of an orbifold stratum of locally Hermitian symmetric variety
is again locally Hermitian symmetric variety.

Let G be a real reductive algebraic group with compact center. Let K be a maximal compact subgroup
of G. Let D = G/K be the corresponding symmetric space. Assume D is Hermitian symmetric and G has
a Q-structure. Let Γ ⊂ G(Q) be an arithmetic subgroup. For simplicity, we assume the action of Γ on D

is faithful. Denote X = Γ\D to be the arithmetic quotient. This is naturally a quasi-projective variety due
to Baily-Borel compactification (see [BB66]). There is a natural orbifold sturcture on X. We consider the
orbifold locus indexed by certain finite subgroup A ⊂ Γ. More precisely, we take A ⊂ Γ fixing some point
x ∈ D. Without loss of generality, we assume K to be the stabilizer of x ∈ D under the action of G. Then
A ⊂ K. Denote GA,KA and ΓA to be the corresponding normalizers of A in G,K and Γ respectively. Then
GA is again a real reductive algebraic group with compact center and KA is a maximal compact subgroup
(see [Loo16], page 37-38). There is a natural holomorphic embedding

GA/KA →֒ D = G/K.

Define DA := GA/KA. This is a Hermitian symmetric subspace of D. We have the following proposi-
tion:
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Proposition A.1. The group ΓA is an arithmetic subgroup in GA(Q) and the map π : ΓA\DA −→ Γ\D is
finite. Furthermore, if A is the stabilizer of x under the action of Γ, then this map gives a normalization of
its image.

Proof. Due to the extension theorem of Baily-Borel compactifications (see theorem 2 in [KK72]), the map π
is algebraic and proper. We show π is finite. It suffices to show π is quasi-finite, namely, having finite fibers.
Take any y ∈ DA. Suppose we have a point y′ = ρy for ρ ∈ Γ. Then ρ−1Aρ is contained in the stabilizer
group of y. Actually, the ΓA-orbits of such points y′ are one-to-one corresponding to subgroups with form
ρ−1Aρ in the stabilizer group of y, hence finitely many.

If A is the stabilizer group of x, a generic point in XA := ΓA\DA also has A as stabilizer group. We first
show that π is generically injective in this case. Take generically x1, x2 ∈ DA, and assume they [x1] = [x2]
in Γ\D. Then there exists ρ ∈ Γ such that ρx1 = x2. Since both x1, x2 have stabilizer group A, we have
ρAρ−1 = A, hence ρ ∈ ΓA. This implies that [x1] = [x2] in ΓA\DA. We have π a finite and birational
morphism from a normal variety to its image, hence a normalization of its image.

Remark A.2. The same construction also works for any finite volume locally Hermitian symmetric vari-
eties. The difference from the arithmetic case is that ΓA is not automatically a lattice. We need to use the
compactification in finite volume case (see theorem 1 in [MZ89]) to show that the orbifold locus also admits
a compactification, which implies the finiteness of the volume by Yau’s Schwarz lemma ([Yau78]).

A.2 Orbifold Loci of Ball and Type IV Quotients

We now focus on arithmetic quotients of balls and type IV domains.

We fix the notation that will be used in the rest of the appendix. Let (VQ, ϕ) be a vector space over Q

with nondegenerate rational bilinear form ϕ of signature (2, N). Let V = VQ ⊗C. Notice that here VQ is not

necessarily the middle cohomology of cubic fourfold. Similar as section 3, the type IV domain D̂ associated
to (VQ, ϕ) is a component of

D̂ ⊔ D̂ = P{x ∈ V
∣∣ϕ(x, x) = 0, ϕ(x, x) > 0}.

Denote by Ĝ the subgroup of Aut(ϕ)(R) (of index 2) respecting the component D̂. Let Γ̂ ⊂ Ĝ be an

arithmetic subgroup. The corresponding locally Hermitian symmetric variety is X̂ = Γ̂\D̂. Let A be a finite

subgroup of Γ̂. Let ζ be a character of A, such that there exists x ∈ V with ϕ(x, x) = 0 and ϕ(x, x) > 0,
and a(x) = ζ(a)x for all a ∈ A. Denote Vζ to be the ζ-subspace of V . Then there is a natural Hermitian
form h on Vζ defined by h(x, y) = ϕ(x, y). If ζ = ζ, this Hermitian form has signature (2, n) and we obtain

a type IV subdomain D of D̂. Otherwise the signature is (1, n) and we obtain a complex hyperbolic ball B

inside D̂. Indeed, let
G := {g ∈ Ĝ)|gAg−1 = A}

be an algebraic subgroup over Q. The fixed locus of A in D is G(R)/K, where K is maximal compact

subgroup of G(R). Denote Γ = {ρ ∈ Γ̂
∣∣ρ−1Aρ = A}. The same as section 4, we have Γ an arithmetic

subgroup of G(Q) acting on B or D. Then we have a natural map Γ\D −→ Γ̂\D̂ or Γ\B −→ Γ̂\D̂. We
consider the following condition:

Condition A.3. The group A is the stabilizer of a generic point of D or B.

If A satisfies this condition, proposition A.1 implies that the morphism π : Γ\B −→ Γ̂\D̂ or π : Γ\D −→
Γ̂\D̂ is the normalization of its image.

We will consider a larger set of type IV subdomains. Take WQ to be a Q-subspace of VQ with signature

(2, n), we have the associated type IV subdomain D inside D̂ with the action of an arithmetic group ΓW =
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{ρ ∈ Γ̂
∣∣ρ(W ) = W}. Take VZ to be an integral structure on VQ such that Γ ⊂ Aut(VZ) has finite index.

Denote WZ := WQ ∩VZ. For x ∈ D, define Pic(x) := V 1,1
x ∩VZ to be the Picard lattice of x where x is viewed

as a weight two Hodge structure on VZ. Then for generic x ∈ D, we have Pic(x) = W⊥
Z .

We have the following lemma:

Lemma A.4. For A satisfying condition A.3 and W = Vζ , we have ΓA = ΓW .

Proof. It is straightforward that ΓA ⊂ ΓW , and they both act on D. Take any ρ ∈ ΓW and a generic point
x in D. Then A is contained in the stabilizer group of ρx. Thus both A and ρ−1Aρ are contained in the
stabilizer group of x. Since x is generic, we have ρ−1Aρ = A by condition A.3. So ρ ∈ ΓA. We showed that
ΓW ⊂ ΓA.

With this lemma, we will simply denote Γ to be the arithmetic group acting on D. We have:

Proposition A.5. For any Q-subspace WQ (of VQ) with signature (2, n), we have a morphism π : Γ\D −→
Γ̂\D̂, which is the normalization of its image.

Proof. Properness is by [KK72]. Take a generic point x in D. Suppose ρ ∈ Γ̂ sends x to ρx ∈ D. The Picard
lattice Pic(ρx) of ρx contains W⊥

Z , hence ρ−1(W⊥
Z ) ⊂ Pic(x). Since x is generic, we have Pic(x) = W⊥

Z .
This implies that ρ(W⊥

Z ) = W⊥
Z , hence ρ(W ) = W . Thus ρ ∈ ΓW .

Finally, we show finiteness. Take a point x ∈ D. For any ρ ∈ Γ̂, we have ρ−1(W⊥
Z ) contained in the

Picard lattice Pic(x). The set Γ̂x is a disjoint union of some Γ-orbits, each of which corresponds to the
image of certain primitive embedding of W⊥

Z into Pic(x). The orthogonal complement of W⊥
Z in Pic(x) is

positive definite with discriminant at most det(W⊥
Z )det(Pic(x)). By reduction theory of lattice, there are

finitely many such primitive embeddings.

A.3 Functoriality of Baily-Borel Compactification

In this section we recall Baily-Borel compactifications of arithmetic quotients of complex hyperbolic balls
or type IV domains. See [BB66] and [Loo03a, Loo03b].

We deal with type IV domain D̂ first. The boundary components of Baily-Borel compactifications
corresponds to Q-isotropic planes J or Q-isotropic lines I. Let

πJ⊥ : P(V )− P(J⊥) −→ P(V/J⊥)

and
πI⊥ : P(V )− P(I⊥) −→ P(V/I⊥)

be the natural projections. The image πJ⊥ D̂ is isomorphic to upper half plane. The image πI⊥D̂ is a point.
Adding rational boundary components, we have

D̂bb := D̂ ⊔
∐

J

πJ⊥ D̂ ⊔
∐

I

πI⊥D̂

with suitable topology and ringed space structure. The Baily-Borel compactification is the quotient Γ\D̂bb

as a projective variety.

Given WQ ⊂ VQ with signature (2, n). Let D be the corresponding type IV domain. We have a natural

map from D to D̂, inducing Γ\D −→ Γ̂\D̂. According to theorem 2 in [KK72], this holomorphic map can be
extended to Baily-Borel compactifications, sending boundary components into boundary components.

Proposition A.6 (type IV to type IV). There is a natural finite extension of π : Γ\D −→ Γ̂\D̂ to Baily-Borel
compactifications

π : Γ\Dbb −→ Γ̂\D̂
bb

.

20



If A satisfies condition A.3, the map is a normalization of its image.

Proof. Let W := Vζ in this proof. The boundary components of Dbb correspond to rational isotropic planes
J and rational isotropic lines I in W . From the natural embedding W →֒ V , they also have associated
boundary components in D̂bb. Under the following natural commutative diagram

P(W )− P(J⊥) P(W/J⊥)

P(V )− P(J⊥) P(V/J⊥)

π
J⊥

π
J⊥

we have isomorphisms πJ⊥D −→ πJ⊥ D̂, and similar maps πI⊥D −→ πI⊥D̂, which induce an extension
Dbb −→ D̂bb equivariant under the action of Γ −→ Γ̂. After taking quotients, we have an extension map
Xbb −→ X̂bb. By proposition A.1, this map is generically injective and it is finite over Γ̂\D̂. Let ΓJ be the
stabilizer of J under the action of Γ. The projection of Γ in GL(J) (or equivalently GL(V/J⊥)) is arithmetic.

The boundary component corresponding to J is the quotient of πJ⊥ D̂ by ΓJ , hence a modular curve. The
restriction to the boundary component corresponding to each J is a non-constant map between modular
curves, hence finite. The restriction to boundary components corresponding to each I is automatically finite.
So we have an algebraic finite morphism between normal varieties Xbb −→ X̂bb. If A satisfies condition A.3,
then this morphism is generically injective by proposition A.1, hence a normalization of its image.

We recall the Baily-Borel compactification of Ball quotient. Let K be a CM field and WK a finite
dimensional vector space over K with

hK : WK ×WK −→ K

a K-valued Hermitian form. For each embedding ι : K →֒ C, we define Wι := WK ⊗ι C, then we have
a Hermitian form hι : Wι × Wι −→ C. Assume the form hι has signature (1, n) under embedding ι = ι1
or ι1, and is definite otherwise. The complex ball B is defined to be the set of positive lines in Wι1 . The
boundary components of Baily-Borel compactification correspond to K-isotropic lines I in WK and we denote
Bbb := B ⊔∐

I πI⊥B. When the totally real part of K is not Q, there exists complex embedding ι such that
(Wι, hι) is definite, which implies that any isotropic vector in WK must be zero. Thus in this case the
boundary set is empty.

Now consider the action of A on V with ζ 6= ζ. Let K be the cyclotomic field generated by ζ(A). Take
WK to be the ζ-eigenspace of VK := VQ ⊗K under the action of A.

Lemma A.7. The K-vector space WK is isotropic under ϕ.

Proof. Take any x, y ∈ WK , we need to show ϕ(x, y) = 0. Take a ∈ A such that ζ(a) is not real. Then
ζ(a)2 6= 1. By

ϕ(x, y) = ϕ(ax, ay) = ϕ(ζ(a)x, ζ(a)y) = ζ(a)2ϕ(x, y),

we have ϕ(x, y) = 0.

There is natural Hermitian form h of signature (1, n) on WK , given by h(x, y) = ϕ(x, y) for all x, y ∈ WK .
The Galois conjugates of K define eigenspaces of V under the action of A. The sum of all those eigenspaces
is a subspace of V defined over Q. Then we have the ball B consisting of positive lines in W and we denote

(Γ\B)bb := Γ\Bbb the Baily-Borel compactification of X = Γ\B.

Proposition A.8 (ball to type IV). There is a natural finite extension of π : Γ\B −→ Γ̂\D̂ to Baily-Borel
compactifications

π : Γ\Bbb −→ Γ̂\D̂
bb

.

If A satisfies condition A.3, the map is a normalization of its image.
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Proof. Similar as the proof for type IV case, we need to identify the boundary components on both sides.
The ball and its boundaries are defined as above by WK . If K is not a quadratic extension of Q, then
the boundary set is empty, hence Γ\B is already compact. If K is, then each K-isotropic line I together
with its complex conjugate I defines a rational isotropic plane in VQ. So there is a natural extension map

Bbb −→ D̂bb which is equivariant under the action of Γ −→ Γ̂. After taking quotient on both sides, we have a
finite algebraic map π : Xbb −→ X̂bb. If A satisfies condition A.3, then this morphism is generically injective
by proposition A.1, hence a normalization of its image.

Remark A.9. Similar construction of ball quotients appears in the arithmetic examples of Deligne-Mostow
theory, see [DM86] and [Loo07]. In both constructions, if the cyclotomic field generated by the corresponding
characters is not Q(

√
−1) or Q(

√
−3), then the Baily-Borel compactification is compact.

A.4 Functoriality of Semi-toric Compactifications

We first briefly sketch the semi-toric blow-up constructions of complex hyperbolic balls and type IV
domains with respect to certain hyperplane arrangements. See [Loo03a, Loo03b]. Semi-toric compactification
with respect to a hyperplane arrangement is the minimal blowup of certain boundary components in Baily-
Borel compactification, such that the closure of every hypersurface is Cartier at the boundary.

Let Ĥ be a hyperplane arrangement on D̂ defined by a set of negative vectors v ∈ VQ, which form finitely

many orbits under the action of Γ̂. We recall some definitions and notation in [Loo03b]. Each rational

isotropic line I in VQ realizes D̂ as a tube domain, with real cone denoted by

CI ⊂ (I⊥/I ⊗ I)(R).

Each rational isotropic plane J determines a half line on the boundaries of the CI for any I ⊂ J . The
union of these cones is called the conical locus of D̂. Let CI,+ be the convex hull of CI ∩ (I⊥/I ⊗ I)(Q),
which is the union of CI with rational isotropic half lines corresponding to J containing I. The hyperplane
arrangement Ĥ determines an admissible decomposition Σ(Ĥ) of the conical locus. More precisely, it is a
Γ-invariant choice of locally rational cone decomposition of CI,+ such that the support for isotropic half line
corresponding to J is independent of those I ⊂ J . See section 6 of [Loo03b] for details. For each member

σ of Σ(Ĥ) contained in CI,+, we define a corresponding vector subspace Vσ of V as follows. When σ is the
half line corresponding to an isotropic plane J , then

Vσ := (
⋂

J⊂H

H) ∩ J⊥.

Otherwise Vσ is the span of σ in I⊥, which is also the intersection among I⊥ and those H ∈ Ĥ containing
I. Here we identify H ⊂ V with H ∈ Ĥ. We have a projection πσ : D −→ P(V/Vσ). The semi-toric

compactifications is denoted by X
Σ

= Γ\DΣ. Here DΣ :=
∐

σ∈Σ πσD̂. The space X
Σ

has a natural map

to X̂bb respecting the stratifications. We have two different types of boundary components. One is finite
quotient of abelian torsor over the modular curve Γ̂J\πJ⊥D̂. The abelian torsor is modeled over vector group

J⊥/Vσ quotient by a lattice. The other is algebraic torus torsor over a point πI⊥D̂, which is the boundary
stratum in the quotient of an infinite-type toric variety induced by the cone decomposition of CI,+. In
particular, each cone of codimension k corresponds to algebraic torus torsor of dimension k.

Given WQ ⊂ VQ a sublattice of signature (2, n), with D the associated type IV domain. We have the

intersection H := D ∩ Ĥ a Γ-invariant hyperplane arrangement in D. We also have the semi-toric blowup of
D with respect to H.

Theorem A.10 (type IV to type IV). There is a natural finite extension of π : Γ\D −→ Γ̂\D̂ to semi-toric
compactifications

π : Γ\DΣ(H) −→ Γ̂\D̂
Σ(Ĥ)

.
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If A satisfies condition A.3, the map is a normalization of its image.

Proof. We first show the existence of π : Γ\DΣ(H) −→ Γ̂\D̂
Σ(Ĥ)

as a morphism between two projective
varieties, then prove finiteness.

The subdomain is induced by (W,ϕ). The isotropic lines and planes in W are naturally viewed as

boundary data of both D and D̂. The conical locus of D is naturally embedded into that of D̂.

Suppose σ ∈ Σ(H) does not correspond to a rational isotropic plane of W . Then we have a rational
isotropic line I, such that σ is contained in CI,W,+ and intersects with CI,W . For each H containing I, the

intersection H ∩CI,W being not empty is equivalent to H ∩D being not empty. Then there exists τ ∈ Σ(Ĥ)
such that σ = τ ∩W . We denote σ̂ to be the minimal element among all such τ . Thus σ = CI,W ∩ σ̂, which
implies Wσ = Vσ̂ ∩W .

Let σ ∈ Σ(H) correspond to an isotropic plane J contained in both W and a hyperplane H . Suppose v
is a normal vector of H and v = w + w⊥ the decompostion in V = W ⊕ W⊥. We have ϕ(v, v) < 0. The
hyperplane H intersects with D if and only if ϕ(w,w) < 0. Since the orthogonal complement of w in WQ

contains the isotropic plane J , we have either ϕ(w,w) < 0 or ϕ(w,w) = 0. Suppose the latter case happens,
then w ∈ J since otherwise 〈J,w〉 is an isotropic subspace of rank 3 contained in WQ, which is impossible.
Thus in this case H ⊃ J⊥∩W . The above argument holds for any H ∈ H containing σ, hence Wσ = Vσ∩W .
In this case we also denote σ̂ = σ.

For σ = {0} ∈ Σ(H), just take σ̂ = {0} ∈ Σ(Ĥ). Then for every σ ∈ Σ(H), we have a natural holomorphic

map πσD −→ πσ̂D̂ which is apparently injective. Taking union among σ, we have
∐

σ∈Σ(H)

πσD −→
∐

σ∈Σ(H)

πσ̂D̂ →֒
∐

τ∈Σ(Ĥ)

πτ D̂

with the composition continuous. After taking quotients by the equivariant actions on both sides, we obtain
a finite map between the boundary components. Actually, for those rational isotropic planes J , we obtain
finite morphisms between Abelian torsors; for those rational isotropic lines I, we obtain finite morphisms
between algebraic torus torsors. If A satisfies condition A.3, then π is generically injective by proposition
A.1, hence a normalization of its image.

Remark A.11. The injectivity of
∐

σ∈Σ(H) πσD −→ ∐
τ∈Σ(Ĥ) πτ D̂ is already known in [Loo03b] (the para-

graph after lemma 7.1).

For ζ 6= ζ, we have ball B associated to W = Vζ . We next describe the semi-toric compactification of B
with respect to H. Here we identify elements in H with hypersurfaces in W . The cusp points correspond to
isotropic lines I in WK . Let

j(I) = (
⋂

H∈H,H⊃I

H) ∩ I⊥W

and πI : P(W )− P(j(I)) → P(W/j(I)). Define

X
j
= Γ\(B ⊔

∐

I

πj(I)B).

It naturally maps to the Baily-Borel compatification. The boundary component over each cusp point is an
abelian torsor modeled over the vector space I⊥W /j(I) quotient by a lattice.

Theorem A.12 (ball to type IV). There is a natural finite extension of π : Γ\B −→ Γ̂\D̂ to semi-toric
compactifications

π : Γ\Bj −→ Γ̂\D̂
Σ(Ĥ)

.

If A satisfies condition A.3, the map is a normalization of its image.
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Proof. If K is not a quadratic extension of Q, then X is compact and the theorem holds. Now assume that K
is a quadratic extension of Q. Namely, K = Q(

√
−D) for certain positive integer D. Take any isotropic line I

in WK . Suppose a nonzero generator of I is e+
√
−Df , where e, f ∈ VQ. Then ϕ(e+

√
−Df, e−

√
−Df) = 0.

From lemma A.7 we have ϕ(e +
√
−Df, e +

√
−Df) = 0. This implies that J = 〈e, f〉 is an isotropic plane

in VQ.

We claim that j(I) = W ∩ VJ . Take H ∈ Ĥ with orthogonal vector v ∈ VQ. Under the orthogonal
decomposition VK = WK ⊕WK ⊕ V ′, we can decompose v as v = vW + vW + v′. Then ϕ(Re(vW ), J) = 0.
From lemma A.7 we have ϕ(vW , I) = 0. Therefore, ϕ(Im(vW ), I) = 0 and hence ϕ(Im(vW ), J) = 0.

Since (VQ, ϕ) has signature (2, N), the orthogonal complement of J in VQ is negative semi-definite. Thus
ϕ(Re(vW ),Re(vW )) ≤ 0 and ϕ(Im(vW ), Im(vW )) ≤ 0. We then have

ϕ(vW , vW ) = ϕ(Re(vW ),Re(vW )) + ϕ(Im(vW ), Im(vW )) ≤ 0.

Suppose ϕ(vW , vW ) < 0, then H ∩B 6= ∅. Suppose ϕ(vW , vW ) = 0, then vW is an isotropic line in WK . The
vectors Re(vW ) and Im(vW ) in VQ are then isotropic. These two vectors are orthogonal to J , hence they
belong to J . We deduce that H ⊃ I⊥W . By the definition of j(I) and VJ , we conclude the claim.

We now have naturally an injective map πj(I)B −→ πJ D̂. Taking the union among those isotropic lines
I, we have an injective map

B ⊔
∐

I

πj(I)B →֒
∐

σ∈Σ(Ĥ)

πσD̂.

After taking quotients by the equivariant actions on both sides, we obtain a morphism π : Γ\Bj −→ Γ\D̂
Σ(Ĥ)

.
Actually, the restriction of this π to the boundary component corresponding to I is a finite morphism between

Abelian torsors. We conclude that there is natural extension π : (Γ\B)j −→ (Γ̂\D̂)
Σ(Ĥ)

which is a finite
morphism between projective varieties. If A satisfies condition A.3, this π is generically injective, hence a
normalization of its image.

Remark A.13. By proposition 6.3, a non-symplectic prime-order automorphism of a smooth cubic fourfold
has order 2 or 3. This is an evidence for us to conjecture that for all balls arising from symmetric cubic
fourfolds, the corresponding field K is either Q(

√
−1) or Q(

√
−3).

A.5 Main theorem

In this section, we first describe the construction of Looijenga compactification X
H

of X◦ := X − Γ\H.
We need to successively blow up non-empty intersections of components of Γ\H, and then contract the strict
transformations of Γ\H via a natural accociated semi-ample line bundle on the blowup. We then prove

existence and finiteness of morphism between Looijenga compactifications on both sides of X −→ X̂.

The blow-up and blow-down constructions with respect to hyperplane arrangement in any normal an-
alytic variety with a properly given line bundle are discussed in the first 3 sections in [Loo03a]. Looijenga

applied this general theory to (X
Σ(H)

,Γ\H,L), where X is either arithmetic quotient of type IV domain D

or ball B, and L is the natural automorphic line bundle. See theorem 5.7 in [Loo03a] and theorem 7.4 in
[Loo03b].

The blow-up and blow-down constructions before quotient by the arithmetic groups (and the Looijenga
compactification can then be obtained by the last modified space quotient by the arithmetic group). We
now describe this. Denote PO(H) to be the set of nonempty intersections of elements in H as hyperplanes
in D (or B). Let L ∈ PO(H) also denote its closure in DΣ (or Bj). Denote c(L) := codim(L)− 1.

We first look at the semi-toric compactification DΣ of D. Denote (DΣ)◦ to be the arrangement com-
plement of H in DΣ. Choose L ∈ PO(H) a minimal member. Blowing up along L replaces L by the
projectivization of its normal bundle, which is isomorphic to L × Pc(L). The modified space, denoted by
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BlL(D
Σ), has natural topology, arrangement (the strict transform of the previous one) and automorphic line

bundle. The strict transforms of those hypersurfaces passing through L form a hyperplane arrangement in
Pc(L), and we denote the complement by (Pc(L))◦. The complement of the new arrangement in BlL(D

Σ) is
the disjoint union (DΣ)◦ ⊔L× (Pc(L))◦. After blowing up successively until hypersurfaces disjoint, we obtain

the final blowup D̃. This is a disjoint union of (DΣ)◦ with L× (Pc(L))◦ for all such minimal L appearing in
each step.

Now we can contract L × (Pc(L))◦ along the direction of L for all such L, and obtain D∗ with natural
quotient topology. Set-theoretically, L× (Pc(L))◦ is contracted to (Pc(L))◦. We have the following discription
(see [Loo03b]):

D∗ =
∐

L∈PO(H)

πLD
◦ ⊔

∐

σ∈Σ(H)

πσD
◦. (6)

Notice that for σ being the vertex, πσ is identity and πσD
◦ = D◦.

The spaces DΣ, D̃,D∗ constructed above all have natural ringed space structure. Namely, we have the
structure sheaves consisting of continuous functions with analytic restriction to each stratum. The group

Γ naturally acts on those ringed spaces respecting the stratification. The topological quotient space X
H

:=
Γ\D∗ has normal analytic structure respecting the stratification, see [Loo03b] (theorem 7.4). According

to the Riemann extension theorem, the quotient ringed space structure and the analytic structure on X
H

coincide.

For the case of ball, parallel argument gives B̃ and B∗. We have:

B∗ = B◦ ⊔
∐

L∈PO(H)

πLB
◦ ⊔

∐

I

πj(I)B
◦.

This also has natural ringed structure, and X
H ∼= Γ\B∗ as analytic spaces.

Theorem A.14 (Main Theorem). There is a natural finite extension of π : Γ\(D − H) −→ Γ̂\(D̂ − Ĥ) to
Looijenga compactifications

π : Γ\DH −→ Γ̂\D̂
Ĥ

.

If A satisfies condition A.3, the map is a normalization of its image. The same result holds for ball quotients.

Proof. From theorem A.10, we have natural morphisms from DΣ to D̂Σ. Near each boundary component,
there is a contraction map from a neighborhood to the boundary itself. The arrangement in total space is
the pullback of smooth arrangement on the boundary. According to the map defined near the boundary
components, we know that any H ∈ Ĥ not intersecting with D is still away from DΣ after taking its closure.

From corollary 7.15 in chapter II in [Har77], we have injective map D̃ −→ ˜̂
D respecting the ringed space

structures. Notice that the automorphic line bundle on DΣ is the pull back of that on D̂Σ, hence we have an

injective map on the strata L × (Pc(L))◦ to L̂ × (Pc(L̂))◦ which is linear on the second component. Here L̂

is a minimal member used in certain step of the successive blow-up construction of D̂, and L is the induced
member on the smaller subspace by intersecting with L̂. After blowing down, we have a natural injective
map D∗ −→ D̂∗ respecting the ringed space structures.

This morphism descends to a morphism π : Γ\D∗ −→ Γ̂\D̂∗, still in the category of ringed spaces. We

then have an analytic morphism π : X
H −→ X̂

Ĥ

. This analytic morphism extends π : X◦ −→ X̂◦, and sends
boundary strata into boundary strata. Combining with theorem A.10, the extended morphism π here is
finite. If A satisfies condition A.3, it is generically injective and hence a normalization of its image.

The same argument also holds for ball.
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